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Abstract 

The KdV equation with small dispersion is a model for the formation and prop­


agation of dispersive shock waves. Dispersive shock waves are characterized by 


the appearance of modulated oscillations nearby the breaking point. The modu­


lation in time and space of the amplitude, the frequencies and the wave-numbers 


of these oscillations is described by the g-phase Whitham equations. We study 


the initial value problem of the g-phase Whitham equations for a one-parameter 


family of monotone decreasing initial data. We use a variational principle for the 


g-phase Whitham equations recently proposed by Dubrovin: the minimizer of a 


functional on a certain infinite-dimensional space formally solves the initial value 

.. I 

problem for each point of the (x, t) plane. For each value of the parameter of the, \ 

initial data, we study the number of phases involved in the solution of the initial .--'\ 

value problem and we classify the topological type of bifurcation dia,gra,.~ QLthe~~,., .__i\, 

genus g(x, t). '; _.~_.~~-~ . 
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1 Introduction 

The Korteweg de Vries (KdV) equation 

2 
Ut + 6uux + E U xxx = ° 

(1) 
{ 

u(x, t = 0, E) = uo(x) 

with a small parameter E is a model for the formation and propagation of dispersive ( 

shock waves in one dimension. 

As E -+ 0 equation (1) becomes the Burgers equation 

Ut + 6uux = 0 

(2) 
{ 

u(x,O) uo(x) 

whose solution u(x, t) is given in implicit form by the method of characteristics 

u(x, t) = uo(~) 
(3){ x = 6t Uo (~) + ~ 

(here ~ is a parameter). Taking the x-derivative of both equations (3) we obtain 

1 
(4) 

It can be seen that, if the initial data is decreasing somewhere, there always exists a 

time to > 0, 

to = ~ min [- (u~(~))-l I u~(~) < 0]
6 ~EIR 

for which ux -+ 00. The solution u(x, t) of equation (2) is globally well defined up to 

the point of gradient catastrophe (xo, to), where an infinite derivative develops. 

The solution u(x, t, E) of equation (1) in the limit E-+ °has first been investigated 

by Lax and Levermore [LL] and Venakides [V). Lax and Levermore used inverse scatter­

ing method to determine the weak limit u(x, t) of the solution u(x, t, E) of the Cauchy 
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problem (1) as € -+ O. They considered only initial data with one positive hump which 

tends to zero sufficiently fast as I x 00. Venakides later considered more general 

types of boundary conditions at 1x 1-+ 00. The weak limit is characterized by a vari­

ational problem with constrains and they showed that the solution to this variational 

problem is unique. The solution of the variational problem can be reduced to the solu­

tion of a Riemann-Hilbert problem. Function theoretic methods are then used to solve 

the Riemann-Hilbert problem. They showed that the limit of the solution u(x, t €) of 

(1) as € -+ 0 exists strongly and satisfies the Burgers equation (zero-phase averaged 

equation) until the breaking time to for the Burgers equation. 

At later times, only a weak limit of the solution u(x, t, €) of (1) exists as € -+ O. 

After the time of gradient catastrophe, the solution can be approximately described 

by an oscillatory wave whose wavenumbers, frequencies and amplitude are slowly vary­

ing function of time and space. (The idea and first example of such an approximate 

description were proposed by physicists Gurevich and Pitaevski [GP].) 

The slow modulation of wavenumbers, frequencies and amplitude parameters can 

be described by Whitham equations as follows. For almost all (x, t) there exists an 

integer 9 such that the weak limit is determined by a (29 + 1 )-dimensional real valued 

function i1 (UI, U2, ... ,u2g+d with the ordering condition 

and satisfying the first order quasi-linear PDEs of the form: 

aUi A.( -+) aUi 0, i = 1, ... , 29 + 1, 9 ~ 0 , (5)at + axt U 

where the Ai's given in the next section, are expressed via certain complete hyperelliptic 

integrals on the Riemann surface of genus 9 

• r9 := {tL2 
= (r - Ul) (r - U2) ... (r. - U29+1)} 
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The weak limit u(x, t) is given in term of the vector i1 by the formula 

29+1 

u(x, t) = LUi + 2(X1(U) 
i=l 

where the form of the function (Xl (u) will also be given in the next section. 

The solution u(x, t, €) can be approximately described by the formula 

u(x, t, £) U ( $1 (:' t) , ... , $g (:' t) ; UI (x, t), ... ,U2g+1 (x, t) ) 

where the functions 5 j (x, t) satisfy the equations 

and the formula 

for constant values of the parameters U1, ... ,U29+b kj = kj(u) and Wj = Wj(u) and 

for arbitrary <Pj, j = 1, ... ,g, gives the family of the so called g-gap exact solutions of 

KdV. 

VVe recall that, in this formula, the wavenumbers kj = kj (u) and the frequencies 

Wj Wj(u) are certain hyperelliptic integrals of genus g; the 21r-periodic w.r.t <PI,' .. : Q9 
function U(<Pl,"" <P9; Ul,' .. , U29+r) can be expressed via theta-functions (see, e.g .. 

[D3)). 

For 9 0 equation (5) turns out to be the Burgers equation. When 9 = 1, equations 

(5) are identical to thevVhitham's modulation equations for periodic cnoidal waves 

[VVJ, hence (5) are also fpferred to as Whitham equations. The algebraic geometric 

description of these equations for 9 > 1, was first derived by Flaschka Forest and 

McLaughlin [FFlVI] applying the \Vhitham averaging procedure to the family of g-gap 

quasi-periodic solutions of KdV. Hence these equations are also referred to as g-phase 

averaged equations. Observe that for 9 = 0 the initial data of equation (5) is the same 
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t=t I >tou 

-, 

x 

Figure 1: The dashed line represents the formal solution of the Burger equation after 

the time of gradient catastrophe t = to. The oscillations on the picture are close to a 

modulated periodic wave. 

as the KdV initial data, for 9 > 0 instead, one has a free boundary problem (see 

below). The global picture of the solution is as follows. For t ::; to where to is the time 

of gradient catastrophe for the Burgers equation one finds 9 = O. The solution u(x, t, c) 
Ii 

converges strongly to u(x, t) which is the solution of the Burgers equation (2). After ,. 
the time of gradient catastrophe the formal solution of the Burgers equation becomes 

multivalued. Oscillations appear near the point of gradient catastrophe as shown in . 
r; 

Figure 1. In this oscillation zone the solution of the initial value problem is described 

x 

Figure 2: Bifurcation diagram in the (x, t) plane 

by the 9 = 1 Whitham equations. The graph of the solution (Ul(X, t), U2(X, t), U3(X, t)) 

for any t can be plotted on the same (x, u) plane like branches of a multivalued function 
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with the different. levels of the fold given by Ul > 'U2 > UJ. This curve can evolve further 

developing more folds that are governed in a similar way by the Whithaul equations for 

higher g. The genus g(x, t) is a piecewise constant (see Figure 2) that gives the number 

of folds over the (x, t) plane, each new fold adding two new levels. The main problem is 

to glue together the solutions Ui(X, t) of the Whitham equations for different 9 in order 

to produce a Cl-smooth curve evolving smoothly with t (see Figure 3). This problem 

is referred to as initial value problem of the Whitham averaged equations. 

u 

x 

Figure 3: On the picture, u(x, t) is the solution of (2), (Ul(X, t), U2(X, t), U3(X, t)) is the 

solution of the Whitham equations (5) for 9 1. This solution and the position of 

the boundaries x-(t), x+(t) of the 9 1 oscillation zone are to be determined from 

the conditions u(x-(t), t) = Ul(X-(t), t), ux(x-(t), t) = UIx(X-(t), t), u(x+(t), t) = 

U3(X+(t), t), ux(x+(t), t) U3x(X+(t), t). 

The investigation of the problem of disp8fsive shock waves using the Whitham aver­

aged system began with Gurevich and Pitaevskii [GP]. They studied concrete problems 

of the physics of weakly dispersive media and in particular they studied the disper­

sive analogue of a shock wave of ordinary hydrodynamics. In ordinary hydrodynamics, 

there arises after the breaking of the front wave a second-order discontinuity, or the so 

called shock-wave. In equation (1) dispersion becomes important in the vicinity of the 
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breaking point and after the breaking there is formed an expanding region filled with 

oscillations. GP described these oscillations as a modulated periodic wave. The modu­

lation in time and space of wave number, frequency and amplitude of these oscillations 

is given by the one-phase Whitham equations. 

Using invariance of KdV equation under the transformations 

{ t~ t 
x-7x+6Ct C 0 (6) 

U-7u+C 

and .. ;. 

{ t ~ t + C1• (7)
X -7 x + C2 

where C, C1 and C2 are constants, GP showed that it is always possible to choose 

the breaking point (xo, to, uo) of the Burgers equation such that Xo == to == Uo == O. 

Expanding the initial data with a cubic inflection point near this point one obtains 

in a first approximation x - p u3 . It is always possible to choose p == 1 using the 

invariance of KdV under the transformation 

X -7 C~ X C =1= 0 
t -7 Ct (8) 

Iii { 
U-7C-~u. 

For the initial data x == -u3 , GP showed numerically that the (x, t) plane has just 

a zero phase domain and a one phase domain. Whitham equations with cubic initial 

data are invariant under the similarity transformation 

X 1 
Z == 3", u(x, t) == t2"8(z) . 

t2" 

Using the above transformation G P showed that the one phase domain grows propor­

tional to t~. Later Avilov and Novikov [AN] showed numerically that the one phase 
• 

solution is stable. 
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Numerical investigations on the 02velopment of quasi-periodic rnodulated osci11a­

tions nearby the point of gradient catastrophe have not yet been done. This problem 

would require at least the study of the 2-phase Whitham equations whose solution is 

non trivial. 

The algebraic and geometric structure of equations (5) was elucidated only in the 

last decade. Dubrovin and Novikov [DN] developed a geometric-Hamiltonian theory 

for the Whitham equations. Based on this theory, Tsarev [T] was able to prove that~ 

for each g, equations (5) can be solved by a hodograph method. This method was 

put into an algebro-geometric setting by Krichever [K]. Potemin [P] gave an analytical 

solution of the initial value problem of the Whitham equations for cubic initial data 

which confirmed the results obtained much earlier by Gurevich and Pitaevskii. 

In order to study the initial value problem for generic monotone decreasing initial 

data x = f(u) in the vicinity of a cubic inflection point ~ where flll(~) =1= 0: let us 

consider the Taylor series 
5 

x - LCj(u - ~)j + O((u - ~)6), C3 =1= o. (9) 
j=O 

Since the KdV equations are invariant under the groups of transformations (6) and (7) 

we can reduce the generic initial data (9) to the form 

(10) 

For this initial data the point of gradient catastrophe for the Burgers equation is 

(xo = 0, to 0, Uo = 0). Gurevich and Pitaevskii approximate the initial data (10) in 

the vicinity of the breaking point retaining only the cubic term. The parameter C3 can 

be reduced to C3 = 1 using invariance of KdV under the rescaling (8). 

In this paper we study the behaviour of a generic one-parameter deformation of the 

GP solution. At this end we approximate the initial data x = f(u) by the quintic 

Taylor polynomial assuming that fV =1= 0 in the point of gradient catastrophe ~: 

(11) 
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The parameter space (C31 C4, CS) can be reduced exploiting the invariance of KdV equa­

tion under the following groups of transformations 

x -t k3

{ 
x, 

t -t k2 t 

u-tku, 

k#O 

and 

{ x--+ax, a#O 
t -t at 

(these transformations change, however, the value of the small parameter E). Taking 

k = VC3/C5 and a C3, the initial data (11) can be reduced to the form 

(12) 

where the dimensionless parameter C is chosen in the form 

2 15 
C <-. - 4 

-. 
iii 

We study the initial value problem of the Whitham equations for the one parameter 

family of initial data (12). wlonotonicity condition on (12) requires c2 
:::; 

Using Krichever algebro-geometric scheme, we prove that Whitham equations de­

velop at most a 2-phase solutions for the initial data (12) (in fact, we derived an upper 

estimate for the number 9 of the phases for arbitrary polynomial initial data). 

In this case the (x, t) plane has zero phase domain, a one phase domain and at 

most a 2-phase domain. For the values of the parameter c2 :::; 14
5 we classify the various 

topological types of bifurcation diagrams in the (x, t) plane. 

From the above analysis it is natural to conjecture that solutions of Whitham equa­

tions with initial data f(u) that can be well approximated by a quintic polynomial 

nearby the point of gradient catastrophe and that have the same ratio flv UJ ,Vfl1l(~)fV(~) 
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fill (E,) =1= 0, fV (E,) 0 exhibit; till a certain time, the same topological type of hi­

furcation diagram in the (x, t) plane. In a snbsequent publication we are going to 

further analyze this conjecture and the relationship between the bifurcation diagram 

of solutions of Whitham equations and the development of quasi-periodic modulated 

oscillations near a point of gradient catastrophe of a generic one-parameter family of 

initial value problems for Kd\l. 

The study of the initial value problem (12) has been investigated through a varia­

tional principle for the VVhitham equations recently proposed by Dubrovin. In [D1] the 

minimizer of a functional on a certain infinite-dimensional space formally solves the 

initial value problem for each point of the (x, t) plane. 

This paper is organized as follows: 

In 	Sect.2 we described the initial value problem for the Whitham-type equations 

(5) 	and the Tsarev hodograph method. 

in Sect.3 we describe the Krichever's algebro-geometric scheme; 

in Sect. 4 we describe Dubrovin's variational principle; 

in Sect. 5 we study the initial value problem of Whitham averaged equations for 

the one parameter family of initial data (12); 

in Sect. 6 we draw the various topological type of bifurcation diagrams in the (x, t) 

plane obtained from the study of above initial value problem. 

2 The initial value problem 

In 	this section we describe the initial value problem of the vVhitham averaged system 

(5) 	for monotone decreasing Ltitial data uo(x). The solution of the Burgers equation 

(2) satisfies the characteristic equation: 

x = 6tu + f(u) 	 (13) 
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where f(u) is the inverse function of the decreasing initial data uo(x}. The curve u = 

u(x, t} implicitly defined by (13) is single-valued until a certain time. For example, 

for f(u) = -us, u(x, t) for t > 0 is uniquely defined only for I x I> 4V4 t~. At later 

times, the evolving curve can formally be given by a multi-valued function with an odd 

number of branches: Uk = Uk(X, t), k = 1, ... , 2g + 1 where the Uk'S satisfy equations 

(5). Solutions for different g's are matched on the phase transition boundaries in order 

to produce a C1-smooth curve evolving smoothly with time. 

The g-phase Whitham equations (5) are built in the following way. On the Riemann 

surface 

define the abelian differentials of the second kind 

Pg(r, 11) d
d dq (15)p = 2p, r , 

where 

(16) 

(17) 

... 

The coefficients (};i = (};i (11), and {3i = (3i (11), i = 1, 2, ... ,g are uniquely determined 

by the normalization conditions: 

k=1,2, ... ,g. (18) 

In literature the differential dp is called quasi-momentum and the differential dq quasi­

energy. 

The speeds Ai of the g-phase Whitham equations (5) are given hy the ratio: 

Ai (it) = Q9 (Ui, ~)
Pg(Ui, u) 

i 1,2 ... 2g+1, 

10 

(19) 

• 
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In the case 9 = 0, (16) and (17) becolil~ Po(r) == 1 and Qo(r) = 12r - 6u respectively, 

so that the zero-phase Whitham equaiiuli (11) t.urns out to be the Burgers equation (2). 

The striking fact about the vVhitham equations (5) is that they can be integrated 

using a hodograph transform which is the generalization of the characteristic method 

(13). More precisely we have the following result due to Tsarev [T]. 

Theorem 1 If Wi (u) solves the linear over-determined system 

aWi 
aUj 

1 aAi 
Ai _ Aj aUj [Wi - Wj], i, j == 1,2 ... 2g + 1 ,i J, (20) 

then the solution Ul(X, t), U2(X, t), ... , U2g+1(X, t) of the hodograph equations 

(21) 

satisfies the Whitham equations (5). Conversely, any solution (Ul' U2,' .. , U2g+1) of the 

Whitham equations (5) can be obtained in this way in the neighborhood of (xo~ to) at 

which the Uix'S are not vanishing. 

The linear over-determined system (20) can be shown to satisfy compatibility con­

ditions and therefore it has local solutions. Since equation (20) is singular on the phase 

transition boundaries, the solutions cannot be extended globally. 

Krichever's algebro-geometric scheme 

In this section we analyze Krichever's scheme (see [DN][K][FFM]) of finding solutions 

to the VVhitham equations. 

Let d-p dnd dq be the abelian differentials defined by equation (15) on the Riemann 

surface rg. Then the g-phase vVhitham equations (5) are equivalent to the equation 

(see [FPM]): 

(dp)t + (dq)x == O. (22) 
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Now let us consider the abelian differential dSn (n ~ g) on the Riemann surface r g: 

dS = Sn (r, u) dr -» n n-l 
n Sn(r, U = r + II r + ... + In . (23)

2M ' -
The constants Ii = li(u), i = 1,2, ... , n are uniquely determined by the normalization 

conditions: 

k=1,2, ... ,g (24) 

and by imposing the asymptotic behaviour: 

for large I r I . (25) 

We have the following theorem (see [FFM] and [DN]). 

Theorem 2 The equation 

(26) 

holds if and only if 

Uiy + Wi (u)Uix = 0, i = 1, 2, ... , 2 9 + 1 (27) 

where the characteristic velocities Wi (u) are given by 

-» dSn I .W i (U = dp r=ui ,1- 1,2, ... , 2g 1. (28) 

The characteristic velocities Wi(u), i = 1, ... , 2g + 1, satisfy equations (20). 

Finally we combine Theorem 1 and Theorem 2, to construct the transform 

x = /\ (u) t + Wi (u) = (~q t+ ~n) I ' i = 1, 2, ... , 2 9 + 1 . (29) 
P P U=Ui 

Now suppose that the initial data of the vVhitham equations has the form 

f( ) - ( 2N 2N+l) (30)U - - Co + Cl U + ... + C2NU + C2N+l u , 

12 
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and construct on the Riemann surf3C'e rg the differential 

k=2N+l 2kk! 
ds = 	 I: (2k _ I)!! ckdsk+g . (31 ) 

k=O 

Then, if it exists, the solution of the g-phase equations with initial data (30) is given 

by the equations [FRT2]: 

(xdp -	 tdq + ds) Ir=ui= 0; i = 1,2 ... , 2g + 1 . (32) 

The following Lemma will provide an upper estimate to the number 9 of phases of the 

Whitham equations for arbitrary polynomial initial data. 

Lemma 1 Let be 

N? 1 

the initial data of the Whitham equations (5). Then equations (5) admit at most a 

N -phase solution. 

Proof: For i 1,2, ... ,2g + 1 we write the g-phase equations (32) in the form 

X Pg(r, 11) _ t Qg(r, 11) + 2~1 2kk! Ck Sk+g(r, 11)) = 0 . (33)
( 2M 2M ~ (2k - I)!! 2M r=Ui 

We call Z (r, 11) the numerator of the above differential 

2N+l 2kk' 
Z(r, 11) = x Pg(r, 11) - t Qg(r, 11) + I: (2k _ ~)!!Ck Sk+g(r, 11) . (34) 

k=O 

Z(r,11) is a polynomial of degrel"l 21V + 1 + 9 and because of (33) it has 2g + 1 zeros at 

Ul, U2, ... ,U2g+1' By the normalization conditions (18) and (24), Z(r,11) must have at 

least one zero in each of the intervals (U2k+l, U2k), k = 1,2, ... , g. So the total number 

of zeros of the polynomial (34) must be at least 3g + 1. This implies the inequality 

g~N. 

13 

0 



4 Variational principle for Whitham equations 

In the following we write Whitham equations as the minimizer of a functional defined 

on a certain infinite-dimensional space. Let us first consider the zero-phase equation. 

The characteristic equation x = 6tu+ f(u), where f(u) is given by (30), can be consider 

as the minimum of the function 

G[x,t](U) xu - 3tu2 
- F(u) (35) 

for F'(u) = f(u). The minimization problem is well defined up to the point of gradient 

catastrophe (xo, to) where the function (35) fails to have a unique minimum. \Ve want 

to extend the function of type (35) onto a certain infinite dimensional space in such a 

way that it has a unique CI-smooth minimum in this space. This minimum will give 

the solution of the initial value problem of the Whitham equations (5). 

First we define this functional on a Riemann surface of genus 9 in such a way that 

its minimizer solves the g-phase vVhitham equations. Then we extend it to a smooth 

functional on the moduli space of the hyperelliptic curves and their degeneration [D1]. 

Let us consider the asymptotic expansion of the quasi-momentum dp defined on the 

Riemann surface r g: 

dp (36)[2~-
where the coefficient Ik = Ik(Ul, U2, . .. , u2g+d are the so called KdV integrals and are 

smooth functions on the Riemann surface rg. 

Theorem 3 Let us consider the functional 
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Then the equations 

8 
-8G9

[x tee 1 ( U 1, U2, ... , 'U29+1) 0, i = 1, 2 ... , 2 g + 1 , (38)
Ui ' , 0,···, 2N+IJ 

are equivalent to the equations 

(x dp - t dq + ds) Ir=ui = 0, i = 1, 2 ... , 2g + 1 , (39) 

where dp, dq and ds have been defined by equations (15) and (31) respectively. 

The proof is based on the following lemma [D2]. 

Lemma 2 Let ds 1 and ds2 be normalized abelian differentials of the second kind on a 

Riemann surface r 9 with pole at infinity and with asymptotic behaviour 

Let consider their asymptotic expansion 

ds 1 
- _1_ '" al for large I r I , (40)- 2..JF ~ rk +1 ' 

k 

ds2 
- _1_ '" a~ for large I r I . (41)- 2..JF ~ rk +1 ' 

k 

Then 

(42) 

where 

1 21v: 1 2 = _ '" a-k-1ak (43)
dp dp 2 ~ 2k + 1 . 


k?O 
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Proof of Theorem 3. 

From Lemma 2 it can be easily checked that for j 1, 2, ... , 2g + 1: 

81
0 == -4 Res . dp dp 

u 
8uj J dr 

4 R dp dq 
(44)eSuJ3 dr 

8In _ _ 2(2n+2) R dp dSn 
- esu · d n> 1,

8Uj J r 

and Theorem3 follows. o 
To extend the functional (37) defined on the hyperelliptic surfaces of genus 9 to the 

infinite dimensional space M of all hyperelliptic Riemann surfaces r 9 9 ~ 0 with real 

branch points Ul, U2, ... ,U2g+1 and their degeneration, we refer to [D1]. 

Construct the space M inductively starting from 

Mo JR. 

We denote U the coordinate in .J.o/lo. 

Define now 

where 

Mg == {(UI, U2,"" u2g+d E JR2 
g+ 

1 
1 Ul > U2 > ... > U2g+l} 

and any of the spaces AlI:!l (j) is isomorphic to Mg ­ l assumed to be already constructed . .. 
The space M;_l (j) is attached to the component of the boundary of M~ where 

U2j - U2j+l -t 0, J 1,2 ... ,g; 

the space M;_l is attached to the component of the boundary of Mg where 

U2j-l - U2j -t 0 , J 1, 2, ... , 9 . 
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Definition 1 A C k-8m.noth functi(Jn~--:,! ! on Af is a sequence f 9 (1£1,' .. , u2g+d of func­

tions defined on every ]\;lg satisfying the following properties. 

1) On the open part ]\;lg this is a Ck-smooth function of the variables Ul > U2 > 

... > U2g+1· 

2) Near an inner point of AI~_l (j) this function can be represented as 

fg(Ul," . ,u2g+d = f9-l (Ul 1 ••• 1 U2j, U2j+, . .. ,U2g+d 


+€f~,j(ul" .. ~ U2j, U2j+b' .. 1 U2g+1; v, €) 


for a Ck-smooth function f~,j of Ul > ... > U2j-1 > V > U2j+2 > ... > U2g+1 and E > O. 

Here 

v (45) 

Here and below the hat above a letter means that the correspondent coordinate is 

omitted. 

3) Near an inner point of JI;_l (j) the function can be represented as 

fg(Ul 1 ••• 1 U2g+d fg-l CUI,' .. , U2j-11 U2j," ., U2g+d 


+6f;,j(u1,' .. ,U2j-1, U2j, ... , U2g+1; v, 6) 


for a Ck-smooth function f;,j of U1 > ... > U2j-2 > V > U2j+1 > ... > 1£2g+1 and 

6 > O. Here 

4]-1log ------:-- (46)[ (U2j-1 U2j)2 

Remark The inner part of 1.V19 parameterizes isospectral classes of g-gap potential u(x) 

of the Sturm-Liouville operator 

82 

L = 8x2 + U (x) . (47) 

Any such potential is a certain f{uasi-periodic analytic function of x. Generically it has 

9 independent periods. For a g-gap potential, the spectrum of the operator L consists 
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of the segments 

which are called bands of the spectrum. The segments [U2g+1, U2g] U ... U [U3, U2] are 

called gaps of the spectrum. 

PgIn the inner part of NIg the quasi momentum dp = (r, u) dr is well defined. To 
2/J 

extend it on the whole space j\;I we have the following proposition: 

Proposition 1 For any fixed non-real r the function 

Pg (r, 11) 
(48)

2/J 

can be extended from lVIg to a Ceo -smooth functional on M. 


The proof is based on a result of section III of [F]. 


Corollary 1 The coefficients I = Ik(Ul, U2,' .. , U2g+l) of the expansion 


1 1 eo (2k + I)Ik] 

dp = [ 2ft - 2ft L 22k+lrk+l dr , 


k=O 

are Ceo -smooth functionals on .1\;1. 

From Proposition 1 and Corollary 1 we have 

Theorem 4 The functional 

(49) 

is Ceo smooth functional on j\;I. Its minimizer is a C1-smooth multi-valued function of 

x depending Cl-smoothly on the parameters t, Cl,"" C2N+l' 
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x x 

Figure 4: Trailing edge Figure 5: Leading edge 

Example. We study the quasi-momentum dp on the boundaries of the space lV!l. 

The space Ml has two boundary components MJ and MJ. vVe call trailing edge the 

boundary component 1\1J (see Figure 4) that corresponds to the opening of a gap in 

the spectrum of the Sturm-Liouville operator (47) and leading edge the boundary com­

ponent MJ (see Figure 5) that corresponds to the opening of a band in the spectrum. 

)Jear MJ one has 

dr dr r + v - 2u 2 
(50)dp = 2V:;:-=U + E8( ) ( )2v:;:-=udr + O(E ) , r-u v u r-v r-u 

where 

U2 +U3 (51)v=--­
2 

Near MJ 

dp= dr +25 (v-u)dr dr+O(52 ) , (52)
2V:;:-=U (r - v)Jr - u 

where 

(53) 
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Example5 

We are going to study the initial value problem of the Whitham equations for the 

monotone decreasing initial data 

2 15 
c <-. (54)- 4 

The characteristic equation 

x (55) 

solves the Burgers equation until the time t = 0 of gradient catastrophe. 

In principle the Burgers equation can have another point of gradient catastro­

phe at t 2:: 0, since the curve (55) can have another inflection point different from 

(xo = 0, to = 0, Uo = 0). For c ±kv'i5 there is another point of gradient catastrophe 

of the Burgers at the time t 0 in (Xl = ±~~ j"f, UI = =t=j"f). After the breakdown, an 

oscillation zone develops around both points (xo,uo) and (Xl,Ul). We describe qualita­

tively the evolving behaviour of both zones. In the reference frame (x + 6 t Ull U +UI, t) 

the oscillation zone correspondent to the breakpoint (Xl, ud, in first approximation, be­

haves locally like the oscillation zone developing around the point (xo, uo). This means 

that the leading edges and the trailing edges of both zones expand locally with almost 

the same velocity. For c = (see Figure 6) 

the reference frame (x + 6 t Ul, U + Ul, t) moves 

with positive velocity with respect to the point 

(x = 0, U 0). This means that the leading edge 

of the oscillation zone expanding around the point 

(Xl, ud has a higher absolute velocity than the 

leading edge of the zone expanding around the Figure 6: c = -15/21/ 2 

point (xo, uo). Instead, the trailing edge of the oscillation zone expanding around the 

point (Xl, UI) has a smaller absolute velocity than the the trailing edge expanding 

around the point (xo, uo). 
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There will be a time t > 0 in vv'hich the trailing edgp, of one zone will meet the 

leading edge of the other. From the above considerations we can conjecture t11at t.here 

will be a time in which the two trailing edges will have the same x-coordinate (double 

trailing edge) and there will be also a time in which the two leading edges will have 

the same x-coordinate (double leading edge). For c = vJ5 we can make analogous 

considerations taking care that in this case the reference frame (x + 6 t Ul , U + Ul, t) 

moves with negative velocity. In the case c2 < there is a range of values of the 

parameter c for which there exists a second breakpoint (x!, ud of the Burgers equation 

at the time tl > 0. The qualitative behaviour of the two expanding oscillation zones is 

the same as the one described in the cases c = ± vJ5 (see Figure 7, 8, 9). If there is a 

x 
x 

Figure 7: Leading trailing Figure 8: Double trailing Figure 9: Double leading 

edge, c < 0, t > ° edge edge 

point of gradient catastrophe inside the first oscillation zone, apriori we can say very 

little about the qualitative evolution of the oscillations. In the further analysis we are 

going to study also this case. 

We start the analysis of the initial value problem (58) first giving an analytical 

expression for the second breakpoint of the ~urgers equations, then we are going to 

study the conditions of existence of a double leading edge, a double trailing edge and 

a leading-trailing edge. Finally we write t:r~ equations which determine the point of 

gradient catastrophe of the one-phase Whitham equations and we study their solutions. 

21 
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We tackle the analysis considering the functional ... 

(56) 

The restriction of the functional G[x,t,c] on Mo has the form 

G[x,t,cl (u) (.57) 

thus the minimizer given by 

(58) 

solves the Burgers equation until the breaking time t = O. 

At later times the minimizer of G[x,t,c] may belong to M o, Ml or M 2 . 

5.1 Second breakpoint for the Burgers equation 
• 

If a second breakpoint of the Burgers equation exists, it belongs to the component 

MJ n M5 of the boundary of the space MI' In this case a band and a gap open in the 

spectrum at the same time. We put 

UI ::::: U + VP , U2::::: U, U3::::: U - v'f., E, P > 0 . (59) 

The expansion for small E and small p of the quasi-momentum dp, defined on the elliptic 

curve fl ::::: {Jj,2 (r - ul)(r - u2)(r - U3)}, reads 

3
dr al dr a2 dr ~ 1 3-1

dp::::: + ------ + ------ + ~ O(E2p-2 ) , (60)
2y!r - U 2(r u)~ 2(r - l=O 

where 

(61) 

3
a2 =-E (62)

8 
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II 

and k = r:: v'f ,-' K(k) and E:(iu) are the c;Inpiet.e elliptic integrals of the first and 
yt+ yiP 

second kind respectively. Observe that for E ~ p, E « p and p « E the quantity a1 and 

a2 remain finite. 

From formula (60) one obtains the following expression of the functional G[x,t.c] near 

)\;1J n )\;16: 

G[x,t,cj(u) = xu - 3tu2 
- F(u) + a1 [x - 6tu - f(u)] 

(63)
+a2 [-6t f'( u)] + 2:;=0 O(Et ) , 


where f(u) is the initial data (54) and F'(u) = f(u). 


Near the minimizer (58) expression (63) becomes 

3 

- I "'""'G[x,t,c](U) = xu - 3tu2- F(u) + (2)a1 [-6t - 1 3-1
Z ), (64)a2 f (u)] + L..t O(EZp 

l=O 

where a2 - af > 0 V E, P > O. 

For given (x,t) a point u is on the boundary )\;1J n )\;16, if (x,t,u) minimize the 

functional (56) and if t and u are zero and a local minima of the term (-6t - f' (u) ) 

in expression (64), that is they satisfy the equations: 

-6t + 3u2 + 4cu3 + 5u4 = 0 


- f"(U) = 6u + 12cu2 + 20u3 = 0 (65)

{ 

- flll(U) > 0 

whose solutions are obviously Uo = 0, to = 0 and 

3 2u 1 - 10 ( C + Vc - ~) for c > 0 , 
3 2 (66)U1 = - 10 (c - Vc - 1~) for c < 0 , 

{ 
tl = ~(3ui + 4cuf + 5ui) > 0 . 

The space coordinate Xl relative to (tl' ud is recovered from equation (58). 

Observation The second breakpoint is real if c2 2:: 13°, In the previous analysis we 

have not checked if the breakpoint (Xl, tl, ur) minimizes the functional G[x,t,c]' It could 

happen that for such (Xl, t I , UI) the minimizer of G[x,t,c) belongs to the inner part of 

MI. 
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5.2 Trailing edges 

The trailing edge of the I-phase oscillatory zone belongs to the the component A-fJ 

of the boundary of the space lV[I. To study the functional G[x/,c] near MJ we use the 

expression of the quasi momentum (50), when small gap of width 2y'E opens in the 

spectrum near the point v for some v < u. 

We obtain the following expression: 

o -6t(2v - u) + x + Bc(u, v) 2 
G[x,t,c](u, v) = G[x,t,c](U) + E 2(v U) + O(E ), (67) 

where Gfx,t,c] has been defined in (57), and Bc(u, v) is a fifth degree polynomial in u 

and v. Near the minimizer (58) the E correction of (67) can be written in the form 

(-6t + Pc(u, v)) + O(E) , (68) 

where 

+504 v2 + 288 c U v2 + 240 u2 v2 + 576 C v3 + 320 U v3 + 640 v4 )/3I5 . 

Observe that the expression (68) in the limit v -+ u becomes (-6t - f'(u)) + O(E) and 

this shows that the functional (67) is continuous on the intersection NfJ n A-fg. 

For (u, t) in the set 

S9 = {(u, t) E JR x JR I ( - 6t + Pc (u, v)) > 0 'if v E JR} , (69) 

the minimizer belongs to 1v10 • 

For (u, v, t) such that (-6t + Pc(u, v)) < 0 the minimizer moves into the inner 

part of 1\11 . The points v(t, c) < u(t, c) on the boundary 2VfJ are recovered from the 

equations: 

o 
(70) 
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a 
where Ov = av' 

Since Pc(-u, v) is a fourth degree polynomial, the real solutions v(u, t, c) of system 

(70) for fixed t and fixed u can not be more than two. To have two such solutions 

v(u, t, c) and w(u, t, c) , v(u, t, c) i= w(u, t, c), we should require the existence of real 

solutions of the system: 

-6t + Pc(u, v) 0 

(71) 

-6t + Pc(u, w) = 0 

where the unknowns are t, u, v, wand c is a pa­

rameter. The solutions u(c), v(c) and w(c) of (71) 

belong to the component .ivfl(l) U A11(2) of the 

boundary of the space lvf2 , (see Figure 10). In this 

case we have a double trailing edge. System (71) 

is equivalent to the system 

-6t + Pc(u, v) = 0 
Figure 10: MI(I) U lVII(2) 

avpc(u, v) - awpc(u, w) = 0 
(72)

w-v 

a p ( ) _ Pc (u, v) - Pc (u, w) 
v c u, v v _ w avpc(u, v) - awpc(u, w) 
-----------------------+--~--------~---
_____w_-_v_________2-:..(w_-_v):.....-__ = 0 . 

w v 
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where the last two equations reads 

(73)
63 18 542 2 210 + 5 cU + 3u + (6u + 5 c)(w + v) + 16(w + v ) + 16wv == 0 

9 u 
10 c + "2 + 2w + 2v == O. 

It is clear that the degree of the problem has been reduced. We will now study the 

range of the parameter c guaranteeing reality of the solutions v < w < u of the above 

system for t > O. 

Observation: The system (72) is well defined in the limits w -t v and w -t U, .. 
so we first study system (73) in these limiting 


cases. In the limiting case w -t v, (see Figure 11) 


the two trailing edges coincide. In this case we are 


considering the embedding of N10 as the compo­


nent Mf(l) n Mf(2) n Jv[r(2) of the boundary of 


M2 . System (73) becomes a system of four equa­


• tions in the four unknowns u, v, t, c and reads: 

-6t + Pc(u, v) == 0 

Figure 11: c V3 +.6., .6. > 0 

(74)
63 18 2 108 2
10 + 5 cu + 3u + T CV + 12uv + 48v == 0 

9 u 
10c + "2 + 4v == 0 , 
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Eliminating 1l and v from the last thre\' pq1lations cf (74) we obtain 

-42875 + 40200 c2 14580 c4 + 1944 c6 0_ 

The only real solution of the above equation compatible with the conditions t > 0, v < 

u, u > 0 and c? < 1: is obtained for c = V3 where 

5 5 (25)! (- + - - (27 7V2i)! + (27 + 7V21)!) ~ 1.78167_ (75)
2 18 18 

In the limiting case w -t- u (see Figure 12) the Burg­

ers equation has a point of gradient catastrophe 

in correspondence of the trailing edge. Technically 

speaking we are just considering the embedding of 

Mo as the component Mf(2) U (Jllf(l) n Mf(I)) of 

the boundary of 1\12 - System (73) becomes 

-6t + Pc(u, v) = 0 

u 

Figure 12: c VI 

63 72 54 
10 + SCU + 25u2 + 5 cv + 22uv + 16v

2 = 0 

9 5u 
10c + 2 + 2v = 0 , 

Eliminating u and v from the above system we obtain the equation 

875 + 27075 c2 14580 c4 + 1944 c6 = 0 . 

The only real solution of the above equation compatible with the conditions t > 0, v < 
2u, u > 0 and c < ¥is given by c = VI wherp 

JVI = - :6 (13 + 5V7) '" -1.90863 . (76) 
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We infer that for - :::; c < VI the second breakpoint of the Burgers equation 

given by (66) lies in Mo, for c > VI we should make an analysis of the conditions of 

breakdown in the inner part of Jifi . 

In the general case, system (73) admits real solutions t > 0, v < w < u, and u > 0 

for c in the intervals 

- (15<C<VIV4- , 

where c2 :<; 1: defines the region of mono tonicity of the initial data. 

For c in the interval VI < c < V3 there exists just one real solution v(t, c) < u(t, c) 

of system (70) for all t > O. This corresponds to the existence of just a single trailing 

edge. 

5.3 Leading edges 

The leading edge of the I-phase oscillatory zone corresponds to the embedding of A10 

as the component MJ of the boundary of the space MI. From the expression of the 
1 

quasi-momentum dp given in (52) when a small band of width 2e- 28 opens in the 

spectrum near the point v for some v > u, one obtains the expression of the functional 

G[x,t,c] near MJ; . 

G[x,t,c] = G[x,t,c](u) + 48(v - u)[-2t(2v + u) + x + Dc(u, v)] + 0(82
), (77) 

where Dc(u, v) is a fifth degree polynomial in U 

coefficient in front of 8 can be written in the form 

and v. Near the minimizer (58) the 

8(v ­ U)2( -2t + Qc(u, v)) + 0(8) , (78) 

where 

8 32 80 64 64 128 4+-v2 +-cUV2 +-U2 V2 + cv3 + uv3 + v
35 105 231 315 231 693' 
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For (u, t) in the set 

Sb {(u,t) I (-2t+Qc(u,v))>OVVEIR} , (7~) 

the minimizer belongs to curves of genus zero. 

For (u, v, t) such that (-2t + Qc(u, v)) < 0 the minimizer moves into the inner 

part of NIl' The points v(t, c) > u(t, c) on the boundary Mg are recovered from the 

equations: 

-2t+Qc(u,v) ==0 

(80)
{ 

OvQc ( u, v) == 0 , 

First we consider the situation of a double lead­

ing edge, that is we study multiple solutions 

of the system (80). These solutions belong to 

the boundary component NIl (1) U Atfl(2) of the 

space IV!2 (see Figure 13). The analogous of sys­

tem (72) turns out to be 

-2t + Qc(u, v) == 0 
Figure 13: Double leading edge 

(81) 
11c + 15u + 20(v + w) 0 


99 66... 66 2 + w2

10 + Scu + 1uu

2 + (18u + Sc)(v + w) + 16(v ) + 16vw == O. 

In the limiting case w -+ v the two leading edges coincide (see Figure 14). 

In other words we are considering the embedding of Mo as the component )\1[(1) n 
Ml(2) n Ml(l) of the boundary of M 2 . System (81) turns out to be a system of four 
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equations in the four unknowns u, v, t, C and the only real solution compatible with the 

conditions t > 0, v > u, u < 0 and c2 < 1: is obtained for c V2, 

5 5 ( 49) ~ ( hI' ( • In) ~ (82)V2 = - 2 - 22"2 e3" -11 + 5 1V 3 + 

V2 ~ -1.85585. 

x 

u 

Figure 14: Mf(l) n .ivIf(2) n Figure 15: Mf(l) U (Mf(2) n 
Mf(l) Mf (2)) 

In the limiting case w -t u, there exists a point of gradient catastrophe of the 

Burgers equation in correspondence (see Figure 15) of the leading edge. System (81) 

turns out to be a system of four equations in the four unknowns u, v, t, c and the only 

real solution compatible with the conditions t > 0, v > U and U < °is obtained for 

1 
V4 V44 (75 + 21 v'15) ::e 1.88494 . (83) 

, the second breakpoint of the Burgers equation lies in NIo. For c < V4 

we should make an analysis of the conditions of breakdown in the inner part of J.1;h. 

In the general case, system (73) admits real solutions t > 0, and u < w < v for the 

following values of the parameter c: 

fl5 fl5 
v4 < C ::; V4 ' - V-; ::; c < V2 . 
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For the val 11Ps 112 < c < 1/4 there exists just one real solution v(t, c) > u(t, c) of sv~:;t~m 

(70) for all t > O. In this case there exists just a single leading edge for all t > O. 

5.4 Leading-trailing edge 

We call leading-trailing edge the situation in which a leading edge and a trailing edge 

have the same (x, t) coordinates. 

A leading-trailing edge corresponds to the embedding 
u 

of J\l10 as the component }v1l(1) U Ml(2) of 1'.112 , In 

this case a band and a gap open in the spectrum at x 

the same time and in correspondence of the same x 

coordinate. If the gap opens near the point v < u and 

the band opens near the point w > u, the point u, v, w 

on the boundary Ml (1) U Ml (2) are recovered from Figure 16: Ml(l) U .J1l(2) 
the equations: 

-6t + Pc(u, v) = 0 

(84) 

-2t + Qc(u, w) = 0 

The degenerate cases are w -+ u and v -+ u. 

The first case, which corresponds to the boundary .i\l1l(2) U (Ml(l) n 1V1l(1)), has 

already been considered, and a solution of system (84) exists just for the value c = 114 

defined in (83). 

The second cas'~ has also been already considered and corresponds to the boundary 

1VIl (1) U (MI (2) n Ml (2)). System (84) admits solution for the value of the parameter 

c = III defined in (76). In the general case v < u < w system (84) is not reducible to a 
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simpler one in order to get analytical solutions. We have checked numerically that for 

c in the intervals 

- fl5 < c < 1/1V4- ) 
;.. compatible real solutions exist. 

Remark. From the above analysis it is clear that, for the values of the parameter 

c for which there exists an embedding of Mo as some component of M2 , there should 

also exist a solution of two 2-phase Whitham equations. The (x, t) plane should have 

a zero-phase domain, a I-phase domain, and a 2-phase domain. 

It is not clear if, for the values of the parameter c for which there is not an embedding 

of Mo as some component of the boundary of M2 , there exists a solution of the 2-phase 

Whitham equations. 

5.5 Point of gradient catastrophe for the one-phase equations 

In the following, we analyze the conditions for the existence of a point of gradient 

catastrophe for the I-phase vVhitham equations. We are going to consider monotone 

decreasing initial data 

( 3 2N 2N+1)f ()U = - u ... + C2NU + C2N+IU . (85) 

We call dPI the quasi-momentum dp restricted to M 1 , 


r + ao d
dPI = r (86)
2J(r - ud(r - u2)(r - U3) , 


where ao is determined by the normalization condition 


l
U2 

r + ao dr = 0 . (87) 
U3 2J(r - ud(r - u2)(r - U3) 

The restriction on Ml of the functional G[x,t,CQ"",C2N+d defined by (49) has the form 

(88) 
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where the r k'S are the coefficients of the eXD::l.nsion for r ~ 00 of 

1 
(89) 

Proposition 2 The critical points of (88) on the space of elliptic curves are given by 

the equations for Ul > U2 > U3 

1,2,3 (90) 

where 

(91) 

and 

(92) 

Proof: Using the following formula obtained from Lemma 2 

8 1 1 (ao + Ui)2
-8ao == - - + - IT ( ) 't 1, 2, 3 (93) 

Ui 2 2 j=/=i Ui - Uj 

and the identity obtained from expression (89) 

(94) 

equations (90) are recovered straightforward. 

Equations (90) solve the I-phase Whitham equations with initial data (85) (see 

[KS], [FRTl]) and are well defined for t > 0 and Ul > U2 > U3 up to the time of 

gradient catastrophe when one of the 8xUi, 1 ::; i ::; 3 becomes infinite. 

We want to study the functional (49) near this point of gradient catastrophe. For 

the purpose we study the functional (49) when a small gap opens in the spectrum 

in the I-phase zone, technically this corresponds to study the functional (49) near 

the embedding of Ml as the component Ml(l) or Ml(2) of M21 (see Figure 17 and 

33 



Figure IS). First we let a gap open in the spectrum near a point v and we study the 

functional (49) in this case, and then for a chosen i, 1 ::; i ::; 3, we let v --+ Ui . Thus 

we get the behaviour of the functional (49) near one of the boundaries Ml(l) n l"\;Il(I). 

NIf(l) n Ml(2) or Mf(2) n 1"\;Il(2). If the functional (49) has a minimum on one of 

these boundaries, then the one-phase Whitham equations have a point of gradient 

catastrophe. 

x 

u 

x 

Figure 17: NIf (1) Figure IS: Mf (2) 

If a gap of width 2..j€ opens near a point v the quasi-molnentum dp becomes 

- d t (aT + (3) (T v) + T+ aD 0 ( 2)dP - PI + - + t , (95)
4 (r - v)2J(r - Ud(T - u2)(r - U3) 

where dPI has been defined in (S6) and 

3 
aD +V L 11+ .

2 v - U·
i=I 1 

Near one of the boundaries Ml(l) or Ml(l) the functional (49) reads: 

G[X,t,C3, ... ,C2N+d(UI, U2, U3, v) G[X,t,c3, ... ,C2N+d + ~ [a(x 4ta - 2a) (96) 

1 
V+(av + (3 + '2)(-St - 2aV 

) - 2(ao + v)8va ] + O(t2
) , 
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,,,,,here 

(97) 


and the fk's are the coefficients of the expansion 

1 1 v fy f2 f~ 
-5(fo +-+ 2 +"'+ k +"')' (98)
rl r r r 

For fixed i we can simplify the € correction of (96) near the minimizer x = Ai t + Wi 

obtaining: 

G ( ) Gl _ .:. [~ v - Ui a (J'v +
[X,t,c3, ... ,C2N+1l Ul, U2, U3: V [x,t,co, ... ,C2N+d 2 	~ v _ U. Ui 

j=l J 

(99) 

I1j/,i(Ui - Uj))] + O(€2). 
I1j =l(V uJ ) 

To get the behaviour of the functional (49) near one of the boundaries MI (1) n J.vI'[ (1) ~ 

Alt(l) n NI'[(2) or NIt (2) n lvf?(2), we should let v -t Ui, 1 ::; i ::; 3 in the expression 

(99). We have the following result. 

Lemma 3 In the limit v -t Ui, 1::; i ::; 3, the functional (99) becomes 

G[ t ](Ul U2 U3) = G[
l

]­X,w,C3,· .. ,C2N+l " x,t,co, ... ,C2N+l 

(100) 

FrOf.tl the €-correction of the functional (100) it holds: 
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Lemma 4 If the equations x Ai t + wi, Z - 1,2,3, g'tven 'tn (90) minimize the 

functional 

G[X,t,C3, ... ,C2N+l] , then on the minimizer the following inequalities holds: 

(101) 

(102) 

(103) 

From the above lemma it follows that on the solution of the one-phase equations it 

holds 8xUi < 0 for i 1,3 and 8xU2 > O. 

The point of gradient catastrophe of the one-phase equations should be a zero and 

a local minima of the f correction of (100). If the point of gradient catastrophe in on 

the branch Ui, 1 ~ i ~ 3, it is determined by the system of equations: 

(104) 


3 3 

with the constrains 8 8 (Ai t + Wi) < 0, k, j = 1,2,3, i = 1,3 and 8 8 (A2 t + 
UkUjUi UkUj U2 

W2) > 0, k, j = 1, 2, 3. 

All the above derivatives are identically zero for j =1= i, k =1= j =1= i and k =1= j =1= 2, 

(for a proof see [FRT1]) and system (104) becomes: 

8 
-8(/\t+Wi)=O, 1<i<3, 

Ui 

(105) 
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System (105) together with t.he one phcsc equations (90), gives u system of five 

equations in the five unknowns x, t, Ul > U2 > U3 : 

-X+A1t+Wl 0 

-x + A2t + W2 = 0 

-x + A3t + W3 = 0 
f)

-(Ai t + Wi) = 0 (106)
f)Ui 

Lemma 5 System (106) is equivalent to the following system 

o 

3(t + ~aUiO") - .L(Ui - Uj)a~iUjO" = 0 (107) 

i#i 

f)~i (f)ul 0' + f)u2 0' + f)u3 0') 0 , 

with the constrain a~i(aUIO'+aU20'+aU30') < 0 fori = 1,2 and ~i(f)ulO'+f)u20'+f)u30') > U 

for i 3. 

For a proof see appendix A. 

Observe that the last two equations of system (107) are algebraic in Ul, U2, 'U3 thus 

we can give some algebraic constrain to the non existence of solutions of (107). 
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Theorem 5 If the initial. data (85) satisfies fill (u) < 0, then the one phase equations 

do not have any pO'lnt of gradient catastrophe. 

Proof: It is sufficient to prove that the equations 

(108) 

have no real solutions. For the purpose we write an expression [FRT1] of a which relates 

it to the initial data J(u):

111 J (1+8 l+tu + I-t u )+ 1-81+tu1 __ 2 2 1 2 2 2 2 3 dt ds . (109)
2V27r 1-1 -1 )(1 - t)(l - s2) 

Taking triple derivative with respect to Ul, U2, U3 we obtain 

83a _. lUI J: JIII(Z)(Z - U3)i+j (y z)k-tdz d 
3 

. j k - C 7 1 . 1 . y,
8ul8u28u3 U2 (y U3)2"(UI - y)2"-J(z - U2)2"-a 

where i + j + k = 3 and C = ( 1 )+ ..
27r Ul U2 a J 

For JIII(U) < 0 it holds .83~ < 0, hence equations (108) have no real solutions. 
8ul8u~8u~ 

Remark: In [FRT1] Tian has proved that for smooth monotone decreasing initial 

data satisfying the condition fill (u) < 0, the solution of the one phase Whitham equa­

tions exists for all t > o. Here we have proved that the one phase Whitham equations 

have no points of gradient catastrophe. From the results of Sec. 5.1, also the Burgers 

equation has no points of gradient catastrophe but (x = 0, t 0, u = 0) for JIII(u) < O. 

Hence the solution of the one-phase equations exists for all t > O. 

-u3 4 u55.5.1 Initial data J(u) = - cu -

In this section we are going to study the solutions of system (107) for the one parameter 

family of initial data (54). From Theorem 5 it follows that for c2 < ~, there is no point 
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of gradient cat2'3trophe for the one-phase 'Vvhitham equatiol1s. We have already seen 

that for c in the intervals 

Ji5 Ji5< c < VI , V4<C<--,2 - - - - 2 

where VI and V4 have been defined in (76) and (83) respectively, the Burgers equation 

admits two points of gradient catastrophe and there also exists an embedding of J10 as 

some component of 1'\112 . From Lemma 1 it follows that the one-phase Whitham equa­

tions cannot have a point of gradient catastrophe. Hence a point of gradient catastrophe 

of the one phase vVhitham equations could exist only for c in the intervals: 

VI < C ::; /"f ' /"f::; c < V 4 • 

3 4 5In order to study the solutions of the system (107) for f(u) = -u - cu u , we first 

consider its last two equations: 

(110) 

2 63 18 2 
3ao - 4al + 10 + Scao+ 10aOui + 18cui + 35ui = 0, 

with the constrain -ao -7Ui - ~ C < 0 for i 1,2 and -ao -7Ui ~ c > 0 fori = 3, 

where eTo = Lj;i:i Uj and al = ITj;i:i Uj, a5 - 4al > O. Eliminating al in (110) and in 

a5 - 4al > 0 we obtain 

? 252 216 2 1134 648 2 

16ao + -Sao + -Scao + 25c + 25 c ao+ 


2 648 2 2 2 3
120aoui + 288caOUi + -_-c Ui + 480aoui + 360cUi + 280ui 0 (Ill) 

. 2 63 18 0 
-:'.ao - 10 - Scao - 10aOUi - 18cui 35u; 2:: 0, 

with the constrain -ao -7Ui - ~ C < 0 for i 1,2 and -ao -7Ui ~ c > 0 for i = 3. 
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The plot of the equations (111) (a cubic and an ellipse respectively) and of the line 

-0"0 7 Ui - ~ c == 0 in the (Ui, 0"0) plane for c in the range VI < c < J5/2 and 

J5/2 < c < v4looks like Figure 19. Real solutions (UI,U2,U3) of the system (110) exist 

only when the cubic lies inside the ellipse. From the picture 0.5 

it can be seen that only the compact component of the 

cubic lies inside the ellipse and it becomes a single point 
-0.5 

for c == ±V3, where V3 has been defined in (75). System 
-1-5 

(110) has no real solutions for -V3 < c < V3. Hence we can 

restrict ourself to look for solutions of system (107) for c in 

the intervals V3 ::; C < V4 and VI < C ::; -V3 . Figure 19: c == 
From numerical analysis it turns out that there exists a point of gradient catastrophe 

on the UI-branch for c in the interval 

Even though for c == V2 system (107) admits a solution, there does not exist a point of 

gradient catastrophe on UI because it also holds 83
3 (A1 t + wd O. 

U 1 

There exists a point of gradient catastrophe on the u3-branch for c in the interval 

-G." 0,4 

1.79 


Even though for c == V3 system (107) admits a solution, there does not exist a point of 

gradient catastrophe on U3 because it also holds 83 
3 (A3 t + W3) == O. 

U 3 

From numerical analysis it turns out that there exists no point of gradient catas­

trophe on the u2-branch for the I-phase Whitham equations. 

Observe that from numerical analysis, the interval in which the one-phase equations 

do not have a point of gradient catastrophe is wider than the interval obtained applying 

Theorem 4. 
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6 Bifurcation diagrams ill thfl x - t plane 

From the above analysis we can draw the various topological types of boundaries AiJ, 

NIJ in the (x, t) plane. We draw with a dashed line the boundaries of M2 • 

1) 1)4 < C S; fi-; there exists a second breakpoint for the Burgers equation in 

Xl > 0, tl > °there exist a double trailing edge, a leading-trailing edge and a double 

leading edge hence the bifurcation diagram of the genus g(x, t) is 

o X, x 

2) c = 1)4; the Burgers equation has a second point of gradient catastrophe in 

correspondence of the leading edge and there exists a double trailing edge. 

x 
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3) 1/3 < C < 1/4; there exist a point of gradient catastrophe for the one-phase 

Whitham equations for t > 0 and there exist a double trailing edge. 

xo 

5) 1/2 ::; C ::; 1/3; there exists just the point x = t = u = 0 of gradient catastrophe 

for the Burgers equation and the one-phase vVhitham equations are stable. 

g=O 

x 

6) 1/1 < C < 1/2; there exist a point of gradient catastrophe for the one-phase 

Whitham equations for t > 0 and there exist a double leading edge. 
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7) C = VI; t.he Burgers equa~ion has a. second point of gradient catastrophe in 

correspondence of the trailing edge, there exists a double leading edge. 

x 

8) -j1i ~ C < VI; there exists a second breakpoint of the Burgers equation for 

Xl < 0 and tl > O. There exist a double leading edge, a leading-trailing edge and a 

double trailing edge. 

g=O 

x 
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A Proof of Lemma 5 

For simplicity let us choose i = 3 in system (106). System (106) is equivalent to the 

system 

-x + A3t + W3 = 0 


(AI - A3)t + WI - W3 a 

(A2 A3)t+W2 - W3 = a 


(112)aU3 (A3 t + W3) a 

a~2(A3 t + W3) = a 

a3

3 

3 

(A3 t + W3) < o.

U 3 

Using (91), (92) we have the following identities: 

Fj = ao+uj [(Aj- A3)t+Wj- W3] a J 1,2
4(uj - U3) 

(113) 

(114) 

-G 
 (115) 
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where TIi = TIj ;-6i(Ui - Uj) and 2: i = I:j;-6JUi - ui) for i, j = 1,2,3. 

From the equalities (113), (114), (115) and (116), system (112) is equivalent to the 

system 

-x + A3t + W3 == 0 

F3 = 0 

F2 - Fl == 0 

F2 Fl F2 F3 =0 
U2 Ul U2 - U3 

(117)F3 3F2 F3 2 (F4 TI3 + 2F3 2:3) 
" 

- U3 + _U-=.2_-_U;;;;...3_____TI_3::....-__ == 0 

2:3 25 
F5 + 3rrF4 + rrF3 

3 IT3 4 3 > O. 

F2 
U2 

Substituting the explicit formula of F1, F2, F3 , F4 and F5 in the above system one 


obtains system (107) for i 3. For i 1,2 analogous computations have to be done. 


D 
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