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Abstract 


The theoretical analysis of a concept of life time and mean life of unstable 
elementary particles is presented. The new analytic formulas for life time 
and mean life as the function of decay width r and the mass of unstable 
particle are derived for Breit-Wigner and Matthews-Salam energy 
distributions. It is demonstrated that for unstable particles with a larger 
width or decay energy threshold the deviation from the generally accepted 
mean life m=r-1 is significant. The behaviour of the decay law P(t) for 
small times is analyzed and it is shown that the Breit-Wigner distribution 
violates the condition P(t=O) =0 whereas the Matthews-Salam distribution 
satisfies it. 
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1. Introduction 

Almost all elementary particles are unstable [1]. However the instability effects 

are usually disregarded in a description of elementary particle interactions. In fact in 

most of applications of Standard Model one uses, as a main tool, the S-matri"{ approach 

in which one assumes implicitly or explicitly that asymptotic states exist also for unstable 

particles such as 1-1, T, Zo, W= and other elementary particles. 0, the other hand 

analyzing the energy dependence of various cross sections like e.g. the total cross section 

e+ + e- hadrons we observe the striking effects due to instabilities of exchanged--J> 

vector mesons like p, w, q" Jf\V, Y and Z [1]. 

We have decided therefore to investigate in details the properties of unstable 

particles. We present in this work the detailed analysis of the concept of life time, and 

mean life as the function of decay width r, mass m and the threshold energy A.U" since 

these quantities give the important characteristics of unstable elementary particles. 

In all of experimental analyses one identifies the mean life T: of unstable particle 

1jJ with the quantity 

.m 1 
,;.. ::;;- (1.1) 

r 

where r is the decay width [1]. This relation would be true if the decay law P tp(t) 

(defined below) would be given by pure exponential i.e. 

P.(t) ::;; exp ( - I't) for all t~O (1.2) 

It was observed however in several works that the decay law for unstable systems cannot ,

be given by pure exponential. In fact we have: .. 

Theorem 1.1. Let 1jJ be a state of an unstable system and let C and B be some positive 

constants such that 

for all t ~ O. Then the spectrum of the corresponding energy operator H equals to R = 
(-00, (0). (For the proof see [2], Thm. 1.5.7). 

Since the energy spectrum of a physical system must be bounded from below the 
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Theorem 1.1 states that the decay law P 1/I(t) cannot be given by pure exponential. 

Hence the formula (1.1) for mean life is incorrect. 

The more detailed analysis indicates that we must have, in general, a deviation 

from pure exponential for small and large times: in particular we have ([2], [3]) 

(1.3) 


whereas for pure exponential this derivative equals -f; for large times we have 

(1.4) 

with n > 1 and nand c depending on the shape of energy spectrum. [2], [3], [4]. 

The analysis shows that the algebraic time dependence in (1.4) follows from the 

boundedness from below of energy operator and is therefore unavoidable. Consequently 

if the time of measurement increases the algebraic term becomes dominant and there 

is no reason to relate ~ with f by formula (1.1). There arises therefore the need of a 

general definition of mean life in terms of decay law P fiJ (t). 

In order to solve these problems we present in Sec.2 the general definitions of life 

time 1"fiJ and mean life ~ in terms of decay law PfiJ(t). We follow the conventions given 

in [2]. We show that from the fundamental properties of unstable particle with the width 

f (to be defined later) and mass m it follows that in general 

't; = ~[1 +A't(r/m)] (1.5) 
r 

where the analytic form of the additional term 6.1"(f/m) depends on the form of energy 

distribution. For frequently utilized Breit-Wigner form of the energy distribution we find 

the analytic form of the function of 6.r(f/m): if f/m is relatively large as it is for e.g. p

meson (f/m = 0.2) or ZO-meson (f/m = 0.02) then 6.r(f/m) is numerically significant 

and one must use (1.5) instead of (1.1) for the precise determination of ~. 

We illustrate the above problems for the Breit-Wigner energy distribution applied 

to the analysis of mean life of p- and ZO-mesons. The numerical analysis clearly shows 

that mean life obtained from formula (1.1) and (1.5) are different. We also show the 

interesting result that the Breit-Wigner distribution violates the condition (1.3); this is 

a serious defect of B-W distribution which leads to a question if B-W distribution is 
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meaningful in particle physics. 

We analyze in Sec. 3 the above problems for the Matthews-Salam energy 

distribution, which is derived in the frame-work of the relativistic quantum field theory, 

and provides a convenient description of the relativistic unstable particles. We show that 

decay properties of relativistic particles are essentially different from that described by 

B-W energy distributions. In particular we show that the M-S energy distribution satisfies 

the condition (1.3). 

We conclude this work with a discussion of obtained results and with some 

suggestions for concrete experiments which could clarify the problem of a nature and 

properties of decay law for unstable particles. 
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2. Life time and mean life. 

Let H be an energy operator with the spectral representation 

(2.1)H=fAdE(A) 

where E(A) is the spectral measure of H. Let Ut be the evolution operator 

(2.2) 

and let 1/J be a unit vector in a Hilbert space ~ of physical states. Let v.p(t) be the 

probability amplitude 

(2.3) 

Then the decay law P.p(t) for the system described by the state vector 'P is given by the 

formula 

(2.4) 

The quantity P.p(t) has the natural physical interpretation as the probability that the 

system in the state 1/J at t=O will not decay till the next measurement carried out at the 

time t>O. 

We now introduce two important characteristic of unstable particles namely the 

life-time T and the mean life rn [2]. 

The life time T", of an unstable particle represented at t=O by the state ljJ is given 

by the formula 

(2.5) 


The mean life T.p m is defined by the formula 

(2.6) 
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Integration by parts gives: 

": :: 't t -lim tP. (t) (2.7) 
t- . 

For pure exponential decay law P.,(t) = exp (-ft) for all t ~ 0 we have: 

(2.8) 

However if P",(t) falls off for large t as eel we obtain 

1ft (2.9)or. :: or.-c 

Hence in general the life time and mean life may be different. 

We wish to stress that definitions (2.5) and (2.6) are the only possible definitions 

of mean life and life time which in case of pure exponential reduce to the well known 

formula 

(2.10) 

It was first proven by Khalfin [4] that the exponentiality of a decay law of any 

unstable system - especially for very small and large times - must be violated. The 

descriptions of this phenomena was given in Theorem 1.1. Since for physical unstable 

systems the energy operator H must be bounded from below the decay low P",(t) cannot 

be pure exponential i.e. Ptp(t) ;eexp(-ft) for all t ~ o. 
We shall analyze in what follows the concept of mean life, since this quantity is 

mainly considered in various experiments with unstable particles [1].It should be stressed 

that in most of experiments one reads off the mean life from a slope of exponential. 

However the Theorem 1.1 and Eqs. (1.3) and (1.4) indicate that the true decay law P(t) 

must be different from the exponential decay law. 

We now give for an illustration the analysis of mean life for the Breit-Wigner 

distribution of energy. In this case we have [2] 

d(lIJ,E(l)t) = g(l)dl 

with 
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r.1~T 6(1 -It ' g(l) = 	 ",__J_Y ____ (2.11)21t (1-mi' + ~r2 
4 

and 

1 (21ii)]-.1 	 (2.12)1N = 1. +1t- arctg r[ 

where Atr is the threshold energy for the decaying particle, m = m - Atr and () is, the 


Heaviside's function. We note that it is (2.11) and later (3.1) which gives the precise 


meaning to r. 

We observe that if r ~ mthen N is almost equal to one. 


Using (2.3) one obtains [2] 

v(t) = 	Jexp( -iliit -.!. rt)-i(21tr1 'E exp(-imt -.!.cx rt)Ei(imt + .!.cxrt)] (2.13)Hl 2 &=:1 2 2 

where Ei(z) is the integral exponential function. 

For large t we obtain 

(2.14) 

We see that pure exponential decay is modified - for large times - by the algebraic one. 

Since for large times P tp(t) = c1t-
2 by Eq. (2.7) we have Ttp=-r;. Consequently we have 

four regions of time intervals: 

1. 	 The region of small times where using (2.13) we obtain: 

(2.15) 

where 	c1 are definite constants. 

II. 	 The region of intermediate times where the exponential term is dominating: in 

this region we have: 

(2.16) 
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III. 	 The third region where the exponential term is comparable with the algebraic 

one. This occurs when modulus of exponential term is comparable with the 

modulus of the algebraic term i.e. for t in the neighbourhood of tc determined 

from the formula 

l.:rt exJ_.!:rt) = Tt-l(l:..)2 	 (2.17)
2 c 	 \2 c 2m 

IV. 	 The fourth region for t »tc where the decay law is dominated by the algebraic 

term 

(2.18) 

We note that from (2.15) we get: 

Hence the B-W distribution violates the condition (1.3). 

Equation (2.17) has two solutions for rtc. From the shape of the curve x-exp(-x) 

it follows that (2.17) will have one solution near zero and the another one rather large. 

Since (2.17) is derived from the asymptotic expansion (2.14) only the large solution for 

ftc is meaningful. We see that if rim increases the solution rtc for (2.17) decreases. 

Consequently for unstable particles with a larger width r the function PlJI(t) will start to 

oscillate for smaller times. For instance for p-meson with f=152 MeV and m=490 MeV 

we obtain rtc=13.58 : for ZO-meson with r=2.487 GeV, m=91,17 GeV we obtain 

rtc=24.47. 

We present now the typical example of oscillation with time of the decay law 

We took for an illustration 152 MeV, m=770 MeV, Atr=280 MeV \vhich 

corresponds to p-meson characteristic parameters. 

The oscillations of P",(t) are a very unexpected property, since one would expect 

in principle merely some kind of monotonicity in time. We see also that for rt> 22 the 

decay low is algebraic. 
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Fig. 2.1. The plot of InP.(t) versus rl 

In order to illustrate better the deviation of the true decay law (2.4) from the 

exponential one we present in Fig.2.2 the plot of function Pv(t)/exp (-rt) as the function 

of rt in the case of p-meson. 
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Fig. 22. The plot of P .,(t)/exp( -rt) as the function of rt for p·meson 

We see that the ratio P t/exp( -rt) strongly oscillates with rt - the characteristic feature 

for all unstable particles, which will be more significant ,for unstable particles with a 

larger width r or with the threshold energy Au close to m as it is in case of 4>-meson 

decaying into KR pair. 
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In most of analyses of mean life for an unstable elementary particle such as 7T, 

K, p, ZO mesons or n, A, I. baryons one assumes that mean life -r; is connected with the 

decay width r by the formula (1.1). This mean life would be obtained from the formula 

(2.10) if the decay law were pure exponential i.e. P(t)=exp(-rt). However we know from 

Thm 1.1 and (1.3) that pure exponential decay law is unphysical. Therefore in order to 

find the correct relation between mean life and decay law P..(t) we have to use the 

general definition of ~ given by Eq.(2.4). We first find ~ for the energy distribution 

g(A) given by the Breit-Wigner formula (2.11). In this case Ptp(t) is given by (2.13). 

Inserting this expression into (2.4) we obtain: 

1:; = 1. [1 + ll. 1: (r/m)] where (2.19) 
r 

.t\ 1:'1 (Y) = N1.[1 + _1_ Y - iarctg1.j- 1; y=r/m (2.20)
27t 1 1 1. 1t 2+-y

4 

We see that in a realistic case of Breit-Wigner type of energy distribution the 

connection between 'TV" ,-; and r is given by a rather complex function of rIm. Hence 

from a theoretical point of view there is no justification in general to use for the life 

time or mean life the formula (1.1). It is noteworthy however that for small rIm from 

(2.19) we obtain: 

(2.21) 

In order to illustrate the deviation of the true ,-; given by (2.18) from +;=r-1 we 

present in Fig. 2.3 the plot of '-;IT~ as the function of rIm. 

We see that the ,-; deviates more significantly from T; = r-1 if the ratio rIm or 

Atr increases. We note that for instance for the decay 4> -+ KR, Atr is close to m</>: hence 

rIm is in this case relatively large. 

10 




1.35 

1.3 

Iii., Iii 
~

.,.. 1.25 

... 
1.2 

1. IS 

1.1 

1.05 


1 


r0.2 0.4 

Fig. 23. The plot of .,..ml'-r; versus rIm 

We give for comparison in Fig.2.4 the decay law P(t) for ZO-meson described by 

the B-W energy distribution. 
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Fig. 2.4. The plot of In P ,,(t) versus rt for ZO (llr=O). 

Comparing Fig. 2.4 and 2.1 we see that for ZO-meson oscillations reach maximum 

for rtc=24.47 and the algebraic form of decay law dominates after rt 0:: 27 . 
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3. Unstable Particles in Relativistic Quantum Field Theory 

We have described in Sec. 2 the properties of unstable particles using the Breit

Wigner energy distribution. The forttl of this distribution was derived in the 

nonrelativistic quantum mechanics [2]. It is interesting that the form of energy 

distribution derived in the frame-work of the relativistic quantum field theory is 

drastically different from the Breit-Wigner one. For instance Matthews and Salam have 

derived the following energy distribution [6] 

(3.1) 

where 

(3.2) 

Comparing (3.1) with (2.11) we see that, presently, the numerator is linearly dependent 

on energy whereas the denumerator is polynomial of fourth order in .:t. Inserting (3.1) 

into (2.4) one obtains [2] 

where 

y=r/m 


For large t we obtain 


where 
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The asymptotic expansion for the decay law P(t) has the form 

where 

(3.4) 

and 

We see that now even in the Region II for intermediate times the decay law is 

given by the formula 

(3.5) 


which, for intermediate and large r, is significantly different from exp(-rt). 
) 

The formula for r; for M-S energy distribution can be also written in the form 

(2.18) with l1'T(r/ifl) given by the formula 

(3.6) 


where 

a =[(It,lm)2 -1]/y 

The integrals can be expressed by elementary functions, but the final formula is 

pretty complicated and will not be presented here. 

We now give, for an illustration, two figures which describe the properties of the 

decay law Ptp(t) and ~ in M-S theory. We take for comparison with figures 2.1-2.4 the 

same values for f,m and Atr and the same scale as in Sec. 2. 
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We give in Fig. 3.1 the plot of In P.(t) for p-meson in order to illustrate the 

deviation from exponential law in M-S theory 

<:' 
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Fig. 3.1. The plot of In P.(t) versus rt 

Comparing the plots for In P t{t) in Fig. 2.1 and Fig. 3.1 we see that in M-S theory 

the maximum of oscillations is shifted about two units in ft variable but"the shape of the 

curves are similar. We calculated the ratio P ..(t)/exp(-ft) and we also found that it was 

similar to the one corresponding to B-W distribution. 

We give below the plot of r;;.r; v~rsus flm for various Atl" 
2.4 

2.2 

2 

III 1.8 ~. ... 

~. 

1.6 

1.4 

1.2 

1 

,tufm = 0.5 .... 

,tJrn =0.9 

0 0.2 0.4 0.6 0.8 r .. 
Fig. 3.2. The plot of -r;JT; versus flm for various Atr. 
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Since the analytic dependence of ~ on Atr by (3.1) and (3.2) is different than in 

BW theory one obtains in the present case a rather strong dependence of r; on Atr . 

We stress that the Figures 3.1 and 3.2 were obtained at the assumption that all 

unstable particles were produced at once at 1:0=0. However in order to discuss a 

possibility to observe a non-exponential decay law, one must take into account the fact 

that we are not able to produce a reasonable number of unstable states at one instant 

of time (or during a negligibly short period). This fact is immaterial for a study of the 

exponential decay law, because the later satisfies: 

P(t + to) = P(t)P(tJ 

If this relation is not satisfied, we observe that a sample of unstable states, "collected" 

during a finite time period will then decay according to some law different from P(t). 

To see this let us assume that we have formed at some -1', cdt' unstable states. 

Then their number at some t>t' will be: 

dN(t) == ctit'P(t-t') 

If we have been creating them at that constant rate c between -to and 0, their number 

at t>O will be: 

N(t) == c JO pet - t')dt'
-'0 

Let us define Pto{t) as a decay law for a sample of states created with a constant rate 


between -to and 0 and subjected to observation thereafter. 


To have Pt (t) we adjust c as to have N(O)=l. If so: 

o 

c == lIt (t ) = 1/ rioP(t')dt'o 10 

and finally: 

't (to + t) - ,;(t) 
P'o (t) =--'t-(tO>-

One can easily verify that if P ~(t)=exp{-rt) then Pto(t) is also exp(-rt), what was to be 

expected. 
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We could expect that this process of ·collection" of a sample of unstable systems 

will "smooth outt fluctuations obsav;ed an e.g. Figures 3.1. and 3.2. In fact, on Figures 

3.3, 3.4 and 3.5 we can clearly observe this effect. It should be stressed, however, that 

some fluctuations seem to remain even after long "collection" periods. 
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Fig. 3.3. The plot of In"P I (t) for various to, ljm=.l and y=.3
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Fig. 3.4: The plot of P t (t)/exp(-rt) for the same parameters as in Fig. 3.3 
o 

16 



-17 r'o.o.l_ 
rr. 	.. 1.0 -_. .. 5.0 - - -18 r"r" .. 30 

-19 

-20 

~21 
S 

..I a... 
.s 

-22 

-23 

-24 

-25 

-26 
18 19 20 21 22 23 24 rt 25 

•••••. 

............. 

Fig. 3.5. The plot of In Pt{t) for various to, Ajm=.l and y=.03
f 

We want to stress, once again, that in most realistic situations, particularity concerning 

rather long living unstable states, if would be rather Pte (t) than Ptp(t) what would be 

comparable with experiment. 

.. 
4. Summary 

The commonly used decay law for an unstable state t/J 

P (t) = e -t/r:'" 	 (4.1)
• 


." is, as known before, in contradiction with basic quantum properties of the state 1/1. 
l 

Decay laws which follow from frequently used Breit-Wigner and Matthews-Salam 

energy distributions lead to oscillations of P!pet) even for small and also for intermediate 

time scales where the exponential decay law could be treated as a satisfactory 

approximation to Ptp(t). 

However, it is only Matthews-Salam energy distribution which leads to Ptp(t) 

satisfying 
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tdP.(t) I  (4.2)..dt t=O - 0 

what puts a question mark on a va1lidity of the Breit-Wigner decay law. 

Moreover a relation betweeJD a mean life of an unstable state 1jJ, ~ 

and r - a width of an energy distril\ution of 1jJ, is not trivial and deviates definitely from 

r= 1/~ characteristic for the expOIaentiallaw. 

In principle to determine ra: for the exponential law it would suffice to carry out 

two measurements. To determine flarameters of the decay laws following from Breis

Wigner and Matthews-Salam ener&y distributions one would need at last three and four 

measurements, correspondingly .. 

We observed that a problem ~f apparently unphysical oscillations of P ,,(t) can be 

circumvented because of a necessity to collect sufficiently many unstable states to ;- .. 

perform measurements on theIll .. III such a case oscillations smooth out (if "collection 

times" are sufficiently large) and the basic feature - algebraic character of a decay law 

for large times, seems to be eveD more clear. 

For small values of rim (OJ" rim for the Breit-Wigner energy distribution) our 

decay laws differ, for intermediate time scales, only negligibly from the exponential one. 

Therefore to find significant deviations of P ,,(t) from the exponential decay law it is 

necessary to study such decays of um;table particles for which rim is relatively large. The 

closer analysis indicates that the be~1 candidate would be the f/>-meson decaying into KR 
pair or A(1670) - resonance decaying into A+1}. In both cases one should select the 

sample of the decay products for \vhlch the obtained mass of unstable particle would be 

the lowest i.e. on the extreme left f:ide of mass distribution. In the next paper we shall 

discuss in detail the above and other proposals for the experimental verification of the 

deviation from the exponential decay law. 

Finally we note that beside th~ B-Wand M-S energy distribution there exists 

other energy distributions for unstable particles in a relativistic quantum field theory. For 

instance it would be interesting to investigate the decay law P ",(t) for energy distribution 

of unstable particle implied by analyticity and unitarity, as proposed by Renard [7). 
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