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Abstracts This paper is based on the author's talk at 1997 Taniguchi Symposium 
"Integrable Systems and Algebraic Geometry". We consider an approach to the theory of 
Frobenius manifolds based on the geometry of fiat pencils of contravariant metrics. It is 
shown that, under certain homogeneity assumptions, these two objects are identical. The 
fiat pencils of contravariant metrics on a manifold M appear naturally in the classification 
of bihamiltonian structures of hydrodynamics type on the loop space L(ltv.r). This elucidates 
the relations between Frobenius manifolds and integrable hierarchies. 
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Introduction 

Let M be n-dimensional smooth manifold. 

Definition 0.1. A symmetric bilinear form ( , ) on T* M is called contravariant 
metric if it is invertible on an open dense subset Mo eM. 

In local coordinates Xl, ... , Xn a contravariant metric is specified by the components 
(a (2,0)-tensor) 

(0.1) 

On Mo the inverse matrix (gij(X)):= (gij(x))-l determines a metric in the usual sense 

(0.2) 

(not necessarily positive definite). Here and below a summation over repeated indices is 
assumed. 

Definition 0.2. The contravariant Levi-Civita connection for the metric ( , ) is 
determined by a collection of n3 functions r~ (x) defined for any coordinate patch on M 
such that on M 0 

r~(x):= _gis(x)r;k(X) (0.3) 

where r;k (x) is the Levi-Civita connection for the metric (0.2). 

Lemma 0.1. The coefficients r~ (x) of the contravariant Levi-Civita connection are 
determined uniquely on Mo from the system of linear equations 

gisr~k := gjsr!k (0.4) 
ijr~ + r1i 

:= 8kg . (0.5) 

Here 
8 

8xk ' 

Proof. On Mo the symmetry condition rfj = rji of the Levi-Civita connection reads 
in the form (0.4). The equation v( , ) := 0 coincides with (0.5). Proof now follows from 
the wellknown theorem of existence and uniqueness of the Levi-Civita connection. 

We emphasize, however, the assumption of the contravariant connection to be defined 
on all M but not only on Mo (the linear system (0.4), (0.5) for r~ degenerates on !\i[\Mo). 

Having a contravariant connection one can define the operators V U of covariant deriva­
tives along any I-form u E T* M. For example, for a covector field v := Vidxi we obtain 

(0.6) 

dxi V UParticularly, for u := the operators Vi ::= are related with the usual covariant 
derivatives defined on Mo by raising of the index 

(0.7) 
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If the covector Vj is defined globally on M then ViVj will be globally defined (1,1)-tensor on 
M. From this it easily follows the correctness of the definition of contravariant connection. 

Definition 0.3. A function f(x) is called fiat coordinate of ( , ) if the differential 
~ = df is covariantly constant w.r.t. the Levi-Civita co~nection 

is 5:J (: r is (: 0"g vs'-::.j + j '-::.8 = ,~, J 1, ... ,n, (0.8) 

Definition 0.4. A contravariant metric is said to be fiat iff on Mo there locally exist 
n independent flat coordinates. 

Choosing a system of flat coordinates one reduces the matrix (0.1) of the metric to a 
constant form and the coefficients r~ of the Levi-Civita connection to zero. 

Lemma 0.2. The contravariant metric is fiat iff the Riemann curvature tensor 

(0.9) 

identically vanishes. 
This is a standard fact of differential geometry (see, e.g., [DFNJ). It is important that 

our formula for the curvature involves only contravariant components of the metric and of 
the connection. 

We give now our main 

Definition 0.5. Two contravariant metrics ( , )1 and ( , )2 form a fiat pencil if: 
1) The linear combination 

(0.10) 

for any A is a contravariant metric on M. 
2) If r1~ and r2~ are the contravariant Levi-Civita connections for these two metrics 

then for any A the linear combination 

r ij _ 'r ij
1k A 2k 

is the contravariant Levi-Civita connection for the metric (0.10). 
3). The metric (0.10) is fiat for any A. 
We say that the flat pencil of metrics is quasihomogeneous of the degree d if there 

exists a function T on M such that the vector fields 

E (O.lla) 

(O.llb) 

satisfy the following properties 
[e, EJ = e (0.12) 

LE( , )1 = (d - 1)( , )1 (0.13) 
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Le( , )1 = ( , )2 (0.14) 

Le( , )2 = O. (0.15) 

Definition 0.6. A Frobenius algebra is a pair (A, < , » where A is a commutative 
associative algebra (over R or C) with a unity and < , > stands for a symmetric non­
degenerate invariant bilinear form on A. The invariance means validity of the following 
identity 

< a b, c >=< a, be> (0.16) 

for arbitrary 3 vectors a, b, c E A. 

Definition 0.7. The Frobenius algebra is called graded if a linear operator Q : A -+ A 
and a number d are defined such that 

Q (a b) = Q (a) b + aQ (b) , (0.17a) 

< Q(a),b > + < a,Q(b) >= d < a,b > (0.17b) 

for any a, b E A. The operator Q is called grading operator and the number d is called 
charge of the Frobenius algebra. In the case of diagonalizable grading operators we may 
assign degrees to the eigenvectors ea of Q 

(0.18) 

Then the usual property of the degree of the product of homogeneous elements ,of the 
algebra holds true 

deg (ab) = deg a deg b. 

Besides, < a, b > can be nonzero only if deg a deg b = d where d is the charge. 
We will consider also graded Frobenius algebras (A, < , » over graded comrnutative 

associative rings R. In this case we have two grading operators QR : R -+ Rand Q A : 

A -+ A satisfying the properties 

QR(a{3) = QR(a){3 aQR({3) , a, {3 E R (0.19a) 

QA(ab) = QA(a)b + aQA(b), a, b E A (0.19b) 

QA(aa) = QR(a)a + aQA(a), a E R, a E A (0.19c) 

QR < a,b > +d < a,b > =< QA(a),b > < a,QA(b) a, bE A. (O.19d) 

As above the number d is called the charge of the graded Frobenius algebra over th(~ graded 
ring. 

Definition 0.8. (Smooth, analytic) Frobenius structure on the manifold M is a struc­
ture of Frobenius algebra on the tangent spaces TtM = (At, < , >t) depending (smoothly, 
analytically) on the point t. This structure must satisfy the following axioms. 
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FMl. The metric on M induced by the invarint bilinear form < , >t is flat. Denote 
\7 is the Levi-Civita connection for the metric < , >t. The unity vector field e must be 
covariantly constant, 

\7 e = O. (0.20) 

A~ above we use here the word 'metric' as a synonim of a symmetric nondegenerate bilinear 
form on T M, not necessarily of a positive one. Flatness of the metric, i.e., vanishing of 
the Riemann curvature tensor, means that locally a system of fiat coordinates (tl, ... ,tn) 
exists such that the matrix < 80 ,8(3 > of the metric in these coordinates becomes constant. 

FM2. Let c be the following symmetric trilinear form on TM 

c(u,v,w) :=< u· V,w >. (0.21) 

The four-linear form 
(\7zc)(u,v,w), u,v,w,z E TM (0.22) 

must be also symmetric. 

Before formulating the last axiom we observe that the space Vect(M) of vector fields 
on M acquires a structure of a Frobenius algebra over the algebra Func(M) of (smooth, 
analytic) functions on M. 

FM3. A linear Euler vector field E E Vect(M) must be fixed on M, i.e., 

\7\7 E = O. (0.23) 

The operators 
QPunc(M) := E 

(0.24) 
QVect(M) := id + adE 

introduce in Vect(M) a structure of graded Frobenius algebra of a given charge d over the 
graded ring Func(M). 

We will now spell out the requirements of Definition 0.8 in the flat coordinates t\ ... , 
tn of the metric < , >. Denote 

"70(3 :=< 80 ,8(3 > (0.25) 

(a constant symmetric nondegenerate matrix), 

(0.26) 

Then the components of the trilinear form (0.21) can be locally represented as the triple 
derivatives of a function F(t) 

(0.27). 

Associativity of the multiplication in the Frobenius algebra implies the following WDVV 
associativity equations for the function F(t) 
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The axiom FM3 in these coordinates can be recasted into the following equivalent form 

(0.29) 

(0.30) 

From (0.29) one obtains the following quasihomogeneity equation for the function F(t) 

(0.31 ) 

with some constants Ao.B, B0, C. 
Finally, FMl means that the unity vector field is constant In the coordinates t. 

Usually the fiat coordinates are chosen in such a way that 

(0.32) 

The equation (0.23) means that the matrix V'E is constant in the fiat coordinates t. 
The main aim of the present paper is to prove that any Frobenius manifold carries 

a natural quasihomogeneous linear pencil of metrics and, under certain nondegeneracy 
assumption, to prove also the converse statement. 

1. From Frobenius manifolds to flat pencils 

We put ( , )2 ==< , > (as a bilinear form on the cotangent bundle) and we define a 
new bilinear form on the cotangent bundle 

(1.1) 

Here iE is the operator of inner product (Le., the contraction of the vector field E with a 
I-form).This metric was found in [Du2] to give bihamiltonian structure of the integrable 
hierarchies of [Dul] describing coupling of a given matter sector of a 2D topological field 
theory to topological gravity. It was called in [Du4] intersection form of the Frobenius 
manifold. 

Theorem 1.1. Themetrics ( , ) and < , > on a Frobenius rnanifold form a fiat 
pencil quasihomogeneous of the degree d. 

Proof essentially follows [Du4] (we only relax the assumptions about the Frobenius 
manifold not requiring diagonalizability of the tensor V'E) . 

In the fiat coordinates t\ ... , tn for < , > the components of the bilinear form (1.1) 
are given by the formula 

gO.B(t) == (dtO,dt.B) == E€(t)c~.B(t) 
(1.2) 

== R~F€.B (t) + FO€(t)R~ + A°.B 

where 

(1.3) 
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c~f3 (t) == r/~€ C~T (t) 

F of3(t) == rJ°A rlp.8A8p.F(t) (1.4) 

A of3 rJ°ArJf3P. AAP. 

and the matrix Aof3 was defined in (0.31). 
From the first line in (1.2) it follows that 

gof3(t) == rJ0f3t1 + gof3(t2 , ... , tn). 

So 

for any A does not degenerate on an open dense subset in M. 

Lemma 1.1. The contravariant Levi-Civita connection for the metric ( , ) - A < , > 
is given by the formula 

(1.5) 

Proof. Differentiating (1.2) w.r.t. tT we obtain 

This proves (0.5). The second equation (0.4) follows immediately from associativity of the 
multiplication on T* M. Lemma is proved. 

To finish the proof of Theorem it remains to show that the curvature of the pencil of 
the metrics vanishes identically in A. First observe that the terms with derivatives of r in 

vanish due to equality of mixed derivatives 

The remaining terms vanish due to associativity. 
Finally, we put 

(1.6) 

assuming that the coordinate t1 is chosen as in (0.32). Then (0.11) immediately follows. 
The equations (0.12) - (0.15) follow from (0.29), (0.30) and from 

(1.7) 

(a consequence of (0.29)). Theorem is proved. 

2. From flat pencils to Frobenius manifolds 
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We begin with simple 

Lemma 2.1. The functions 

gisr jk
1 2s (2.1) 

a:~ comp~r:ents of a rank three tensor (i. e., of a trilinear form on T* M). Two flat metrics 
g? and g~J can be simultaneously reduced to constant form iff D..ijk = o. 

Proof. It is wellknown that the difference of usual Christoffel coefficients of two affine 
connections 

(2.2) 

is a tensor. Contracting this with giSg~t we obtain the tensor (2.1). Two metrics are 
simultaneously reducible to a constant form iff the difference (2.2) vanishes. Lemma is 
proved. 

We will also consider a (2,1 )-tensor 

A jk _ 9 A sjk
ui - 2is u (2.3) 

defined on the open subset Mo C M where the contravariant metric ( , )2 does not 
degenerate. The tensor (2.3) defines a bilinear operation 

T* Mo x T* Mo -+ T* Mo (2.4a) 

(u, v) r--+ D..(u, v), 
(2.4b)

D..(U,V)k = UiVjD..~(X) for u, v E T;Mo. 

Lemma 2.2. For a flat pencil of metrics the tensor (2.3) satisfies the following 
properties 

(D..(U,V),W)l = (u,D..(W,V))l (2.5) 

(D..(u,v),W)2 = (u,D..(w,V))2 (2.6) 

D..(D..(U, v), w) = D..(D..(u, w), v) (2.7) 

V'2D..(V, w) V'~D..(u, w) = D.. (V'2v - V'~u, w). (2.8) 

Here V'2 are the covariant derivative operators (0.6) for the second metric ( , )2, U, v, w 
are arbitrary i-forms on Mo. 

Quasihomogeneity of the flat pencil is not assumed. Note that, due to (2.7), the 
algebra structure on T* Mo will not be associative but right-symmetric. 

Proof (see [Du4], Appendix D). Let us choose a system of fiat coordinates Xl, ... , xn 
for the metric ( , )2. In these coordinates we have 

r ij 0 r ij _ A ij
2k = , lk - Uk' 
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From the definition it follows that Il~ will also coincide with the contravariant Levi-Civita 
connection for all the linear pencil ( , )1 - .\( , )2 with an arbitrary.\. Writing the 
symmetry condition (0.4) 

we obtain (2.5) and (2.6). Vanishing of the curvature (0.9) of the pencil gives the equations 

(giB- .\g;8) (8B~fk - 8l~~k) + ~!j ~lk - ~!k Il;j = 0 for any i, j, k, l. 

Vanishing of the linear in .\ term implies 

'k 'k
8B~i - 8l~~ = O. 

This coincides with (2.8). Vanishing of the remaining terms gives (2.7). Lemma is proved. 

Lemma 2.3. For a quasihomogeneous fiat pencil the following equations hold true 

(2.9) 

(2.10) 

Proof. We have 
o= £eglij = 2V'2iV'2{T. 

This proves (2.9). From (0.12) and (0.13) it follows 

(2.11) 

So the vector field generates the one-parameter group of linear conformal transformations 
of the metric ( , )2. This proves (2.10). 

Corollary 2.1. The eigenvalues of the matrix 

(2.12) 

do not depend on the point of the manifold. 

Definition 2.1. A quasihomogeneous flat pencil is said to be regular if the (1,1)-tensor 

. d-l· . 
R~ = --t5~ + V'2·EJ (2.13)

'£ 2 '£ '£ 

does not degenerate on M. 

Theorem 2.1. Let M be a manifold carrying a regular quasihomogeneous fiat pen­
cil. Denote Mo C M the subset of M where the metric ( , )2 is invertible. Define the 
multiplication of 1-forms on Mo putting 

(2.14) 
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Then there exists a unique Frobenius structure on M such that 

(2.15) 

the multiplication of tangent vectors is < , >-dual to the product (2.14), the unity and the 
Euler vector fields have the form (O.lla) and (O.llb) resp., and the intersection form is 
equal to ( , )1. 

Proof. Let us choose flat coordinates tl, ... , tn for the metric ( , )2. The components 
of the metric in these coordinates are given by a constant symmetric invertible matrix 

(2.16) 

We also denote 

and 
(2.17) 

This matrix is constant due to Lemma 2.3. The components of the contravariant Levi­
Civita connection for the metric gaf3 in these coordinates we denote r~{3. Recall that in 
this coordinate system 

J\ a{3 = ra{3u, , . (2.18) 

Lemma 2.4. The vector field e is constant in the coordinates ta. It is an eigenvector 
of the operator (2.17) with the eigenvalue 1 - d. 

Proof. Constancy of e follows from (2.9). Let us normalize the choice of the flat 
coordinates requiring that 

(2.19) 

In these coordinates 
T t n + const. (2.20) 

So 
(2.21) 

From (0.12) we obtain 

Using (2.14) we obtain 

Hence 
",al!.K~ = (1 d)",n a. 

Lowering the index a we prove Lemma. 

We will use also below the choice (2.19) of the flat coordinate tn, Then 

K~ = (1 - d)c5~. (2.22) 
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Lemma 2.5. In the coordinates to 


Aon _ 1- d.l:'o 
 (2.23)1...l./3 - -2-u/3 


~~" = d 2 1 8$ + K$ (2.24) 


Proof. From (0.13) it follows that 

Using Christoffel formula one obtains 

r~/3 = ~gn< (8"g'/3 + 8/3g", - 8,g"/3) 

1 d-l
-2CEgo/3 -2-go/3' 

Raising the index we obtain 

r on _ 1- d.i"O 
/3 - -2-u/3' 

Due to (2.18) this proves (2.23). Using the equation (0.5) 

rn 0 + r o n = a gO n = K O 

'Y 'Y 'Y 'Y 

we obtain (2.24). Lemma is proved. 

Lemma 2.6. 
CE~~/3 = (d - 1)~~/3 (2.25) 

Ce~~/3 = O. (2.26) 

Proof. Denote 

r~/3 := CE~~/3 (1 - d)~~/3 

=aEr~/3 - K~r:f - r~€Kf K~r~/3 (1 - d)r~/3 

Differentiating the equations 
r°,8 + r,8o = a g0,8

'Y 'Y 'Y (2.27)
gO€r~'Y = g,8€r~'Y 

along E we obtain, after simple calculations, 

(2.28) 
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Since the system (2.27) has unique solution for given g0{3, the correspondent linear homo­
geneous system (2.28) has only trivial solution t~{3 = O. This proves (2.25). The equation 
(2.26) can be proved in a similar way. 

Corollary 2.2. Let u, v be two 1-forms covariantly constant w. r. t. V 2. Then the 
multiplication 

(u, v) H .6.(u, v) 

on T* M satisfies the equations 

.6.(u, v) + .6.(v, u) = d(u, v) (2.29) 

.6.(R(u) , v) + .6.(u,R(v)) = d(u,R(v)). (2.30) 

We denote by Roman 'd' the differential of a function on M to avoid confusion with 
the charge d in the axiom FM3. 

Proof. The first equation is due to the first line in (2.27) together with (2.18). The 
second one is a spelling of (2.25). 

Let us now fix a point t E Mo. We denote 

The linear operator 

(2.31 ) 

is skew-symmetric w.r.t. ( , )2 =< , > 

< Au, v > + < u, Av >= O. (2.32) 

Let 
(2.33) 

be the root decomposition of the space V w.r.t. the root subspaces of the operator A. The 
following elementary statement is wellknown 

Lemma 2.7. The root subspaces VA and VJ.L are < , > -orthogonal if .;\ J-L =P O. The 
pairing 

(2.34) 

does not degenerate. 

By the moment we have not used the regularity condition 

detR =P o. (2.35) 

If this condition holds true then 
V-'2 = O. (2.36)1 
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Particularly, this implies that 
(2.37) 


Lemma 2.8. The multiplication (2.14) on V is commutative. 
Proof. From (2.30) we derive the folowing property of the multiplication 

u· R(v) + R(u) . v = d(u, v). (2.38) 

To take the differential in the r.h.s. of the equation we continue the covectors u, v in a 
small neighbourhood of the point to as \72-constant I-forms. It suffices to prove Lemma 
for u E VA' v E VJ.t.. 

Case 1: .x + J.L 1 =1= o. Let first u and v be the eigenvectors of A with the eigenvalues 
.x and J.L resp. Then 

From (2.38) we obtain 
(1 +.x + J.t)u· v = d(u,v). (2.39) 

This proves that u . v == v . u. Let u(k), vel) be the adjoint vectors for the eigenvectors u 
and v of the heights k, l resp., i.e., 

u(o) == u, v(o) == v, u(-l) == v(-l) == o. 

We use induction w.r.t. the sum of the heights k + l. Substituting in (2.38) u J----1> u(k), 

V J----1> vel) we obtain 

(2.40) 

By induction 
U(k) . V{l-l) = V(l-l) . u(k), u(k-l). vel) = vel) . u(k-l). 

This proves commutativity of u(k) and v(l). 

Case 2 . .x + J.L + 1 == O. Again we use induction w.r. t. the sum of the weights. Let u, 
v be two eigenvectors. From (2.39) one obtains 

d(u,v) ==0. 

Using (2.29) we conclude that 

~(u, v) + ~(v, u) O. 

Hence 
~(u, v) ~(v, u) ~(v, u) 

~_-c- == V . u.u . v == 1 +.x == - --:l-:--+-.x-C­
2 2 ~+J.L 
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Now we prove commutativity of adjoint vectors. From the definition we have 

U(k) 	. v(l-I) 

~+JL 
v (l) 	. U ( k.-I) 

+A 

So 

Applying (2.40) we derive that 

d ( u(k), v(l») = u(k) . v(l-I) + vel) . u(k-I). 

Lemma is proved. 

End of the proof of Theorem. We obtained a symmetric multiplication on the cotan­
gent planes Tt M 

(dtO!, dtf3 ) H dtO! . dt f3 =: c~f3 (t )d(Y (2.41) 

where the coefficients c~f3 (t) are defined by this equation. The I-form dtn dT is the unity 
of this multiplication. Indeed, due to (2.23) 

1 -	 dd O!-- t2 . 

But the I-form dtn is an eigenvector of A with the eigenvalue -d/2 (this follows from 
(2.22)). So 

dtO! . dtn = dtO! 

for any Q. Associativity of the multiplication follows from the right-symmetry property 
(2.7) 	and from the commutativity. 

By duality we obtain a commutative associative multiplication on TtM 

with 
C~f3 (t) = 'fJO!~c~'Y (t). 

The vector e of the form (2.19) will be the unity of this multiplication. From commutativity 
of the multiplication and from (2.6) it follows that the tensor 

< OO! . of3' 0'Y > 

is symmetric w.r.t. 0:, /3, 'Y. From this and from (2.8) it follows that the gradient 
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is symmetric w.r.t. all the four indices. This proves FM2. 
The equation (2.10) implies (0.23). From the definition of K it follows that 

£EK~ = O. 

Hence 

Lowering the index a we obtain 
£EC~T = c~T' 

This proves (0.29). The equation (0.30) follows from (2.11). So, we obtained a Frobenius 
structure on Mo. Finally, comparing the equation (2.38) with the second line in the formula 
(1.2) for the entries of the intersection form we conclude that the metric ga{3 coincides with 
the intersection form of the Frobenius manifold. Theorem is proved. 

Remark. In some cases the regularity assumption of non degenerateness of the 
operator R d211 + \72E can be relaxed. For example, for d = 1 the operator R is always 
degenerate since 

R(dr) = O. 

However, Theorem 2.1 remains valid under the assumption that the root subspace V_I 
2 

(see Lemma 2.7 above) is exactly one-dimensional. Indeed, using the above construction 
we arrive at multiplication u· v defined for an arbitrary I-form u and for any I-form v that 
belongs to the image of R. The only I-form not belonging to the image is dr. However, 
from (2.24) we obtain 

~(dr, v) = R(v). 

So dr is left unity of the multiplication. Defining v .dr = v we obtain the needed Frobenius 
structure (cf. [DZl], proof of Theorem 2.1). 

Example 2.1. Let W be an irreducible finite Coxeter group acting in the Euclidean 
space R n. Denote ( , ) the W -invariant Euclidean inner product on Rn. According to 
Arnold [Arn] there exists a unique contravariant metric ( , )1 on the orbit space 

M=CnjW 

such that for any two W-invariant polynomials p(x), q(x) 

(dp, dq)l = (dp(x) ,dq(x)). (2.42) 

Here we consider dp, dq as I-forms on the orbit space. The bilinear form degenerates on 
the discriminant L: c M consisting of all nonregular orbits. 

The Euler vector field is defined by 

(2.43) 

15 



where Xl, ... , xn are Euclidean coordinates in R n and h is the Coxeter number of W. 
Recall [Bour] that h is the maximum of the degrees of basic invariant polynomials PI(X), 
... , Pn(x), Le., such homogeneous polynomials that 

(Chevalley theorem). Let deg PI(X) = h. Introduce a vector field on the orbit space 

a 
(2.44)e = apl' 

It is well-defined up to multiplication by a nonzero constant factor. It was proved by 
K.Saito [Sa] (see also [SYS]) that the metric 

(2.45) 

is flat and it does not degenerate globally on M. The flat coordinates of this metric give 
a distinguished system of generators in the ring of W-invariant polynomials on :Rn first 
discovered in [SYS]. In [Du3] it was shown (see also [Du4]) that the metrics ( , )1 and 
( , ) 2 form a flat quasihomogeneous regular pencil of the degree 

2 
d = 1--. (2.46)

h 

The vector fields E and e have the form (2.43), (2.44), the function T is 

(2.47) 

This produces a polynomial Frobenius structure on the orbit space [ibid.]. 
This construction was generalized in [DZ1] to produce a Frobenius structure on orbit 

spaces of certain extensions of affine Weyl groups. In this case d = 1 but the arguments 
of the above Remark work. 

3. Flat pencils and bihamiltonian structures on loop spaces 

We define loop space L(M) of all smooth maps 

8 1 -1- M. 

In a local coordinate system Xl, ... , xn any such a map is given by a 27r-periodic smooth 
vector-function (Xl (s), ... ,xn (s)). We will consider local functionals 

I[xl = 2~ [" P (x i .1;,.1:, ... , x(m») ds (3.1) 
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as "functions" on the loop space. Here P (x; x, x, ... ,x(m)) is a polynomial in X, X, ... with 
the coefficients smooth functions of x. The nonnegative integer m may depend on the 
functional. 

A local translation invariant Poisson bracket on the loop space is, by definition, a Lie 
algebra structure on this space of functionals 

with the Poisson bracket of the following form 

1 121T' 011 ij 012 (3.2){11 , I 2 } = 0 . ( ) A 0 . ( ) ds27r 0 x~ S x J S 

w here Aij is a linear differential operator of some finite order N of the form 

N dk 
Aij _ "'" ij ( .' ,. (m k )) (3.3)- L.-t a k x, x, x, ... , X dsk . 

k=O 

The variational derivatives are the functions defined by the usual rule 

21 r1T' 01 . 
I[x+ox] -I[x] = 27r Jo oxi(s)ox~(s)ds (3.4a) 

For the local functionals of the form (3.1) the variational derivatives are obtained by 
applying Euler - Lagrange operator 

8P d 8P 
(3Ab) 

The coefficients a~ (x; X, x, ... , x(mk )) of the Poisson bracket must be polynomials in the 
derivatives X, x ... with smooth in x coefficients. 

In computations with local Poisson brackets it is convenient to use the formalism of 
o-functions introducing the matrix of distributions 

N 

{X i (Sl),Xj (S2)} La~ (x(Sd;X(Sl),X(Sl), ... ,X(mk )(Sl)) O(k)(Sl- S2). (3.5) 
k=O 

Here o(s) is the o-function on the circle defined by the identity 

1 r21T' 
27r Jo /(8)6(8) d8 = /(0) 

for any smooth 27r-periodic function f (s). The derivatives of o-function are defined in the 
standard way by the equations 
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The formula (3.2) for the Poisson bracket can be recasted into the form 

(3.6) 

To make the Poisson bracket independent on the choice of the local coordinates on M 
the coefficients a~ must transform in an appropriate way with the changes of coordinates 
y = y(x). The transformation law of the coefficients is determined by the Leibnitz identity 
for the Poisson bracket (3.5) 

(3.7) 

together with the following identities for the derivatives of 8-function 

(3.8) 

The constraints for the coefficients a~ imposed by skew symmetry and by Jacobi 
identity for the Poisson bracket (3.2) can be written as a finite system of equations of 
degree one and two resp. for these coefficients and their derivatives. 

Let us assign degrees to the derivatives putting 

(3.9a) 

and we put 
deg f(u) ° (3.9b) 

for any function independent on the derivatives. 

Definition 3.1. We say that the bilinear operation (3.2) (or (3.5)) is graded ho­
mogeneous of the degree D if the coefficients are graded homogeneous polynomials in the 
derivatives of the degrees 

deg a~ (x;x,x, ... ,x(m)) = D - k, k = 0,1, ... (3.10) 

Clearly the order N of (3.5) cannot be greater than the degree D. 

Lemma 3.1. The degree D does not depend on the choice of local coordinates Xl, 

... , xn. 
Proof easily follows from the transformation property (3.7) together with (3.8). 

Example 3.1. The graded homogeneous Poisson bracket of degree 0 has the form 

(3.11) 
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where hij (x) is a usual (Le., a finite-dimensional one) Poisson bracket on the manifold M. 

Example 3.2. The graded homogeneous Poisson bracket of degree 1 has the form 

(3.12) 

The coefficients gij (x) and r~ (x) are some functions on M depending on the choice of local 
coordinates. This class of Poisson brackets is called Poisson brackets of hydrodynamics 
type. It was first introduced and studied in [DN1]. The following main result was proved 
in this paper (see also [DN3]). 

Let us assume that the matrix gij (x) does not degenerate on an open dense subset of 
M. (This assumption does not depend on the choice of local coordinates on M.) In this 
case we call the bracket (3.12) nondegenerate. 

Theorem 3.1. The graded homogeneous nondegenerate Poisson brackets of the degree 
1 on the loop space L(M) are in 1-to-1 correspondence with fiat contravariant metrics gij(x) 
on M. The coefficients r~ (x) in (3.12) must be the Levi-Civita contravariant connection 
of this metric. 

Remark 3.1. The fiat coordinates tI, ... , tn of the fiat metric give the densities of 
Casimirs of the Poisson bracket (3.12) 

1 r27r 
Ct

27r J0 t (s) ds, a = 1, ... , n (3.13a) 

{I, GCt} 0 for any functional I. (3.13b) 

Doing a change of the dependent variables 

we rewrite the Poisson bracket (3.12) in the following constant form 

(3.14) 

where the constant coefficients 'l7 Ct
{j are the entries of the matrix of the metric in the flat 

coordinates t. 

The coefficients of graded homogeneous Poisson brackets of the degree D > 1 are also 
certain differential-geometric objects on the manifold M. These Poisson brackets were first 
introduced in [DN2] under the name homogeneous differential-geometric Poisson brackets 
(see also [DN3]). 

We recall now the general definition of a compatible pair of Poisson brackets [Mag]. 

Definition 3.2. Two Poisson brackets { , }1 and { , }2 on the same space are called 
compatible if the linear combination 

(3.15) 
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is a Poisson bracket for any).. 

Given a compatible pair of Poisson brackets one can construct certain family of com­
muting Hamiltonians. The Hamiltonians HCt ,p are determined by the recursion relations 

{ . ) H Ct ,P}1 = { . ) H Ct '1?+1}2) p= 0) 1, ... , a 1, ... ,n (3.16a) 

starting from the Casimirs 
(3.16b) 

of the second Posson bracket. By the construction the correspondent evolutionary systems 
admit a bi-hamiltonian structure 

axi _ { i( ) HCt,P} _ { i() Ct,p-l} _ _- x S, 2 - X s, H 1, a-I, ... , n, p - 1, 2, ....Ct,paT 

In some cases it is possible to prove complete integrability of the bi-hamiltonian systems. 
We prove now the following simple 

Theorem 3.2. Two graded homogeneous nondegenerate Poisson brackets of the degree 
1 on the loop space L (M) are compatible iff the correspondent fiat metrics form a fiat pencil. 

Proof. The linear combination (3.15) of two Poisson brackets of the form (3.12) reads 

{xi (S1) ,xi (s2) } 1 - ).{X i ( S1) ,xi (s2) } 2 
(3.17) 

= [gti (X(SI)) - ).g~i (x(sd)] 8(SI S2) + [rl~ (x) - ).r2~ (x)] i;k8(SI - S2). 

Now the proof immediately follows from Theorem 3.1. 

Corollary 3.1. The loop space L(M) of any Frobenius manifold M carries a graded 
homogeneous of degree 1 nondegenerate bi-hamiltonian structure. 

This follows from Theorem 1.1. 

Observe that, for d 1, the variable 

2 
T(s) := -dT(s) (3.18)

1­

where the fiat coordinate T was defined in (1.6) has the Poisson bracket with itself of the 
form 

(3.19) 


This coincides with the Poisson bracket on the dual space to the Lie algebra of one­
dimensional vector fields (i.e., the Virasoro algebra with zero central charge). Other Pois­
son brackets of T(s) are of the form, due to (2.21), (2.23) 

2 . . 
1 _ d ECt (t(SI))8(SI - S2) + tCt8(Sl - S2). (3.20) 

Recall that E(t) depends linearly on t. 
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From the results of Section 2 above it follows that, under the assumption of quasiho­
mogeneity and regularity, bihamiltonian structures (3.17) on the loop space L(M) are in 
1-to-1 correspondence with Frobenius structures on M. 

The role of the quasihomogeneity condition in the theory of the degree 1 bihamilto­
nian structures on L~M) could seem more motivated from the point of view of a general 
differential-geometric approach to classical W -algebras outlined in [DZ2]. In this approach 
we consider Poisson brackets of the form of formal series in an independent variable E 

{xi(sd, Xi(S2)} L E2k{xi(Sl)' Xi (S2)}(k) (3.21) 
k;?::O 

where the k-th coefficient { , }(k) must be a graded homogeneous operation of the degree 
2k + 1. The skew symmetry and Jacobi identity for the bracket (3.21) must fulfill as an 
identity for formal power series in E2. The main requirement is that the Poisson bracket 
(3.21) must be reducible to the constant form (3.14) by a transformation 

Xi = xi(t) L EkQ1(t; t, t, ... ) (3.22) 
k;?::l 

where the coefficients Q~ (t; t, t, ... ) must be graded homogeneous polynomials of the degree 
k in the derivatives i, t, .... Particularly, the leading term { , }(O) of (3.21) is a graded 
homogeneous Poisson bracket of degree 1. Validity of Jacobi identity for (3.21) implies that 
{ , }(O) is a Poisson bracket. So, under the nondegeneracy condition for this bracket, the 
leading term in (3.22) is given by the flat coordinates of the correspondent contravariant 
metric. 

We also bring attention of the reader to the construction of [DN1] (justified in a re­
cent paper [Mal]) of "averaged Poisson brackets" used to describe Hamiltonian structure 
of Whitham equations. Particularly, according to this construction, the leading term in 
the small dispersion expansion of an arbitrary local Poisson bracket posessing of a suffi­
ciently rich family of commuting local Hamiltonians is always given by a degree 1 graded 
homogeneous Poisson bracket. So, (3.21) can be considered as the full small dispersion 
expansion of the original Poisson bracket. 

W-algebras were discovered by A.Zamolodchikov [Za] in order to describe additional 
symmetries of conformal field theories with spin greater than 1/2. It was realized by Fateev 
and Lukyanov [FL] that the semiclassical limit of W-algebras coincides with the second 
Poisson bracket of Gelfand - Dickey integrable hierarchy. These semiclassical limits of W­
algebras were constructed for all simple Lie groups using Drinfeld - Sokolov construction 
of the corresponding integrable hierachies [DS]. They were called classical W -algebras (see 
also [DIZ], [Bouw]). The role of the first Poisson bracket of the hierarchy looked not to be 
relevant in the construction. However, it will be important in our differential-geometric 
approach to classical W -algebras and their generalization. Recall that any Poisson bracket 
(3.21) by the assumption has no invariants w.r.t. the transformations of the form (3.22). 

By our definition (see [DZ2]) a classical W algebra is a pair of Poisson brackets of 
the form (3.21) such that the linear combination { , }l - A{ , }2 for any A is again a 
Poisson bracket satisfying the above reducibility condition. We also require validity of 
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certain quasihomogeneity conditions for the coefficients of the Poisson brackets. We begin 
with the leading terms { , liD) and { , }~D). The requirement is that this compatible pair of 
the degree 1 Poisson brackets corresponds to a quasihomogeneous regular pencil of metrics 
on M. To motivate this requirement we recall that, according to (3.19), (3.20) the Poisson 

bracket { , liD) is a nonlinear chiral extension of the conformal Virasoro algebra with the 
central charge O. The nonzero central charge will arrive with the E2-correction (see below). 

Using Theorem 2.2 we see that the leading term in the E2-expansion of a classical 
W-algebra is determined by a Frobenius structure on M. Let E, e, d be resp. the Euler 
and the unity vector fields and the charge of the Frobenius manifold. We will write the 
quasihomogeneity conditions for the coefficients of the Poisson brackets using the fiat 
coordinates ta on the Frobenius manifold. 

Let 
(3.23) 

(3.24) 

1. We require that 
f' a{3
J...,eak l 

) 
= ba {3

k 1 
) 

(3.25) 

Leb~~ = 0,
) 

(3.26) 

2. Let us introduce the prolungated vector field 

c=E- 2: 2: (m8$ 	 (3.27) 
m2::1a,{3 

(the matrix K$ was introduced in (2.17)). Then we require that 

a{3 (k(d 3) l) a{3 Aa €{3 af A{3 (3.28)Leak,l = - ak,l + f ak,l + ak,l 	 f 

Leb~~ (k(d - 3) + 1 l)b~~ + A~b~l + bk~lA~. 	 (3.29) 

3. The first Poisson bracket of the field T(s) given by (3.18) has the Virasoro form 

(3.30) 

The number c is called central charge of the classical W -algebra. 

For the clasical W-algebras corresponding to the simple Lie groups the sums in (3.21) 
are finite. All the coefficients a~~ are polynomials also in t. (Observe that in our notations 
the first and the second Poisson'structures are interchanged.) The central charge c is equal 
[FL] to 

(3.31) 

where 	p is half of the sum of positive roots of the root system of the Lie algebra. 
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In [DZ2] it was shown that for any semisimple Frobenius manifold there exists a germ 
of order 1 (i.e., the first two terms in (3.21)) of a classical W algebra with the central 
charge 

C = 12 [n 2trA2] (3.32)(1 d)2 2" - . 
Remarkably, for the Frobenius manifolds on the orbit spaces of simply-laced Weyl groups 
(see Example 2.1 above) the formulae (3.31) and (3.32) give the same result! 

The corrections { , }P) and { , }~1) are uniquely determined by the axioms of Di­
jkgraaf - Witten [DW] and of Getzler [Ge] from two-dimensional topological field theory 
(see explicit formulae in [DZ2]). The structure of higher order corrections to these brack­
ets remains unknown. Understanding of this structure could clarify the eventual role of 
Frobenius manifolds in the problem of classification of integrable hierarchies. It will also 
solve the problem of the genus expansion in topological field theories (see discussion of this 
problem in [DZ2]). 

Acknowledgments. I wish to thank the organizers of 1997 Taniguchi Symposium 
"Integrable Systems and Algebraic Geometry" for creative environment during the sessions 
and for a generous support. 
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