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Abstract. 
The problem of numerical study of instability of N -body gravitating 

systems by means of Lyapunov characteristic exponents is considered. The 
discontinuity of Lyapunov exponents is shown for computer-created systems 
both with softened and, what is more interesting, unsoftened (Le. pure 
Newtonian) potentials. Lyapunov technique thus cannot be considered as 
appropriate method of study of N -body systems, and physical and astro­
physical interpretations of results of previous computer studies appear to be 
unfounded. 

The numerical study of instability on N -body gravitating systems, since 
pioneering paper by [1] has become one of important areas of their computer 
simulations. It is partly determined by the relation of instability proper­
ties of that system with relaxation driving mechanisms in star clusters and 
galaxies. The latter factor became crucial after the proof of exponential 
instability of spherical N -body systems [2,3] and the evidence of essential 
consequences it can have for stellar dynamics. 

Numerical studies performed to investigate this problem are based on 
the calculation of the growth of perturbations by time (see [4] summarizing 
previous studies and references therein), considered to be Lyapunov charac­
teristic exponents of the system. 

In the present paper, therefore, we investigate the problem of validity of 
Lyapunov exponent technique to the computer study of N -body problem. 
We show that the calculations of Lyapunov exponents for N-body systems 
with softened and even unsoftened (!) potential can have no any relation to 
properties of the corresponding real system. 

We approach to this problem from the concept of theory of dynamical 
systems, enabling us to arrive general conclusions, valid for d-dimensional 
Hamiltonian systems with any potential. 

Consider the space 1) of all dynamical systems (M, 8(M), P, I) with 
topology (Ck , COO), where B(M) is the u-field of d-dimensional manifold 
M, P is a complete measure, It is a group of diffeomorphisms on M with 
continuous t E R (or discrete t E Z) time. 

First let us argue the importance of a question: is ~, defined in a follow­
ing manner on 1): 

~: 1) ~ R, 

a continuous function. 
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Note, that well known examples of such functions are Kohnogorov-Sinai 
(KS )-entropy and Lyapunov mean characteristic exponents: 

Ai =I Ai(z)P(dz ), i = 1, ... ,q , 

AI 

where Ai(z) are Lyapunov characteristic exponents. 
One can easily realize particular importance of continuity of the function 

~ for computer studies. 
Indeed, assume that one has to check the ergodicity of a function lex 

when a is an irrational number, and non-ergodicity when a is rational. 
Evidently one cannot solve this problem by computer methods since 

computer cannot deal with irrational numbers. 
The reason of this fact is that at computer studies typically one is forced 

to consider not the transformation It but 

I; = It +£Tf;( t), 

because of the inevitable computing errors Tf;( t) arising at approximation of 
numbers. 

As a result when ~ is not a continuous function all numerical calculations 
can completely lose their meaning, i.e. computer's ~C(/) does not coincide 
with real one ~(/). 

Such a situation can arise also as a result of deliberate change of the 
behavior of I to avoid "naughty" functions, as it happens at "softening" of 
Newtonian potential: 

1 1 
:; ~ -v'r r:::;;2==+=£::;:2' 

Thus we arrive at the following two questions reflecting both fundamental 
properties of function ~: 

1. Is ~(£) close to its computer image ~C(£)? (Stability); 
2. Is ~(O) the limit of ~(£) as £ (bifurcation parameter) tends to zero? 

(Continuity). 
As a representation of particular interest of ~ we shall consider Lyapunov 

characteristic exponents. 
First, recall the following quite remarkable results: 
la.According to }lIane's theorem (see [5]) when }vI is a compact surface, 

C 1 area-preserving non-Anosov diffeomorphisms, all 01 whose Lyapunov ex­
ponents are equal to zero Lebesgue almost everywhere, are everywhere dense; 
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lb.ln general, Lyapunov exponents are discontinuous functions of a bi­
furcation parameter [6]; 

Ie. Topological entropy is proved to be discontinuous for dimM ~ 4 [7]; 
We see that Lyapunov exponents can be highly discontinuous. 
The example considered above can be an illustration of this typical prop­

erty of function ~. 
On the other hand one has the properties: 
2a. Topological entropy is continuous at dimM = 2 [7]; 
2b. For some dynamical systems it is proved that Lyapunov exponents are 

upper-continuous [8]; 
2c. Though typically Lyapunov exponents are highly discontinuous, there 

exists regular family of perturbations fulfilling conditions discussed in [5} 
making them stable. 

We see that while the properties l(a-c) make doubtful the usefulness for 
computations of Lyapunov exponents the 2(a-c) ones leave some hope. 

What is evident is the necessity of thorough consideration of this problem 
in any given particular case. 

Turn now to the problem of stability of Lyapunov exponents in the case 
of N -body system. 

First remind that the trajectories of Hamiltonian system 

H(p, q) = ~gllVppPll +V(q), 

in the region of configurational space Q = {qIV(q) < E}, can be represented 
as geodesics of Q with Riemannian metric 

G = [E - V(q)]g == Wg, 

and affine parameter ds = ..J2wdt. 
It is also well known that the stability properties of trajectories can be 

determined by the behavior of Riemann (Riem), Ricci (Ric) and scalar (R) 
curvatures. 

Indeed, from Jacobi equation 

d2n 
ds 2 + Riem(n, u)u = 0, 

after averaging by u and n one can arrive 
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since 

Riem(n, u)u = d(d~ 1) (n411n1l2 - u
4< u,n » = d(d~ 1)n, 

l\ul1 2 = 1, < U, n >= 0, 

where vectors u and n denote the velocity on geodesics and their deviation. 
One can see that the measure of average (in space and time) instabil­

ity for the d-dimensional Hamiltonian system closely connected with the 
Lyapunov exponents is the following instability mean index 

.:\2 = _ 2RW2 = 2.6.W (~_ ~) IIdWI1 2 

- d(d - 1) d + 2 d W' 

where time reparametrization is made and 

II dWI1 2 = p.v8W 8W 
9 	 8qp. 8qV' 

2
.6.W _ 1.1.&1 8 W 

- 9 8qp.8qv· 

Previously, in [9] we had introduced a measure of relative instability based 
on the value of Ricci curvature. 

In the case of N-body gravitating system one has d = 3N and 

N a-I 

V(q) = - L L GMalv1bCP(rab) 
a=I b=l 

r~b = (r!b)2 + (r~b)2 + (r~b)2 
iiirab = ra - rb 

where function cp is not specified yet, a = 1, ... , Nand i = 1, ... ,3, Jl = 
(a, i). 

Calculating the instability mean index one has 

.:\2 = Al +A2 , 

where 
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Here the following notations are used 

IFal 2 = (FJ)2 + (F;)2 + (F;)2, 
N N i 

F~ = L F~e = L GMaMecp'(rae) rae. 
e=l,c#;a c=l,c#;a rae 

Now consider a class of potentials cp(c) containing the two main cases. 
l.Newtonian potential (c = 0): 

cp(r) = -;1 
r 

2.Softened Newtonian potentials (c i= 0): 
Case a. 

1
CPl(r, c) = . 

v'r2 +c2 

Let us look for the behavior of). when both rand c are close to zero, i.e. for 
the continuity of mean index in physically most interesting case. For this 
purpose one has to obtain the following limits 

1 12lim lim ). (r, c) = lim {-N 3 + (~ - N ) *o} = - 00,
~-Or-O ~-O c 2

1 1 
lim lim ).2(r, c)'= lim {o + (-2 - N ) 13} = +00. 
r-Ot:-O r-O r 

Case h. 
1 

CP2(r, c) = --. 
r+c 

The corresponding limits yield 

When c = 0, Le. in the case of unsoftened potential the mean index is 
determined by A2 and the system is exponentially instable, since 

\2 -3 
A ...... r as r ~ O. 

This limit corresponds to the close encounter of at least two particles. 
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The same limit when e =f. 0, for both softened potentials reveals com­
pletely different behavior.Particularly in case a. the mean index is a complex 
number, 

,1 -3 
A ,-..;-e as e ~ 0, 

since is determined by first member AI; as a result the system is not instable 
any more. Similar behavior one has in case h. 

We see that the mean instability index and hence Lyapunov exponents 
in the case of unsoftened potential are discontinuous 

Moreover the unsoftened system has quite different behavior, particularly in 
accord to point 2b of properties of Lyapunov exponents mentioned above, 
is more stable than the original Newtonian system. 

Note that marked dependence of growth of initial errors on the parameter 
of softening has been noticed during computer simulat<ions in [10]. 

Thus the calculations of Lyapunov exponents by means of computer 
methods for N -body systems cannot lead to any meaningful results. 

Already this fact is enough to seriously influence the conclusions of nu­
merous computer studies of instability of softened systems (see [4]). Other 
difficulties of those studies, particularly concerning the interpretation of 
relaxation-type effects, were outlined in<[11]. 

However, the next conclusion of the present study is even more rad­
ical: the principal impossibility of investigation of instability of not only 
disturbed, but even l/r potential N-body systems by computers. 

These conclusions demonstrate the necessity of creation of new computer 
codes to describe the ,N-body system with phase trajectory close to the 
physical one for long enough time scales (in physical sense). 
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