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Abstract 

Combining hamiltonian reduction, variational methods and local analysis of the flow, 
we study for the planar three-body problem, the existence of non trivial periodic orbit 
without collisions, with zero total angular momentum. We prove that collision solutions 
are not minima, but the lack of compactness for the sub-levels of the Action-functional 
does not allow to prove the existence of T -periodic orbits without collisions. We restrict 
therefore to study periodic solutions which are odd under reflection (thorough some axis 
which may depend on the orbit). In this setting we prove that the loss of compactness is 
due to trajectories which are asymptotically collinear and we identify a class of sets which 
are compact and which are good candidates for the search of a minimum. 
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1 !~;. Introd\tction 


In this paper we deJwith the problem of the existence of periodic solutions in the planar 

Newtonian three-body problem. In particular we consider the problem under that the 

constraint of total angular momentum J be zero. 

For the Newtonian N-body problem in three dimensions, K.Sundman in a very old 

paper [24] proved that J = 0 is a necessary condition for total collision solutions. This 

fact implies that collision orbits must live in the submanifold of the phase space identified 

by the condition J = O. Recently in [23] it is proved that in the N-body problem, 

under proper assumptions, collision orbits are not minima for the Action functional; (the 

assumptions are known to hold for N ::; 4) so that non-collision periodic solutions exist . 

. These facts led us to study the problem of the existence of periodic solutions and 

collision orbits by means of an Action functional reduced on the manifold of zero total 

angular momentum. Also in this case collision solutions are not minima, but now there 

is a lack of compactness and we cannot conclude immediately about the existence of 

minima. To go further, we study the geometry of the reduced configuration manifold; we 

show-that the map which describes the reduction is a double covering of a set in m,3, whose 

branching point is the set of collinear configurations. A weak Poincare inequality shows 

that non-compactness is concentrated in a neighborhood of collinear orbits, i.e. when 

sides of the triangle (formed by the three bodies) become large while the relative angles 

become small. 

The plan of the paper is the following: In sections 2, 3 we describe the construction of 

the Hamiltonian reduction and some of its technical properties. In section 4 we describe 

the geometry of the reduced configuration space. Collecting these geometrical facts, in 

section 5 we construct the reduced Action functional. In section 6 we prove that collision 

solutions cannot be minima of the Action. Finally in section 7 we construct a weak 

Poincare inequality, we show the lack of compactness of sub-levels of the Action and 

moreover we define a class of subsets of the sub-levels which are L2-compact. These sets 

could be good candidate to contain minima. 
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2 Hamiltonian reduction 

In this section we present in a new form the hamiltonian reduction found by Van Kampen 

and Wintner in a very old paper [25]. 

The planar 3-body problem with newtonian potential can be described in hamiltonian 

formulation as: 

configuration space: 

Q -=- {iii E ~2; i = 1,2, 3} ~ ~6 

In Q there are configurations on which the dynamics of our system is not defined. Those 

are the collision configurations: 

Dou ble collisions 

Triple (total) collision 

we leave these points in the configuration space since we will study collisions later on. 

The phase space is: 

equipped with the symplectic form: 

W = L 
3 

diii /\ dPi 
i=l 

where /\ denotes the wedge-product in ~2. The hamiltonian function is: 

(1) 

and the dynamics is given by the vector field X H E T(T*Q) defined as: 

(2) 

The flow generated by (2) preserves linear momentum j3 and angular momentum J 

-* 3 

P LPi (3) 
i=l 
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3 

J == LilA Pi (4) 
i=1 

We want to find a symplectic transformation which makes explicitly the dependence of 

H on linear and angular momentum. 

Let U C T*Q be an open set, let {U, .,pI} and {U, .,p2} be two different systems of 

coordinate: 

.,pi: U ~ ID2. 
I2 

~ 1,2 

Consider the map: 

~ 1,2 

where: 

i == 1,2 

Denoting by Wi the symplectic form W expressed in the i-system of coordinate, then one 

constructs on UI X U2 the 2-form 

It is easy to see that: 

(i) 0 is symplectic 

(ii) the map f : UI ~ U2 is symplectic iff: 

ijO == 0 

where: 

and * denotes the pull-back. 

In our ca~e W == '-dB where B is the canonical I-form on T*Q. Therefore there exists 

a I-form e on UI x U2 such that 0 == -de and e == 4>iBI - 4>;B2 • Thus: 

ijO == 0 :::} dije == 0 
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and,. if U is contractible, by Poincare lemma, there exists a map S 

defined locally and such that: 

dS (5) 

S is the generating function of the symplectic transformation f. 
If we denote the coordinates on U1 X U2 by (lfi,Pi,ni,iri ) i 1,2,3 where (lfi,Pi) are 

coordinates of U1 while (ni, iri ) are coordinates in ,U2 , then from (5) we have: 

but (<PI 0 if) idu1 and (<P2 0 if) are the coordinates of U2 as function of coordinates of 

U1 by means of f. Thus locally we can write: 

dS = L:Pi . dlfi - tri . dni 
. i 

if we put 

w = S - L: iri . ni 
i 

we get 

(6) 

W is now a function on r f in the coordinates lfi, iri i = 1,2,3. Now, given W, the canonical 

transformation will be obtained by: 

(7) 

We define a particular canonical transformation, which allow us to write the hamil­

tonian in a form in which the integrals of motion appear explicitly. This transformation 

was found by Wintner and Van Kampen [25]. 

Let 

i=1,2,3 
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and define (cyclic permutations of the three indices i, j, k 1,2,3) 

(8) 

A.. • qi
1 - qk

1 

cos 't'i = -=----- (9)
Pi 

Here 

(10) 

are the exterior oriented angles at the vertices of the triangle formed by the vectors its. 
From (10) we have: 

(11) 

Let us define: 
3 

e~ 1/3 L<Pi (12) 
i=l 

so that: 

Denote by Xi the coordinates of the center of the mass: 

(13) 


Using (8), (9), (12), (13), we can define the map: 

8 1F : Q ----+ C X X 1R 2 (14) 

(it i = 1,2,3) ----+ (PbP2,P3,e,X1 ,X2) 

where: 

C == {p (Pl P2 P3) E ~t / Pi +Pi ;::: Pk and cyclic permutations} 

Observe that C is a manifold with boundary given by the three relations: 

Pi + Pi = Pk and cyclic permutations 
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These are the collinear configurations. One can verify that rank(dF) is less than 6 on 

collinear configurations. F-l is double valued on G - 8G: let us call r + and T _ the two 

sheets, so we have: 

r + and r _ are two open connected submanifold of Q glued along the common bound­

ary F-l (8G). By Existence-Uniqueness Theorem, for every regular trajectory {Pi(t)}f=l' 

either pi(t) E F-l(8G) for all t or the trajectory is transversal to F-l(8G) at the inter­

section points. This fact will allow us to define a global Action functional in the reduced 

coordinates. In r + U r _ from (9) and (13) one has: 

qk = l/M{mjPi cos (Pi -.miPj cos tPi} + Xl
{ q~ = l/M{mjPisintPi - miPj sintPj} +X 2 

(15) 

where tPi'S are expressed in terms of eand P's by means of (9) and (12). 

The canonical transformation can be obtained using the following generating function: 

3 

W(1I"i,qi,S,P) = PlXl(qi) +P2 X 2 (qi) +Se(qi) + 2.:1I"IPI(qi) .(16) 
1=1 

where the vector (PI P2 ) is the conjuga~e momentum to (Xl X 2 ), 1I"lS are conjugate 

momenta. to PIS, S is the momentum conjugate to e, and it is possible to prove that 

S=J. 

The full canonical transformation is given using (7): 

8W 
1I"i 

8qi 
8W 

PI 811"1 
8We ­ 8S 
8WX = 
8ft 

(17) 

explicitly: 
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, q.1 - qk1 


1/3I: arccos .....;:3"--_ 


i,j,k Pi 
,,3 1 

L.."i=I miqi 


M 
,,3 2 
L.."i=I miqi 

M 	 . 
...... (Sin ¢j sin ¢k)7rj cos ¢j - 7rk cos ¢k - 1/3::. -- - -- + (mi/M)PI

Pj Pk 

• ,.J.. .,.J.. 1/ 	...... (cos ¢j cos ¢k) ( / )7rj SIn o/j - 7rk SIn o/k + 3::. -- - --"- + mi M P2
Pj Pk 

(18) 

Computing J in the new coordinate one finds: 

J ='=' - ...... 

and the hamiltonian takes the following form: (the sum is meant in cyclic sense (')) 

H = 1/2I:'l/mi.[7rJ + 7r~ - 27rj7rk cos(¢j - ¢k)] + 

i,j,k 


+ 3 2 /9 [1/P~ + 1/Pk _ 2 cos(¢j - ¢k)] + 

J PjPk" 


+ 23/3 [7rk/pj - 7rj/Pk] sin(¢j ¢k) + (mi/M)2(pI
2+ P2

2) 

+ 2mi/M[PI(mjPi cos ¢i - mipj cos ¢j) + +P2(mjPi sin ¢i - mipj sin ¢j)] + 

...... / M [p. (cos ¢j 	 cos ¢k) p (sin ¢j sin ¢k)] ""mimj+ 	 2mi::' 3 2 -- - -- - 1 -- - -- - L.J -- (19)
Pj Pk Pj Pk ijk Pk 

Using the definitions 	of ¢i and (Ji and putting 

it is easy to see that 	the hamiltonian (19) has the form: 

H(ji, if, e, 3, X, P) H(ji,if,3,P) = 

ho(ji, if) + hI (f) + 3 2h2(f) + 3h3(ji, if) + 

+F 0 h.(P) + SF ohs{ii,ii') + (~(m;/M)2) IIFI12 (20) 
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where hk are suitable functions. This implies the following equation of motIon: 

,=p->. 8h~ 
..... 8;; 

(21) 

with a = r:}=l (mdM)2. We can define the lagrangian function by the Legendre transfor­

mation: 

(22) 

here if, 3, P are functions of ji, (;, { and X. Since we are interested in the study of the 

motion of the system.on the manifold where 

the Lagrangian becomes 

L(ji, /!) = fr· if(ji, /!)- H(ji, if, 0, 0) (23) 

and then the equations of motion turn out to be: 

-> 8H 8ha 
p 8if ­ 8if 

. 8H 8ha 8h1if=-- ---- (24)8p 8p 8p 
The term ha of (20} can be written as: 

3 

ha(P, if) = L Ajk (ii}rrj1rk (25) 
j,k 

where Ajk is the following matrix, depending on ji: 

1/2(1/m2 + 1/m3) - cos B372m3 . - cos B2/2m2 ) 
A ~ - cos B3/2m3 1/2(1/ml + 1/m3) cos B1/2ml

( 
- cos B2/2m2 - cos B1/2ml 1/2(1/ml + 1/m2) 
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3 

where: 
2 " 2 . 2 

Pi - Pj - Pk 

2pjPk 

with 

Pi + Pj ~ Pk and cyclic permutations 

We will show that A is invertible. Denoting with B(jf) the inverse of A, the Lagragian 

takes both on r+ and on r _ the form: 

3 I 

L( .... ~ "'B (~.. '" mimjp,p) = L..J ij P)Pipj +L..J-- (26) 
ij i,j,k Pk 

We have reduced the number of degrees of freedom from 6 to 3. In section 4 we will describe 

the global structure of the reduced configuration space, and after that we construct, with 

this Lagrangian the Action functional. 

Properties of the matrix B 

Proposition 3.1 

The matrix B(jf) is symmetric and such that there exist aI, a2 E lR+ such that for all 

vectors if E lR3 
: 

(27) 

where with (., .) we denote the natural scalar product in lR3
• 

Proof 

The matrix B(fJ is the inverse of matrix A(fJ.It is therefore sufficient to prove (27) 

for A(P). The Sylvester Criterion says that the matrix: 

all al2 a13) 

A = a21 a22 a23 
( 

a31 a32 a33 

is positive definite if: 

(i) all > 0 

(ii) 
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(iii) det (A) > O. 

In our case (i) trivially holds, and (ii) reads: 

condition (iii) is 

det A(,o) 

(28) 

this is strictly positive for all ()i E 8 1 • 

Let A+(,o) respectively A_(,o) be the smallest (resp. largest) eigenvalue of A. For any 

jJ one has: 
1 

A+(f) > 0 , A_(f) > 0 

both ar; continuous functions, and A depends only on the angles ()i; i.e. is a function on 

81X 8,1 X 81. By compactness: 

A+ -1 = min {X;l(P)} >' 0 

Therefore a111VII2 :::; (V,B(,o)V) :::; a211VII 2 for any V E ]R3. 

This proves the Proposition. 

Geometry of the reduced configuration space 

The group 0(2) acts on the configuration space Q and its action is free if one excludes 

the origin of Q (if = 0). We denote reflections with 82 • 0(2) is a symmetry for the system 

since it leaves the Lagrangian invariant. 

In the reduction of the angular momentum, we considered the reduction of the 80(2) 

action only. We will show that th~ reduced configuration space has therefore a non-trivial 

~ymmetry, which now we denote with u, which takes an orbit of 80(2) to the one obtained 
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by reflection about an axis through the origin. Since reflections thorough two different 

axis are conjugate by arotation, tr does not depend on the axis chosen. The coordinates 

p's are invariant under tr, the reduced configuration space is then a double covering of e 
with boundary the collinear configurations (i.e. the fixed point of tr). In this section we 

describe the geometry of the reduced configuration space; then in the next section we will 

use the reduction to construct the space of the trajectories on which we define the Action 

functional. 

The transformation F is: 

F.: Q --t e X SI X JR2 (29) 

(qi i = 1, 2, 3) --t (PI, P2, P3, e, X 1, X 2 ) 

where we recall: 

e . {f (PI P2 P3) E JR~ / Pi +Pi?:' Pk and cyclic permutations} 

and 

8e ..:. {f = (PI P2 P3) E JR! / Pi +Pi = Pk and cyclic permutatiOns} 

e is locally defined by (8), (9), (12), (13). If wefix X = 0 we reduce: 

Q . {if = (ift if2 ifa) E Q / t miq. = o} 
1=0 

Qis a four-dimensional plane in JR6, so Q~ :w.4• 

Hence we can define F on Gand we denote it with F: 

(30) 

F is given by 

(31) 
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with 

(32) 

It is useful to recall (15) with the condition X =0: 

qk = 1/M {mjPi cos <Pi - miPj cos <pj} (33){ q~ = 1/M {mjPi sin <Pi - miPi sin <Pi} 

Now we see how to transfer the action of 0(2) from Q to a x Sl. Let us begin with 

SO(2) ~ Sl. If we denote with: 

R : SO(2) x Q---t Q 


the action of SO(2) on Q, we want' to find an action of SO(2) on a x S\ denoted by R: 


Ii : SO(2) x a x Sl ---t ax Sl 


such that th~ following, relation holds: 

FoR=RoF 

We represent R¢ E SO(2) with <P E Sl as: 

1 ( cos <P sin <P ) 
R¢ = 11£112 sin <p cos <p . 

on Qwe consider the following action: 

with 

since R¢ acts linearly the condition Li if;. = 0 is fulfilled. 

We define the action of SO(2) on a x Sl as the map: 
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from the definition of jJ we have: 

Rq,(pi) == IIRq,(qj) - Rq,(tik) II IIqj tikll == Pi 

for all cyclic combination of i, j, k. Moreover since 

using (33) we obtain: 

and remembering the definition of e: 

we get: 

therefore: 

(34) 

(jJ, e) ---+ (jJ, e- 4» 

Now we have to consider the action of reflections S2. We give the action S on Qand then 

we want to find the action 8 on C X Sl such that: 

Po S == 80 P 

Let ii, v be two vectors in ]R2, then the vector Sv(ii) is the reflection of ii by v and is 

defined by 

...(u"') 2 ( ii, v) ... ...Sv (35)Ilvll v-u 

if v == (VI V2) then S has a matrix expression which is 
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where we denote with (.,.) the natural scalar product in JlR 2
• 

It is easy to see that 

detSv =-1 

and 

Sv,SJ=id 

Define: 

Ra,v .:.- Sa . Sv 

then Ra,v E SO(2). Equivalently we can say that one can generate all S2 by a reflection 

and SO(2). This fact will be very useful in what follows. 

The explicit expression for Ratv: 

R---­ti,t} 

If we denote with 8 the angle between it and v we find: 

........ _ R __1_ '( cos 28 sin 28 )
Ru,v - 20 - IIvll 2 - sin 28 cos 28 

and if we take v= (11vll cos allv!! sin a) 'then 

S;j = ( c~s 2a sin 2a ) 
, SIn 2a - cos 2a 

On Q we consider the following action: 

with 

and v a direction in Q. Since Sv acts linearly the condition Li ili = 0 is fulfilled. 

We can now define the action of S2 on C X Sl 

from the definition of j! we have: 
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as we have donein the case of SO(2) using t~e fact that: 

using (33) we obtain: 

and remembering the definition of e: 

we get: 

therefore: 

(36) 

(p,e) .~ (p,2a - e) 

The reduced configuration manifold is: 

G X Sl/S0(2) 

Since SO(2) ~ Sl acts trivially on G we have: 

G X Sl /SO(2) ~ G x {O} == C 

where {O} is a single point (an origin) in Sl. 

The reduction from Qto C can be described by the following commuting diagram: 

1r is the projection on the quotient, and p is defined by: 
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Proposition 4.1 
-

The map p is a double covenng. Points
) Q relat.ed by reflection through a generic 

direction in m. 2 have the same image under p. The branching set is the set of the collinear 

configurations. 

Proof 

In Q, p is locally defined by 

Pi J(q] - ql)2 + (q] - q~)2 cyclic i j k == 1 2 3 

e 0 

(37) 

with 

The rank of this map is 3 for all configurations with ij;, =f:. iii i =f:. j and for all configurations 

that are not collinear..Collinear configurations will play a central role,· they are going to . 

be the ramification point of the map p. Outside t~em is locally a smooth surjection. 

For. a generic configuration if E Qwe represent the action of 0(2) as: 

. 8u · Rp(q) == (8u · R4>(4I),8u .~(~), 8u ·R4>(QJ)) 

The definitions of rotoreflection depends on the order of the operations. We have to 

observe that, reflections are conjugate by rotations: 

such that the quotient by 8 1 is independent on the order of the operations. 

Now by means of the previous definitions of the action of 0(2) on G X 8 1 we see that: 

taken qE Q 

but 

7r(ji, e) {,D} x {O} v (ji, e) E G x 81 

16 
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hence 

for all if E Q, v E ¢ E 51. 

From this and the regularity property of p follows that: given c* E {), c* = p x {O} 

there is if E Qsuch that: 

pi Ilqj-iJkll i,j,k cyclic 

if is determined up to a rotation and a rotorefiection; then we have: 

(38) 


with v E ~2 fixed and where the second union is disjoint. We can choose this vector in 

arbitrary manner since the two following sets are equal: 

Aih = U {5U1 • R</>(V} 
</>ESl 

AU2 ~ U {5U2 ' R</>(V} 
</>ESl 

where if E Q fixed, and Vb V2 E ~2 are generically chosen. In fact: we can always take 

¢1 E 51 such that 

the first term belongs to AUl and the last belongs to A~ since ¢ + ¢1 is always reached in 

the union so the, two sets are equal. 

The two sets 

U {R</>(V} , U {5u ' R</>(V} 
4>ES1 ' </>ESl 

are coincident only when the configuration if is collinear. 

In the collinear case there exists ¢ E 51 such that: 

R</>(V ="Av "A > 0 

and then 

5u(R</>(V) = "Av 
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5 

therefore the two sets are coincident; the collinear configurations form the branching point 

of the map p. 

Always using the regularity property of p for each neighborhood Uc of c E 6 there 

exists Vq in Q such that 

p(iJ = c 

p ( U {R<p(Vq)}) = Uc 

<pES1 

and 

and then 

<pES1 

therefore p is a double covering@. 

Reduced Action functional \ 

In this section we construct the new Action functional. We have shown that Qis a dou hIe 

copy of 6 glued on their boundaries. We will ..~ork on trajectories which do not lie on the 

collinear set. In order to distinguish r+ fr~m r _ y;e introduc'e a parameter z which takes 

value in {-I, 0, +1} and consider the map: 

Q ~ 6x{+I}~86x{0}U6x{-I}==C (39) 

(qi i = 1, 2, 3) ~ (PI, P2, P3, z) == , 

The parameter z which takes value 0 on 86 and ±1 on the two sheets. The operation u 

which is the image of the action of S2 in 6 acts as follows: 

u(f/, z) = (jJ, ~z) 

and we call it "reflection". 

It is easy to see that with these definitions collinear configurations (jJ,O) are fixed 

points of u. 
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We now define: 

AT = {((t) = (P(t),z(t)) / ((t + T/2) = u((t)} (40) 

AT {((t) (P(t),z(t)) / ((t + T/2) ((t)} (41) 

so the space of T -periodic, HI-functions with values in C 

can be decomposed into 

(42) 

We can now define the Action functional for trajectories in .Cd. Let us recal the reduced 

Lagrangian: 

L(p, z) 

Let ((t) = (p(t), z(t)) be a regular trajectory. We have noticed that either z(t) = 0 Vt or 

there are 0 < tl < .... < tn < T such that Z(ti) =,.0, 'z(t)# 0 '!-'lith t # ti linie~o Z(ti + 
€)z( ti €) = -1. If z(t) = 0 Vt we define the Action functional as: .' 

AT [((t)) = f dtL(ji,{j,O) 

where Pi +Pj Pk for some i,j, k . 

. If z(t) # 0, we define the Action functional to be the sum of the Action functional 

restricted to the trajectories in the open interval (ti' ti+l). One has: 

where Zi = z(t) with t E (ti' ti+t). 

Since L does not depend on z one has finally: 

jAT[p(t))--:- { dt {t Bij(PJpi{ij + L,mim } (43) 
a ij i,j,k Pk 

defined in Hb. 
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6 

In the next section we will consider collision trajectories. For collision trajectories, 

let {Tk}k be a sequence of collisi~n times. B~tween two collision times the trajectory is 

regular and so we can use the previous definition, hence: 

The behaviour at collision garantees that the limit exists. We have to observe that the sum 

over the collision times might diverge when the collision times form an infinite sequence. 

We shall therefore use- the (43)-also for collision solutions. In conclusion (43) describes 

the Action functional for trajectories in Hb. 

Collision orbits 

In this section we prove that collision solutions are not minima for the Action functional. 


The proof is based on a local analysis near the collision orbit and in particular on the 


asymptotic behaviour of the orbits at the collision. :.We know that collision orbit are 


. asymptotic to Central Configurations [24] ,[23]. ,Let us consider triple-collisio~, assume 


t = 0 to be the collision time. In the space Q we have the following representation of the 


. collision orbit: 

rt(t) ~ (Ci + fi(t))t 2
/ 

3 

with Ilfi(t)11 = O(td 
) 0 < d < 1, {Ci} is a Central Configuration. 

In the space Qwe have: 

where Ii and Ci are functions of fi and C;, with li(t) = O(td
) 0 < d < 1. In the next 

Proposition we will use the definition of the Action functional given above. In the Three­

body there are Equilateral Central Configurations and CO.llinear Central Configurations: 

in the first case there can be only a finite number of times at which the trajectory is in 

a collinear configuration, while in the second case there may be an infinite denumerable 

sequence of such times converging to the collision time. As we have seen in both cases we 

can use the Action functional previous defined. 

Proposition 6.1 

Collision solutions are not minima for the Action functional (43) AT[']' 
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Proof 

Remark: In the proof we consider only triple-collisions but it is easy to see that the 

proof works for double-collisions as well. 

Let 

w~ere for all i == 1,2,3 Wi E JR+ with: 

cyclic permutations 

and 
ItI ::; EO 

ItI ~ g(t) = 2€0{ ~~Itl 
EO ::; ItI ::; 2€0 

with €o E JR+ We consider variations: 

(44) 

with E E JR+. 

Estimating: 

(45) 

this becomes equal to: 

1 T Bjk mjmr ds r dt 'I:, aa 9l(t)e(pj+segj(t»(Pk+segk(t))+2eg'k(pj+se,9j(t))Bjk-t (:gk lj2
Jo 10 jkl PI jkl Pk + S€9k 

Denoting with (.,.) the natural scalar product in JR3, let us consider the second term due 

to the kinetic energy: 

From Proposition 3.1 one obtains: 

12a2e f ds loT dt2e{B§,P'c + se§)l :s; C1 (e/eo) + C2{e/eo)2 

where the second inequality and the constants C1 , C2 > 0 are determined by the explicit 

form of j; and §. 
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To estimate the first term due to kinetic energy we need again to use the homogeneity 
)

properties of the matrix: B: 

Let us fix: 
P2 

x=­
P3

Y --: ­
PI PI 

then: 

hence: 
aBjk aBjk ax 	 aBjk ay--=---+-­
apl ax apl 	 ay api 

Computing explicitly the derivatives 88x and 88 
y we have that: 

Pl Pl 

for example: 
aBjk ax aBjk,ay 
--:--"a -a'91 f + -..a '-a'91f x PI '. Y 	 PI 

. which is equ~ to: 

Hence there exist 0 3 , 0 4 , Os > 0 such that: 

We now evaluate the terms due to the potential. They wi! turn out to be the leading 

terms in f. 

Each of such terms has the form: 

I~ r1 ds r2€O dt___,--2_f:--/_fO--'-(_2f_O_-_t)____ 
I Jo J€O ((Ci +	t2)t2/3+SWif/fo(2fo - t))2 
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it is easy to prove: 

If O(E) 

For Ii we need some computations: let 

so 

dt (3/2)E3/27"1/2d7" 

1 'loe~/3/e (3/2)E1/27"1/2 
I~= ds d7"~----~~----~10 0 ((Ci + /i(7"))7" + SWi)2I 0 

we define now the following two integrals: 

and 
1 . "1000 (3/2. ).E1/2,7"1./219 =ds " d7"--=--:..---:---­

• 100 6', (Ci7" + WiS)2 . 

,we are going to show that there exist C6 , C7 > ~ a > 1/2 such that: 

(46) 

(47) 

thus there exists C8 > 0 such that: 

(48) 

but since we find that: 

(49) 

we conclude: there exist 010 , 0 11 > 0 f3 > 1/2 such that: 

hence for E small enough we have a negative variation for the Action functional which 

implies that collision solutions cannot be a minimum. We have to prove (46), (47), (49). 

Proof of (46): 
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using 	the explicit form of Ii ed Ii: 

the integrand goes as r-(3/2+2d) with 0 < d < 1 so it, is integrable and then: 

with c(e) = O( e). 

Proof of(47): 

II?" _ 101 = (1 ds (00 dr(3/2)e1/ 2r 1/ 2 [ 2rri (r)(r + SWi) + r2ri( r )2 ] 
I Jo Jo (r+SWi)2((ci+,i(r))r+SWi)2 

actually r i(r) = ri(e3
/

2r 3
/

2
) and it is infinitesimal in its argument, so we have: 

with C1 (e) = 'O( e) and .for e s~all e~ough and 0 14 '> ,0.' 

Proof of (49): 

this integral can be explicitly computed, and it is equal to: 

so we have concluded our proof.@ 

7 	 Study of the Action functional with J OP
-+ o 

fixed 

In section 5 we have seen that the reduced Action on Q has the form: 

(50) 

24 




Before studying (50) let us recall the procedur~ one follows to study the unreduced Action 

functional. In q's coordinates the unreduced Action functional has form: 

(51) 

This functional is studied on the space 

T 3 m-m- }
AT = fi E H1([0, T]; ~2) / fi(t) = fi(t + T); dt L II_ : II < 00 (52)I{ loa i,j,i=/=j qi - qj 

Split AT into 

AT = AT EB.Ar (53) 

where 

AT = {fi EH1([0, T]; }R2) / fi(t) = -fi(t + T /2)} (54) 

AT {fi E H1([0,.T];R2) / fi(t) ~ qi(t +T/2)} (55) 

Let us restrict AT on AT; on this set the Poincare Inequality holds: 

so there exists b > 0 such that: 

A* is coercive on AT and the sub-levels are compact in L2([0, T]) and hence A* has 

a minimum q*. The minimum is not a collision solution as is proved in [23]. At the 

minimum the functional is of class 0 1 • By the symmetry of the Lagrangian for q* E AT : 

where Ds is the differential along directions Ar. Therefore 

DA;'(q*)= 0 

i.e. q* is a solution of the Euler-Lagrange equations, so it is a T-periodic solution without 

collisions. 
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In sections. 4 and· 5 we described the coordinates of C and we gave the definitions of 

AT and AT' These sets will playa role in Q'similar to (54) and (55). Let us recall the 

definitions: 

AT = {((t) = (P(t),z(t)) / ((t + T/2) = u((t)} 

AT = {((t) = (ji(t), z(t)) / ((t + T /2) = ((t)} 

Now since AT is invariant under u, if pEAT then: 

so, pEAT is a critical point, if and only if is a critical point of AT in AT' 
Proposition 7.1 

Let be ((t) = (P(t), z(t)) E AT' The following inequality holds: . 

.'. . 

Sin~e B(jJ) is bounded awaY·froInz~ro ji E·Hl([O,T],C)'the"sup" oftll~ r'~h·~s.:is attained· 

in 10, T]~ 'Without loss of generality w~ assumethat isatt~ned in O'::~~d we de~ote the 

last· term in (56) by 

Proof 

To prove the proposition let us consider the trajectory in the interval [0, r] with 

r < T/2the first instant at which the configuration i~ collinear. Observe that from 

the definition of AT if there is such a time r then r + T/2 is another collinear time. 

From Proposition 3.1 wehave that there exists al > °such that 

for each Pi by using the Fundamental theorem of the Calculus we can write 

then by Schwartz inequality 
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so 

and hence 

(57) 

Let us now put for simplicity 

Pi(T) = Xi collinear configuration 

and 

Pi(O) = Yi non - degenerate triangular configuration 

with i 1,2,3; obviously we have to choose one of the following condition Xi + Xj = .Xk 

cyclic permutation of i,j, k, the three possibilities in the min argument depends on this 

choice. Let us consider the case Xl + X2 = X3, then we seek the minimum 'of the auxiliary 

function 

we consider f as function of Xi. With'very elementary computations we find that f has 

only one minimum whose value is 

hence we can say that 

(58) 

N ow if we take account of the choice Xl + X2 = X3 we see that to get the thesis we only 

should repeat computations with the other three possible choices. 

We consider now the case of a . T periodic trajectory. We know that there· are times 

tl E (O,T/2) t2 E (3T/4,T) at whlch the configuration is collinear. In thls case we can 

write: 

K = Jl dt(B(P)f;,P) = J~l dt(B(P)f;,P) + Jt~/2 dt(B(P)f;,P) + 
+Jfj2 dt(B(P)f;, P1 + J?: dt(B(P)f;, P1 (59) 
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as we have done above, we obtain: 

(60) 

. by (58) we get: 

T/2 -+ T/2 
K ~ a1 3(T/2 _ tt)t r(p(O)) + a1 3(T _ t2)(t2 T /2) r(p(T))

1 

so·that: 

hence 

K ? 4;1 r(p(O)) (61) 

Thus we have proved the thesis @. 

The r.h.s. of (56) does not bound the L2 norm of p, therefore AT is not coercive. One 

has in fact: 

Proposition 7.2 

For, any. k ~ 0 the s,et 

are non compact in the L2-topology. 

Proof 

For each k ~ 0 we exhibit a sequence in the sublevel which .does not converge. By the 

preceeding Proposition we find easily that 

Consider the following sequences in n EN, Vi E ~: 

p~n)(t)=p~n)(O)+Vit tE[0,T/2] 1,2,31, 

p~n)(t) p~n)(0)+vi(T/2-t) tE[T/2,T] 1,2,31, 

which are in AT 

p~n)(O) = n + a p~n)(O) = n + a pf\O) = 2n + a a > 0 
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those will be collinear at t* = a (we ch~ose Vi'S such that T/2 = t*)
V3- V2-V l 

It is easy to see that 

4al r(p(O))
T 

we chose a so that 
•

4al a = k 
T 

the sequence stays always in the level AT = k. 

But with a simple computation we can see that: 

for some cOso that no convergent sub sequence exists.@ 

Let us now define the following set: 

Me ~ {C E AT II Hb 8uch that: sup 9(P(8))?: c} 
sE[O,T] 

with c > 0 and where: 

3 

11,0(8 )11 = L(Pi)2 

We show now that for any c , k > 0 

is compact in 12([0, T], C). 

Proposition 7.3 

Given k, b E JR+,the 8et Me,k Me n Sk is compact in the topology of L2([0, T], G). 

Proof 

Let us define the set: 
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where al is is the lower bound in Proposition 3.1; then: 

Be,k is compact in L2([O, T], G) since J[ 11P112dt is uniformly bounded for all ( s) E Be,ko 

We must prove that (Be,kY is compact. 

If ( E (Be,kY then s~PslIP(~)11 > 3.jr-r-k-ja-l implies 

, T( d )' ' { T( d ) 2 }1/2s~p IIp(s)ll- i~f IIp(s)11 ::; fa ds IIp(s) II ds::; vfT fa ds IIp(s)11 ds 

by means of Proposition 3.1 we get 

so: 

(62) 

hence ­
1 T :' - ,,' ' 

T l UP(s)/idt ~s~p IIp(s)U ~ C1iW IIp(s)U (63) 

for Gi > 0 big enough. 

We can then us'e ~he polar coordinates and by Propo~ition 7.1 we 'get: 

a1 1
k ~ ATCo) '~al fT (dd IIp(s )11) 2dt + a fT IIp(s )112(E, E)dt + 2T sup IIp(s )IIg(p(s)) , t . 2. 2 10 ,10 sE[O,T] 

where: 

Now we have to notice that: 

sup IIp(s)llg(p(s)) ~ inf IIp(s)11 sup g(p(s))
sE[O,T] , sE[O,T] , sE[O,T] 

From (62) and (63) we obtain: 

(64) 
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Let be r(s) ~ IIp(s)ll, let (rn(s),iJn(s)) be a sequence of functions in Me,k with 

moreover 

Since all the elements of (64) are positive definite, we have: • 
cal _

k> --,-rn 
- 2TC1 

The sequence Tn admits therefore a convergent subsequence. Since 8 2 is compact and 

Poincare's inequality holds for zero mean functions, sequences (Tn(s), iJn(s)) have conver­

gent subsequences. Therefore (Be,kY is compact in L2([O, T], C) @ . 

. Now the functional AT is continuous hence it attains a minimum on each Me,ko Let 

M~k be the interior of the set considered: , , ' 

M~ . {, E Ar.n Hb such that: sup g(p(s)) > c} 
sE[O,T] . 

If for some c, k the minimum on Me,k is attained in M~k then D AT == 0 at the minimum~ 

This would give a non-collision T -periodic orbits with zero total angular momentum since 

we have verified that collision-solutions cannot be minima. A better understanding of the 

homology structure of Me,k is needed before being able to prove that there are c, k such 

that there are minima in the interior of the set Me,k. 
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