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Abstract

Combining hamiltonian reduction, variational methods and local analysis of the flow,

- we study for the planar three-body problem, the existence of non trivial periodic orbit

without collisions, with zero total angular momentum. We prove that collision solutions
are not minima, but the lack of compactness for the sub-levels of the Action-functional
does not allow to prove the existence of T-periodic orbits without collisions. We restrict
therefore to study periodic solutions which are odd under reflection (thorough some axis
which may depend on the orbit). In this setting we prove that the loss of compactness is
due to trajectories which are asymptotically collinear and we identify a class of sets which
are compact and which are good candidates for the search of a minimum.
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1 .. Introduction

In this paper we dead with the problem of the existence of periodic solutions in the planar
Newtonian three-body problem. In particular we consider the problem under that the
constraint of total angular momentum J be zero.

For the Newtonian N-body problem in three dimensions, K.Sundman in a very old
paper [24] proved that J = 0is a necéssa.ry condition for total collision solutions. This
fact implies that collision orbits must live in the submanifold of the phase space identified
by the condition J = 0. Recently in [23] it is proved that in the N-body problem,
under proper assumptions, collision orbits are not minima for the Action functionél; (the
assumptions are known to hold for N < 4) so that non-collision periodic solutions exist.

"These facts led us to study the problem of the existence of periodic solutions and
collision orbits by means of an Action functional reduced on the manifold of zero total
angular momentum. Also in this case collision solutions are not minima, but now there
is a lack of compactness and we cannot conclude immediately about the existence of
minima. To go further, we study the geometry of the reduced configuration manifold; we
show that the map which describes the reduction is a double éovering of a set in R3, WhOSC‘
branching point is the set of collinear coﬁﬁgﬁrations. A weak Poincaré inequality shows
that non-compactness is concentrated in a neighborhood of collinear orbits, i.e. when
sides of the triangle (formed by the three bodies) become large while the relative angles
become small. -

The plan of the paper is the following: In sections 2, 3 we describe the construction of
the Hamiltonian reduction and some of its technical properties. In section 4 we describe
the geometry of the reduced configuration space. Collecting these geometrical facts, in
section 5 we construct the reduced Action functional. In section 6 we prove that collision
solutions cannot be minima of the Action. Finally in section 7 we construct a weak
Poincaré inequality, we show the lack of compactness of sub-levels of the Action and
moreover we define a class of subsets of the su'B—levels which are L?-compact. These sets

could be good candidate to contain minima.



2 Hamiltonian reduction

In this section we present in a new form the hamiltonian reduction found by Van Kampen
‘and Wintner in a very old paper [25].

The planar 3-body problem with newtonian potential can be described in hamiltonian
formulation as:

configuration space:

Q ={g e r%i=1,2,3} ~R®

In Q there are configurations on which the dynamics of our system is not defined. Those
are the collision conﬁgui'ations:

- Double collisions
Ha =&} {B=¢} {4=4da}

Triple (total) collision.

{@

we leave these points in the configuration space since we will study collisions later on.

@ = ga}

The phase space is:
T"Q ~ R® x R®
equipped with the symplectic form:
' 3
w =Y dg Adp;
|

where A denotes the wedge-product in R% The hamiltonian function is:

S EE & mum, |
H= — — — (1
2 om T 2 g - dl )

and the dynamics is given by the vector field Xy € T(T*Q) defined as:
ixyw = dH - (2)

The flow generated by (2) preserves linear momentum P and angular momentum J

P=Y 7 (3)



3
J=) GAp (4)
=1
We want to find a symplectic transformation which makes explicitly the dependence of
H on linear and angular momentum. .
Let U C T*Q be an open set, let {U,9;} and {U,%,} be two different systems of
coordinate:
Y, : U —> Rr'2
1=1,2

Consider the map:

¢;:U1XU2—)U,'

1=1,2
where: 4
| Ui =4i(U)
1=1,2

Denoting by w; the symplectic form w expressed in the i-system of coordinate, then one

constructs on U; X U, the 2-form
Q= iwn — dron

It is easy to see that:

(1) Q is symplectic

(ii) the map f : Uy — U, is symplectic iff:

;2 =0
where:
'if : Pf — Uy x Uy , I‘f = {(m,f(m)) eU; xU,m € Ul}

and * denotes the pull-back.

In our case w = —df where § is the canonical 1-form on T*Q). Therefore there exists

a 1-form © on U; X U, such that @ = —dO and © = ¢76, — ¢36,. Tims:
i{l=0=di;0 =0

3



and, if U is contractible, by Poincaré lemma, there exists a map S
S:T f—R

defined locally and such that:
i;0 =dS (5)

S is the generating function of the symplectic transformation f.
If we denote the coordinates on U; x U, by (g;, 5i, ki, %) © = 1,2,3 where (g;,p:) are

coordinates of U; while (&;,7;) are coordinates in U,, then from (5) we have:
dS = (¢104s)"01 — (¢2 0145)"0;

but (¢; 0 1) = idy, and (¢, o i5) are the coordinates of U, as function of coordinates of

U; by means of f. Thus locally we can write:
dS =) p;-dg — 7 - d&;

if we put ,
W=258-> 7-F
we get

dW =Y ji - dg; + & - 7 | | (6)

W is now a function on I'y in the coordinates ¢;,7; 7 = 1,2,3. Now, given W, the canonical

transformation will be obtained by:
= W
Di = Bz
S ot (7)
{ ki = 3%
We define a particular canonical transformation, which allow us to write the hamil-
tonian in a form in which the integrals of motion appear explicitly. This transformation

was found by Wintner and Van Kampen [25].
Let

g =(q ¢ , 7= p})

i=1,2,3



and define (cyclic permutations of the three indices 7,7,k = 1,2,3)

pi = (g — gl + (g —g)?

9 — %

i

cos ¢; =

Here

b = é; — ¢

(8)

(9)

(10)

are the exterior oriented angles at the vertices of the triangle formed By the vectors g;s.

- From (10) we have:

3
3 6=0

i=1

Let us define: .
£=1/3) ¢

1=1
so that:

piopitr>EoEtm
Denote by X; the coordinates of the center of the mass:

s ‘
L, Mig}

el mi

oM
X2 = ——‘—-1-——-2 '=Mmiq'.
Using (8), (9), (12), (13), we can define the map:

F:Q — CxS xR®
(q: i:1’213) B (Pl,Pz,Ps,f,Xl,Xz)

where:
C = {ﬁ'z (p1 p2 p3) ERY | pi+pj > pr and cyclic permutations}
Observe that C is a manifold with boundary given by the three relations:

pi + pj = pr and cyclic permutations

(11)

(12)

(13)

(14)



These are the collinear configurations. One can verify that rank(dF') is less than 6 on
collinear configurations. F~! is double valued on C — 8C: let us call I'y and T_ the two
sheets, so we have: ‘ |

F~Y(C - 6C) =T, UI_

I'y and T'_ are two open connected submanifold of ¢ glued along the common bound-
ary F~1(8C). By Existence-Uniqueness Theorem, for every regular trajectory {p;(¢)}}_;,
either p;(t) € F~1(8C) for all ¢ or the trajectory is transversal to F~}(9C) at the inter-
section points. This fact will allow us to define a global Action functional in the reduced
coordinates. In I'y UT_ from (9) and (13) one has:

gk = 1/M{m;pi cos ¢; —mip; cos $;} + X1 | (15)
gi = 1/M{m;p;sin; — m,p;sin @;} + X>

where ¢,’s are expressed in terms of £ and p’s by means of (9) and (12).

The canonical transformation can be obtained using the following generating function:

P . X ) ) 3
W(ri, 3,5, P) = PLX1(&:) + PaX2(G) + ZE(g) + Y_mpi(d:) - (16)
{=1

3

where the vector (P, P,) is the conjugate momentum to (X; X,), ms are conjugate
momenta to p;s, = is the momentum conjugate to ¢, and it is possible to prove that
==J. | |

The full canonical transformation is given using (7):

o

mwy, = 66‘

_

= a1

ow

¢ = 3=

;oW

opP

(17
explicitly:
pi = (@t~ gk + (¢ — a)?



9 — a

& = 1/3ZI arccos

gk Pi
X1 — Z?:l miqtl
M
X2 — ?:1 miQtz
: M

P, = Tjcos;— my cos g — 1/3Z (smqﬁj - Sn;(ﬁk) + (mi/MjPI
' k

j
cos¢;  cos P

Pj Pk

p? = mising; — mysindy + 1/38 ( ) + (mi/M)P,

(18)

Computing J in the new coordinate one finds:

[n

J
and the hamiltonian takes the following form: (the sum is meant in cyclic sense (’))

q - 1/2zll/m’._[7rf- + 73— 27 i, cos(@; = qﬁk)] +

ik |
_ 9 .
E%/9 [1//{? +1/pf — _______cosgzk (ék)] +

) |

+
+ 22/8[mi/p; — i/ palsin(d; — i) + (mi/M)* (P + P}) +

+ 2m;/M[Pi(m;p; cos ¢; — m;p; cos ¢;) + + Pa(mjp; sin ¢; — m;p; sin ¢;)] +
+

omiE/3M [Pz (cos b; _ cos ¢k) _p, (sin oF . sin qbk)] B Z:/m,-mj (19)
pi Pk Pj Pk ijk Pk

Using the definitions of ¢; and 6; and putting
ﬁ: {p' =1 ﬁ: = {7‘.’- ?:1
it is easy to see that the hamiltonian (19) has the form:

H(5,7,¢,2,X,P) .= H(p7,E,P) =

ho(§, %) + h1(p) + E?ha(p)

+ Eh3(ﬁ:7?)+
’ 3
+PRp) + BB Ra(p )+ (Dlma M2 ) I 0)
’ f=1



where h; are suitable functions. This implies the following equation of motion:

. 8H Oho - Bhs
P= 87 97 " om

. OH .
6:— = 2Eh2+h3+h5‘P

XZ—T. = ﬁ4+3i£5+2&ﬁ
OH Oho Oh, _Ohs = Ohy - Ohg

T=—— = — - - = —P. — =P

op 85 85 o5 a5 95

P=-22 - ¢ (21)

with a = ¥}, (m;/M)?. We can define the lagrangian function by the Legendre transfor-
mation: ' .‘ |

LG5 66X, X) = #+é2+ X - P H(F#E,P) (22
fhere T, =, P are functions of p, p, f and X Smce we are interested in the study of the

motlon of the system.on the manifold where

P=0 J=E=0
the Lagrangian becomes ‘
L(3,0) = p- #(5, ) — H(§,7,0,0) (23)
and then the equations of motion turn out to be:
Lo _ ol
P=%z = o7
. 6H 8ho O
__OH _ 0Ohy O 24
"= T 5  0p (24)
The term hg of (20) can be written as:
' ‘ 3
ho(8, @) = D Ajw(P)mim | (25)
5k '
where Ajx is the following matrix, depending on p:
1/2(1/ms + 1/m3) — cos8s/2m; ’ — cos 85 /2m,
A= — cos 3/2m3 1/2(1/my + 1/m3) ~ —cos b /2m,
— cos 83 /2m, — cos 8, /2my 1/2(1/my + 1/ms)

8



where:

with
pi+p; > pr  and cyclic permutations

We will show that A is invertible. Denoting with B(p) the inverse of A, the Lagragian
takes both on I'; and on I'_ the form:

L 3 C . e MMy
L(p,p) =Y _ Bij(p)pipi + Y o (26)
ij : 1,5,k

We have reduced the number of degrees of freedom from 6 to 3. In section 4 we will describe

the global structure of the reduced configuration space, and after that we construct, with

this Lagrangian the Action functional.

3; Properties of the matrix B

Propoéition 3.1
The matriz B(p) is symmetric and such that there ezxist a;,a; € R* such that for all
vectors V € R3: | ’ | '
allVI* < (V,B@V) <l VP (27)

where with (.,.) we denote the natural scalar product in R3.

Proof

The matrix B(p) is the inverse of matrix A(p).It is therefore sufficient to prove (27)
for A(p). The Sylvester Criterion says that the matrix:

231 a2 @13
A= az; Q22 a3
a3y a3z ass

is positive definite if:
(i) a1 >0
(ii)
det ( a1 G2 ) >0

a2y G22



(i) det (4) > 0.
In our case (i) trivially holds, and (i) reads:

1 1 1
————<1+1)+ + 2(1~c05293)>0

4mq, \my; mg dmoms  4mj

v 9,’651

condition (iii) is

-28 .26
det A(7) = 22 22(1 +—1—-)+5m 3(——1~+—1—)+

my m3

8mj3 8m2 \m; my
sin?8, /1 1 1
— 4 — —(1 — é 8 ] 28
8m§ (mg + ma) + 4m1m2m3( €08 71 o872 €08 3)‘ ( )

this is strictly positive for all §; € S 1 '
Let A;(p) respectively A_(p) be the smallest (resp. largest) eigenvalue of A. For any
g ox_ie has: . '
1
———=>0, A.(p)>0
NGRS

both are continuous functions, and A depends only on the angles 6;; i.e. is a function on

' §' x §' x §'. By compactness:
A =min {)\_(,6')} >0

AT =min A7)} > 0
Therefore a,||V||2 < (V, B(5)V) < a,||V||? for any V € R®.

This proves the Proposition.

4 Geometry of the reduced configuration space

The group O(2) acts on the configuration space @} and its action is free if one excludes
the origin of @ (¢ = 0). We denote reflections with S,. O(2) is a symmetry for the system
sincé it leaves the Lagrangian invariant.

In the reduction of the angular momentum, we considered the reduction of the SO(2)
action only. We will show that the reduced configuration space has therefore a non-trivial

symmetry, which now we denote with o, which takes an orbit of SO(2) to the one obtained

10



by reflection about an axis through the origin. Since reflections thorough two different
axis are conjugate by a rotation, o does not depend on the axis chosen. The coordinates
p’s are invariant under o, the reduced configuration space is then a double covering of C
with boundary the collinear configurations (i.e. the fixed point of o). In this section we
describe the geometry of the reduced configuration space; then in the next section we will
use the reduction to construct the space of the trajectories on which we define the Action
functional. |

The transformation F is:

F:Q — Cx8'xR? ~ (29)
(9.'; i=1’223) - (P13P23P3153X1aX2)

where we recall:
C= {ﬁ’: (prp2p3) ERY [ pit p;i = pr and cyclic permutations}

and o |
aC = {ﬁ = (p1 p2 p3) ERY | pi+p;j=pr and cyclic permutations}
C is locally defined by (8), (9), (12), (13). If we fix X=0 'we reduce:

3
Qi{‘f:(é’lé’z )€ Q / Z:mié:‘=0}

Q is a four-dimensional plane in RS, so Q ~R%

Hence we can define F on € and we denote it with F:

F:Q — Ccx$ (30)
‘f — (PI,PZ,PS,&)

F is given by

pi = (@ —ab)?+ (g~ )’

1_ 1
¢ = 1/3Zarccosq’ L

i3k b

(31)

11



with

3

i:
i=1 T74iq;
=0
M
2?=1 miqiz -0
i -
(32)
Tt is useful to recall (15) with the condition X =0:
{ g = 1/M{m;p; cos ¢; — mipj cos §;} (33)
gi = 1/M{m;p;sin ¢; — m;p;sin ¢;}

Now we see how to transfer the action of O(2) from @ to C x S'. Let us begin with
S0(2) ~ S*. If we denote with :

R: 50(2) xQ—Q
the action of SO(2) on @, we want to find an action of SO(2) on C x S, denoted by R:»
| : R:S»O(.‘Z)IXIC’XSII——{CAXSI. -
such that the foﬂowing, relation‘ holds: B
- A I:’ oR=RoF |
We represent Ry € SO(2) with ¢ € S! as:

R, 1 (cosé sinqb)

- W —sing cos¢
on Q we consider the following action:
Ry(q) = (Rys(d1) Ro(32) Ry(33))
with
=@ BH)eQ

since Ry acts linearly the condition }; ¢ = 0 is fulfilled.
We define the action of SO(2) on C x S! as the map:

Ry:CxS' —Cx8§!

12



from the definition of 5" we have:

Ry(pi) = || Bs(3)) — Ro(@i)ll = 1G5 — @l = p:

for all cyclic combination of 7, j, k. Moreover since
a. [ cos ¢ \ [ cos(¢i — ¢)
*\ sing; | \ sin(¢: — ¢)

Ry(¢:)=¢i— ¢

and remembering the definition of ¢:

using (33) we obtain:

£ = %Z ol
we get: A
Ry()=¢—¢
therefore:

Ry:Cx 8 — Cx§ | ‘ (34)
(B — (AE-9)

Now we have to consider the action of reflections S,. We give the action S on Q and then

we want to find the action S on C x S? such that:

Ed

FoS=80F

Let 4, v be two vectors in R? then the vector Sy(@) is the reflection of %@ by ¥ and is

defined by
Sz : R — R?

(,9) ;
gl

Sx(@) = 2 -~ (35)

if ¥ = (vy v7) then S has a matrix expression which is

5. — 1 v} — 2 200,
TP\ 2vive vi -

13



where we denote with (.,.) the natural scalar product in R?.

It is easy to see that

det S{; = —1
and
Sz Sy =1d
Define:
Rig = Sz-Ss

then Rzs € SO(2). Equivalently we can say that one can generate all S, by a reflection
and SO(2). This fact will be very useful in what follows.

The explicit expression for Rgg:

Rys— —» (@,9) — (EAF)® (4,3) (AT
el \ (@94 (EAD)? (4,9) - (@AD)

If we denote with § the angle between % and ¥ we find:

1 cos20  sin 20
Ras = Rop = W ( —sin26 cos26 )

and if we take v = (||v]| cos @ ||17H sin &) then

Ss = ( cos2a sinla )

sin 2a — cos 2a
On Q wé consider the following action:
S3(q) = (S5(q1) S5(q2) Ss(d5))
with |
i=(5 ¢ &) e
and 'E’ a direction in Q. Since Sy acts linearly the condition ¥; §; = 0 is fulfilled.

We can now define the action of S; on C x S?!
S'a:CVXSI——)C'Xsl
from the definition of g5 ».ve have:
Sa(pi) = [153(3) — S{@)ll = G — &ll = pi

14



as we have done in the case of SO(2) using the fact that:
g. [ cos i\ _ [ cos(2a — ¢;)
v sin (}5,‘ - sin(2a — QS,)

Sa(¢) = 20 — ¢

and remembering the definition of §:

using (33) we obtain:

1 3
£= 3 > o
=1
we get:
Sa(€) = 2 —§
therefore: .
5,:Cx 8t — Cx 8§ - (36)

56 — (728
The reduced configuration manifold is:
C x §1/50(2)
Since SO(2) ~ S acts trivially on C we have:
C x SI/SO(é) ~ C x {0} = c

where {0} is a single point (an origin) in S*.

The reduction from Q to C can be described by the followiﬁg commuting diagram:

Q CxS!

= L
Q, (-;—ﬂ X

m is the projection on the quotient, and p is defined by:



Proposition 4.1 ,

The map p‘ is a double covering. Poz'nt?s"Q related by reﬂection through a generic
direction in R? have the same image under p. The bfanching set is the set of the collinear
- configurations.

Proof o
In Q, pis locally defined by

pi = \J(@—ai)?+ (g2 —qF)? cyclicijk=123
E =0 o
(37)
with - |
EL—.I mtqt — 0 M _ 0
M i

The :ahk of this map is 3 for all configurations with ¢; # ¢; ¢ # j and for all configurations

that are not collinear. Collinear configurations will play a central role, they are going to .

~ be the ramiﬁcation point of the map p. Outside them is locally a smooth surjection. -

For a genemc conﬁguratlon q €q we represent the actlon of 0(2)

S5+ Ry(d) = (5:?'345(51),‘5?Rqs(é'z),sa'Rq&(é'a)) :

The definitions of rotoreflection depends on the order of the operations. We have to

observe fha,t, reflections are conjugate by rotations:
Ry - Ss = Si- Ry,

such that the quotient by S? is independent on the order of the operations.
- Now by means of the previous definitions of the action of O(2) on C X S* we see that:

taken 7€ Q

F(S5- Ra(@)) = (S - Ra)(F(D) = (5 - Re)(5€) = (5,2 + 6 — £)
but
| w(7,€) = {p} x 0} VY (AeeCx s’

16
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hence B
(w0 F)(S5 - Rs(q)) = (m 0 F)(Ry(d)) = (w0 F)(g) = {8} x {0}
forallje 0, Temr? e S
From this and the regularity property of p follows that: given ¢* € C, ¢* = 5~ x {0}
thereis g € Q such that: |
P =G~ Gl ik eyelic
q is determined up to a rotation and a rotoreflection; then we have:
()= U {Rs(@}U U {55 Ro(2)} (38)
pesSt pest - ,

with ¥ € R? fixed and where the second union is disjoint. We can choose this vector in
arbitrary manner since the two following sets are equal:

Az = | {Sa - Re(9)}

Ay = U {Sﬁ'z -Rd,(é)} '
ges! . |
where § € Q ﬁxed, and ¥, ¥, € R? are generically chosen. In fact: we can always take
¢, € S such that ‘

S5 - Ry(q) = S5, - R_g, - Ry, - Ry(3) = Si, - Ry, +4(9)

the first term belongs to Ay and the last belongs to Az, since ¢ + ¢, is always reached in
the union so the two sets are equal.

The two sets

U {Bs(@}, U {5s- Ro(@)}

€St $eS!
are coincident only when the configuration § is collinear.

In the collinear case there exists ¢ € S* such that:
Rd,(lﬂ = AU A>0

and then
Ss(Re(q)) = A0

17



therefore the two sets are coincident; the collinear configurations form the branching point
of the map p. ‘ ’
Always using the regularity property of p for each neighborhood U, of ¢ € C there

exists Vz in Q such that

D) =c
P ( U {Rda(V«i‘)}) =U,

¢St
and ‘
P ( U {Sa'R¢("%)}) =U.
$eSt
and then

pl(U) = U {Rs(Va)} U U {Ss0 Ry(Vp)}

$eSst peSt

therefore p is a double covering @.
5 Reduced Action functional
In this section we construct the new Action functional. We have shown that Qisa double
copy of C glued on their boundaries. We will WOrk on trajectories which do not lie on the
collinear s‘et{ In order to distinguish I'; from I'_ we introduce a parameter z which takes
value in A{—l, 0,+1} and consider the map:
Q — Cx{+1}UdCx{0}ul x{-1}=C (39)
(q-; 1= 15273) m— (Pth,Paaz) = C

The parameter z which takes value 0 on C and +1 on the two sheets. The operation o

which is the image of the action of S, in C acts as follows:

a(p,2) = (P, —2)

and we call it "reflection”.
It is easy to see that with these definitions collinear configurations (g,0) are fixed

points of o.

18



We now define: »
(O = @) [ (C+TD =0t} )
= {0(0) = (FO,=(0)) / ¢+ T/2) = o)} @)

so the space of T-periodic, H 1—functions with values in C_'
Hy = HY((0,T),C) = {(5,2) € @ /| pi € H'([0,T],Ry) i=1,2,3}

can be decomposed into

H.=H.NAy @ HLNAS - (42)
We can now define the Action functional for trajectories in Q Let us recal the reduced
Lagrangian: 4
mim;
L(p,z) ZBta(mP=PJ+Z Pr :
i ‘ Ak

Let ((t) = (p(t), 2(t)) be a regular trajectory. We have notiégd‘that either z(t) =0 Vi or
thereare 0 < ¢; < .... < t, < T such tha.t z(t;) =0, "z(t)A #0 with t#t; Lm0 2(¢; +
€)z(t;—€) =—1. If z2(t) = 0 Vt we deﬁne the Action fuhctipnal as: ' ’

Ar[((t)] = / dtL(7, 5,0)

where p; + p; = pi for some ¢, j, k.
If 2(t) # 0, we define the Action functional to be the sum of the Action functional

restricted to the trajectories in the open interval (¢;,%;4+1). One has:
NS> [ aeis,,)
1==0

where z; = z(t) with t € (ti,ti41). _
Since L does not depend on z one has finally:

1,5,k P

B
defined in H}. |

19



" In the next section we will consider collision trajectories. For collision trajectories,
let {7x}r be a sequence of collision times. Between two collision times the trajectory is
regular and so we can use the previous definition, hence:

47‘ (K@) = llf%zk:

TE+e Lt »

dtL(p, p)

Tk4+1—€

The behaviour at collision garantees that the limit exists. We have to observe that the sum
over the collision times might diverge when the collision times form an infinite sequence.
We shall therefore use the (43)-also for collision solutions. In conclusion (43) describes

“the Action functional for trajectories in H}.

6 Collision orbits

In this section we prove that collision solutions are not minima for the Action functional.
The prdéf is based on a local analysis near the collision orbit and in particular on the
asymptotic behaviour of the orbits at the col]jsion.;',,Wé) know that collision orbit are
aéyﬁlptofic to Central Configurations [24], [23]. Let us consider triple-collision, assume
¢t = 0 to be the collision time. In the space @ we have the"fo]lowing repiesentatgon of the
collision orbit: | V - N » . o
| ORI CER O CA \
vﬁth H’?’,(t)” =0(t!) 0<d<1,{c}isa Central Configuration.
In the space Q we have: ' R ' |
pi(t) = (i +2()e*°
where v; and ¢; are functions of 4; and ¢, with v;(t) = O(t?) 0 < d < 1. In the next
Proposition we will use the definition of the Action functional given above. In the Three-
body there are Equilateral Central Configurations and Co]]inéar Central Configurations:
in the first case there can be only a finite number of times at which the trajectory is in
a collinear configuration, while in the second case there may be an infinite denumerable
sequence of such times converging to the collision time. As we have seen in both cases we
can use the Action functional previous defined.

Proposition 6.1

Collision solutions are not minima for the Action functional (48) Arl.].
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Proof

Remark: In the proof we consider only triple-collisions but it is easy to see that the
proof works for double-collisions as well. |

Let ‘
A = O 5= wg®},

where for all 1 = 1,2,3 w; € R with:

w; + w; > Wi cyélic permutations
and ‘
1 It' § €
gt)=1{ 0 lt| > 2€
Zoll ¢ < Jt| < 2e

with € € RT We consider variations:
pi(t) = (r + %@NE — (r+ %N +wieg(t) (44)

with e € RT.

Estimating:
Az (.(t) + e = Ar[fe)) = [ dsAz [5.(t) + sed] (45)

this becomes equal to: .
/ ds / dtz

Denoting with (.,.) the natural scalar product in R3, let us consider the second term due

' eggm;my
S+seqi(t +segr(t +26 k(P5+s€g;(t))Bik— "c—J-'—
() o ocar(i)) 2e6u(5 o) B3 Lo

to the kinetic energy‘:
1 T 1 T .- .
/o ds/ dt2) " ege(pS + s€g;(t))Bjx = /(; ds/o dt2¢(Bg, p. + s€g)
0 e
From Proposition 3.1 one obtains:

1 T . . .
2ase /0 ds /0 dt2¢(B3, 5, + sed)| < Cu(e/e) + Cale/eo)?

where the second inequality and the constants C; , C; > 0 are determined by the explicit
form of ﬁ and g’
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To estimate the first term due to kinetic energy we need again to use the homogeneity
properties of the matrix B: ’

Let us fix:
| _f _ P
p1 o p1
then: , »
Bjk(pl"a Pz,Ps) = Bjk(x:y)
* hence: ,
BBjk _ BB,-k@ 4 BBjk_Bl
Opi oz O8pr Oy Opi
Computing explicitly the denva.tlves ~- and 3” we have that:

0B
5ka egi = 0(e)

for example:

BBJk 3B ik 6:13 GB,-k,By

, . 0py 6:1: Bpl .ue,f‘;ﬁy “0p1 916 i
' wluch is equal to: o « ' o
: BBJk . (C2 + ’72)t2/3 + seg2 o BBJk ' (cs + 73‘)‘t2/3 + segs ;—'-:O(e)
((c1 +71)t2/3 Foeg)? ((cjl + 71)1:2/3 + seg1)? =P

Hence there ex1st Cs, Cy, C’5 > 0 such tha.t

/ds/ dtz

Jkl

“ae)el65-+ sk + seax(4)] < Os(e/ )+ Cul el + Cue/a)”

We now evaluate the terms due to the potential. They wil turn out to be the leading
terms in e.

Each of such terms has the form:

1 T 6g;(t) ,
T — dt — Ja It
I -/0 ds./o : ((Ci + 72)t2/3 + Ség;(t))z - I, aE .

€

1 €p
a_ d
E= )t e P

1 2¢0 2¢/ep(2€p — t)
b
it /(‘) ds /;0 d ((e; + 72)t2/3 + swie/eo(2€0 — t))?
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it is easy to prove: S

I? = O(e)
For I} we need some computations: let
er = t2/*

SO

dt = (3/2)e/*r'/*dr

1 pele (3/2)eV/271/2
‘/o ds/o d'r((c,- F 4 ()T + sw;)?

we define now the following two integrals:

s ‘ (3/2 1/2 1/2
=[] “«a+mv»r+wu2

(/ Jel/2r1/2.
fds/ (?;,12'+w. )2/

we are going to show that there exist Cs , C-,v >0 a> 1/ 2 such that:

and

Cmermgee
Eomce '- o
thus there exists Cg > 0 such that: | 7
12— 19 < Ceet (15)
but since we find that: |
I? = Coe? Co>0 | (49)

we conclude: there exist Cijo , C11 > 0 B8 > 1/2 such that:
Ar [pe(t) + €g] — Ar [ﬁc(t)] < Cio€® — Crr€e'/?

hence for € small enough we have a negative variation for the Action functional which
implies that collision solutions cannot be a minimum. We have to prove (46), (47), (49).
Proof of (46):
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using the exphc1t form of I? ed I>:

- (3/2)6771
II - I7 = l/ ds f’/a (c, + (7)) + wis)?

the integrand goes as T =(3/242d) with 0 < d < 1 so it is integrable and then:
|12 — I°| < €/2¢()Cla(eo)

with c(€) = O(e).
Proof of (47):

0] _ s - 1/2,.1/2 2r7:(7)(7 + sw;) +7'2'Y=‘(T)2
== Tl= -/ ; / ar(3/2) (7 + swi)?((ei + (7)) + sw;)?

actua.lly 7(r) = ’7,'(63/ 273/2) and it is infinitesimal in its argument, so we have:
=R e 3

A - . N X R

“with ¢;(€) = O(e) and for € small enough a.nd C’M > 0
* Proof of (49): |

(a7 + s'w,)2

/ ds/ (3/2)61/2 1/2 - ;

thxs mtegral can be exphmtly computed, a.nd it is equal to:

‘c1/2(3/2)e1/2 / P "+(sm.)-1/2m£;.n ] 0(61’2;
: 0 T + sw; v Sw;

0

so we have concluded our proof.@

7 Study of the Action functlonal with J =0 P = 0
fixed

In section 5 we have seen that the reduced Action on Q has the form:

Ar [PTt)z ( ) /(; dt {Z BU E)Ptpa + Z th} . ' . _(5[))

x])
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Before studying (50) let us recall the procedure one foHOWS to study the unreduced Action

functional. In ¢’s coordmates the unreduced Action functional has form:

/dtL / dtz ”""”2+ b ”_,m‘_mq’”' (51)

1,J1%3
This functional is studied on the space
=~ 7l 2 A _mamy
Ar =G e BN(O,THRY) [ G)=a+T) [ dt <ot (52)
: 0 5,425 H‘L gl

Split A7 into ,
Ar =A7® AT (53)

where ‘ ‘
={a:-eﬂl (0, TR / @(t) =gt +T/2)} (54)
p={geO1i®) / G0 =dc+ 1/} @)

‘Let us restrict A% on A%; on this set the Pomcare Inequahty holds:

dt §2>—‘/ dt “,-2
»/0 i 2 7 [ aelal

so there exists b > 0 such that:

3 2 -» ‘ '
[*5 mm .
A%lq >/ dt{ b(” 2” ”2 )+ > ’”} > bllqll%
=1 / q;

£,50% ] |]q,

A* is coercive on A% and the sub-levels are compact in L?([0,7]) and hence A* has
a minimum g¢*. The minimum is not a collision solution as is proved in [23]. At the

minimum the functional is of class C!. By the symmetry of the Lagrangian for ¢* € A%
D,A7(g") =0

where D, is the differential along directions A%. Therefore
DA;(g") =0

i.e. ¢" is a solution of the Euler-Lagrange equations, so it is a T-periodic solution without

collisions.
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In sections 4 and 5 we described the coordinates of C and we gave the definitions of
A% and A%. These sets will play a role in C’similar to (54) and (55). Let us recall the

definitions: : | : |
7 ={C() = (p(t), 2(¢)) / ((t+T/2) =o((t)}
= {¢(t) = (5(t), 2(t)) / C(t+T/2) (&)}

Now since AT is invariant under o, if p € As then:

DAz(p)(() =0 V(eA;

so, p € [\“T is a critical point, if and only if is a critical point of A7 in ./-\‘1‘1
Proposition 7.1 |
Let be ((t) = (p(t),2()) € A%. The following inequqlity holds:

T 3 . : T “ e 4(],1 o . \
/ dtz:Bij(mp'mj :L dt(B(mﬁ,mz - st m.in{(p,-(s)+pj(s)—pk(s))2}, (56)

Since B ([)') is bounded away ftom zero p E “H([o, T] C) the Psup” of the . h s.’1s atta.med: o

n [0, 7). Wlthout loss of genera.hty We assume that i lS attaxned in 0 and we denote the

last term in (56) by -
, ' 4111

| T(ﬁm)) -

Proof ,

To prove the proposition let us consider the tra_]ectory in the interval [0,7] with
7 < T/2 the first instant at which the conﬁguratlon is collinear. Observe that from
the definition of A% if there is such a time 7 then 7+ T/2 is another collinear time.

From Proposition 3.1 we have that there exists a; > 0 such that

K= / dt(B(5)p,p) > ai f dtHﬁH2

for each pi by using the Fundamental theorem of the Calculus we can wnte
i — p:(0)] < dit 3;
| ) = i) < [ el
then by Schwartz inequality »
: , IIRUREY
Ipir) = piO) < v { [ el
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lpir) = @) <~ [ atl(4)?

and hence

3 ; — p; 0 2
Let us now put for simplicity
pi(T) = z; collinear configuration

and

pi(0) = y; non — degenerate triangular configuration

with 7 = 1,2, 3; obviouély we have to choose one of the following condition z; + T; = T

cyclic permutation of 7,7, k, the three éossibilities in the mm argument depends on this

choice. Let us consider the case z, + z3 = z3, then we seek the minimum of the auxiliary

function ‘ : AR | A A S |
f(z1,22,23) = (21 - y1)2>+ (22 ‘— y2)2 +(=B1 + 332 = 'ys)2

we consider f as function of z;. With very elementary éomputati_onvs“ we find that f has

only one minimum whose va.luebis | - R | |

C (it v —y3)?
3

hence we can say that

. 2
K >a (v: + 3:;27 ys) (58)

Now if we take account of the choice z; + z; = z3 we see that to get the thesis we only

should repeat computations with the other three possible choices.

‘We consider now the case of a T' periodic trajectory. We know that there are times
- t1 € (0,T/2) t; € (3T/4,T) at which the configuration is collinear. In this case we can
write: o A |
L . . T Lt
K = [3 d(B(p)F,5) = I3 d(B(P)B,A) + Jua " dt(B(P)F, ) +
+ 15, d(B(8)F, 0) + Jir d(B(2)F,P) (59)
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as we have done above, we obtain:
. . S

[pi(t1)—pi(0)]? 3 (T /2)—pi(t)]?
K > a E,-—-] Pilly tlﬂx + a 2._ Pi / Pilly +

(T/2-t1)
+aq Er—l - t(gg;_‘i_;r/fg)/z + a, E les(T (T_’:;)tz - (60)
by (58) we get: | |
T/2 ' T/2 .
> ag————I(pl T'(o(T
so that: .-
4
>a
hence
4a
K>y (61)

Thus we have proved the thesis Q.
The r.h.s. of (56) does not bound the L? norm of P therefore Ar is not coercive. One
has in fact S e e R e Al
Proposﬂ‘.mn 7.2
For any k> 0 the set -

Sk—{CEA“nHC /. AT[C(t) <k}

are’non compact m the Lz-topology.

Proof A :

For gach k > 0 we exhibit a sequence ‘in the sublevel which does not converge. By the
preceeding Proposition we find ea,sily'tha’.t |

Az [f()] > ST

(“(0))
Consider the following sequences in n € N, v; € R:
ot = p(0) it £ (0,772 i=1,2,3
piM(t) = p,">(0) +v(T/2—t) te[T/2,T] i=1,2,3
which are in A% ‘

")(0)—n+a I3 (0)"n+a PO =2n+a a>0
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those will be collinear at ¢, =

(we choose v;’s such that T/2 = t,)

V3 —vVg —v1
P57 (t) = P (k) + A5V (E.)

It is easy to see that

2 A0) = P

we chose a so that

éﬂa=k

T
the sequence stays always in the level Ar = k.

But with a simple computation we can see that:
o132 > en?

for some ¢ > 0 so that no convergent sub sequence exists.@

Let us now define the following set:.

M, = {C € AsnHL such that : sup g(ﬁ(s)) > c}
' s€[0,7]

with ¢ > 0 and Whére'

g(ils )= ”w {<p.(s)+p1(s ~ i s))}

Ilﬁ(S)II = «l ;(Pi)z

We show now that for any ¢, k> 0
M.p = M. Sk

is compact in L?([0,T), C).
Proposition 7.3 ,
Given k,b € RY,the set M. = M N Sk is compact in the topology of L2([0, T}, C).
Proof

* Let us define the set:

Begp={(€ M/ s;%‘] 1o(s)|l < 3y/Tk/as}
D seo1) v
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where a; is is the lower bound in Proposition 3.1; then:
' . 5

Mck" ckU( ck)

B, is compact in L2([0,T], C) since [y ||7]|%dt is umformly bounded for all {(s) € Be.
We must prove that (Bc £)¢ is compact.

If ¢ € (Bck)° then sup, ||p(s)|| > 34/Tk/a; implies

: : 0 s y1/2
sup )~ int 06N < | (-EAReM) do < VT { [ (1) ds}

by means of Proposition 3.1 we get

' - v . . 1/2
§1:p Hﬁ‘(s)“ — inf 180l < /T/a1 {/{)T(B(ﬁ'(s))ﬁ(s_),ﬁ(s))ds} <yTk/ay

SO:

nf Ilﬁ(«S)ll>sup Ilﬁ’(s)ll—\/Tk/ar?f Boa .. (62)
hence g S
SR / Hﬁ(s)lldt<supllﬁ(s)ll<Clmfllﬁ(s)ll o ®
for Cl>0b1g enough o g : | S

We can then use the polar coordma.tes and by Propos1t1on 7.1 we get

k> a2 2 [0 ( llﬁ(s)ll) i+ % / ), St + 37 sup Hﬁ(s)llg(ﬁ’(s)) |

where:

— " p

Y=
1A

Now we have to notice that:

sup ||p(s)llg(p(s)) = inf ||5(s)]| sup g(p(s))
s€[0,T] - s€[0.T] 7 " "7 sgfo0,T] '

From (62) and (63) we obtain:

> arp) > 2 [0 (g‘t-nﬁts)n) ot [+ 27k [ (5,5 (o)
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Let be r(s) = ||p(s)l], let (ra(s), %.(s)) be a sequence of functions in M. ) with

) ar  with 5 o Bt T
ﬂt = Thn t n h n— T n =
ra(t) = Tn(t) + 7 with 7 T /0 dt7,(t) =0

moreover

IZ.(8) =1 Vi

Since all the elements of (64) are positive definite, we have:

5] T_- ca T - :4'
k>—/ )2dt k> P > / ny 2n
Z 5 0(1‘) _2T01T ‘1_2T0(E,2 )dt

The sequence 7, admits therefore a convergent subsequence. Since $?% is compact and
Poincaré’s inequality holds for zero mean functions, sequences (7,(s), f‘,n(s)) have conver-
gent subsequences. Therefore (B, ;)° is compact in L%([0,7],C) @. ' |

Now the functional Ay is continuous hence it attains a minimum on each M, . Let

M2, be the interior of the set éonsidex;ed: S

[
?

Mf = {( € [\%ﬂ H(lj such th_afﬁ | sup ‘g(ﬁ(*‘g)) > C}
s S - selo, 1] - )

MO =MPN Sk
If for some ¢, k tfie minimum on M, is attained in Mgk theﬁ DA]V'V: 0 at the minimumf
This would give a non-collision T'-periodic orbits with zero total angular momentum since
we have verified that collision-solutions cannot be minima. A better understanding of the
homology structure of M., is needed before being able to prove that there are ¢,k such
that there are minima in the interior of the set M, x. '
Acknowledgments '
I wish to thank Prof. Gianfausto Dell’Antonio who continuoﬁsly helped me in the

-study of the three-body problem. Moreover I want to thank Prof. Vittorio Coti Zelati

and Prof. Susanna Terracini for very useful discussions and explanations..

31



References

[1] J.Moser Regularization of Kepler problem and averaging method on a manifold

Comm.on Pure and Appl. Math. 23 609 (1970)
[2] S.Smale Topology and Mechanics I; 11 Inventiones Math. 10 (1970)
[3] J.Moser, 'C.L.Siegel Lectures on C’elestial Mechanics Springer- Verlag (1971)
(4] R.Easton Regularization of vector field by surgery J.of Diff. Eq. 10 92 (1971)
[5] R.Easton Some topology of 3-body problems J.of Diff. Eq. 10 371 (1971)

(6] R.McGehee Triple collision in the collinear 3-body problem Inventiones Math. 27 191
(1974) | " |

[7] R.Devaney Non regulamzabzhty of the anisotropic - Kepler problem J.of Diff. Eq. 29
- 253 (1978) B RS

(8] R. Devaney Collzswn orbzts n amsotropzc Kepler problem Inventiones Math. 45 221 -
em8) !

[ ] R. Devaney Singularities. in classzca,l mechamcal systems in E"r'godzc theory and dy- -

namical systems Birkauser (1981)

[10] J.Gerver A possible model for a singularity without collision in the 5-body problem J.
of Diff. Eq. 52 76 (1984) ‘ ‘

[11] D.Saari The manifold structure for collision and hyperbolic- parabolic orbits in N-body
problems J. of Diff. Eq. 55 300 (1984) |

[12] E.Lacomba, J.Llibre Transversal e)ectzon-colhswn orbits for the restricted problem

and the Hill’s problem with applications J. of Diff. Eq. 74 69 (1988)

[13] R.Moeckel Orbits of the 8-body problem which pass close to triple collision
Amer.J.Math. 103,6 70 (1981) ‘

32


http:Di:(�.Eq
http:C?omm.on

[14] R.Moeckel Orbits near triple collision in the 8-body problem Ind.U.Math J. 32,2 221
(1983)

[15] R.Moeckel Chaotic dynamics near triple collision Arch: Rational Mech. and Analysis
107 (1989) | ‘

[16] R.Moeckel On central conﬁgumtioﬁs Math. Zeitschrift 205 499 (1990)
[17] D.Saari Symmetry in N-particle systems Contemporary Mathematics 81 (1988)

[18] D.Saari A visit to newtonian N-body problém via elementary complez variables Amer.

Math. Monthly 97 105 (1991)

[19] Lacomba, Simo’ Regularizatian- of simultaneous binary collisions in the N-body prob-
" lem J.of Diff. Eq. 98 21 (1992)

[20] Pham Mau Quan Geometme du problem de Kepler courbure et geodeszques C.R.
‘Acad. Sc. Paris 291 219 (1980) - A o r

[21] Pham Mau Quan Regularisation m’emmaniéme dé'.éingularité_ dieguatiqn diﬁerentielle’. :
C.R. Acad. Sc. Paris 296 241 (1983) =

[22] B.Cordani Conformal regulamzatwn of the Kepler problem Comm Math. Phys 103 «
403 (1986) \A ‘

[23] G.F.Dell’Antonio Finding non-collisional periodic solutions to a perturbed N -boZig;l
Kepler problem Preprint SISSA (1993)

[24] K.F.Sundman Acta. Sci. Fenn. 35, 9, 1909

[25] E.R.Van Kampen, A.Wintner Oﬁ a sym}netrical canonical reduction of the three-body
problem Amer. Jou. of Math. 59 153 (1937)

[26] P. Blanchard, E. Briining Variational Methods in Mathematical Physics. A Unified
Approach. Springer—Verlag’

33



