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Abstract 

Properties of pairs consisting of left and right connections are studied on the 
bimodules of differential I-forms. An example is given in terms of an S Lq(2, C)
covariant calculus of the quantum plane at a generic q and at the cubic root 
of unity. A compatibility condition between a left and right connection is 
discussed. Consequences entailed by reducing to the centre of a bimodule the 
domain of those conditions are investigated. Alternative ways of relating left 
and right connections are considered. 
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1 Introduction 

When Noncommutative Geometry I meets General Relativity a natural question arises 
about a satisfactory generalization of the notion of a linear connection. 
A possible approach is the one that focuses its attention on the fact that the spaces 
of one-forms, both in commutative and in non commutative settings, have a natural 
bimodule structure over the algebra defining the (eventually noncommutative) space
time. We recall that, from an algebraic point of view, a connection is described 
in terms of a covariant derivative, that is a linear map defined on a (left or right) 
projective module E over some algebra A, having values in the tensor product oyer 
A of the module with a first order differential calculus over the algebra, satisfying 
a (left or right) Liebnitz rule. The archetype of this construction is given by the 
commutative case, where A is the commutative algebra of functions on a manifold. 
E is the space of the sections of some vector bundle, and the first order differential 
calculus is given by the ordinary one-forms. All this structure, however, remains 
perfectly meaningful even after dropping the hypothesis of commutativity. 
In the framework of G.R., one must consider linear connections, i.e. connections 
on vector bundles associated \vith the principal bundle of linear frames, e.g. tangent 
bundle, cotangent bundle and so on. In Noncommutative geometry, it is more natural 
to deal with forms, rather than with vector fields (derivations of the algebra), so let's 
assume that E itself is a first order differential calculus over A. In this case E has a 
natural bimodule (left and right module) structure over A, so that, in the hypothesis 
of left and right projectivity, we can independently consider left and right connections. 
The idea, now, is to define a linear connection on a bimodule as a couple consisting 
of a left and a right connection satisfying some sort of compatibility requirement. 
In the following, guided by the commutative situation, we will give more precise 
definitions and will see ho\v this idea has been developed in 3, 2. At the end, we will 
exhibit a particular example based on Manin's quantum plane. 

2 General Definitions 

Let A be a unital associative algebra over a field k, let (AI, d) be a first order differen
tial calculus on A and E be a left and right projective A-bimodule (which in principle 
may coincide with At, but that we keep distinct in order to avoid confusion). \Ye 
give the following 

Definition 1 A left connection "\lL is a linear map from E to A I 0A E satisfying the 

left Leibniz rule: "\lL(a() = da Q9A ( + a\lL(, Va E A, ( E E. 

A right connection \lR is a linear map from E to E 0A Al fulfilling the right Leibni:: 

rule: "\lR((a) = ("\lR()a + (0.4 da, Va E A, ( E E. 
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If we consider the commutative case, i.e. A = :F(M), Al = E = AI(M). with JI 
some given manifold, we can see that due to the commutativity of the algebra and 
to the fact that left and right actions of :F(M) on the ordinary de Rham one-forn1s 
Al (M) coincide, these two definitions are totally equivalent in the sense that given 
any right connection \jR we can build up a left connection \jL defined as 

(1) 

where (J' : E ®A Al -+ Al @A E is the usual tensor product flip. 

This can be stated equivalently by saying that, in the commutative case~ any left 

connection \jL also satisfies an additional (J'- right Liebnitz rule: 


(2) 

In the classical case, then, the spaces of left and right connections are isomorphic ~ 

and choosing one or the other is simply a matter of convention. 
In the noncommutative setup the formula in Eq. 1 is no longer automatically true: 
firstly, as shown in Ref. 5, the usual tensor product flip is now not well defined on 
E ®A A l and must be substituted with some other braiding operator; secondly, one 
cannnot arbitrarily shift elements of the algebra through elements of E or AI. 
Nevertheless, in analogy with the commutative case, one can select in the spaces of 
left and right connections the couples that fulfill something similar to Eq. 1. J\Iore 
precisely, we give the following 3,6 

A lDefinition 2 Let 0' : E ®.4 A l -+ ®A E be a bimodule isomorphism. A couple 
(\jL, \jR) consisting of a left and a right connection is called O'-compatible iff 
\jL( = (0' 0 \jR)( , V( E E 

We remind, again, that this is equivalent to select all the left connections \jL satisfying 
the extra rule of Eq. 2. The bimodule isomorphism 0' plays the role of a generalized 
permutation, and must be given by the particular cases under consideration. 
Apart from the analogy with the commutative case, this definition has another deep 
motivation: in fact, it is shown 7 that, denoted with A~ the first order universal 
calculus on A, for any left connection \jL on a bimodule E, there is a unique bimodule 
homomorphism O'u(\jL) of E ®A A~ into Al ®A E, such that 

\jL((a) = (\jL()a +O'u(\jL)(( ®A dua) , Va E A, ( E E . 

So we have two facts: first~ any left connection having values in A~ ®A E verifies Eq. 

2 for a particular O'u(\jL); furtherly, for a connection having values in an arbitrary 

first order calculus AI 

, Eq. 2 is equivalent to the requirement that O'u(\jL) factorizes 

through a bimodule homomorphism 0' of E ®A Al into Al ®A E. 

This definition, although being deeply theoretically motivated, has the drawback 

of being very restrictive 2: connections satisfying Eq. 2 are very com<mutatit'e, i.e. 

they typically have Christoffel symbols belonging to the center of the algebra or 

parametrized by it. This is why the following softer definition appeared 2: 
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Definition 3 Let a : E Al ~ Al 0A E be a bimodule isomorphism. A couple 
CVL, VR) is called (softly) a-co'mpatible iff VL( == (a 0 V R)(, V( E Z(E). 
where Z(E) {( E EI a( == (a, Va E A} is the centre of E. 

In order to clarify the differences of these two definitions, let us consider the following 
example. 

An Example: Quantum Plane at root of unity 

The example that we study regards a bimodule of differential I-forms (E == .-P) on 
the quantum plane. vVe choose as our space of differential I-forms 3 the grade one 
part of the differential algebra n(A) == A ffi Al ffi A2 that is given by the generators 
1, x, y, e, 1], where e (Jl == dx, 1] == ()2 == dy, and relations 

xy qyx, 

2
xe q ex, XT) == q1]X + (q2 - 1)ey, ye == qey, Y1] == q21]y . 

21]e + qe1] 0, e == 0, 1]2 == 0 . (3) 

For our bimodule automorphism a it is natural (see the paragraph between (2.11) 
and (2.12) in Ref. 3) to take the map defined by 

2a(e 0A e) q- e ®A e , a(e 0A 1]) == q-I1] 0A ~ ~ (4)
a(1] 0A e) q-I~ TJ - (1 - q-2)1] 0A e, a(1] 0A 1]) == q-21] 0A 1] . 

First we consider the case of a generic q. Then the centre of A is C and~ as can 
be checked by a direct computation, the centre of Al is zero. It is shown 2.3 that 
for the a-compatibility condition considered over the whole A l there exists only a 
one-parameter family of solutions, parametrized by a complex number, \vhereas for 
the softer definition we have that solutions are trivially given by any pair (vL ~ VR) 
of independent and unrestricted left and right connections. 
Nlore interesting things happen when q is a root of unity (for simplicity we choose 
q3 == 1). The following statements are then true: 

3' 3'Z(A) {aijX 'y J 1 aij E C}, (5) 
'if a E Z(A), a E Al : aa == aa, (6) 
Z(AI) {cilJi E Al I CI == axy - bxy3, C2 == bx2y2, a, b E Z(A)}. (7) 

Defining left and right Christoffel symbols as: \lLei == ej(2)Aekr~k' \lRe i == e j ekf~k' 
it turns out 2,3 that requiring the condition of Eq. 2 implies that the r~k and f~k must 
have particular expressions parametrized by Z(A), whereas 2 imposing the condition 
in Eq. 3 implies, more like in the classical case, that the r~k can be expressed in 
terms of the r;k' if the follo\ving requirements are fulfilled: 

ri2 E xA , r~I E xA , r~2 E x 2 A , 

(q 1)ri2 + (1 q2)r~I + 3q2yx- Ir~2 E xA , r~2 E xA . (8) 
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4 Final Remarks 

Although not going deep in computations, for which we refer to the Ref. 2,3, we ha\"e 
shown that there are two possible noncommutative extensions of the notion of a linear 
connection on a bimodule, both based on a generalization of the usual tensor product 
permutation. It is shown 2 that both such definitions fail to be gauge invariants under 
arbitrary changes of coordinates (left or right module maps), being invariants only 
under bimodule maps, which in general are very few (e.g. for the quantum plane. 
space of bimodule automorphisms Aut1(AI) is simply C*). 
Let us recall that exist in literature different approaches to connections on bimodules 
not making use of generalized permutations. For example, in Section 8 of Ref. -t 

a connection on a bimodule is also defined as a pair consisting of a left and right 
connection. There, however. instead of a O'-compatibility condition, the condition of 
V L 	being a right A-homomorphism and V R being a left A-homomorphism is imposed. 
The latter condition, albeit it permits for an interesting algebraic theory, does not 
collapse to the right notion in the commutative case. 
Another possible approach is via *-structures (We owe this point to Andrzej Sitarz. 
as reported by Piotr Hajac): If A is a *-algebra and Al is a *-differential first order 
calculus 5 and if there exist a X-structure on the bimodule E 8, one can pass without 
restrictions from a left connection V L to a right one V R by defining V R = *0 VI c ~~ 
where (w 0A ()* = (* 0A 0..,.... In this approach, which is also closer to Connes' set-up. 

, problems are shifted to the existence of such *-structures. 

Acknowledgements 

This communication is based on the work 2, in collaboration with Ludwik Dabrowski. 
Piotr Hajac and Gianni Landi. 

References 

[1] 	 A.Connes Noncommutative Geometry Academic Press, 1994 

[2] 	 L.Dabrowski, P.M.Hajac~ G.Landi, P.Siniscalco "Metrics and pairs of left and 
right connections on bimodules" J. Math. Phys. 1996 37 (9) 4635-4646 (q-algj) 

[3] 	 M.Dubois-Violette, J.lYIadore, T.Masson, J.Mourad "Linear Connections on the 
Quantum Plane" Lett. jfath. Phys. 1995 35 352-8 (hep-th/9410199) 

[4] 	 J.Cuntz 
& D.Quillen "Algebra Extensions and Nonsingularity" J. Amer. Math. Soc. 
1995 8 (2) 251-89 

5 

• 




[5] 	 S.L.Woronowicz "Differential Calculus on Compact Quantum Pseudogroups 
(Quantum Groups)" Commun. Math. Phys. 1989 122 125-70 

[6] 	 A.Kehagias, .J .Madore, .J .Mourad, G.Zoupanos "Linear Connections on Ex
tended Space-Time" J. Alath. Phys. 1995 36 (10) 5855-67 (hep-th/9502017) 

[7] 	 M.Dubois-Violette & T.:\Iasson "On the First Order Operators in Bimodules" 
(q-alg/9507028 ) 

[8] 	 M.Dubois-Violette & P. \V.Michor "Connection on Central Bimodules" 
( q-alg/9503020) 

6 


