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L ABSTRACT 

The nlain aim of this note is to discuss an exact solution of Einstein's vacuunl equations with 
a rotating black hole and a thin disk which is appropriate as a test bed for codes that we recently 
applied in calculating profiles of spectral lines from self-gravitating disks. The solution has been 
obtained by the "cut and identify" nlethod from the Kerr spacetinle and it satisfies the donlinant 
energy condition. We also briefly summarize recent analytic calculations of various disk models, 
both within the Newtonian and the general relativistic franlework. 

2. INTRODUCTION 

In a widely accepted nlodel of active galactic nuclei (AGN) a supernlassive black hole is 
surrounded by an accretion disk or a torus (Begelnlan, Blandford & Rees 1984; Blandford, 
Netzer & \Voltjer 1990). Most of the observed radiation is generated by viscous forces in the 
region close to the black hole horizon. This nlodel Ineets most of the observational properties of 
AGN. An observational support for it could be strengthened if the system contains a solar-mass 
star is captured in an orbit near the black hole. Collisions of the star with the accretion disk 
ca.n periodically nlodify the radiation flux fronl the source and give us infonnation about the 
evolution of the orbit. Its orientation with respect to the observer will be affected by general 
relativistic effects (periastron shift, Lense-Thirring precession) and corresponding nlodulation 
with specific periodicities lllay provide us with the evidence of the black hole in the core (Karas & 
Vokrouhlicky 1994). The lllodel of a star orbiting a supernlassive black hole has been considered 
by several authors in different situations. A nlechanis1l1 of the tidal capture of a star by a black 
hole has been discussed by Hills (1988), Rees (1988), and Novikov, Pethick & Polnarev (1992). 
Star-disk collisions offer another possibility (Syer, Clarke & Rees 1991; Pineault & Landry 1994). 
Ostriker (1983) proposes that the collisions could result in a viscous drag on the accretion disk. 
Zentsova (1983) calculates a temperature profile of a bright spot which is created in the place 
were the star crashes through the disk. She estimates that the maxinlum local intensity is in 
the UV band. The collisions are highly supersonic (!vlach nUlllber 102 - 103 ) and they still need 
to be better understood. Assuming that the core of AGN is enlbedded in a dense star cluster. 
Zurek, Sienliginowska & Colgate (1992) estinlate that the alllount of the disk luaterial swept out 
of the disk by stars' passages is enough to fOrIn the gas clouds of the broad line region. Syer 
et al. (1991) calculate tillle-scales for the evolution of the orbital paralneters in the Newtonian 
approxilllation: star-disk collisions result in circularization of the orbit. the inclination is reduced 
and the star beCOllles a part of the disk. Vokrouhlick~' &. Karas (1993) obta.ined shnilar results for 
a. star 1110ving in the field of a Kerr black hole. In contrast to the Newtonian case, the probability 
that the star will be captured by the black hole is now higher because subsequent collisions can 
set the star in an unstable orbit which ends in the black hole. Finally, the gravitational field of 
the central object and the disk modify the shape of spectral features COIning from the disk (Laor 
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1991). Karas, Lanza & Vokrouhlicky (1995) calculated predicted profiles of spectral lines from 
self-gravitating disks within the framework of exact general relativistic solutions. 

IvIost of the works mentioned above rely substantially on numerical computations. For 
example, in our recent work (Karas et al. 1995) we employed numerical solutions of Einstein's 
equations describing a disk around a rotating black hole constructed by Lanza (1992) and 
computed observed spectra by solving (numerically, again) geodesic equations. Therefore, it 
appears desirable to understand how the gravitational field near a disk around a central object is 
fornled and to have relatively simple non-trivial exact solutions for testing nUluerical codes. In 
this contribution we first discuss analytic models of the disk gravitational field in the Newtonian 
gravity. Then we present a general relativistic solution which appears convenient for our purposes. 
Although we refer to related works of other authors, it should be stressed that we did not attemt 
to write a consistent review. 

3. NEWTONIAN DISKS 

Unlike the gravitonlagnetic precession and the pericenter shift which are specifically non­
Newtonian effects, the effects induced by the disk attraction do not disappear in the Newtonian 
Ihl1it. We therefore started with the Newtonian description of a conlbined gravitational potential 
of the central mass and the equatorial, axially symmetric disk, Y = Ve + lid' At this moment, we 
assumed Vc to be spherically symnletric so that the precession effects due to the disk are clearly 
visible and do not interfere with those which could arise frOlll a non-sphericity of v~. Test particle 
Illotion in the field of a disk has important applications in celestial mechanics. Unfortunately, 
standard series expansions (vVard 1981) do not converge if the particle crosses the disk. Linear 
nIethods which have been adopted to treat the trajectories intersecting the disk (Lemaitre & 
Dubru 1991) have unacceptably bad features at small inclinations. In that case, we lllUSt resort to 
a. numerical approach. It should be emphasized that the orbits intersecting the disk at moderate 
inclinations are of particular interest to us for two reasons: (i) they are an outcome of different 
circularization processes acting on the star. Initially highly eccentric and inclined orbits get 
circularized and ground to the disk plane on relatively short time-scales of the order 103 - 105 

orbital periods; (ii) the effects of the disk gravity on the orbital evolution become the IllOSt 
pronounced at sIllall inclinations. 

The probleIll of deterIllining the gravitational field of an infiniteshnally thin disk with au 
arbitrary radial distribution of the disk Illaterial (1'( R) (or. alternatively. the electrostatic field of a 
charged disk) attracts longstanding interest in physics and astrophysics. First we give expressions 
for the potential and its gradient which are to be solved. Because we did not want to restrict 
ourselves to any specific o-(R) a priori~ we evaluated the gravitational field llulllerically. vVe 
eIllployed direct evaluation of the disk potential and its gradient. Disadvantage of this approach 
consists in occurence of non-algebraic (elliptic) functions in the integrand of final fOrIl1ulae- [see 
Eqs. (1) and (3)-(4)]. Analytic solutions are rare. In the case of infinite disks, formulae containing 
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only algebraic functions in the integrands and several analytical results have been obtained 
recently by Evans & de Zeeuw (1992). 

We introduced the system of polar coordinates {R, g}} adjusted to the disk and the systen1 of 
cylindric coordinates {z, p, ¢} with the origin in the disk center (z = 0 is the disk plane). The 
potential of the disk with the radius a evaluated at an arbitrary location (p, z) is given by 

V"d (p, z) = - 4 1" (1~f~f J( [k (R)] dR, (1 ) 

where 
2 4pR 

k (R) = B2(R) , 

Here, It-(k) is the elliptic integral of the first kind. No apparent reduction of the integral (1) is 
possible until the radial distribution of the density a(R) is specified. An iInportant exalnple is a 
uniform disk, a(R) == ao. The potential (1) in terms of elliptic integrals ]{, E and II reads (Lass & 
Blitzer 1983) is 

lId(p, z)lq=qo == V;. (p, Z; (10) = 2(10 [rr1zl- B (a) E [k (a)]- a~(Ii2 J( [k (a)]­

a-p ~ II [a2 . k (a)]] (,2,)a+p B(a) , 

with 
2 4ap

a = .
(a +p)2 

Though derived by a straightforward integration this result does not seen1 to be genera.lly known 
(cf. Appendix B in Farouki et al. 1992). The expression for the potential inside the disk (z = 0, 
p < a) can be sin1plified by applying the Gauss transfornlation of elliptic functions (Byrd & 
Friedlnan 1971). One obtains 

l~(p, 0; ao) = - 4aaoE (p / a) , 

a Inore cOlnpact fOflnula than the one given by Lass & Blitzer (1983). 

The C0111pOnents of the gravitational force are given by the gradient of the potential (1): 

Wd 
op 

= _ ~ fa (1(R)R {E [k (R)] R2 p2 + z2 
p Jo B(R) A2 (R) 

_ It- [k (R)]} dR, (3) 

oY 
OZ 

___ 
-­

' ~ fa a(R) RE [k (R)] dR 
4_ Jo B(R) A2 (R) , (4) 

where we denoted 

For the uniforIn disk 

(5) 
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(6)~~u = 2uo [±1r - B ~a) (K [k (a)] + ::: II [02(a); k(a)J)] . 

The integrallds in Eqs. (1) and (3)-(4) diverge at the disk plane, z -+ 0, although the result 
of the integration is certainly finite because the potential must be continuous across the disk. 
Taking into account the relation (Byrd & Friedman 1971) 

(7) 

for k ::::::: 1, one concludes that the divergence is proportional to In z. To get rid of nunlerical 
errors in evaluating these integrals we divided diverging expressions into two parts by setting 

a(R) = [a( R) a(p)] + a(p). The potential is then 

Vd (p, z) = - 4 10" [U(R~(~iP)] R K [k (R)] dR + Vu [p, Z; u(p)] , (8) 

where the second terIll corresponds to the potential of a disk with a constant del:1sity a(p) given by 
Eq. (2). Now the integrand in (8) is well behaved. A sharp decrease of the integrand near R ::::::: p, 

z ::::::: 0 can be treated by appropriate numerical methods (Perez-Jorda, San-Fabian & INloscard6 
1992). The sanle approach can be successfully applied to the force components (3)-(4) as well. 

In view of the properties of the illtegrands described above it appears rather inlportallt to 
discuss special cases which can be treated analytically. We considered both finite and infinite 
disks. Different strategies can be applied to express the gravitational field of a Newtonian 
axisynlnletric disk analytically, at least in a fornlal wa.y. Here, we briefly sunlnla.rize the four 
inlportant approaches. 

The disks of a finite radius a. Lynden-Bell & Pinneault (1978a, b) expose a general direct 
algorithm. They employ integral quadra.tures which follow from classical formulae for the 
gravitational field of concentric spheroids in the linlit e -+ 1. These integrals are only rarely carried 
out in shnple functions. The limit of homogeneous spheroids (INlacLaurin series of spheroids) is 
such an example in this family. It results in the disk with the surface density 

u(R) = 1 ­3Md V (R)2 , 
. 27ra2 a 

(Bra.ndt, 1960) and the potential in the disk pla.ne (z = 0; p < a) 

, 371" J.11 (2 2)ld(p,O) = 03 .5a - 4p . 
oCt 

Nlestel's disk (Nleste11963, Lynden-Bell &. Pilllleault 1978a) is another exaulple. It is cha.racterized 
by a constant orbital velocity l' of the disk elelllents. The density distribution is given by 

v2 -
a(R) = 7r 2R arccos(R/a) 
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(see also Lemaitre & Dubru 1991) and the potential in the disk is 

Vd(P, 0) = -v 
2 

1n (:J . 
'VVe do not repeat extensive expressions for the potentialll(p,z) of Mestel's disk [Eq. (2.18) of 
Lynden-Bell & Pineault 1978a]. Let us only remind that, besides the uniform disk (2), this is one 
of the rare cases when the analytic expression for the potential valid at an arbitrary point (p, z) 
is known. Only very recently, Brada & Ivlilgrom (1994) discovered an interesting family of finite 
elliptical disks. 

Another approach enlploys expansions in the fundamental set of the solutions of the Laplace 
equation (Hunter 1963, Morse & Feshbach 19.53). It is well known that the Laplace equation 
is separable in spheroidal coordinates and the Legendre polynonlials fornl a fundanlental set 
of solutions. The crucial problenl, however, is to join- the expansions of the potential valid far 
froln the disk to those near the disk because they are based on different modes of the Legendre 
polynol11ia.ls (Hunter 1963). In general, one even does ,not know a spatial surface where the joining 
condition is to be hllposed. As above~ the only silnple case occurs for the region inside the disk. 

Infinite disks, a -+ 00. Considerable progress has been achieved recently by Evans & de 
Zeeuw (1992), followed by relativistic generalisations by Bibik, Lynden-Bell & Katz (1993) 
and Bicak, Lynden-Bell & Pichon (1993). The method, conceptually unifying several classes of 
solutions (Tool11re 1963; Ivlestel 1963), is based on a trick due to Kuznlin (1956). We recontructed 
numerically several solutions which belong to the Toomre and the Kalnajs-Ivlestel disks as 
presented by Evans & de Zeeuw (1992) by setting the disk edge sufficiently large. 

The last lllethod to be reminded here evaluates integrals (1) and (3)-(4) directly. This lllethod 
is however restricted to the disk plane (z = 0). First, let us define quantities 

.p [a,.8; fWl = 1: d{ 0' ({) { fW (9) 

and 

1
/3 (j (17)

<p[o:,,8;gC1])] = d1]-2 g(17)· (10) 


a 17 
One elllploys the Gauss trallsfonnation of elliptic functions to obtain the following fornl of the 
potential and its gradient in the equatorial plane (the disk is supposed to have the inner edge a 
and the outer edge b): 

1d ( p. 0) = p y [p/ b. p / ([: J-,..- ( '7 )] (11) 

for the region below the inner disk edge (p < a) ~ 

(12) 

for the region inside the disk (a < p < b). and 

l''d(p, 0) = p 1/1 [a/ p, b/p; 1,,: (~)] (13) 

http:polynol11ia.ls
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outside the disk (p > b). Similarly, one obtains 

8Vd(p 0) [ d ~ ]
8p' = 2p <P plb, pia; rJ drJ11 (rJ) (14) 

for the region below the inner disk edge (p < a), 

8Vd(p,0) {[ I d. ( )] [ I d .. ( ]}8p =2p <P P b, 1; rJ drJA rJ -1/1 a p, 1; d{{A {) (1.5 ) 

for the region inside the disk (a < p < b), and 

8lld(p,0) = -2 "I, [I bl'~ (:]( «(:<)] (16)8 p p 'I- a p, p, el{' i. , 

outside the disk (p > b). Here, we denoted { = Rip and rJ = piR. Note that the difference 
between (11)-(13) and (14)-(16) is essentially given by the functional kernel in 1/1 and <p functions. 
The right-hand-side of (12) and (15) is evaluated as a principal value. 

Previous integrals can be perfornled for several profiles of the surface density of the type 
O"n(R) = O"oR-n (Figure 1). As an exaluple, 

a;d(p,O) = - 4;0 [I( (~) - I( (~)] (17) 

for (p < a), 

8::(p, 0) = _ 4;0 [~I( (~) - I( (~)] (18) 

for (a < p < b), and 

8;d (p, 0) = 4;0 [bI( G) -aI( (~)] (19) 

for (p > b) in the case of the exponent n = 1. 

4. GENERAL RELATIVISTIC DISKS 

Following the work by Bardeen & \Vagoner (1971) many authors have studied the structure 
of relativistic rotating fluid bodies-either within the context of neutron stars, self-gravitating 
disks or toroids (for references see Nishida, Eriguchi & Lanza 1992). Exact solutions, in particular 
those describing a disk around a black hole, have been recently sUll1111arized by Lell10s & Letelier 
(1994). These authors found also new families of exact black hole-thin disk solutions. It 
appears, however, that analytic solutions which have been discovered so far cannot be applied to 
astrophysica.lly realistic situations. Nlainly for this reason, Lanza (1992) has 'solved numerically 

Einstein's equations for the stationary axisymmetric spacetimes with a thin self-gravitating disk 
and a rotating black hole. Lanza's work describes Kepleriall pressure-less disks but his code which 
ell1ploys themultigrid method can be generalized to deal with a 1110re complicated equation of 
state of the disk ll1aterial. 
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Fig. 1.- Three-dimensional plots and contour plots of the radial (a) and vertical (b) cOlllponents 
of the force (EJVjfJp and fJVjfJz, respectively) (arbitrary units) due to the Newtonian disk. The disk 
extends in the region 10 < R < 20 in dimensionless units a.nd it has the surfa.ce density distribution 
ex: R-1 • In this figure, .5 < p < 30, 0 < z < 0.6. 

http:surfa.ce
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Even thick disks can be studied after modifications. We were interested in constructing 
an exact solution which is not "too much" unrealistic as far as the source term is concerned, 
and which could be useful in testing our numerical codes. For this purpose we required a 
solution describing a thin disk around a rotating black hole. We started with the Kerr spacetime 
and employed a well-known method of constructing external gravitational field of thin shells 
(Israel 1966; Barrabes & Israel 1991). Analogous approach have been used by Abramowicz, 
Arkuszewski & :Nluchotrzeb (1976), Turakulov (1989; 1990), and Pichon & Lynden-Bell (1994) in 
a different context of exact solutions. Bicak & Ledvinka (1993) have constructed pressure-less 
counter-rotating disks in the Kerr geometry. vVe adopt their notation. 

The Kerr black hole (dimensionless angular momentum parameter a) has non vanishing metric 
components in canonical coordinates {t, 9, p, z} 

L 
9tt == --,E 

2E B2 E 
91>1> == P L - LE' 9z:; == gpp == F 

with 
2 2 + aL == p x 2y2 - 1, E == (px + 1? + a2y2, 

F == p2(x2 - y2), B == 2a(1 - y2)(px + 1), 

p2 == 1 _ (£2. 

Here, x and yare prolate coordinates which are related to p, z by' 

z == pxy, 

A disk around a Kerr black hole is now constructed by cutting the region Izl < Z(p) out of 
the original manifold and by identifying z == Z(p) with z == -Z(p). We wanted to construct the 
disk with au inner edge above the black hole horizon and, therefore, we assulned that Z (p) is a 

2space-like surface and Z(p) == 0 for p < Pin», Pirm > 1 + J(1- a ). 

Following Israel's formalism, we introduced an orthonormal tetrad 

0' 1:'0' ± ...' 1:'0'
e(p)± == u(p) k tl(Z) , 

[z' == dZ/dp; ~4±" corresponds to z == ±Z(p)]. The stress-energy tensor S'ab in the disk is rela.ted 
to jumps in the extrinsic curvature 

(20) 
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by Einstein's equations 

- 811" (Sab - !gabS ) = [I(ab] . (21) 

Associated four-dimensional tensor in the disk is 

(22) 

and it vanishes outside the disk. Finally, we introduced an orthonormal basis of vectors {l~~)} of 
an observer orbiting around the black hole in the disk: 

~~) = N(l, 0,0,0), l~~) = J(J}, 1,0,0), 

~~) = L(0,0,1,6), l'(~) = AtJ(O, 0, €, 1), 

and we required that the stress-energy tensor in the observer franle, S(a)(!3) = l~~) l~~)S~tlI' is 
diagonal. Now S/J-v can be written in the form 

S'/J- V 1r/J- lTV + P lr/J- 11v + P v:/J- 11V (23)=0' I(t) '(t) 4J \4J) (4J) P (p) y (p) 

with 

This shows that the disk material has both radial and azimuthal pressure. With a special choice of 
the identification surface, Z(p) = const, one obtains Pp = 0 and our results are reduced to those 
presented by Bicak & Ledvinka (1993). If we further set a = 0, eq. (3.50) of Bicak, Lynden-Bell &; 

Katz (1993) is reproduced. As an exanlple, Figure 2 corresponds to the disk with an inner edge at 
Pinn 20 around a black hole a = 0.8 and the identification taken at Z (p) = (p - Pinn)3, P > Pinn. 

It can be seen that this solution satisfies the dominant energy condition (Hawking & Ellis 1973). 
however, there is always a region with Pp < O. The nletric outside the disk remains identical to the 
Kerr metric. This is useful in testing codes for computing spectra of accretion disks, because the 
solution of the geodesic equation-otherwise requiring computation of numerical derivatives of a 
numerically given metric-is known analytically in the Kerr metric. 

The author thanks D. Vokrouhlicky for discussions concerning the Newtonian part of this 
contribution, and J. Bicak and T. Ledvinka for COlllnlents to the relativistic part. Partial support 
froll1 the Czech grant GAC:R 20.5/94/0.504 is acknov..-ledged. 
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Fig. 2.- 0' (solid line) and 0' - IPpl - IP.:I (dotted line) in arbitrary units, as a function of the 
circunlferelltial radius R. = yl9q,q, starting from the inner edge of the disk at R. = 11.2. 
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