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0 Preface

In February 1995 S.L. Woronowicz delivered a series of lectures on ‘Compact and
non-compact quantum groups’ at SISSA, Trieste. The lectures started from basic (-
algebra definitions and such fundamental facts as Gelfand-Neimark theorems. Next
the notion of morphism was introduced and then the theory of topological compact
quantum groups was developed. In particular, quantum counterparts of the Haar
measure, right regular representation and the decomposition theory of representa-
tions were presented. Also the relation between this approach and the Hopf-algebraic
one was explained.

The second part of the lectures was more advanced and served as an introduction
to the current research on non-compact quantum groups. This subject is not vet
fully developed. Such topics as the Pontryagin duality, multiplicative unitaries. pen-
tagonal relations and their links to the Weyl form of the Heisenberg commutation
rules were discussed.

The lectures focused on topological and functional analytic aspects of the quantum
group theory. This makes them interesting for both physicists and mathematicians.
Since a review of such an approach is not available in the literature, two of us (L. D.
and P. N.) decided to register the lectures in the present notes. We tried to preserve
as much as possible the style of the lectures. However, we had to put the material in
a ‘linear’ order. L. D. and P. N. are entirely responsible for any errors, imprecision.
abuse of notation, etc. that could arise in such a process. We refer to the papers [3].
[6], [7] and [8] for more details and accuracy.

The present text covers the first part of the lectures. The second part is in preparation.

We thank K. Bragiel for reading a preliminary version of a part of the manuscript.



1 C*-algebras

The purpose of these lectures is to present a description of topological groups in
terms of the corresponding algebras of functions and an extension of this theory to
non-commutative algebras.

Definition 1.1 An algebra is a structure (A, +, -; o), where

1) (A, +, -) is a complex vector space

2) a map ¢ : A x A — A is bilinear and associative.

If, in addition, there exists I4 € A which is a neutral element for o then (A. +. -: o:
15 called a unital algebra.

The notion of a subalgebra is self-explanatory.

Definition 1.2 A subalgebra I of A is called a left (right) ideal off AeZI C T
(I o AC I, respectively). A left ideal which is also a right ideal is called simply an
ideal.

Remark 1.3 The quotient A/Z of A by a left ideal Z, ie. the set of equivalence
classes a+7 is a complex vector space with the quotient operations a(a+7Z) = aa+T
and (a+ZI)+(b+7Z)=(a+b)+Z. If T is an ideal then A/Z is an algebra with the
quotient product (a +Z)e (b+Z) = (ae®b)+ 1.

In the sequel, an algebraic operation such as +, etc. defined in different algebraic
structures will be denoted by the same symbol.

Definition 1.4 Let (A, +, -; o) and (Az, +, :; o) be algebras. A vector space

homomorphism ¢ : Ay — Aj is an algebra homomorphism if

6(a e b) = ¢(a) e 4(b) - (L1

A bijective homomorphism is called isomorphism.
If both the algebras are unital then @ homomorphism ¢ is called unital iff §(1,) = L 4,.

Example 1.5 Denote SL(2, C) the space of all 2 x 2 matrices g with entries g;; € C.
i, = 1,2 and with detg = 1. (The group structure on SL(2, C) is irrelevant in this
example). Elements g of SL(2, C) act on vectors z = (z1,22)! € C? by 2z s gz. There
are two standard quadratic forms Q;, Q2 on C? defined by

Q(2) = |l + =l Quz) =2 — |zl
Correspondingly one has the following two subspaces (real forms) of SL(2, C)
SU(2) ={g€SL(2,C) | Qi(g92) = Qu(2) , Vz € C*},

SU(ls 1) - {g € SL(zc) | Q2(gz) = Q?(z) > Vz € CQ} .



Another well known real form,
SL(2,R) = {g € SL(2,C)|g;; € R},

is known to be homeomorphic to SU(1,1); however SU(2) and SU(1,1) are not
homeomorphic.
On SL(2, C) we define four functions «, §, v and ¢ by

alg) = g1, Blg)=g12, 7(9) =921, 8(g9) =92

Consider now a free algebra generated by «, 3, v and 6. A quotient of this algebra
modulo the ideal generated by «d — Sy — I and all the commutators of generators
(e.g. aff — Ba, etc) is denoted by Asyz,c)-

Given a subspace A of SL(2,C) the functions ¢, 3,7 and 6 can be restricted to .\.
Combinations of the so restricted functions generate an algebra (by applying the
addition, multiplication by numbers and multiplication). Conversely, any element of
the restricted algebra can be uniquely extended to SL(2, C); the extension being just
the same combination of the ‘unrestricted’ generators. We denote by Asy(s). Asuq.1:
and Asrp2,R) the restricted algebras corresponding, respectively, to SU(2), SU(1.1}
and SL(2,R). They are all isomorphic

Asuzy ~ Asua) = Asriz,r) = AsLe,C) - <&

One of our tasks is to encode topological information about the spaces in terms of
corresponding algebras. However, the above example shows that the ‘naked’ notion of
an algebra is too rough to distinguish between SU(2) and SU(1, 1). This suggest that
we should supplement (A, +, -; #) with some additional structure. One possibility is
to add a *-operation.

Definition 1.6 A *-operation is an anti-linear, anti-multiplicative and involutive
map *: A— A. An algebra endowed with a *-operation is called *-algebra.

Definition 1.7 Let (A;, +, -; o, ") and (A,, +, -; o, *) be *-algebras. An algebra
homomorphism ¢ : A; — A, is a *-algebra homomorphism if

o(a™) = (¢(a))". (1.2)
Such notions like unital *~homomorphism, *~isomorphism, etc. are self-explanatory.

Example 1.8 (Continuation of Example 1.5)

Corresponding to G = SU(2), SU(1,1) or SL(2,R), the algebra Agps,c) can be
equipped with three *-operations which are defined by the following steps:

1) restrict an element a € Asy,,c) to G

1i) to such a restricted element apply the complex conjugation

iii) extend so obtained element to Asr,2,c).-


http:SlJ(1.11
http:ASU(l.li

By applying these rules we get the following three *-operations on generators

a* =4, 6*" : "--—-[3 0*=a for G=SU(2)
=6 B =5, =0 6=« for G =SU(L,1)
ot =a, B* =0, /27,6*=5 for G =SL(2,R)

It can be seen that Asp,c) equipped either with the first or second *-operation are
not isomorphic as *-algebras, although they are isomorphic as algebras. (Asyp.c.
equipped with the second or third “-operation are isomorphic also as *-algebras). <

We have already learned that the *-algebra structure can distinguish between different
spaces, even if they have the same complexification. In the sequel we shall be mainly
interested not just in topological spaces but in topological groups. In particular, we
would like to incorporate the unitary representations of groups in our approach. It
is known, that unitary representations of non-compact groups can not be encoded in
terms of polynomials only. To admit more general functions we have to complete the
algebra of polynomials. This leads to endowing (A, +, -; e, *) with a structure of
Cr-algebra.

Recall that a norm on A is a non-negative function such that Va,b€ A,V a € C.
laall = lalllall, la + bl < |lall + 1] and if |ja]| = O then a = 0.

Definition 1.9 A C*-algebra is a structure (A, +, -; 0, *, || ||), where

i) (A, +, -; 8, *) is a *-algebra

i) (A, +, -, || ||) ?s @ Banach space, complete in the norm || || satisfying the following
conditions

WV a, be A llowb] < allt]

Ve A ol = o

c)VaeA |a*eal =]al?

Notions of a subalgebra and of an ideal in a C*-algebra are self-explanatory.

Definition 1.10 An ideal Z of a C™-algebra A is called
i) essential iff for all b€ A it holds that (bea=0 VaeI)= b=0.
i) modular iff there exist b € A such that for alla € A (a—aeb) € T and (a—bea) € T.

In view of the following theorem *-homomorphisms are adequate for C*-algebras as no
additional consistency condition with respect to the norm || || is needed. (Nevertheless.
in Section 3 we shall come back to the question of morphisms between C*-algebras).

Theorem 1.11 Let A and B be two C*-algebras and ¢ : A — B a *-homomorphism.
Then ¢ : A — B is norm decreasing, i.e. ||¢p(a)|| < ||la|| and ¢(A) is a C=-subalgebra
of B. Moreover, if ¢ is injective then ||¢(a)|l = |a]|.

In order to simplify notation, from now on, A will stand for (A, +, -; e, =, || ||
and the dots of the products will be often omitted. Also, unless stated differently, 4
is assumed to be separable, ie. to contain a countable || ||-dense subset.



2 Gelfand-Naimark theorems

We recall some standard notation and facts. In the following A denotes a locally
compact space. Let C(A) be the set of all continuous complex functions on A, Cp(.\1
be the subset of bounded functions

Cy(A) ={a e C(A)|INVYAEA |a(N)]| < N}
and Cu(A) the subset of functions vanishing at infinity
Coo(A) = {a € Cy(A) | Ve > 0 the set {\ € A |a(N)] > €} is compact} .

Cy(A) can naturally be endowed with a C*-algebra structure as follows. Operations
(+, - ; o) are respectively the addition, the multiplication by a number and the
multiplication of two functions; *-operation is the complex conjugation. A norm || -

is defined for any a € Cy(A) by
llall = sup{A € A [ a(A)] < oo} .

Remark 2.1 It is easy to see that C,(A) is a C*-subalgebra of C,(A). NMoreover.
Cw(A) is an essential ideal in Cy(A) (see Definition 1.10) and Cy(A) is the largest
C*-algebra which contains C(A) as an essential ideal.

It turns out that any commutative C™-algebra is of the form C.(A) for some A. This
can be seen via a canonical Gelfand-Naimark representation. Let A be the space
of characters on a commutative C"-algebra A, ie. all nonzero "-homomorphisms
x : A = C. (Such yx is automatically continuous). It can be shown that A is a
locally compact topological space with a (restriction to A of) weak topology on A’
(a basis of open neighbourhoods of 0 is U, = {x | x(a) < €}, where € > 0 and
a € A). For any a € A the function a : A — C, a : x — x(a) belongs in fact to
Cs(A). Moreover the assignment of @ to @ is a *-homomorphism, which is injective
and due to Stone-Weierstrass theorem also surjective. In addition if A is isomorphic
to Coo(A’), where A’ is another space, then A’ can be shown to be homeomorphic to \.

The above statements imply the first of structure theorems due to Gelfand and
Naimark

Theorem 2.2

( A is a commutative C*—algebra ) o ( There exists a unique locally compact )

space A such that A ~ C(A)

Remark 2.3 Here the uniqueness holds up to a homeomorphism and 2~ denotes a
*-1somorphism. <

Remark 2.4 The kernel of a character y on abelian A is a maximal modular ideal
in A and, vice versa, any maximal modular ideal is the kernel of a unique character
x on A. Thus, the points in A can be also thought of as maximal modular ideals in
A. For unital A any ideal is modular (set just b = I in Definition 1.10), hence in that
case the points in A can be thought of as maximal ideals. &
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Remark 2.5 The C*-algebra Cy(A) is not adequate enough as there are A # A’ such
that Cy(A) ~ Cy(A’). In fact, let A be non-compact. We have Cy(A) ~ C..(A’) for
some A’. Since C3(A) is unital then A’ is compact and thus non-homeomorphic to .\.

Moreover, Coo(A') =~ Cy(A"). <&

Theorem 2.2 shows that classical spaces can be encoded in commutative C*-algebras.
C*-algebras.

It shows also a way to develop a non-commutative geometry. The main idea is to
consider non-commutative C*-algebras as a counterpart of something which could be
a non-commutative (quantum) space, cf. [5]. In such an approach one works with
non-commutative C*—~algebras and tries to mimic on them such structures that in
commutative C*-algebras correspond to certain properties of classical spaces (e.g.
group structure).

Given a (separable) Hilbert space H let B(H) denote the C*-algebra of all linear
operators on H, which are bounded in the norm

lall = sup{lez| | z € K},

where a € B(H) and K = {z € H | ||z|| < 1}. The *-operation in B(H) is just the
usual adjoint of operators.

Definition 2.6 A *-homomorphism © : A — B(H) is called a representation of a
C*-algebra A in H. Moreover, = is said to be

i) faithful iff © is *-isomorphism between A and w(A), te. kerm = {0}

it) non-degenerate iff (y € H and x(a)yp =0 Va€ A = ¢ =0)

wt) cyclic off 3Q € H cyclic for =, ie.

{m(a)(Q) | a € A} is dense in H (2.1i

i) irreducible iff 7(A) is irreducible on H, ie. the only closed subspaces of H which
are invariant under w(A) are {0} and H »

v) unitarily equivalent to «’ : A — B(H') iff 3V : H — H' which is unitary and
7(a) = V*r'(a)V, Va € A.

Remark 2.7 Such notions as trivial representation, subrepresentation and direct
sum of representations are defined in the usual manner. &

We denote by Rep (A, H) the set of non-degenerate representations of A in H and
recall one useful theorem known in the theory of C*-algebras.

Theorem 2.8 Let Ay C Az be an ideal in a C*—algebra Ay and © € Rep (Ay, H).
Then, there exist a unique © € Rep (A,, H) such that 7|4, = .

In order to see that there are nontrivial representations it is helpful to consider states.
Let A’ be the topological dual to A, ie. the space of all continuous linear complex
valued functionals on A. The norm of ¢ € A’ is given by

16|l = sup{|¢(a)[ | llall =1} .



Definition 2.9 A linear functional w on A is said to be positive iff w(a*a) > 0.
Va € A. If in addition w € A’ and ||w|| = 1 then w is said to be a state. A state « is
faithful iff w(a*a) = 0 implies that a = 0.

Remark 2.10 A positive linear functional w can be seen to have the following prop-
erties (cf. [1]):

weA

i) w(a*) = w(a), Va € A

iii) |w(a*d)|?* < w(a*a)w(b™b), Va,be A
iv) w((ab)*ab) < ||a||?w(b*b), Va.be A
v) if A is unital then w(7) = 1.

Remark 2.11 It can be shown that
i) Va € A there exist a state w such that w(a*a) =1
i) on a (separable) C*-algebra A there always exist a faithful state. <

Example 2.12 Given a Hilbert space H with a scalar product ( | ), a representation
7 € Rep (A, H) and a (normalized) vector Q € H, ||| = 1, the expression

w(a) = (2] 7(a)2) (:

provides an important example, known as a ‘vector state’.

!v
[}

o

It turns out that any state on A is a vector state for some representation, as will be

clear from the following construction of Gelfand-Naimark-Segal (GNS). Given a state
w on A the GNS construction provides a canonical representation 7, : A — B(H_).
We describe first the underlying Hilbert space H,,. Start with the underlying (Banach
space A and using w introduce a semi-definite Hermitian product

(a | b) = w(ab") .
Then, by Remark 2.10iv), Z = {a € A | w(aa*) = 0} is a left ideal in A. The quotient
A/T is a complex vector space with a non-degenerate Hermitian product
(a+Z]|b+1)=uw(ab). (2.3}

(which is independent of a representative in each class). The Hilbert space H, is just
the completion of A/Z in this norm.

Next, given a € A, m,(a) defined by 7,(a)(b+ Z) = ab+ T is a (well defined)
linear operator in H,, which is bounded due to

Ima(a)(b+ I)||* = (ab + Z]ab+ I) = w(b*a”ab) < [la|*w(b67) = [la]*|b+ Z|* .
Denoting its bounded closure still by 7, (a), we verify that

Tu(a1)mu(az)(b+ 1) = arab+ T = m,(a1a2)(b+ )



ie. m,(a1)7,(a2) = 7 (ayaz). Thus 7, : A — B(H,) is a representation (quotient of
the left multiplication).

Now it remains only to construct 2, € H,. If A is a unital algebra, consider
Q.,=1+7. Then

(| 7(@)0) = (1 +T | a+ 1) = w(a) . (2.4)

Moreover, {r(a)Q,|a € A} = {a + I|a € A} is obviously dense in H, and thus Q, is
cyclic for n,.
If A is not a unital algebra, take instead the C*-algebra A = C x A with

(a,a) + (B,0) = (a+B,a+b)
(a,a)(B,b) = (af,ab+ Ba+ ab)
(a,a)” = (@,a")
(e, a)]| = sup{[lab+abl| | b€ A,[|b]| =1} .

Clearly, identifying a with (0,a), A is just a C*-subalgebra of A. Sometimes A is
denoted CI + A, and (a,a) = al + a (the identity being (1,0)). Moreover, extend «
in a canonical way to @ by @(al +a) = a +w(a). (& can be seen to be a state on A
due to Remark 2.10 iii).

At this point one essentially repeats the GNS construction of H,, and 7,, using 4 and
@. The only delicate point of the construction is the cyclicity of §,, for x,. In fact it
does hold since 7, (CI + A)Q, = CQ, + 7,(A)f, is dense and £, can be shown to
belong to the closure of 7, (A)Q,.

It turns out that GNS representation is unique up to a unitary equivalence. Indeed.
given another state ', there exist V : H, — H,, defined (using the cyclicity of Q)
by

E’ww(a)ﬂw - ﬂ'wl(a)wa .
The operator V is unitary
(Vru(a)Q, | Va(b)Q,) = (ru(a)Qu | 7 (0)Qur) = w(a™b) = (r,(a)Qy | 7(8),) .
and intertwines the representations, V-1r,(a)V = n,(a), Va € A, and the cyclic
states, V(§l,) = Q.
Using Remark 2.11 i) and GNS representations, it can be shown that a faithful

representation of any C'*-algebra can be always constructed as a direct sum 7 = @ =

o -
on H =&, H,. This leads to the second theorem due to Gelfand and Naimark which
gives a characterization of not (necessarily) commutative C*-algebras.

Theorem 2.13
A is a C™—algebra N Ais * — isomorphic to a
C*—subalgebra of B(H) |

Remark 2.14 The association to A of a C*-subalgebra of B(H) is non-unique (in
the sense of unitary equivalence). We mention also that in case A is non-separable.
H may be non-separable as well. &

We refer eg. to [1], [2], [3] and [4] for more details.
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3 Morphisms

In this section we define morphisms between C*-algebras in such a way that they
correspond to the morphisms (continuous maps) between the associated spaces. At
a first glance *-homomorphisms are natural candidates (see Theorem 1.11).

Theorem 3.1 Let ¢ be a *-homomorphism from Co, (A1) to Coo(A2). If there evists
a continuous map ¢. : Ay — Ay such that

(#(a))(A) = a(d.(}A)), YA€ Az,

then ¢, is proper, i.e. the inverse image of any compact set is compact.

It turns out that some important continuous maps are not proper. For example, the
group multiplication

:GxG—-G; (hyg)—h-g (3.1)

on a locally compact group G, is proper only if G is compact, since the inverse image
of the neutral element is {(g~*, ¢)}. which is homeomorphic to G. Thus, the algebraic
counterpart of (3.1) may not be a *-homomorphism from C(G) to Coo (G x G). This
shows that *-homomorphisms do not satisfy our requirement that morphisms should
encode information about all continuous maps. We therefore need to find another
candidate for a morphism between C*-algebras. The choice will be motivated by a
sequence of observations at the commutative level.

Given a function a € Cy(A;) and a continuous map ¢. : A, — A; we note that
a pull-back ¢(a) of a defined by d(a)(A) = a(é.(A)) is a function on A, which is
bounded but not necessarily vanishing at infinity. As an example take such ¢. that
maps a sequence of points A, — oo tending to infinity in A, (ie. VK C A, K com-
pact, JN such that Vn > N it holds that A, &€ K) to a sequence ¢.(A,) converging
to some A € A;). This fact together with Remark (2.1) suggests that target space
of a morphism between C*-algebras A; and A, should be the largest algebra that
contains Aj as an essential ideal. The construction of such an algebra proceeds along
the following steps.

First, note that any element of C,(.\) can be canonically viewed as a (bounded) oper-
ator acting by the left multiplication on C,(A). Correspondingly, given a C*-algebra
A we embed it in the algebra B(A) of bounded operators on A. By this we mean that
b € Ais viewed as an operator b € B(A) acting as b : a — ba for all a € A. Note.
that in contrast to A, the algebra B(A) does not have any natural *-operation (A is
not a Hilbert space, in general). However, in B(A) there is a subset M(A) that has
a natural *-structure. To see this note the following identity

azb ay = (baz)"ay ,

which holds in A. Analogously, given two arbitrary elements b, € B(A), we say
that b* is a Hermitian conjugate of b iff

10



Val,ag € A 3 Cl; *(al) = (b(ag))*al. (_))2)

Now we define

M(A) = {b € B(A) | 3 Hermitian conjugate of b}. (3.31

It is clear that M(A) equipped with a star operation being the Hermitian conjugate
and with the operatorial norm is a C*~algebra. Moreover, identifying a € A with an
operator of a left multiplication by a, A can be viewed as a closed linear subspace
of M(A). Next consider an operator L,b for ¢ € A and b € M(A). For any ¢ € A
we have L,b(c) = La(b(c)) = a(b(c)) = (b*(a*))*c = Ly+(av(c), where in the third
equality we use (3.2) with a; = c. a; = ¢" and b = b*. Hence L,b = Ly+(4+). which
shows that A is a right ideal in M(A). Similarly, for a,c,d € A and b € M(A) we
have (ad)*b*(c) = d*a*b*(c) = (b(ad))™ ¢, where in the last equality we use (3.2) with
a; = c and a; = ad. Hence b(ad) = b(a)d, and in turn, bL, = Ly(,), which shows that
A also is a left ideal in M(A). It can be also verified that A is an essential ideal and
M(A) is the maximal C*-algebra that contains A as an essential ideal. Moreover.
since the identity operator in B(A) is its own Hermitian conjugate then it belongs to
M(A). Thus M(A) is unital. We shall denote I4 the unit of M(A). (In the theory
of C*-algebras, M(A) is known as the multiplier algebra of A).

Example 3.2 One can check that for A = C(A) this construction yields 1/(A)
Ci(A), as it should.

&

If A C B(H), which can be always assumed due to Theorem 2.13, we shall be more
specific and ‘adapt’ the Hilbert space H to A. Namely, if there exists a vector in H
that is annihilated by all elements of A, we can pass to the orthogonal complement
of such a vector. Thus, without the loss of generality, we assume from now on that
A C B(H) is non-degenerate, i.e. N,ca(ker a) = {0}. Then we have the following
Proposition which motivates the name ‘multiplier algebra’ for M(A) in the general
case.

Proposition 3.3 M(A) ={be B(H) | bAC A and Ab C A}.

Proof. We prove first that M(A) D {b€ B(H) | bA C Aand Ab C A}. IfbA C A
then the left multiplication Ly : A — A, Ly(a) = ba, is a bounded operator L, € B(A).
Moreover (Ly)* := Lp», which is an element of B(A) since b*A = (Ab)* C A™ = A.
satisfies the conditions (3.2). In addition, because of the non-degeneracy assumption
the assignment b +— L, is injective, since otherwise ba = 0 Va € A for some b would
mean that b)) = 0, V¢ € Hy = {¢' = ad | ¢ € H,a € A}. Clearly, Hy # H and we
can take xy € Hg-. Then 0 = (x | ad) = {a*x | ¢) shows that a*y = 0, Va € A, which
contradicts the non-degeneracy assumption. Therefore the D part is proven.

To prove the C part we apply Theorem 2.8 by specifying A2 = M(A) and 7 to be the
embedding of A in B(H). Then for any element b € M(A) we have b = L ;. Indeed

Va€ A, Lyga = (#(b))r(a) = #(ba) = b(a).

O
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Example 3.4 Let CB(H) be a C*-algebra of compact operators on H. This is an
ideal of B(H) which is in fact essential. Thus M(CB(H)) = B(H). Clearly. CB(H |

is not unital unless H is finite dimensional. &

Suppose now that A is a unital C'"-algebra with unit /. Then the map
M(A)>b—ble A

is an isomorphisms of C*-algebras A and M(A). Taking into account that M (A) has
always unity I4, we have -

(M(A)=A) < ( Aisunital ).
This is a non-commutative version of the first part of
(C(A)=Cx(A)) <= ( Cx(A) is unital ) < ( A is compact ) .

Extending the second part (last <= ) to the non-commutative case we say that
unital C*-algebras correspond to compact quantum spaces. Instead non-compact
quantum spaces correspond to non-unital C*-algebras. Hence, we have the following
correspondence

(compact spaces) «— (unital algebras)

(non — compact spaces) «— (non — unital algebras)

It can be shown that if M(A) is separable then A is unital. Thus it is evident that
M (A) is rarely separable in the norm topology. However, there is another natural
topology on M(A).

Definition 3.5 We say that a sequence (b,) of operators b, € M(A) converges
strictly to zero iff »
Va€ A ||bya|| — 0 and ||ab,|| — 0. (3.41

This equips M(A) with a strict topology. We have the following Proposition.
Proposition 3.6 A is strictly dense in M(A).

Proof. It can be seen (cf. [1]) that there exists an approximate unity e, ,/* I for
A, l.e. a strictly converging to Iy € M(A) increasing sequence (e 41 — €, > 0) of
elements in A with |le,|| < 1. If b € M(A) then be, € A. Moreover, Va € A e a — a
in norm and since L; is continuous, be,a — ba in norm. In addition, since ab € A
then Va € A abe, — ab in norm. As a consequence, be,, — b strictly.

C

Remark 3.7 This proposition shows that M(A) has a countable strictly dense sub-
set or, what is the same, M(A) is separable in the strict topology. In particular.
Example 3.4 shows that B(H) is separable in the strict topology. In this special
case it coincides with the (operatorial) *-strong topology, according to which a, — 0
“-strongly iff a, — 0 strongly and (a,)* — 0 strongly.
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Moreover, on Cy(A) the strict topology is not much different from the uniform topol-
ogy. Namely, f, — 0 strictly iff f, are bounded by the same number ® and f,|x — 0
uniformly for every compact subset K of A *. O

We return to the problem of finding the right notion of a morphism. As we have
argued, the target of a morphism from A; to A, should be M(A;) rather than A,
itself. Then however another trouble arises. Suppose that ¢ is a *-homomorphism
from Ce (A1) to M(Cy(A2)) = Cy(Az). Given a point in Ay, it is impossible that all
functions in Cu (A1) vanish at this point. Thus for arbitrary A € Aq, ¢(a)()), which
is equal to a(¢.(})), also can not vanish for all a in Cs(A1). A correct algebraic
translation of this fact is that the set

H(Coo(A1)) - Coc(A2) is norm dense in Coo(A2) . (3.5;
Indeed, suppose that for some A € A,

{(a)(A) | @ € Coo(A1)} = A(8(Coo(A1))) = {0} .

Then also A (#(Cuo(A1)) - Coo(A2)) = {0} and hence (3.5) does not hold. Conversely. if
(3.5) does not hold then ¢(C(A1)) - Coo(A2) is obviously a proper ideal in Co,(A2). Tt
can be seen to be included in a maximal modular ideal 7, which corresponds to some
A € Ay (X is a character, the kernel of which is Zy; see Remark 2.4). The functions
in ¢(Coo(A1)) - Coo(A2) vanish at A, but clearly Co(A2) contains at least one function
which is not zero at A in A;. This means that all the functions in ¢(Cs(A;)) should
vanish at A, which is precisely the drawback we are going to avoid.

In view of the above discussion, we have to exclude those ¢’s which do not possess
the property (3.5). Consequently. we define the space Mor(A;, A2) of morphisms from
A to A, as follows.

Definition 3.8 A map ¢ is a morphism between C*-algebras A; and A, if it belongs
to a set :

Mor(A;, A;) = {¢ : Ay — M(Ap) ¢ is a *—algebra homomorphism } ‘

such that ¢(A;)A; is dense in A,

Specifying for example to A, = CB(H) and using Example 3.4 and Definition 2.6 ii).
we have the following proposition.

Proposition 3.9
Mor(A,CB(H)) = Rep (A, H).

A more careful analysis of Definition 3.8 shows that the problems caused by The-
orem 3.1 are resolved. Actually we have now the following theorem.

33M Vn VA |fu(N)] < M
YK CA, K compact Ve > 03N Vn> N, A€ K |fa(Q)| <€
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Theorem 3.10 Let ¢ € Mor(Co (A1), Co(A2)). Then there exists a continuous map
¢v : Ay — Ay such that Va € Coo(N1) VA E Ay

o(a)(A) = a(¢.(})) -
The converse is also true.

The Definition 3.8 is more ‘symmetric’ that it seems due to the fact that (¢(A;)A2)" =
A2¢(A;). However, still the domain and the target of a morphism are not of the same
type. This drawback can be cured by noting that in the commutative case not only
functions in Cy can be pull-back, but also those in C,. So, one should be able to
extend the domain of a homomorphism from A to M(A). This is indeed possible.

Theorem 3.11 Let ¢: A; — M(Az). Then we have

there exists a strictly continuous
(¢ € Mor(Ay, A;)) & | *—algebra homomorphism ¢ : M(A;) — M(A,), )
such that ¢(I4,) = I, and ¢|4, = ¢

Proof. The <« part is obvious except that <;~5(A1)A2 is strictly dense in A,. But if
A1 3 e, — I4, strictly then ¢(e,) — I4, strictly, i.e. ¢(en)b— b in norm Vb € A,.
In order to show the = part note that non-degenerate inclusion A, C B(H) means
that ¢ : Ay — M(A;) is a (non-degenerate) representation. Applying Theorem 2.8
with A, specified to be M(A;) we are guaranteed that there exists ¢ M(A;) —
B(H). The image of M(A;) by ¢ is actually contained in M(A,).

C
We remark that ¢ € Mor(A;, Az) are in fact norm-continuous and that this theorem
allows for a fully ‘symmetric’ reformulation of Definition 3.8 of Mor(A;, A3). We have

i _ ) ¢ is a unital strictly continuous o
1\/101(/41, Ag) = {d) : ]‘/I(Al) - .".[(442) '—algebra hOl’I’lOl’I’lOI‘phiSl’l’l . (3())
Now from this last formulation it is obvious that the morphisms can be composed.

Thus, together with C*-algebras, they form a category.

4 Compact quantum groups

Before discussing groups in the algebraic context we need some preparations.

Given two *—algebras A and B, their algebraic tensor product is defined as the tensor
product of vector spaces A @41y B equipped with a *—algebra structure by

1) (a1 ® b1)(az ® by) = aras ® bibs

i) (a®b)*=a* Qb

Next, given two (non-degenerate) C*-algebras A C B(H) and B C B(K) their tensor
product A @ B is defined as a C*-algebra which is a norm closed linear span of a set

{ea®@be B(H® K):a € Aand b€ B}.

14



Remark 4.1 It can be shown that A ® B, the completion of A ®q, B with respect
to the operator norm in B(H ® K), does not depend on the (not unique) way of
embedding A in B(H) and B in B(K). &

Remark 4.2 In the classical case the C*-algebra corresponding to direct (Cartesian)
product of two spaces is just the tensor product of the C*-algebras corresponding to
these spaces (this differs from the notion of a free product in algebraic geometry). <

As far as the tensor product ¢ ® 1 of two morphisms ¢ € Mor(A, A;) and
¥ € Mor(B, By) is concerned, it is first defined on the algebraic product A ®q, B, i.e.

6@% + ABuy B — M(Ay) ®uy M(By),
. and then extended by continuity to A ® B. The resulting ¢ ® ¥ is a map
dpRY : AR B — M(A1) ® M(B,).
Since M(A;) ® M(By) is naturally included in M(A; ® By), then finally
d®% € Mor(A® B, A1 ® By) .
Now given a group G with the neutral element e we shall use the following maps:

G xG-=>G; (91,92)— 9192 for the multiplication in G, (4.1)

e:{e} = G; e—e for the inclusion of e in G,
diag: G -G xG; g (9,9) for the diagonal map, (4.2)
inv:G—-G; g g? for the inverse operation (4.3)

*:G—o{e}; gre for the point map.

The axioms of a usual group can be rewritten in terms of commutative diagrams as
follows:
i) the associativity

GxGxG —i‘}f-'—* GxG
xid | K (4.4)
GxG — G

ii) the neutral element

idxe exid

Gx{e} — GxG {e}xG — GxG
| ’ | [ |- (4.5)
¢ -4 ¢ -4 g

iii) the inverse
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diag invxid diag idxinv

G— GxG — G xG G— GxG — GxG
*l l *l l (1.6}
{e} — G {e} - G

If G is a matrix group, its matrix elements generate a (commutative) "—algebra

A of ‘polynomial’ functions on G (see eg. Example 1.5). The multiplication in A
defines a map

m:AgA— A, m:a®b— ab, (4.7

dual to the diagonal map (4.2). The algebraic counterpart of the above diagrams
requires an introduction of the following important algebra homomorphisms

A:A —- A®A (coproduct),
e:A — C (co — unit) and
S:4 - A (co — inverse),

that are dual to the product -, the embedding ¢ and the inverse map (4.3), respectively.
We have then the following commutative diagrams, corresponding to (4.4)-(4.6)
idoA
ASARA —— AQRA
ASidI T A (4.8

ADA e 4

id®@e e®id

ARC «—— AR A CRA «— AQA
| [ li [ (4.9)
A <4 A e 4
Al A9a 2 454 Al AoA < 4p4
] ]'—\ ] ]A (4.10)
C - A C - - A

A generalization of (4.8) to a non-commutative algebra A leads to the notion of
a quantum semi-group. While co-unit won’t be so interesting in the quantum case.
the notion of co-inverse is somewhat delicate. The multiplication map m employed
in (4.10) is not a homomorphism for non-commutative A (it does not preserve the
products) and thus it is not a map in the category we are considering. In other words.
we don’t have a quantum analogue of the diagonal map (4.2) in our setup ®. In fact
(4.9) and (4.10) will be replaced by another axiom.

In the following the superscript ““**” stands for “closed linear span”.

5Such a map exists for the free product, cf. Remark 4.2
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Definition 4.3 A compact quantum group is a pair G = (A, A), such that A is a
unital separable C*—algebra and A € Mor(A, A ® A) (co-product) satisfies

1)

(A®id)oA=(ld®A)oA (4.11)

i)
{(b@DA(a) | a,be AF" =AQ A (4.12)

and
{I@bAa) | a,be A" =AQ A. (4.13)

Remark 4.4 In a more adequate terminology a compact quantum group should be
rather called a C*-algebra of ‘quantum functions on a compact quantum group’. <

Remark 4.5 For a unital C"-algebra A, since M(A) = A and M(A® A) = A< A
the co-product is actually a homomorphism A : A — A ® A. In Definition 4.3 we
require that A is a morphism to allow a future extension to the non-compact case.
For non-unital A the conditions (4.12) and (4.13) mean in particular that (b®14)A{a)
and (14 ® b)A(a), which generally are elements of M(A ® A), must belong to A< A.
&

If A is commutative then the Gelfand — Naimark Theorem 2.2 provides a compact
space G, such that A = C(G). Also, by Theorem 3.10 we have a continuous map
A, : GxG — G, which in the usual notation A.(Ay, A2) = A;- Ay, defines a continuous
binary operation (multiplication) in G. Its properties follow from conditions (4.11) -
(4.13). For instance, (4.11) means that

()\1 . /\2) M /\3 = )\1 . (/\2 . )\3) (414)

for any A;, A2, A3 € G. We claim that (4.12) is equivalent to the cancellation law
from the left 7

for any A, A\;, A2 € G. In fact. observe that (b ® I)A(a)(A1,A2) = b(A1)a(A; - Aq).
Recall also that by Stone-Weierstrass theorem a set of functions which separate points
of A is dense in C(A). Now assume that (4.15) holds. Take (A1, Az) # (A}, A3). In
order that (b ® INA(a)(M, A2) # (b® I)A(a)(A, Ay) it suffices to take ¢ = I and b
such that &(A;) # b(A]) if Ay # A, and a such that a(A; - Ag) # a(A]-A) and b= 1 if
A1 = A} but Ay # Aj, 50 Ay - Ay 5 AL - AL by (4.15) (clearly one of the two alternatives
must hold).

Next we show the converse. Assume that (4.15) does not hold so there are some
A1 and Ay # A such that A; - Ay = Ay - AL, Take some w € A ® A such that
w(Ay1, A2) # w(A,A;). Such w can not be approximated by elements of the type
(b® I)A(a) since for them always holds (b ® I)A(a)(A1, A2) = (bQ I)A(a)( A1, AL).
Similarly (4.13) is equivalent to the cancellation law from the right
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for any A, A1, A2 € G.

It turns out that any compact space G endowed with a continuous multiplication
satisfying conditions (4.14) - (4.16) is a topological group (in particular there exist the
neutral element and the inverse). Namely, choose some A € G. Then, by compactness.
the sequence \* = A - A... ) (n times) has a convergent subsequence, say A" . (all
its limit A\’. It may happen that niy; — ng — oo but A%+t = A% . \™+17"% ip the
limit yields A" = X' - €', where € is the limit of A™+:="_ Multiplying from the right
by arbitrary A" we get A’ X" = X -e’- ), which by (4.15) yields A" = ¢’- X", VX" € G.
ie. e’ is the neutral element. _

Analogously it can be seen that A™+1~™*~1 converges to A~!, the inverse of ).

Remark 4.6 Applying the Hermitian conjugation to the elements of (4.12) and
(4.13) we show that

{A@)(b®I) | abe A} =A@ A (4.17)

and
{A()I®b)|abe A" =ARA. (4.18)
&

5 Haar measure

We pass now to the question of integration over a compact quantum group. Recall
that classically this requires a measure on a compact group G, ie. linear positive
(normalized) functional on C(G). More specifically we need integrals with respect to
the Haar measure dg, which is, say, right invariant,

Vg € G, VYae C(G fG a(gg1)dg = /Ga(g)dg -

In the context of C*-algebras the above requirements have an immediate extension
to the quantum case.

Definition 5.1 On a compact quantum group G = (A, A) right (respectively left)
tnvariant Haar measure is a state h on A such that for anya € A

(h ®@id)A(a) = h(a)l, (5.1)

respectively,

(id ® h)A(a) = h(a)] . (5.2)

Let £, ¢’ € A’ be continuous linear functionals on A and let ¢« € A. We shall use
the following convolution products

Exa=(1d®EA(a) € A (5.3)
axf = (¢ ®@id)A(a) € A (5.4)
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fxE=('Hre A (3.3)

Due to the co-associativity condition (4.11), the convolution product is associative:

(axE)*x&" = ax (& *¢")
(Exa)x¢ Ex(axf)
("*&*xa = "*(Exa)
(Ex&)*&" = Ex (%)

-

for any &, ¢/, £” € A" and a € A. Moreover
(€ *&)(a) =¢(ax¢) =& (E*a) (5.6)
for any £, ¢’ € A’ and a € A.

In terms of the convolution product we can rewrite (5.1) and (5.2) as, respectively.

h*a = h(a)l (
axh = h(a)l, : (5.
for any ¢ € A. Applying a functional ¢ we also have

)
)

it
-1

Lt
[V 2]

(h*§)(a) = h(a)¢() (5.9)
(& * h)(a) = h(e)¢(). (5.10)

This allows for a reformulation of Definition 5.1. Namely, A is right (respectively left)
invariant Haar measure on G if for any functional ¢,

hxé = ¢k (5.11)
€ x h = (k. (5.12)

Remark 5.2 If there exist a right invariant Haar measure hr and a left invariant
Haar measure hy then hg = hr. To see this just set £ = hp in (5.11) and ¢ = hg in
(5.12) and use hR(I) =1= hL(I) <o

The construction of the Haar measure proceeds along the following lines. First we
show that we can weaken condition (5.11). It turns out that it is enough to verify
(5.11) for at least one faithful state £ in order to infer that A is a Haar measure.

Lemma 5.3 Let G = (A,A) be a compact quantum group and h, p be states on A.
Assume that p is faithful and

Then h is the Haar measure.
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Proof. Let :
Lig, ={g€ A®A: (h®p)(qg"q) =0}

be the left ideal related to the state h ® p (compare the GNS construction). For any
c € A we set
Ur(c)=hx*xc—h(c)I (5.14)

Clearly ¥y is a continuous linear mapping acting on A which is even completely
bounded (it is the difference of two completely positive mappings) [9]. This guarantees
that id ® ¥y is also a continuous linear mapping which therefore extends to A = A.
We shall show that

(id ® UL)A(c) € Lrg, (5.13)

for any ¢ € A. Indeed, denoting the above element by ¢ we have:

q = (id ® VL)A(e)
= ([d®id®hr)(Id® A)A(c)— (Id® h)A(c)® ]
= ([d®id®h)(AQid)A(c) - (Id® Rr)A(c)® ]
= A(hxc)—(h*xc)® 1.

Therefore

¢ q=A((hxc)"(hxc)) = A(h*c)"[(h*c) QI = [(h*xc)"@I|A(h*c)+[(h*c)* (h*xc)] =1

(he p)ae) = (1) - () - (1) + (),

(h® p)A((hx e} (h*c)) = (hx p)((h* c)"(h*c)),

(h@ ) {[(h* ) @ [ A(h )} = h((h*c)"(p x hx),

and

where

@@@@

= (h@p)((h*xc)(h*xc)®I)=nh((h*c)(hx*c)).

Now, using (5.13) we get @ @ @ @ so (h® p)(¢*¢) = 0 and

(5.15) follows.

Let @ € A. Using the density of (4.12), for any ¢ > 0, one can find b;,b,,...b,.
€1,C2,-..Cq € A such that

N11®@a- Y (br @ DA(ch)]| <€ .
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Since ¥ is completely bounded (with the bound < 2) we have
1T ® Yr(a) =D (b ® 1)(id ® Ur)A(er)]| < 2¢.

Using (5.15) and remembering that Lig, is a closed left ideal we get IQWr(a) € Ly=,.
It means that

(h@p)I @ ¥Yi(a)Vi(a)) = p(Vi(a)"Vi(a)) =0.

We assumed that p is faithful. Therefore ¥z (a) = 0.and (cf (5.14)) h*x a = h(a)I for
any a € A.
Introducing in a similar way another completely bounded mapping ¥p: A — A4

by the formula
Up(c) =cxh— h(c)I

one can show that (Vp®id)A(c) € L,gr. Then using the density of (4.13) one obtains
Ur(a) =0 for any a € A. The latter means that a x A = h(a)l. Combining the two
results we see that h is a Haar measure.
c
We are ready to prove the following theorem.

Theorem 5.4 Given compact quantum group G = (A, A) there exists a unique left
and right invariant Haar measure h on G.

Proof. Recall (Remark 2.11 ii) that there is always a faithful state p on separable A.
Let p** = p % px ... % p be the convolution product of n-copies of p,
1 n

hn:—zp*k

k=1

be the Cesaro sum and % be a weak accumulation point of the sequence (hn),_,,
(the set of states of any unital C~-algebra is compact with respect to the weak topol-
ogy, so the accumulation point always exists). On a corresponding subsequence we
see easily that

*(n+1) _

1
hn*p=p*hn=hn+;(p p)-

Taking the weak limit yields thus h*x p = p* h = h and by Lemma 5.3, h is a Haar
measure.

To prove the uniqueness assume that i and A’ are Haar measures. Then (cf (5.6))
for any a € A we have

h'(a) = h(h'(a)I) = h(h' * a) = K'(a*x k) = K'(h(a)]) = h(a).
0

Remark 5.5 In this way we showed that the sequence (hn)pz1 o, has only one accu-
mulation point. Therefore h, converges weakly to h. In other words, 4 is the Cesaro
weak limit of p*” (cf. formula (4.18) in [7]). O
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6 Representations

Let G = (A, A) be a compact quantum group and U = (uki)y ;2. n be an N x .\
matrix with entries belonging to A.

Definition 6.1 We say that U is an N-dimensional matriz representation of G if
U is an invertible element of Mat -”\"XN(A.) = Mat yxn(C) ® A and

N
Auy = Z Ukr @ Urp~ (6.1)

r=1

for all k,1=1,2,...N. In addition, U is said to be unitary if
Zukruz,-x = bl , Zurk*url = bl . (6.2

Remark 6.2 The invertibility of U is required in order to delete some bad represen-
tations like uy = 0 Vk,I. &

Remark 6.3 If A is commutative then (6.1) simply means that
uk(9192) = Augi(g1,92) = Y wir(91) wri(g2),

i.e. U is a usual representation in terms of matrices. &

Remark 6.4 Equations (6.2) can be writtenas U U* =1y Q@ T and U* U =15 C I
in MatNxN(C) ® A. &

In the sequel we shall need also infinite-dimensional representations. This re-
quires a generalization of Definition 6.1. Recall, that in the classical case a unitary
representation i1s a map

U:G>g9— U, € B(H)

such that U, is unitary and
UgUh = Ugh, Vg,h € G. (6.3)

In addition,

1) U is norm continuous iff ||U; — I|| > 0 as g — e

i1) U is strong continuous iff Vz € H ||Ujz —z|| - 0as g — e

The requirement i) is often too strong; for instance for the Lorentz group there are
no unitary norm continuous representations (except the trivial one).

Now we shall formulate these properties algebraically. Obviously, U belongs to
some class of functions on G with values in B(H). Denote by C(G, B) the space of
vanishing at infinity continuous functions from G to a C*-algebra B. It is known that
one has an identification Coo(G, B) ~ B ® Coo(G). We also claim that elements of
M(B®C«(G)) can be viewed as M (B)-valued functions on G. One way to verify this
is to ‘evaluate’ ¢ € M(B®RCux(G)) at a point g € G. For usual (complex-valued) func-
tions such an evaluation corresponds to the functional §, : Co(G) 3 f — f(g) € C.
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Thus ¢, € Mor(C(G),C) and idg @ §; € Mor(B ® Cw(G), B). According to
our definition of Mor, idp ® €, can be extended to ¢ € M(B ® Coo(G)) and then
q(g9) = (idp ® §;)q € M(B). In fact, it can be seen that

M(B & C(G)) = Co(G, M(B)), (6.4)
where on the right hand side M(B) is equipped with the strict topology.
Take now B = B(H) in (6.4). Then M(B(H)) = B(H) with the norm topology.

hence when requiring the norm continuity we assume that
Ue M(B(H)® Cx(G)) .

Another possibility in (6.4) is B = CB(H). Then M(CB(H)) = B(H) with the
*—strong topology, cf. Remark 3.7. Since for unitary representations U; = Ug-1, this
corresponds simply to the strong continuity, for which we thus require

U € M(CB(H)® Co(G) .

Now, for a compact quantum group G = (A, A) we note that the homomorphism
id@A:CB(H)® A — CB(H) 2 A® A extends to a homomorphism between the
multipliers. Given U € M(CB(H) ® A) we use the following notation. Uy, is such an
element of M(CB(H)® A® A) which, when viewed as an operator on CB(H)®@ AE A.
acts as U on the first two factors and as an identity on the last factor. Similarly.
Uiz € M(CB(H)® A® A) acts as U on the first and last factor and as an identity
on the middle factor.

Definition 6.5 U € M(CB(H) & A) which is unitary (i.e. U"U = UU” = Icp(n)za
in the sense of *~algebras) and satisfies

is called a strongly continuous unitary representation of a compact quantum group
G = (A, A) acting on a Hilbert space H.

Remark 6.6 A norm continuous unitary representation is similarly defined as a uni-
tary U € M(B(H) ® A) which satisfies (6.5). If G is compact (I4 € A) then for a
norm continuous U we have U € B(H) ® A.

In the classical situation (6.5) means just (6.3) .

The finite matrix representations 6.1 correspond to the case H = CV and

M(CB(CM)® A) = M(Mat yxn(C) ® A) = Mat yxn(C) ® A. o

As we have shown, the framework of C*-algebras has enough tools to distinguish
quite a subtle difference between the strong and norm continuous representations.
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7 Right regular representation

Now we shall introduce an important right regular representation. This representation
acts in a Hilbert space H, denoted sometimes L?(h), where & is the Haar measure on
G. More precisely, H is obtained via the GNS construction using the Haar measure
as a reference state w = h. Recall also that GNS representation = = 7, of A assures
the existence of a special vector Q = Q, € H, which is cyclic (see (2.1)) and satisfies
(2.2). In the sequel we shall often use the Dirac ‘bra’ and ‘ket’ notation.

Definition 7.1 The right regular representation U € M(CB(H)® A), H = L?(h).
is defined by extending the following action of U:

U(r(@)Q) | © ) = ((x ® id)A(@)) (1) (] @ ), (7.1
forallz € H and a,c € A.
In order to explain this definition we recall that U can be viewed as an operator on
CB(H) ® A and that fora € A C M(A) 3 b, b(a) = ba, i.e. the action of b (as an

operator) on a is just the multiplication of b and a in M(A). Then, it is shown by
the following sequence of affirmations, that the action (7.1) of U is well defined:

7 € Rep(A,H)= Mor(A,CB(H)),
r®id € Mor(A®A,CB(H)® A),
(r®id)oA € Mor(A,CB(H)® A),
(r®id)oAa) € M(CBH)® A) .

A

Thus, since |Q)(z| ® ¢ belongs to
CB(H) ® A.
In addition, due to the cyclicity of Q, the set

B(H) ® A, then also the r.h.s. of (7.1) belongs to

{7(a)|Q) (x| @ c} is dense in CB(H)® A . (7.2)

Thus, in order to extend U as operator to the whole CB(H) ® A, we have to show
that U is norm continuous. For that aim we search for a Hermitian conjugate of .

Let ¢ = 7(a)|Q){z| ® c and ¢’ = #(a')|Q){z' | ® ¢. We have:

Ug)Uqd = (|2)(Q @ c)(r ®id)A(a™)(x @ id)A(a') (|’ | ®¢)
= (2@ @) (r ®@id)A(a™a’)(|) (=" | ® )
= [z}{2'| ®@ "(h @ id)A(a”d’)c
|z) (2’| ® c“h(a™ad") (7.3)
where in the second equality we use the fact that # ®id is homomorphism, in the third

equality we use (2.2) and in the fourth equality we use a property of Haar measure.
This means that

z
Z

Uq)Uqd =q¢ (7.4)
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and hence ||Uql|| = ||q||, so U is a (partial) isometry. In fact we have furthermore -

U(CBH)® A) = {(r ®id)A(a)(|Q){z| ® bc)}"*
{(x ® id)A(a)(I @ b)(|Q)(z| ® c)}=*
{(r ®1d)(a ® b)(|Q(z| ® c)}c.l.s.

{7 (a)(|Q)(z| ® be)}et=
= CB(H)® 4,

where in the third equality we used the compact qiantum group axiom (4.18) and
in the last equality we applied (7.2). Thus, U extends to a unitary operator on
CB(H) ® A which has an inverse U~?.

Next, setting ¢’ = U™'s in (7.4) we have ¢*(U~'s) = (Uq)*s, which compared with
(3.2) shows that the Hermitian conjugate of U is just U* = U~'. Thus U is a (uni-
tary) element in M(CB(H) @ A).

Now, in order to complete the explanation of Definition 7.1 we have still to show
the representation property (6.3). Take £ € A’ and compute (id ® {)U (#(a)Q).
Since in (7.1) the action of the operator U can be regarded as a multiplication in

M(CB(H)) = B(H) we can substitute for ¢ the unity I, obtaining
Un(a)|Q)(z| © 14 = (7 ®id)A(a)|Q){z| ® 4 -
Next since (id ® £)U € M(CB(H)) = B(H), then acting with id ® £ we obtain
(d@&UT(a)|A(z| = (7 ®EA(a)|Q) (2| = 7(id ® £)A(a)[Q)(|
= w(€xa)|Qz],

which shows that
(d@&)Un(a)t =7(€ *a)f) . (7.3)

Therefore, for arbitrary £;,£; € A’ applying id ® & ® &; to L.h.s. (respectively, r.h.s.)
of (6.5), we have

(d® & ©&)dO AU = (48 (& *&)Ur(@)R = (6 * &) * a)0

7(€ * (&2 % a))Q (7.6)

and

(ld & fl ® fz)U12U137l'(a)Q = (ld D él)U(ld ® 52)U7T((1)Q = 7T(€1 * (52 * a))Q . (77)

This proofs that U is a unitary representation.

Remark 7.2 The left regular representation is similar but technically more compli-
cated; indeed it is simpler to introduce the left regular anti-representation. O
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The construction of right regular representation works also in the non-compact case
and U is ‘onto’, but one has to employ weights rather than Haar measures and. so
far, to postulate, rather than deduce, its strong right invariance.

In the classical situation, H = L*(G), 2 = 1 (a constant function), m(a) is just a
multiplication by a, {;a = a(g) and U, = (id ® §;) € B(H). Then, (7.5) with { = &,

shows that U, : @ — {, * a and

(Uga)(g') = (id ® &)A(a)(g') = Ala)(g,9") = a(gg) ,
i.e. Uy is just the right shift by g. -

8 Decomposition theory

We shall investigate now unitary representations of compact quantum groups in more
detail. We have quantum analogues of such classical concepts like a direct sum.
decomposability, irreducibility of representations, etc. Let U; € M(CB(H;) & A)
and U, € M(CB(H;) ® A) be two strongly continuous unitary representations of a
compact quantum group G = (A, A) in H; and Hs, respectively. The Hilbert spaces
H,, H, and H, & H, can be connected by the following canonical embedings and
projections.

Hy % Hy @ H, 3 Hy
H, 2 H o H, 3 H,.
We define a direct sum of representations U; and U, by
Uy ® Uz = (1 @ DU (71 @ I) + (12 @ N)Us(m2 ® I).
It follows that U; & U, € M(CB(H; & H;) ® A). Moreover it is unitary and satisfies
representation property (6.5).

An important role is played by intertwining operator (intertwiner for short).

Definition 8.1 Let U; € M(CB(H1) ® A) and U, € M(CB(H2) ® A) be two strong
continuous unitary representations of a compact quantum group A in H; and H,.
respectively. A linear operator T from Hy to H, is an intertwiner between U; and [
i

(TRIU, =U,(TRI) .

We say that U, and U, are equivalent representations iff there exists invertible inter-
twiner between them.

Let now K be a Hilbert subspace of a Hilbert space H and U be a strongly continuous
unitary representation of a compact quantum group G in H. Consider sequence

- P ..
K5 HSK,
where ¢ and P are canonical inclusion and projection, respectively.
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Definition 8.2 We say that K is a U-invariant subspace of H iff P intertwines [
with itself, i.e.
(PeU=UPRI).

In such case Ux = (P @ I)U(¢ @ I) is called a subrepresentation of U in K.

Remark 8.3 It can be seen that Ux € M(CB(K) ® A) is a strongly continuous
unitary representation in K. &

Definition 8.4 A strongly continuous unitary representation U of G is called irre-
ducible iff the only U-invariant subspaces are {0} and H.

Consider now an operator T that intertwines a strongly continuous unitary representa-
tion U of G with itself. Suppose that T has a discrete spectral decomposition with dis-
tinct eigenvalues. This means that 7' = 3> A'P; where P, : H — H and PP, = 6;.P,.
We claim that spaces Hy = P, H are invariant subspaces for U and define subrepre-
sentations Uy, of U. Indeed, given T we easily see that its positive powers T* as well
as polynomials w(T') are intertwiners for U. Moreover, it follows from the properties
of P;s that any polynomial w(T') has the form w(T) = S w(\)P;. Thus if we take a
polynomial w;(A) such that w;(A\') = §ji we find that (w;(T) Q@ I)U = U(w;(T) & I).
Comparing this with w;(T") = 3 w;(A*)P; = P; we see that all P; are intertwiners for
U. Thus, all Uy, define subrepresentations of U. It further follows that U is a direct
sum of these (sub)representations. We denote this fact by U = 3% Uy, .

Given z € H we introduce a useful operator @) acting on H by

Q= (d® hU(|z){z| @ U™ (8.1)
It is easy to see that CB(H) 3 @ > 0. Moreover,
UQe NHU* = (1d®id® h)(UnUis(|z){(z| @ I @ I)ULUT,)
= ([d®id® hr)(id @ A)(U(|z){(z| ® )U™)
= ([dh)U(lz){z|@NU)=Q&I.

i.e. @ intertwines U with U itself. Consequently, the eigenspaces of @ are invariant
under the action of U. Since @) is a compact operator, the eigenspaces corresponding
to positive eigenvalues are finite dimensional.

Remark 8.5 In the classical case
Q= [ Upla)(z|U; dg
and it is a priori not obvious why it is compact. But in fact, it is even trace class

with trace equal to the normalization of the Haar measure. In the quantum case Q
is not trace class, in general. <&
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Now, we show that we can choose such z that @ is non-vanishing. Take an orthonor-
mal basis (n),_,,  in H. Then

i: |zn){(Tn| — 1

for N — oo in the *-strong topology (strict topology in M(CB(H))). Since the
multiplication is continuous with respect to strict topology on bounded sets

x

0[S lenlfanl 01] 0

n=1

converges (for N — o) to I € M(CB(H) ® A) strictly and

N

(id@ h)U [Z |zn) (] ®1] U* (8.2)
n=1

converges to I € M(CB(H)) strictly. Therefore at least one term in (8.2) must be

nonzero and Jz € H such that Q # 0.

Clearly, given a representation U of a compact quantum group G = (A,A) in H
we can not ‘evaluate it at a point’. But, since there exist measures, we can instead
smear U, obtaining an operator in B(H ). For instance the classical Fourier transform

o 4]

FIk) = [ 7 f(z)de (

can be thought of as a smearing of a (one dimensional) unitary representation e+
by the Haar measure dz on R.

Now, if A is the Haar measure on G let for any a € A the product ke be defined by
ha(b) = h(ab). (Similarly, we have ah defined by ah(b) = h(ba); in general ah # ha.
For any functional £ € A’ the products £a and af are defined in an analogous way).
Then, corresponding to (8.3), the quantum Fourier transform is

3)

Fu(a) = (id® ha)U™ . (8.4)
We introduce

By = {Fu(a) | a € A}, (8.

and formulate without proof the following results.

[os]
Ot
P

Proposition 8.6

i) By is a C*~algebra

i) An operator X € B(H) intertwines U with itself if and only if X commutes with
all elements of By.

i) If U is finite dimensional irreducible, By = B(H).

28



Remark 8.7 Proposition 8.6 iii) means that for a unitary irreducible (matrix) repre-
sentation U, matrix elements ujx (j,k =1,2... N) are linearly independent elements
of A. Otherwise the corresponding By would not yield all the N x N matrices in
H = C". Similarly, if U is reducible and U = U** @ U~~, where Ut* and U™~ are
inequivalent irreducible of dimension N; and N; respectively, then By is an algebra
of block diagonal matrices with two blocks consisting of all the numerical matrices of
dimension N; and N;. Thus, u;"f (7,k=1,2...N;y) and u;, (5,k =1,2...1N;) are
linearly independent. <

Let now U%, o € G be a complete family of all pairwise inequivalent unitary irre-
ducible representations of (7, ie. each representation enters only once and any unitary
irreducible representation of G is equivalent to U* for some « € G. Then, as a result.
Uy, ¢ € é; k,l =1,2... N, are linearly independent elements of A.

We state now a basic theorem:

Theorem 8.8 IfU is strong continuous unitary representation of a compact quantum
group G then U = Y8 Uy, where Uy, are finite dimensional representations

Proof. Take a non-vanishing @ of the form (8.1). Let P be the spectral projection of
@ corresponding to some strictly positive eigenvalue. Clearly, P is a non-vanishing
finite-rank projector which intertwines U with U itself. Moreover, PH is a finite-
dimensional subspace of H, H = PH&® (I — P)H, PH and (I — P)H are U-invariant
and U = U; & U,;, where U; and U, are restrictions of U to PH and (I — P)H
respectively. Using the transfinite induction we obtain the desired decomposition.

—

(-
It is a straightforward corollary of Theorem 8.8 that the irreducible strongly con-
tinuous unitary representations of compact quantum groups are necessarily finite
dimensional. As a matter of fact, it is interesting to know if in Theorem 8.8 the
adjective ‘finite dimensional’ can be replaced by ‘irreducible’ (such a much stronger
result holds in the classical theory of compact groups). For that, it would be enough
that the orthogonal complement of an invariant subspace is also invariant. This is
unfortunately not always the case as the following example shows.

Example 8.9 Take a unitary U € B(C") ® A = Mat ,xn(A) of the block form

utt Ut- .
U= ( ) U__). (8.6)
If A= C then necessarily Ut~ = 0, but not in general. For instance let H be Hilbert
space with orthonormal basis e; labeled by ‘integers plus a half’, i.e. k — % € Z.
Denoting H* and H~ the Hilbert spaces spanned by e; with ¥ > 1 and & < —1.
respectively, we have a decomposition H = H* @ H~. Next, identifying H~ with H~
by e_r — ek, to any unitary operator in B(H) we can associate a unitary element
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of Mat ox2( B(H™)). In particular to a ‘shift by one’, ex +— exy,, there corresponds a
unitary element U of the form (8.6) with the following blocks

1

U++€k = €k+1, k 2 5
3
U e: = e1, Ut7er =0, k>=
2 2 2

U e = 0, U—‘6k=6k_1, kZ

[ SRR

1
2

Thus, in B(H*) ® B(H™) the first copy of B(H™) is an invariant subspace while its
orthogonal complement (the second copy of B(H1)) is not. &

Despite this counterexample, using Theorem 8.6 and the fact that any finite dimen-
sional representation of a C*-algebra decomposes into a direct sum of irreducible
representations, one can nevertheless prove the desired stronger version of Theorem

8.8.

Theorem 8.10 Any unitary representation U of a compact quantum group G =
(A, A) is a direct sum of finite dimensional irreducible unitary representations.

9 Compact quantum group versus Hopf algebra

We recall the notion of a Hopf *-algebra.

Definition 9.1 Let A be a unital *-algebra with a multiplication m : A @, A — A.
Let A: A — AR A be a unital =-algebra homomorphism such that

(AQid)o A =(id®A)o A (coassociativity).

A pair (A, A) is called a Hopf *-algebra if there exist linear mappings € : A — C and
S: A — A such that for any a € A,

(e®id)A(a) = a (9.1)
(id®e)Aa) =a (9.2)
m(S ®id)A(a) = e(a)] (9.3)
m(id ® S)A(a) = e(a)l . (9.4)

Remark 9.2 A commutative x—algebra of polynomial functions on matrix group G
equipped with m, A ¢, 5 as in (4.7) - (4.10) provides us with such a structure.

The following three remarks are direct consequences of the definition.
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Remark 9.3 For a given Hopf —algebra ¢ (called co-unit) and S (called co-inverse
or antipode) are uniquely determined. L

Co-unit ¢ is a unital *—algebra homomorphism, ie. €(a*) = ¢(a), where bar denotes
the complex conjugation in C).

Co-inverse S is anti-multiplicative, anti-co-multiplicative and satisfies

S(S(a*)) =a
for any a € A. O
We can state now an important result.

Theorem 9.4 Let A be the set of all finite linear combinations of matriz elements
of all unitary matriz representations of a compact quantum group G = (A, A). Then
i) A is a dense *-subalgebra of A

it) A(A) C ARag A

iii) (A, Ala) is a Hopf *-algebra.

Proof. To prove that A is dense in A we essentially have to show that G has suffi-
ciently many representations. As in the classical case, this follows from the properties
of the right regular representation of G. Using (7.5) we have

(R(B)2 | (1d ® E)Un(a)0) = h(b"(€ %)) = h(B7)(€ % ) = E(a* ht").
So, the matrix elements of U are just
((0)Q | Ur(a)) = a* hb™ = (hb* ® id)A(a) = (R @ id)(b" ® I)A(a) .

The set of such elements is dense in A due to the axiom (4.12).

Let (U%),ce be the complete family of pairwise inequivalent irreducible unitary rep-
resentations of G (see Remark 8.7). Let N, be the dimension of U®. To show that A
is closed under the multiplication we observe that given U and U?, we have

Na Nﬁ
Alugud,) = > Y ugul, @ uiul,. (9.5)
r=1 s=1

Thus the product of two matrix elements of two representations is a matrix element
of another matrix representation /7. It further follows that U~ is unitary.

To complete the proof of i) we still need to show that if « € G then Vk,I u$,~ € A.
Using the first equation of (6.2) (unitarity of U?®), by applying the Haar measure. we
get

Na
> h(uGuy”) = Noh(I) = N,.
k=1

We already know that A is dense in A. Therefore there exist 8 € G and integers
1 £ m,n < Ng such that

Enp = h(ugub,,) #0 (9.6)
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Applying id ® h to the both sides of (9.5) and using (5.2) we obtain

Eor = Zuz,ufnsEs, .
rs
Contracting from the left with uf.”, we get

Z Enug™=> ul E,, (9.7)
k

s

for any m=1,2,...Ngand n =1,2,... N,. -

Let A (r = 1,2,...N,) be complex numbers such that 3, £, A, = 0 for any
s=1,2,...Ng. Then ¥ Fnruf.*A, = 0 and using the linear independence of the
elements u$; (cf. Remark 8.7) and relation (9.6) we get A, = 0 for all r. It shows
that Rank E = N,. Similarly if u,, (m = 1,2,... Ng) are complex numbers such that
Yo bm B = 0 for any k =1,2,... N,, then 3, pmuisEsr = 0 and p,, = 0 for all
m. Therefore Rank F = Ng.

In this way we have shown that E is a quadratic invertible matrix and (9.7) implies
that

ug,” = Y (Bl B (9.3)

for any k,7r =1,2,... N,.

Point 1) is straightforward.

Point it). We easily verify on uf, that A|4 is a co-product in A due to Definition
6.1. To equip ‘A with a *~Hopf algebra structure we need still the co-unit and the
co-inverse. These are defined on the independent generators uf , by

€ul) = bu (9.9)
S(u) = ul” (9.10)

for any a € G and k,]=1,2,...N,. We extend these relations to any a € A by the
requirement that ¢ and S have the properties mentioned in Remarks 9.3." One can
easily check relations (9.1) — (9.4).

0

Remark 9.5 It can be shown that any unitary irreducible representation U* appears
N,-times in the right regular representation U. &

10 Example: SU,(2)

Given a parameter p € [—1,1] let A be a C*-algebra with unit I generated by two
elements «, v satisfying the commutation relations

ay = pya, oy =pyia, Yy =97, afa+yy =1, ac”+ptyty=1. (10.1)

More precise definition of A goes as follows. Consider the free (non-commutative)
*-algebra with unity Cle,7,a",7*]] generated by symbols a,7. We say that a
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*—representation m : Cl[ea,7v,a",v"]] — B(H) on a Hilbert space H is admissible
if the operators = (), w(7) satisfy the above commutation relations. Then for any
a € Clla, 7,0, 77]] we set

llall = sup{fi=(a)][} , (10.2)

where 7 runs over all admissible representations of Cl[[a, 7, *,7]]. Clearly, ||a]| < oo
and || || is a C*-semi-norm. Thus the set

N ={a € Clla,7,a",77]] | la]| = 0} (10.3)

is a two-sided ideal in C[[a,v,a".~v7]] and the semi-norm (10.2) provides a C*-norm
on the quotient algebra 4 = Cl[a, v, a*,v*]]/N. Then A is just the completion of A4
with respect to this norm.

Remark 10.1 A is a C*-algebra with unity and two distinguished elements a.~
satisfying relations (10.1) (We use the same symbols o, v to denote the N-equivalence
class of o, in A). The *-subalgebra A generated by a,~ is dense in A. For any two
o,y € B(H) satisfying the relations (10.1) there exists exactly one representation
7 : A — B(H) such that 7(a) = o’ and 7(y) = ~'. O

We introduce a representation = of A in a Hilbert space with an orthonormal basis
Yok, n=0,1,2..; k€Z, by

T(Q) ¥k = \/1 — B2 Pn_1k
7r(7)¢n,k = #n ¢n,k+1 (104)

for —1 < g < 1, and by

() = VI =12 o1

Wz(?’)zs'«[‘n.k = tu" Yrrs1 ‘ (10.5)
for p = 1.
Using the commutation relations 10.1 it is not difficult to guess that
afymayn for k=0,1,2... X
hemn = { (=) kymy*n for k= —1,-2... , (10.6)

where k € Z and m,n = 0,1,2... form a (linear) basis in .A. Indeed, one computes
that if ¢ = 3400 Ckmn@imn 1s a (finite) sum with coefficients ¢gmn € C, such that at
least one ¢xmn # 0, then

Y

c — Hmr—wo ﬂsr (¢r+k,s—2n I W(C)d’r,o) for lﬂ', <l
TR limg o t*(Vk s—2n | Te(C)tb0,0) for p = +1

where s is the smallest integer such that cimn # 0, for some k, m, n satisfying m+n =
s. Thus ¢ can not be zero and the linear independence follows.
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Remark 10.2 The ideal NV actually coincides with the ideal N’ generated by the fol-
lowing seven elements oy — pya, ay* — py o, vy — Y™, y&* — pa*y, Yo — patv.
a*a+7"y —1 and aa® + p?y*y — 1. In fact such elements are mapped to 0 by any
admissible representation and thus N’ C N. Conversely, let T be a subspace consist-
ing of all linear combinations of the basis (10.6). Since any element of C[[e, v, a™. ~"]]
is equivalent modulo N’ to some element of 7' we have Cl[a,v,a™,7*]] = T + V.
Also, TN N = {0} since no nonzero element of T is mapped to 0 by by the canonical
projection onto C[[a, v, a*,77]]/N. Hence,fora=t+n € N, witht € T,n € N we
havet =a—n € TN N =0 and consequently a =n € N'. &

Now, the following theorem shows that for g € [~1,1], u # 0, a pair (A,u), where

u= (a,\_éw) € Mat ,,,(C)® 4, (10.7)
s

is a quantum matrix group denoted (in the sense of [7], where terminology ‘matrix
pseudogroup’ is used).

Theorem 10.3 Given a parameter p € [—1,1] let A be a C*-algebra with unit I
generated by two elements o, satisfying the commutation relations (10.1) and let u
be given by (10.7). Then

i) The *-algebra A generated by «, v is dense in A.

it) There exist a C*-algebra homomorphism (co-product)

A A- AR A

such that
(dAu=u®.u, (10.8)

where @, denotes the usual product of matrices in which the product of matriz ele-
ments ts replaced by their tensor product
iti) u is an invertible element of Mat 252(C) ® A. If pp # 0 then there exists a linear
anti-multiplicative mapping (co-inverse)

S:A— A

such that S(S(a*)*) = a, Ya € A and
(id ® S)u = u? . (10.9)

Proof. The statement i) is covered by Remark 10.1. To prove the statement ii) notice
that (10.8) is equivalent to
Ala)=a®Q@a—pupy*"®v, AY)=7Qa+a*"@7. (10.10)

Now in order to show the existence of A assume that A C B(H). Then, one verifies
that the operators occurring on the r.h.s of equations (10.10) satisfy the relations
(10.1). Thus by the last statement of Remark 10.1, there exists an admissible repre-
sentation 7 = A : A — B(H ® H). Clearly, the image A(A) is a C*-subalgebra of
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AR AC B(H®H).
To prove iii) one checks directly that u is a unitary element of Mat 242(C) @ A. Thus

n~1:u*=(a’7 )
—HY, &

and (10.9) becomes equivalent to
S(a)=a", S(=pv7) =77, S(v) = —py, S(@)=a. ~ (10.11)

Assume p # 0. In order to show the existence of a linear anti-multiplicative mapping
S: A— A, consider o = o, v = —py, o =, ¥ = —1/p v*. Regarded as ele-
ments of A°?, which is isomorphic to A as far as the linear structure is concerned but
has the opposite product (in the reversed order with respect to A), they satisfy the
relations corresponding to the ideal N’ of Remark 10.2. Thus, the linear multiplica-
tive mapping S : [[a,7, @*,7*]] — A% defined by sending a,~, a*,v* respectively to
o',y e,y (such S exists since C[[a, 7, a*,7*]] is free) passes to the quotient modulo
N’ = N and thus defines an anti-multiplicative mapping S : A — A°? satisfying

S(a)y=a", S(—=py") =7", S(v) = —uv, S() =< . (10.12)

Since (10.11) coincide with (10.12) and an anti-multiplicative mapping S : A — A%
corresponds to a multiplicative mapping S : 4 — A (which in our case satisfies

S(S(a*)*) = a, Ya € A) we have shown the existence of the co-inverse S.
D

Remark 10.4 The above quantum matrix group may be defined also for |g| > 1.
but the transformation g — 1/u, @ — a* and ¥ — —p~, shows that it is isomorphic
to the one with |u] < 1. O

The case g — 1 in SU,(2) is very special. Note that for 4 =1 relations (10.1) imply
that the corresponding algebra A is commutative. It therefore defines a compact
group G with a multiplication .. Explicitly, given A we have a space

G = {(id ® x)u

X 1is a character of the algebra A}

whose elements are 2 X 2 matrices. G with the usual multiplication of matrices forms
a group, isomorphic to SU(2). To see this, observe that since any character y of A
satisfies x(a*) = x(a), x(7*) = x(v) and |x(a)|* + |x(7)]? = 1 then the matrix

: _ (x(e),—x(v)
(id®xu= ( () x(@) )

is unitary and unimodular. To show that any element of SU(2) is of the above form
we take a generic element —
a’a _‘7, :
g= ( o ) (10.13)
of SU(2). Its matrix elements o', 7" are complex numbers such that |&/|* + |¥|? = 1.
Thus they satisfy relations (10.1) for 4 = 1. According to Remark 10.1 we then
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have a 1-dimensional representation (i.e. character) x of A such that x(«) = o’ and
x(v) =7'. Then (id® x)u = g, which proofs the isomorphism between G and SU(2).
Knowing that G = SU(2), we easily identify a quantum matrix group A for p = 1
with the C*—algebra C(SU(2)) of all continuous functions on the group SU(2). in
which co-product is defined by (Aa)(g1, 92) = a(g192), where a € C(SU(2)) (compare
with Example 1.8). These observations explain in which sense the quantum matrix
group (A, u) provides a deformation of a classical group SU(2).

We claim that the quantum matrix group (A, u) described above can be regarded as

a compact quantum group SU,(2) = (A,A) in the sense of Definition 4.3. The

only points which require a verification are (4.12) and (4.13). We demonstrate

them by showing that the left hand side of (4.12) and of (4.13) contain b @ a for
(2)

arbitrary a,b € A. In fact, by taking b; = b S(agl)) and a; = a;’ we obtain

b®a = Y ;(b; @ I)A(a;). Analogously, by taking b, = a S‘l(bg-Q)) and a; = bgl)
we obtain b® a = 3;(I @ b;)A(a;), see Theorem 4.9 of [7]. (Here, for a € A we used
the notation A(a) = 3; agl) ® ag-g) and similarly for b).

It is also easy to check that u given by (10.7) is an (irreducible) two-dimensional
unitary matrix representation of SU,(2).

It turns out that the Haar measure on SU,(2) is defined on the basis (10.6) by
(1—u?)

(1 =)

where 6 is the Kronecker symbol. With the help of representation (10.4) the Haar

measure can be also written as

h(a) = (1—p?) i w2 (no | ®(a)Pnp) - (10.15)

n=0

h(@imn) = k0 Smn (10.14)

From this, it can be inferred that the representation #(a) = @;L, 7(a) acting on
H = @;2, H, is equivalent to the GNS representation associated with the state A.
The only point to be checked is the cyclicity of @ = (1—p?) @2, p™no in H. For

this purpose let P be the projection onto #(A)2. Then P#(a)P = 7(a)P. Replacing
a by a* we have also P7(a)P = P#(a). Thus

[P,7(a)] =0, Va€cA. (10.16)

We introduce the components P;; of P, #(a);; = é;;m(a) of #(a) and Q; of O with
respect to the decomposition H = @52, H. Then from (10.16) it follows that

[P;j,ﬂ-(a)]=0, Ya€ A,

ie. Pj; are in the commutant of 7(A). Now, note that the representation (10.4) is
reducible. In fact, using the Fourier transform between the first factor of (%(Z)®[*(N)
and of L?(S") ® I*(N), it can be seen that

ﬂ—:@ﬂ—)\7

[A=1
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where the irreducible representations 7 are given by

Wk(a)d)n =¥y 1- #21; d)n—l

TA(Vn = A" Yn . (10.17)

Thus, P;; must have the form Pjjinc = 3, pfj—ez,bng, where pfj"g € C. Next, using
PQ = Q we get pfj“’g = 6;5. Thus P;; = 6;;1,ie. P=11n H, and Q is cyclic.

More details can be found in [6, 7]. -
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