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INTRODUCTION 

In this paper we will study the structure of analytic continuation of the solutions of the following 
differential equation 

Yx:r: =! (! + _1_ + _1_) y;- (!_ +-1- + _1_) Y:r: 
2 y y-1 y-x x x-1 y-x 

+ ! y(y - l)(y - x) [(2µ _ l) 2 + x(x - 1)] 
2 x2(x-1)2 (y-x)2 ' 

PVJµ 

in the complex plane, µ is an arbitrary complex parameter satisfying the condition 2µ r/: ?l.. 
This is a particular case of the general Painleve VI equation (see [Ince]) PVI(a, ,B, ~,, o), depending on 

four parameters a, ,B, 'Y, o. The equation PVIµ is specified by the following choice of the parameters 

(2µ - 1)2 
a=----

2 

The general solution y(x; c1, c2) of PVI(a, ,B, 1, o) satisfies the following two important properties (see [Pain]): 
1) The solution y(x; c1 , c2 ) can be analytically continued to a meromorphic function on the universal 

covering of(\ {O, 1, oo }. 
2) For generic values of the integration constants c1 ,c2 and of the parameters a,,B,1,0 1 the solution 

y(x; c1 , c2 ) can not be expressed via elementary or classical transcendental functions. 

The first claim is the so-called Painleve property (see below) of the equation PVI(o, ,B, '"'f, o). The points 
0,1,oo are called critical points of the equation. The solutions y(x;c1 ,c2) have complicated singularities 
at the critical points. The position of these complicated singularities does not depend on the choice of the 
particular solution (the so-called fixed singularities). All the other singularities are poles, whose position 
depends on the integration constants (the so-called movable singularities). 

All the second order ordinary differential equations of the type: 

Yxx = 'R(x, y, Yx), 

where 'R is rational in Y:r: and meromorphic in x and y and satisfies the Painleve property of absence of 
movable critical singularities, were classified by Painleve and Gambier (see [Pain], and [Gamb]). Only six of 
these equations, which are given in the Painleve-Gambier list, satisfy the property 2), i.e. they can not be 
reduced to known differential equations for elementary and classical special functions. The PVI(a, ,B, /, J) is 
the most general equation of these six: all the others can be obtained from PVI (a, ,B, 'Y, o) by a confluence 
procedure (see [Ince] §14.4). 

We do not discuss here the various physical applications of particular solutions of the Painleve equations. 
We mention only the paper [Tod] where our PVIµ appears in the problem of the construction of self-dual 
Bianchi-type IX Einstein metrics, and the paper [Dub] where the same equation was used to classify the 
solutions of WDVV equation in 2D-topological field theories. 

The solutions of the six Painleve equations are called Painleve transcendents. This name could be 
misleading; indeed, for some particular values of (c1, C2 1 O!, ,8, '"'f, J), the solution y(x; C1, c2) can be expressed 
via classical functions. For example Picard (see in [Ok]) showed that the general solution of PVI(O, 0, 0, ~) 
can be expressed via elliptic functions, and, more recently, Hitchin [Hit] obtained the general solution of 
PVI(~, ~' ~' i) in terms of the Jacobi theta-functions (see also [Man]). Particular examples of classical 
solutions, that can be expressed via hyperge'ometric functions, of PVI were first constructed by Lukashevich 
[Luka]. A general approach to study the classical solutions of PVI was proposed by Okamoto (see [Okl][Ok2]). 
One of the main tools of this approach is the symmetry group of PVI: the particular solutions are those being 
invariant with respect to some symmetry of PVL The symmetries act in a non trivial way on the space of 
the parameters (a,/3, 1, o). Okamoto described the fundamental region of the action of this symmetry group 
and showed that all the classical solutions known at that moment, fit into the boundary of this fundamental 
region. 
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The theory of the classical solutions of the Painleve equations was developed by Umemura and \Vatanabe 
([Um], [Uml], [Um2], [Um3], [Wat]); in particular, all the one-parameter families of classical solutions of 
PVI were classified. \Vatanabe also proved that, loosely speaking, all the other classical solutions of PVI 
(i.e. not belonging to the one-parameter families) could only be given by algebraic functions. 

Examples of algebraic solutions were found in [Hitl], for PVI(~, -~, 2h- 1 t - 2l 2 ), for an arbitrary 
integer k. Other examples for PVIµ \vere constructed in [Dub]. They turn out to be related to the group of 
symmetries of the regular polyhedra in the three dimensional space. 

The main aim of our work is to elaborate a tool to classify all the algebraic solutions of the Painleve 
VI equation (for the other five Painleve equations, all algebraic solutions have already been classified (see 
[Kit], [Watl], [Mur] and [Murl]). Our idea is very close to the main idea of the classical paper of Schwartz 
(see [Schw]) devoted to the classification of the algebraic solutions of the Gauss hypergeometric equation. 
Let y(x; Ct, c2 ) be a branch of a solution of PVI. The analytic continuation of this branch along any closed 
path I avoiding the singularities, is a new branch y( x; cJ., c;), with new integration constants cJ., c;. Since 
all the singularities of the solution on a:\ { 0, 1, oo} are poles, the result of the analytic continuation depends 
only on the homotopy class of the loop I on the Riemann sphere with three punctures. As a consequence 
the structure of the analytic continuation is described by an action of the fundamental group: 

(0.1) 

To classify all the algebraic solutions of Painleve VI, all the finite orbits of this action must be classified. 
Our problem is more involved than the Schwartz's linear analogue of it, because (0.1) is not a linear 

representation, but a non-linear action of the fundamental group. i\Ioreover our problem is also more involved 
than the problem of the classification of the algebraic solutions of the other five Painleve equations; in fact, 
the PVI is the only equation on the list having non-abelian fundamental group of complement of the critical 
locus. 

Although the main idea seems to work for the general PVI( a, /3, /, o), we managed to completely describe 
the action (0.1), and to solve the problem of the classification of the algebraic solutions, only for the particular 
one-parameter family PVIµ. Nevertheless, we have decided to publish these results separately, postponing 
the investigation of the general case to another paper (in an effort to keep the paper within a reasonable 
size, we also postpone the study of the resonant case 2µ E :Z). One of the motivations for the present 
publication is a nice geometrical interpretation of the structure of the analytic continuation (O. l), that seems 
to disappear in the general PVI equation. 

vVe now outline the main results and describe the structure of the paper. Let us introduce a class of 
solutions of PVIµ a-priori containing all the algebraic solutions. We say that a branch of a solution y(x; Ct, c2 ) 

has critical behaviour of algebraic type, ifthere exist three real numbers lo, lt, l 00 and three non-zero complex 
numbers ao, at, a 00 , such that 

{ 

aox10 (1 + O(x')), 
y(x) = 1 - at(l - x)1

' (1+0((1 - x)')), 
a 00 xt-loo (1 + O(x-')), 

as x--+ 0, 

as x--+ 1, 

as x--+ oo, 

(0.2) 

where E. > 0 is small enough. \Ve show that there exists a three-parameter family of solutions of PVIµ 
with critical behaviour of algebraic type, whereµ itself is a function of l0 , lt, l 00 • Of course, for an algebraic 
solution, the indices lo, 11 , l00 must be rational. 

It turns out that the three-parameter family of solutions (0.2) is closed under the analytic continuation 
(0.1), if and only ifµ is real. One of our main results is the parameterisation of the solutions (0.2) by ordered 
triples of planes in the three dimensional Euclidean space(see section 1.4). In particular, the indices l0 ,l1 ,l00 

are related to the angles 1rTo, 1rT1, 7!"r 00 between the planes: 

{ 

2ri 
l· -

I - 2 - 21j 

l"f 0 1 < rj < -- 2 
1 

if - < r· < 1 2 - I 

3 

i = 0, 1, 00 



The parameter µ is determined within the ambiguityµ>--+±µ+ n, n E 71.., by the equation: 

sin2 r.µ = cos2 r.ro + cos2 r.r1 + cos2 1ir00 + 2 cos r.ro cos r.r1 cos r.r00 • 

This ambiguity and the one due to the reordering of the planes can be absorbed by the symmetries of PVIµ 
described in section 1.2. 

vVe compute the analytic continuation (0.1) in terms of some elementary operations on the planes. This 
computation leads to prove that, for an algebraic solution of PVIµ, the reflections in the planes must generate 
the symmetry group of a regular polyhedron in IR3

. A main result of this paper in the classification theorem 
of all algebraic solutions of PVIµ. They are in one-to-one correspondence, modulo the symmetries of the 
equations described in section 1.2, with the reciprocal pairs of the three-dimensional regular polyhedra and 
star-polyhedra (the description of the star-polyhedra can be found in [Cox]). The solutions corresponding to 
the regular tetrahedron, cube and icosahedron are the ones obtained in [Dub]. The solutions corresponding 
to the regular great icosahedron, and regular great dodecahedron are new. Our method allows not only to 
classify the solutions, but also to obtain the explicit formulae, as we have done in section 2.4. 

The main tool to obtain these results is the isomonodromy deformation method (see [Fuchs], [Sch] and 
[JMU], [ItN], [FIN]). The Painleve VI is represented as the equation of isomonodromy deformation of the 
auxiliary Fuchsian system 

dY = (Ao+~+~) Y. 
dz z z - 1 z - x 

(0.3) 

For PVIµ the 2 x 2 matrices A 0 , A 1 , Ax are nilpotent and 

(
-µ 0) Ao + A1 + Ax = 0 µ . 

The entries of the matrices A; are complicated expressions of x, y, Yx and of some quadrature J R(x, y)dx. 
The monodromy of (0.3) remains constant if and only if y = y(x) satisfies PVI. Thus the solutions of PVIµ 
are parameterised by the monodromy data of the Fuchsian system (0.3) (see section 1.1). In section 1.2, 
we compute the structure of the analytic continuation in terms of the monodromy data. On this basis, in 
section 1.3, we classify all the monodromy data of the algebraic solutions of PVIµ. To this end we classify 
all the rational solutions of certain trigonometric equations using the method of an old paper by Gordan 
(see [Gor]). In section 1.4, we parameterise the monodromy data of PVIµ, by ordered triples of planes in the 
three-dimensional space. The structure of the analytic continuation of the solutions of PVIµ is reformulated 
in terms of a certain action of the braid group B3 on the triples of planes. The group G generated by the 
reflections with respect to the planes remains unchanged. For the algebraic solutions, the group G turns 
out to coincide with the symmetry group of one of the regular polyhedra in the three-dimensional Euclidean 
space. We give also another proof, suggested by E. Vinberg, of this result. Here, we also establish that the 
class of solutions of PVIµ parameterised by triples of planes in the three dimensional Euclidean space is 
invariant with respect to the analytic continuation. 

In the second part of the paper, we identify this class of solutions of PVIµ with the class of solutions 
having critical behaviour of algebraic type (0.2). In section 2.1, we prove that the solution y(x) of the form 
(0.2), is uniquely determined by its asymptotic behaviour near one of the critical points, i.e. by any of the 
pairs ( ao, lo), (a1, li), ( a 00 ,l00 ) defining the critical behaviour. In particular, we prove that, for an algebraic 
solution of PVIµ, the indices lo, l1, /00 must satisfy: 

0 < l; :::; 1, i = 0, 1, co. 

To derive the connection formulae establishing the relations between these pairs, we use (see section 2.3) the 
properly adapted method of Jimbo (see [Jim]). This method allows to express the monodromy data of the 
auxiliary Fuchsian system (0.3), in terms of the parameters (ao,lo), (a1,l1) or (a00 ,l00 ). For convenience of 
the reader, and also due to some differences between the assumptions of Jimbo's work and ours, we give a 
complete derivation of the connection formulae in section 2.2. Using the results of the sections 1.3 and 1.4, 
we complete the computation of the critical behaviour (0.2) for all the branches of the analytic continuation 
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of the solution. The result of this computation is used in section 2.4 to obtain the explicit formulae for the 
algebraic solutions of PVIµ. 

Remark. The resulting classification of the algebraic solutions of PVIµ is in striking similarity to the 
Schwartz's classification (see [Schw]) of the algebraic solutions of the hypergeometric equation. According to 
Schwartz, the algebraic solutions of the hypergeometric equation, considered modulo contiguity transforma-
tions, are of fifteen types (the first type consists of an infinite sequence of solutions). The rows (2-15) of the 
Schwartz's list (see, for example, the table in section 2.7.2 of [Schw]) correspond to the triples of generating 
reflections of the symmetry groups of regular polyhedra in the three-dimensional Euclidean space (we are 
grateful to E. Vinberg for bringing our attention to this point). The parameter>..,µ, v of the hypergeometric 
equation shown in the table are just the angles between the mirrors of the reflections, divided by r.. 

According to our classification, the algebraic solutions of PVIµ, considered modulo symmetries, are in 
one-to-one correspondence to the classes of equivalence of the triples of generating reflections in the symmetry 
groups ofregular polyhedra. the equivalence being defined by an action of the braid group Bs on the triples. 
We find that in the groups G = {-V(A3 ) and G = W(B3 ), respectively the symmetry groups of the regular 
tetrahedron and of the cu be or regular octahedron, there is only one equivalence class of triples of generating 
reflections; these are given respectively by the rows (2, 3) and by ( 4, 5) of the Schwartz's table. In the group 
W(H3 ) of symmetries of regular icosahedron or regular dodecahedron, there are three equivalence classes 
of triples of reflections which are given respectively by the rows (6, 8, 13), (11, 14, 15) and (7, 9, 10, 12) of 
the Schwartz's table and correspond to icosahedron, great icosahedron and great dodecahedron (or to their 
reciprocal pairs, see [Cox]). To establish the correspondence, we associate to a regular polyhedron a standard 
system of generating reflections in the following way: let H be the center of the polyhedron, 0 the center 
of a face, P a vertex of this face and Q the center of an edge of the same face through the vertex P. Then 
the reflections with respect to the planes HOP, HOQ and H PQ are the standard system of generators (see 
figure 7). 

Summarizing, we see that the list of all the algebraic solutions of PVIµ is obtained by folding of the 
list of Schwartz modulo the action of the braid group. This relation between the algebraic solutions of 
PVIµ and the algebraic hypergeometric functions looks to be surprising also from the point of view of the 
results of Watanabe (see [Wat]) who classified all the one-parameter families of classical solutions of PVIµ 
(essentially, all of them are given by hypergeometric functions). Using these results, one can easily check 
that our algebraic solutions do not belong to any of the one-parameter families of classical solutions of PVIµ. 
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1. STRUCTURE OF ANALYTIC CONTINUATION AND ALGEBRAIC SOLUTIONS OF 
PVIµ 

1.1. Painleve VI equation as isomonodromy deformation equation. 

In this section we show how the PVIµ equation can be reduced to the isomonodromy deformation 
equation of an auxiliary Fuchsian system (see (Sch], (JMU]); moreover we describe the parameterisation, 
essentially due to Schlesinger, of the solutions of the PVIµ equation by the monodromy data of such Fuchsian 
system. 

An auxiliary Fuchsian system and its monodromy data. Let us consider the following Fuchsian 
system with four regular singularities at z = u 1 , u 2, u3 , oo: 

d 
dz Y = A(z)Y, (1.1) 
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where 
A(=)=~+~+~, 

Z - U1 Z - U2 Z - Us 

A; being 2 x 2 matrices, and u1, u2 , us being pairwise distinct complex numbers. \Ve will see in the latter 
part of this section that for the particular case PVIµ of the Painleve VI equation, the matrices A; must 
satisfy the following conditions: 

and Aoo := -A1 - A2 - As = ( µO O ) . -µ (1.2) 

In this paper we consider the non-resonant case 2µ ~ Z. 
The solution Y(z) of the system (1.1) is a multi-valued analytic function in G:\{u1, u2, us}, and its 

multivaluedness is described by the so-called monodromy matrices. 
Let us briefly recall the definition of the monodromy matrices of the Fuchsian system (1.1). We have to 

fix a basis 11, 12, Afs of loops in the fundamental group, with base point at i: -+ oo, of the punctured Riemann 
sphere 

r.1 ('G\{u1,u2,us,oo},x), 
and to fix a fundamental matrix for the system (1.1). To fix the basis of the loops, we first perform some 
cuts between the singularities, namely we cut three parallel segments r.; between the point at infinity and 
each u;; the segments Ti; are ordered according to the order of the points u 1, u2 , u3 , as in the figure 1. Take 
Ii to be a simple closed curve starting and finishing at infinity, going around u; in positive direction (7; is 
oriented counter-clockwise, u; lies inside, while the other singular points lie outside) and not crossing the 
cuts r.;. Near oo we take every loop ii close to the cut Ti; as in the figure 1. 

' '' '' '' '' '' '' '' 

re, 

'' 

' '' '' '' '' '' '' '' '' '' '' '' '' '' '' ', , ' - ' ' 

'' '' '' '' '' '' , ... --....... ' ,' 
' ' 
\ U2 "", 

....... .,...,,' 

' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' -' ' 

11 'Y2 'Y3 

Fig.1. The cuts :ii between the singularities u; and the oriented loops Ii. 

Now, we fix the fundamental matrix Y00 (z) of the system (1.1) in such a way that 

as z-+ oo, (1.3) 

where zµ := eµ log~, with the choice of the principal branch of the logarithm, with the branch-cut along 
the common direction of r.1, r.2, r.s. Such a fundamental matrix Y00 (z) exists, due to the non-resonance 
condition, and it is uniquely determined. It can be analytically continued to a multivalued analytic function 
on the universal covering of{\ { u1, u2. u3, oo }. For any element I E r.1 ({°\ { u1, u2, us, oo }, x) we denote the 
result of the analytic continuation of Y00 (z) along the loop I by 1[Y00 (z)]. Then, 1[Y00 (z)] and Y00 (z) are 
two fundamental matrices in the neighborhood of infinity, so they must be related by the following relation: 

1[Y,,,(z)] = Y=(z)M.., 

for some constant invertible 2 x 2 matrix M.., depending only on the homotopy class of I· Particularly, the 
matrix M 00 := lvl-,

00 
is given by: 

.\/ _ (exp(2ir.µ) 0 ) 
• 

00 
- 0 exp(-2ir.µ) ' (1.4) 
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here loo is a loop around infinity in the clock-wise direction. 
The monodromy representation is an anti-homomorphism: 

ri1 ([\{u1,u2,u3,CX)},x) 
I 

(1.5) 

The matrices M; := NJ'"!,, where the~/;, i = 1, 2, 3, are the generators of the fundamental group, are called 
the monodromy matrices of the Fuchsian system (1.1), and generate the monodromy group of the system. 
Moreover, due to the fact that, in our particular case, the A; are nilpotent, they satisfy the follo,ving relations: 

det{JJ;) = 1, Tr( Mi)= 2, for i = 1, 2, 3, (1.6) 

with M; = 1 if and only if A; = 0. Since the loop bnz/3)- 1 is homo-topic to 1 00 , the following relation 
holds: 

(1.7) 

A simultaneous conjugation A; i-t D- 1 AiD, i = 1, 2, 3 of the coefficients A; of the Fuchsian system (1.1) by 
a diagonal matrix D, implies the same conjugation of the monodromy matrices M'Y i-t D- 1 AJ..,D, for any 
IE rr1 (~\{u1,u2,u3,oo},x). 

We now recall the definition of the connection matrices. Let us assume that M; f. 1, or equivalently 
A; f. 0, for every i = 1, 2, 3. We choose the fundamental matrices Y;(z) of the system (1.1), such that: 

Y;=G;(l+O(z-u;))(z-u;)J, as z-+u;, (1.8) 

where J is the Jordan normal form of A;, namely J = ( ~ ~), the invertible matrix G; is defined by 

A;= G;JG/1 , and the choice of the branch of log(z - u;) needed in the definition of 

J ( 1 log(z
1
- ui)) (= - u;) = 0 

is similar to the one above. The fundamental matrix Yi(z) is uniquely determined up to the ambiguity: 

Y;(z) i-t Y;(z)R;, 

where R; is any matrix commuting with J. 
Continuing, along, say, the right-hand-side of the cut rr;, the solution Y00 to a neighborhood of u;, we 

obtain another fundamental matrix around u;, that must be related to Y;(z) by: 

Y00 (z) = Y;(z)C;, (1.9) 

for some invertible matrix C;. The matrices C1, C2 , C3 are called connection matrices, and are related to the 
monodromy matrices as follows: 

i= 1,2,3. (1.10) 

Lemma 1.1. Given three matrices .\11 , N12 , M3 , M; f. 1 for every i = 1, 2, 3, satisfying the relation (1.6) 
and (1.7), then 

i) there exist three matrices Ci, C2, C3 satisfying the (1.10). Moreover they are uniquely determined by 
the matrices Mi, Mz, M3, up to the ambiguity C; >-+ Rj 1C;. 

ii) If the matrices M1 , M2 , M3, are the monodromy matrices of a Fuchsian system of the form (1.1), then 
any triple satisfying (1.10) can be realized as the connection matrices of the Fuchsian system itself 

Proof of the lemma 1.1. i) By the (1.6), the monodromy matrices have all the eigenvalues equal to one; 
moreover they can be reduced to the Jordan normal form because M; f. 1; namely there exists a matrix C; 
such that: 

M . _ 0--1 (1 
I - i Q 

7 

1) -1 C;; 



taking 

C . - ( 1 2r.i) c-. 
' - 0 1 ' 

we obtain the needed matrix. Two such matrices C; and C: give the same matrix M; if and only if C;- 1C: 
commutes with J, namely if and only if they are related by C; = Ri 1Cf. ii) Let us now assume that 
Cl, C2, C~ are the connection matrices of a Fuchsian system of the form (1.1), with monodromy matrices 
M1, A-h M3; id est Y 00 (z) = Y/(z)Gf, i = l, 2, 3, for some choice of the solutions Y{, Y2 and Y~ of the form 
(1.8). We have 

M; = (Ci)-1 exp(27riJ)Ci = C;- 1 exp(2r.iJ)C;, i=l,2,3. 
So the matrices R; = qc;-l must commute with J and, with respect to the new solutions Yi(z) = Y/(z)R;, 
the connection matrices are C1, C2 and C3. QDE 

Now we state the result about the correspondence between monodromy data and coefficients of the 
Fuchsian system, for a given set of poles: 

Lemma 1.2. Two Fuchsian systems (1.1) with the same poles u1, u2 and u3, and the same value ofµ, 
coincide if and only if they have the same monodromy matrices ll/fi, M2 , ll/!3 , with respect to the same basis 
of the loops /1, /2 and /3. 

Proof of the Lemma 1.2. Let yJ,1l(z) and YJ,2l(z) be the fundamental matrices of the form (1.3) of the two 
Fuchsian systems. Let us consider the following matrix: 

Y(z) := YJ,2l(z)YJ,1l(z)- 1 . 

Y(z) is an analytic function around infinity: 

Y(=)=l+o(~), asz-too. 

Since the monodromymatrices coincide. Y(z) is a single valued function on {\{u1,u2,u3}. Let us prove 
that Y ( z) is analytic also at the points u;. Due to the lemma 1.1, we can choose the fundamental matrices 
Y;<1l(z) and Y;.<2l(.;) in such a way that 

y,11J.\2 l(z) = y/1l,( 2l(z)C; i = 1, 2, 3. 

with the same connection matrices C;. Then near the point u;, 

Y(z) = G~2 l (1 + O(z - u;)) [cpl (1 + O(z - u;))J-
1 

This proves that Y(z) is an analytic function on all {and then, by the Liouville theorem 

Y(z) = 1, 

and the two Fuchsian systems must coincide. 

Corollary 1.1. Two Fucbsian systems (1.1) with the same poles u 1 , u2 and u3 , and the same rnlue ofµ, 
are conjugated 

i = 1, 2, 3, 

with a diagonal matrix D, if and only if their monodromy matrices M;(l) and M;(2
), with respect to the same 

basis of the loops /1, 12 and /3, are conjugated: 

i = 1, 2, 3. 

The isomonodromy deformations of the Fuchsian system (1.1) and the Painlevelequation PVIµ. 
We now want to deform the poles of the Fuchsian system keeping the monodromy fixed. The theory of these 
deformations is described by the following two results: 
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Theorem 1.1. Let l\;/1 , Af2 , 1W3 be the monodromy matrices of the Fuchsian system: 

d yo ( A~ Ag Ag ) yo - = --o+--o+---o ' dz Z - U1 Z - U2 = - U3 
(1.11) 

of the above form (1.2 ), with pair-wise distinct poles, and with respect to some basis 11 , 12, 13 of the loops 
in 1!'1 (G\{u~,ug,ug,oo},x). Then there exists a neighborhood UC 0::3 of the point u0 = (u~,.ug,ug) such 
that, for any u = (ui, u2, u3) EU, there exists a unique tripleA1(u), A2(u), A3(u) of analytic matrix valued 
functions such that: 

A;(u0 ) =A?, i = 1, 2, 3, 

and the monodromy matrices of the Fuchsian system 

i_y = A(z; u)Y = (A1(u) + A2(u) + A3(u)) Y, 
dz z - u1 = - u2 z - u3 

(1.12) 

with respect to the same basis1 11 , 12 , /3 of the loops, coincide with the given M 1 , M2, M 3 . The matrices 
A; ( u) are the solutions of the Cauchy problem with the initial data A? for the following Schlesinger equations: 

_!_A· - [A;,AJ] ·- ' OUj Ui - Uj 
(1.13) 

The solution Y!(z) of (1.11), with the form (1.3), can be, uniquely continued, for z ¢ U, to an analytic 
function 

Y00 (z,u), u EU, 

such that 
Yx(z, u0 ) = Y;;(=). 

This continuation is the local solution of the Cauchy problem with the initial data Y! for the following 
system, that is compatible to the system (1.12): 

~y = - .A;(u) Y. 
OU; = - U; 

Moreover the functions A;(u) and Y00 (z, u) can be continued analytically to global meromorphic functions 
on the universal coverings of 

and 

respectively. 

The proof of this theorem can be found, for example, in [:'.\Ial], [~Iiwa], [Sib]. We recall the theorem of 
solvability of the inverse problem of the monodromy (see [Dek]): 

Theorem 1.2. Given three arbitrary matrices, satisfying {1.6) and {1.7), with M00 of the form (1.4), and 
given a point u0 = (u~,ug,ug) E ([3 \{diags}, for any neighborhood U ofu0 , there exist (u1,u2,u3) EU 
and a Fuchsian system of the form (1.1), with the given monodromy matrices, the givenµ and with poles in 
U1, U2, U3. 

Remark. Fuchsian systems of the form (1.1), with coefficients A; satisfying (1.2), depend on four param-
eters, one of them being µ. The triples of the monodromy matrices satisfying ( 1.6) and ( 1. 7) depend on four 

1 Observe that the basis /1, /2, 13 of 1!'1 (d'.\ { u 1 , u2, u3, oo}, x) varies continuously with small variations of 
u1, u2, u3. This new basis is homo-topic to the initial one, so we can identify them. 
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parameters too. Loosely speaking, the theorems Nl and N2 claim that, not only the monodromy matrices 
are first integrals for the equations of isomonodromy deformation (1.13), but they provide a full system of 
first integrals for such equations. 

Remark. ·we observe that the isomonodromy deformations equations preserve the connection matrices C; 
too. This follows from the lemma 1.1. 

Reduction to the PVIµ equation. Let us now explain hm'<· to reduce the Schlesinger equations (1.13) 
to the PVIµ equation. The Schlesinger equations are invariant with respect to the gauge transformations of 
the form: 

A; t-+ D- 1 A;D, i = 1, 2, 3, for any D diagonal matrix. 
First of all we have to factor out such gauge transformations; to this aim, we introduce two coordinates (p, q) 
on the quotient of the space of the matrices satisfying (1.2) with respect to the equivalence relation 

A; ,._, D-1 A;D, i = 1, 2, 3, for any D diagonal matrix. (1.14) 
The coordinates (p, q) are defined as follows: q is the root of the following linear equation: 

[A(q; U1, u2, u3))i2 = 0, 
and p is giver by: 

p = [A(q; u1, u2, u3)]11, 

where A(z; u1, u2, u3) is given in (1.12). The matrices A; are expressed rationally in terms of the coordinates 
(p, q) and an auxiliary coordinate k, coming from the gauge freedom (1.14): 

(A;)u = - (A;)22 = 2;;,(~;) [P(q)p2 + 2µ P(q) + µ2 (q + 2u; - I: uj)] , 
q - u; i 

(1.15) 

[ 
., P(q) 2 '°' l 2 P(q)p- + 2µ-- + µ (q + 2u; - 6 Uj) , 

q - u; i 

for i = 1, 2, 3, where P(:) = (z - u1 )(z - u 2 )(z - u3 ) and P'(z) = ~~. The Schlesinger equations in these 
coordinates reduce to: 

~ = P(q) [2p+ _l_] 
ou; P'(u;) q - Ui 

op P'(q)p2 + (2q + Uj - Li Uj )P + µ(1 - µ) 
(1.16) 

ou; P'(u;) 
for i = 1, 2, 3. The system of the reduced Schlesinger equations (1.16) is invariant under the transformations 
of the form 

u; t-+ au;+ b, q t-+ aq + b, 

We introduce the following new invariant variables: 
U2 - U1 

x= 

y= 
U3 - U1 

p 
pt-+ -. 

a 

the system (1.16), expressed in the these new variables, reduces to the PVIµ equation for y(x). 

Remark. The system (1.16) admits the following degenerate solutions (see [Okl] and [Wat]): 

q = u; for some i, 

( 1.17) 

and p, in the variable z, can be reduced to a Gauss hypergeometric function. Moreover the monodromy 
group of the system (1.1) reduces to the monodromy group of the Gauss hypergeometric equation, namely 
the following lemma holds true: 
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Lemma 1.3. The solutions of the full Schlesinger equations, corresponding to the solution q = u;, for some 
i, have the form: 

A;(u) = 0, and forj ::/ i Aj(u) = D(u)- 1 AJD(u), 

where D(u) is a diagonal matrix depending on u, and AJ is a constant matrix. The monodromy matrix M; 
of the corresponding Fuchsian system, turns out to be the identity. Conversely, if one of the monodromy 
matrices M; is the identity, M; = 1, then the solution of (1.16) is degenerate. 

Proof of the lemma 1.3. The matrix A;, for q = u;, is identically 0, thanks to (1.15). Having A; :: 0, M; is 
1. Conversely, if M; = 1, then A; = 0. Solving the Schlesinger equations (1.12), we obtain q = u;, and p 
reducible to a Gauss hypergeometric function. QDE 

The degenerate solutions do not give any solution of the PVIµ equation. All the other solutions do, via 
(1.17). Conversely, starting from any solution y(x) of PVIµ, we arrive at the solution: 

of the reduced Schlesinger equations (1.16). To obtain a solution of the full Schlesinger equations, the 
function k must be given by a quadrature: 

Ok q - Uj 

au; = (2µ - l) P 1(u;). 

We conclude this section summarizing all the above results in the following: 

Theorem 1.3. The branches of solutions of the PVIµ equation near a given point xo E [\{O, 1, oo}, are 
in one-to-one correspondence with the triples of the monodromy matrices M 1 , 1Vf2 1 lvf3 satisfying (1.6) and 
(1. 7), none of them being equal to 1, considered modulo diagonal conjugations. 

1.2. The structure of the analytic continuation. 

We parameterised branches of the solutions of PVIµ by triples of monodromy matrices. i\"ow we show 
how do these parameters change with a change of the branch in the process of analytic continuation of the 
solutions along a path in[\ { 0, 1, x}. Recall that, as it follows from the theorem 1.1, the solutions of PVIµ, 
defined in a neighborhood of a given point x 0 E [\{O, 1, oo }, can be analytically continued to a meromorphic 
function on the universal covering of{\ {O, 1, oo }. Observe that the fundamental group r.1 {"[\ {O, 1, oo}) is 
non-abelian. As a consequence, the global structure of the analytic continuation of the solutions of PVI is 
more involved than that of the other Painleve equations. In fact for PI, ... , PV the solutions have only two 
critical singularities and the corresponding fundamental group in abelian. 

As a first step we introduce a parameterisation of the monodromy matrices. 

The parameterisation of the monodromy data Let M 1 , M2 and .A..13 be three linear operators 
M; : 0:2 -+ G: 2 satisfying (1.6). \Ve introduce, for them, a parameterisation which will be useful for studying 
the analytic continuation of the solutions of the PVIµ equation. 

Lemma 1.4. If M1, M 2 are such that 

then there exists a basis in { 2 such that, in this basis, the matrices of M 1, J\1 2 have the form: 

-xi) 
1 ' (1.18) 
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where x1 = J2 - Tr(."1tu\1f2); when M 1, M2 are such that Tr(Mu\ih) = 2, they have a common eigenvec-
tor, and then there exists a basis in ([ 2 such that, in this basis, the matrices iW1, M2 are both upper-triangular. 

Proof of the lemma 1.4. Due to the (1.6), there exist two vectors e1 and e2 such that 

We now prove that these two vectors are linearly dependent if and only if Tr(M1.•\.1:?) = 2; in fact if the 
two vectors are linearly dependent, then we can find a linear independent vector e; such that, in the basis 
(e 1 ,e;) the matrices of .M1, M 2 have the form: 

( 
1 >..1) M1 = 0 1 ' ( 

1 >...,) M2 = 0 1- ' 

then Tr(M1M2) = 2; conYersely, in the basis (e 1, e;) the matrix .\f1 has the form M1 

requiring that 
Tr(M1M2) = 2, eigenv(M2) = 1, 

( 
1 A.1) 
0 1 , and 

also the matrix M 2 must have the above form Jvf2 = ( ~ A.1
2 ); then, the two vectors e1 and e2 are linearly 

dependent. As a consequence, if Tr(M1M 2 ) # 2, the two vectors e1 and e2 are linearly independent, and in 
the basis (e1,e2) the matrices of M 1, M2 have the form: 

( 1 >..1) M1 = 0 1 ' 

with Tr(M1M2) = 2 + >..1>.. 2 : rescaling the basic vectors (e1, e2), we obtain the (1.18). QDE 

Lemma 1.5. Let ."'11, .\1h, M3 satisfy also the condition (1.7), with Meo given by (1.4), with 2µ rJ. 71... 
Then the following statements are true: 

i) If two of the following numbers 

are equal to 2, then one of the matrices of Al; is equal to one. 
ii) 1£Tr(M1M2) # 2, then there exists a basis in ([2 such that, in this basis, the matrices Jv'fi, M 2 and M3 

have the form 

( 
1 -X1) 

M1 = 0 1 ' M3= 

where 

and 

_,,~ ) 
r1 

1 - ,,,,,, ' 
r1 

(1.19) 

(1.20) 

iii) If two triples of matrices M 1 , M2, M3 and M~, M~, M~, satisfying (1.7), with none of them equal to 
1, have the form (1.19) with parameters (x 1 ,x2,x3) and (x~,x;,x3) respectively, then these triples are 
conjugated 

M; = r- 1M[T 

with some invertible matrix T, if and only if the triple (x~, x~, x3) is equal to the triple (x1 , x2 , x3), up 
to the change of the sign of two of the coordinates. 

Proof of the lemma 1.5. 
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i) Let us assume that 

let e1 and e3 be the common eigenvectors of M 1, M:i and. \.11, .·\tf3 respectively, according to the lemma 
1.4. If M; f 1, then the eigenvectors e1 and e3 coincide. In fact, for any M; f 1 there exists a unique 
eigenvector; being e1 and e3 eigenvectors of the same operator .M1 f 1, they coincide. Then we can 
find a linear independent vector e~ such that, in the basis (e1, e;) the matrices of M 1, M 2 , M 3 all have 
the form: 

( 
1 >.;) 

M,= 0 1 ' i = 1,2,3. 

Then 

This contradicts the assumption 2µ ft. Z. 
ii) Let us choose the basis such that, according to the lemma 1.4. the matrices of M1, M2 have the form 

(1.18). Solving the equations: 

we arrive at the formula {1.19). The (1.20) is obtained by straightforward computations from: 

iii) The two triples of matrices M1, M2, M3 and M{, Al~, M3 are conjugated 

with some invertible matrix T, if and only if they are the matrices of the same operators M 1 , M:i, M3, 
written in different bases. Since the traces do not depend on the choice of the basis, then 

2 ,2 2 3 X; = Xj , i = 1 .... 

According to the proof of the lemma 1.4, the basis ( e1 . e 2) is uniquely determined up to changes of sign. 
A change of sign e1 .......;. -e1 correspond to the change of sign x1 .......;. -xi; then the form of the matrix Jvf3 
is preserved if and only if we change one of the signs of .r2 or x3. QDE 

Remark. The matrices (1.19) have a simple geometrical meaning. Let us consider the three-dimensional 
linear space with a basis (e 1 , e2 , e3 ) and with a skew-symmetric bilinear form{-,·} such that 

Let us consider the reflections R 1, R2, R3 in this space, with respect to the hyper-planes skew-orthogonal to 
the basic vectors: 

R;(x) = x - {e;, x}e;, i=l,2,3. 

The reflections have a one-dimensional invariant subspace, namely the kernel of the bilinear form. The 
matrices of the reflections acting on the quotient are the (1.19). 

Definition: a triple (x1, x2, x3) is called admissible if it has at most one coordinate equal to zero. Two such 
triples are called equivalent if they are equal up to the change of two signs of the coordinates. 

Observe that for an admissible triple (x1, x2, x3), none of the matrices (1.19) is equal to the identity. 
So the admissible triples correspond to the non-degenerate solutions of the reduced Schlesinger equations 
(1.16). Moreover two equivalent triples generate the same solution. 'Ye can summarize the above results in 
the following 

13 



Theorem 1.4. The branches of solutions of the PVIµ equation, near a given point Xo E {\{0,1,oo}, are 
in one-to-one correspondence with the equivalence classes of the admissible triples satisfying (1.20). 

Proof of the Theorem 1.4. Starting from a solution of PVIµ we obtain the monodromy matrices satisfying 
{1.6). None of them is equal to the identity. So the canonical form (1.19) of Mi, M2, M3 is determined 
uniquely up to a choice of the admissible triple (x 1 , x2 , x3) within the equivalence class. Conversely, given 
an admissible triple (x1 , x2 , x3) satisfying (1.20), we obtain the matrices Mi, 1'1h, M3 of the form (1.19). 
The matrix M3 M2 Mi is diagonalizable with the eigenvalues exp(±2iriµ) (here we use the non-resonance 
condition 2µ tf. Z). Reducing this matrix to the diagonal form 

o )r 
exp(-2iriµ) 

we obtain the monodromy matrices T Jvfj r- 1 satisfying (1.6) and thus specifying a branch of the solution of 
PVIµ. 

Monodromy data and symmetries of PVIµ. The Painleve VI equation possesses a rich family of 
symmetries, i. e. transformations of the dependent and independent variables (y, x), and also of the param-
eters, that preserve the shape of the equation. The theory of these symmetries, and its applications to the 
construction of particular solutions, was developed in [Ok]. Here we enlist the symmetries which preserve 
our PVIµ and compute their action on the monodromy data. 

First of all the permutations of the poles u 1, u 2 , u3 generate the action of the symmetric group S3 on 
the solutions y(x). In particular the involution 

produces the transformation 

and 

produces the transformation 

1 
x >--+ -x' 

Xf-t 1-x, 

1 
y >--+ -, 

y 

y >--+ 1 - y. 

Both these transformations clearly preserve the equation PVIµ. 
Let us compute the action of these symmetries on the monodromy data. The only thing that changes 

is the basis in the fundamental group ir1 ({\ { u 1, u2 , u3 , oo} ). In fact, the cuts Tri, ir2 , ir3 along which we take 
our basis ")'1 , ")'2, ")'3, are ordered according to the order of the poles. Applying the transformation ii we then 
arrive to the new basis ")'~, ")'~, ")'~ shown in figure 2. 

Fig.2. The new basis ")'~, ")'~, ")'~ obtained by the action of ii. 
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Fig.3. The new basis/~,/~,/~ obtained by the action of i 2 . 

This new basis has the following form: 

I -i I 
/2 = /2/3/2 , /3 = /2· 

As a consequence the new monodromy matrices are: 

For the second transformation i 2 , the basis of the new loops is shown in figure 3. 
It has the following form: 

I I -i I ..,-i. -i ... A A 

Ii = /3, /2 = /3 /2/3, /3 = 13 Y2 1i ;2 /3· 

The new monodromy matrices are: 

Lemma 1.6. In the coordinates (xi, x2 , x 3 ) on the space of the monodromy matrices, the action of the 
symmetries ii, i2 is given by the formulae: 

The proof is straightforward. 
There are more complicated symmetries which change the value of the parameterµ. The first one comes 

from the following simultaneous conjugation of the coefficients of the Fuchsian system: 

where 

Indeed, 

Using the parameterisation (1.15) of the matrices Ai, A2, A3 by the coordinates (p, q), we arrive to the 
following 

Lemma 1. 7. The formula: 

- Po(Y) 2 +piy'+p2 y-y 
- qo(y')4 + qi(y')3 + q2(y') 2 + q3y' + q4' (1.21) 
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where: 
Po= x2 (x-1) 2

, 

p1 = 2x(x - l)(y - 1)[2µ(y - x) - y] 
p2 = y(y - l)[y(y - 1) - 4µ(y - l)(y - x) + 4µ2(y- x)(y - x - l)] 
qo = x4 (x - 1)4 

q1 = -4x3 (x - 1)3 y(y - 1) (1.22) 
q2 = 2x2(x - 1)2y(y - 1)[3y(y - 1) + 4µ2(y - x)(l + x - 3y)] 

q3 = 4x(x- l)y2 (y- 1) 2 [-y(y- l) -16µ3(y- x) 2 +4µ2 (y- x)(3y- x -1)] 
q4 = y2(y- 1)2{y2 (y - 1)2 + 64µ3 y(y - l)(y - x)2 - 8µ2 y(y - l)(y- x)(3y - x - 1)+ 

+ 16µ4 (y - x)2[(x - 1)2 + y(2 + 2x - 3y)J} 

transform solutions of PVIµ to solutions of PVI(-µ). The class of equivalence of the monodromy data 
(x 1 , x 2, x3 ) does not change under such symmetry. 
Proof of the lemma 1. 7. The new monodromy matrices M{, M~, M~ have the form 

Mf = EM;E, i = 1, 2,3. 

Then, the canonical form (1.19) of the monodromy operators does not change. QDE 

The last symmetry is the so-called Schlesinger transformation (see [nIU]). It comes from a gauge 
transform 

Y(z) >-+ G(z)Y(z), 
of the Fuchsian system (1.1), with an appropriate gauge G(z). Omitting the details we formulate the following 
Lemma 1.8. The formula: 

(1.23) 

where the Pi are 

po= x 4 (x - 1)4 y, 

P1 = 4x3 (x - 1)3 y(y - 1)[2µ(y - x) - y], 

P2 = 2x2 (x - 1)2 y(y - 1)(-12µ y(y - l)(y- x) + 3y2 (y - 1)+ 
+4µ(y-x)(3y2 -3xy-3y+2x)], (1.24) 

p3 = 4x(x - l)y2 (y - 1)2[y - 2µ(y - x)][-y(y - 1) - 4µ2 (y - x)(y - x - l)+ 
+ 4µ(y - l)(y - .r)], 

p4 = y3 (y - 1)2 [-4µ(y - x)(y- 1) + y(y -1) + 4µ2(y- x - l){y - x)] 2 , 

and the q; are the same as in (1.23), transforms a solution of PVIµ to a solution of PVI(l + µ). The class 
of equivalence of the monodromy data (x1 , x 2 , x3 ) does not change under such symmetry. 

Remark. One can show that the above symmetries, and their superpositions, exhaust all the birational 
transformations preserving our one-parameter family of PVI equations. We will not do it here (see [Ok]). 
It is important, however, that these symmetries preserve the class of algebraic solutions of PVIµ. We will 
classify all the algebraic solutions, modulo the above symmetries. 

Remark. It is not difficult to show that the denominator of the formulae (1.21) and (1.23) does not vanish 
identically for any solution of PVIµ, with 2µ fl. ll.. Indeed, eliminating Yxx and Yx form the system 

Yxx =.!. (.!. + _l_ + - 1-) Y; - (.!. + _l_ + - 1-) Yx 
2 y y-1 y-x x x-l y-x 

1 y(y - l)(y - x) [(2 _ l) 2 x{x - l)] 
+2 x2(x-1)2 µ +(y-x)2' 
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Q(yx,y,x,µ) =O, 
d 

dx Q(yx, y, x, µ) =O, 

where Q is the denominator, the resultant equation 

(2µ + 1) 4µ 16 [x(x - 1) 2]4 [y(y - l)(y - x)] 4 

never vanishes. 

The analytic continuation of the solutions of PVIµ and the braid group B3. According to the 
theorem 1.1 any solution of the Schlesinger equations can be continued analytically from a point ( u~, ug, ug) 
to another point (u~, u~, u5) along a path 

o::;t::;1, 

with 
u;(O) = u?, and u;(l) = u!, 

provided that the end-points are not the poles of the solution. The result of the analytic continuation depends 
only on the homotopy class of the path in [ 3 \ { diags}. Particularly, to find all the branches of a solution 
near a given point u0 = ( u~, ug, ug), one has to compute the results of the analytic continuation along any 
homotopy class of closed loops in [ 3 \ { diags}, with the beginning and the end at the point u0 = ( u~. ug, ug). 
Let 

f3 E 11"1 (G: 3\{diags}; u0) 

be an arbitrary loop. Any solution of the Schlesinger equations near the point u 0 = ( u~, ug, ug), is uniquely 
determined by the monodromy matrices i\<fi, M 2 and Jl.;[3, computed in the basis 71 , 72 , 73, which was chosen 
as above, see figure l. Continuing analytically this solution along the loop {3, \Ve arrive to another branch 
of the same solution, near u0 • This new branch is specified. according to the theorem 1.3, by some new 
monodromy matrices 1Hf, Mf and Alf, computed in the same basis 71, /2, /3· Our nearest goal is to 
compute these new matrices for any loop f3 E 11"1 ( [ 3 \ { diags}; u0 ). 

The fundamental group 11"1 (G:3\{diags}; u0 ) is isomorphic to the pure (or unpermuted) braid group, P3 
with three strings (see [Bir]); this is a subgroup of the full braid group B3. The full braid group is isomorphic 
to the fundamental group of the same space where the permutations are allowed: 

S3 being the group of the permutations of the coordinates ( u1, u2, u3). Any loop in B3 has the form 

(ui(t), u2(t), u3(t)) E [ 3\{diags}, o::;t::;1, 

with 
u;(O) = u?, u;(l) = u~(i)• 

where pis a permutation of {1, 2, 3}, id est p: (1, 2, 3) >-t (p(l), p(2), p(3)). The elements of the subgroup P3 
of the pure braids are specified by the condition p = id. 

To simplify the computations we extend the procedure of the analytic continuation to the full braid 
group 

Mi, M2, M3 >-t Mf, Mff, Mf, f3 E B3 = r.1 (G: 3\{diags}/S3; u0
). 

For a generic braid f3 E B3 , the new monodromy matrices describe the superposition of the analytic contin-
uation and of the permutation 

u; >-t Up(i), A; >-t Ap{i)· (1.25) 

The braid group B3 admits a presentation with generators /31 and /32 and defining relations 
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Fig.4. The geometric representation of the generators of the braid group Ba. 

' ' ' \ "'f =Y' 
' 3 "3 

' ' ' ' ' 8 
Fig.5. The new loops Ali obtained under the action of the braid /31 . 

The generators /31 and /32 are shown in the figure 4. 

Lemma 1.9. For the generators {31 , {32 shown in the figure 4, the matrices Mf have the following form: 

M fJ1 -M 3 - 3, (1.26) 

(1.27) 

Proof of the lemma 1.9. Changing the positions of the points u1 and u2 by the braid /31 , the basis of the 
loops will be deformed into the new basis A/~ , 12, Al; shown in the figure 5. 

Thanks to the fact that we deal with isomonodromy deformations, the monodromy matrices M[ of the 
system (1.1) with respect to the new basis 1~,/~,"Y; are the same AI;, up to the reordering: 

(l.28) 

due to the permutation (1, 2, 3) i-t (2, 1, 3). \Ve ·want to compute the monodromy matrices with respect to 
the old basis /1, / 2 , /a. To this aim we notice the following obvious relation in the fundamental group: 

"Yl = 1'~, ( 
I )-1 I I /2 = "Y1 1'2"Y1 

Using this relations and the (1.28), we immediately obtain the (1.26). Similarly the deformation of the basis 
of the fundamental group corresponding to the braid /32 is shown in the figure 6. 

, . ' Y1=Y1,' 
I I 

' I 

88 
' 

Y3 

' ' ' 

Fig.6. The new loops 1: obtained under the action of the braid /32. 
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Here we have the permutation 

M{ = .Mi M~ = M~, Al~ = 1'-h 
and the relations in the fundamental group: 

/1 = /~, 12=1; /3 = (-:;)- 1 -1~1;. 

From this we obtain the (1.27) and the lemma is proved. QDE 

The action (1.26), (1.27) of the braid group on the triples of monodromy matrices commutes with 
the diagonal conjugation of them. As a consequence this action not only describes the structure of the 
analytic continuation of the solutions of the Schlesinger equations (1.13), but also of the reduced ones (1.16). 
:\Ioreover the class of the degenerate solutions is closed under this analytic continuation. In fact if some of 
the matrices M; is equal to 1, then for any /3 there is a j such that JI] = 1. As a consequence the following 
lemma holds true: 

Lemma 1.10. The structure of the analytic continuation of the solutions of the PVIµ equation is determined 
by the action (1.26), (1.27) of the braid group on the triples of monodromy matrices. 

Our next step is to rewrite the action (1.26), (1.27) of the braid group in the coordinates (x1,x2,x3) in 
the space of the monodromy data. This is given by the following 

Lemma 1.11. In the coordinates (xi, x 2 . .r3), the action (1.26). (1.27) of the braid group is given by the 
formulae: 

f31 : (x1, .r2, x3) i-+ (-x1, X3 - .r1x2, x:i), 
f32 : (x1, x2, x3) i-+ (x3, -x2, .r1 - x2x3). 

{1.29) 

Proof of the lemma 1.11. The above formulae are obtained by straightforward computations from the (1.26), 
(1.27) by means of the parameterisation of the monodromy matrices (1.19). 

We can summarize the results of this section in the following: 

Theorem 1.5. The structure of the analytic continuation of the solutions of the PVIµ equation is determined 
by the action (1.29) of the braid group on the triples ( x 1 , x2. x 3 ). 

1.3. Monodromy data and algebraic solutions of the PVIµ equation. 

A preliminary discussion on the algebraic solutions of the PVIµ equation and their monodromy 
data. Here we state some necessary condition for the triples (.r1. x:i, x3) to generate the algebraic solutions. 
First of all we have to define the algebraic solutions. 

Definition. A solution y(x) is called algebraic if there exists a polynomial in two variables such that 

F(x, y(x)) = 0. 

If y(x) is an algebraic solution, then the correspondent solution p( u 1, u2, u3), q( u1, u 2, u3), of the reduced 
Schlesinger equations (1.16), is also algebraic. According to the theorem 1.1, the ramification points of the 
reduced Schlesinger equations (1.16) can lie only on the diagonals u1 = uz, u1 = u3, u3 = uz. Analogously 
the ramification points of y(x) are allowed to lie only at 0, 1, oc. 

\Ve now characterize the monodromy data such that the correspondent solution of the PVIµ equation 
is algebraic. 

Lemma 1.12. A necessary and sufficient condition for a solution of PVIµ to be algebraic is that the 
correspondent monodromy matrices, defined modulo diagonal conjugations, have a finite orbit under the 
action of the braid group (1.26), (1.27). 
Proof of the lemma 1.12. By definition, any algebraic function has a finite number of branches. Allowing 
also the permutations (1.25), we still obtain a finite number of values for Mf, Mf and Mf, f3 E B3 up to 
diagonal conjugations. QDE 
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Corollary 1.2. An admissible triple (x 1, x 2, x3) specifies an algebraic solution of PVIµ if and only if it 
satisfies (1.20) and its orbit, under the action (1.29) of the braid group, is finite. 

Remark. We stress that the action (1.29) preserves the relation (1.20). 
In this way, the problem of the classification of all the algebraic solutions of the PVIµ reduces to the 

problem of the classification of all the finite orbits of the action (1.29) under the braid group in the three 
dimensional space (see [Dub], appendix F). Here we give a simple necessary condition for a triple (x1, x2, x3) 
to belong to a finite orbit. 

Lemma 1.13. Let (x1, x 2 , x3) be a triple belonging to a finite orbit. Then: 

x; = -2cos?rr;, r; E Q, 0 :'.5 r; :'.5 l. i = 1,2,3, (1.30) 

here Q is the set of the rational numbers. 

Proof of the lemma 1.13. Let us prove the statement for, say, the coordinate x1. Consider the transformation 

as a linear map on the plane (x2, x3). This linear map preserves the quadratic form 

If x1 = 2, we put r 1 = 1; otherwise we reduce the quadratic form to the principal axes, introducing the new 
coordinates 

- y'2 + X1 
X2 = 

2 
(x2 - X3), 

In these new coordinates the preserved quadratic form becomes a sum of squares and the transformation f3i 
is a rotation of angle ?r+2a, where a is such that x1 = -2cosa. To have a finite orbit of (x2, x2), under the 
iterations of f3r, the angle a must be a rational multiple of r.. In this way the statement for x1 is proved. 
To prove it for x2 and x3, we have to consider the iterations of f3? and ,B:; 1 f3r f32 respectively. QDE 

Remark. Thanks to the above lemma, for the finite orbits of the braid group, it is equivalent to deal with 
the triples (x1,x2,x3), or \Vith the triangles with angles (r.r1,?rr2,,..,.3), with x; = -2cosr.r; and 0 :'.5 r; :'.5 1 
(we may assume, changing, if necessary, two of the signs, that at most one of the x; is positive). \Ve stress 
that the quantity 

xi+ x; +x~ -x1x2x3 -4 

is greater than 0 if and only if the triangle (r1, r2, r3) is hyperbolic, namely 2: r; < 1; it is equal to 0, if 
and only if the triangle ( r 1 , r2, r3) is flat, namely 2: r; = 1, and it is less than 0 if and only if the triangle 
(r1, r2, r3) is spherical, namely 2: r; > l. Thanks to the (1.20), a fl.at triangle gives a resonant value ofµ, 
and it is thus forbidden. 

Classification of the triples (x1, x2, x3) corresponding to the algebraic solutions. We deal with 
the classification of all the finite orbits of the triples (x1, x2, x3) of the form ( 1.30), with at most3 one r; 
being equal to~- According to the lemma 1.13, any point of these B3-orbits must have the same form (1.30). 
This condition is crucial in the classification. 

Definition. We say that an admissible triple (x1,x2 ,x3) is good if, for any braid f3 E B3 one has 

with some rational numbers 0 :'.5 rf ::; 1. 

3 This corresponds to the fact that we deal only with admissible triples. 
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Theorem 1.6. Any good triple is equivalent, up to permutations, to 
(-2 cos irr1, -2cos11"r2, -2 cos irr3), 

where the rational numbers (r1, r 2 , r3 ) are in the following list: 

(1 1 1) (1 1 2) 2'3'3 3'3'3 

(1 1 1) (2 1 1) 2'3'4 3'4'4 
( 

1 1 1) 
2'3'5 (

2 1 1) (4 4 4) 3'5'5 5'5'5 

( 1 1 2) (2 2 2) (2 2 2) 2'3'5 3'5'5 5'5'5 
(3 1 1) (2 1 1) (2 1 1) 5'3'5 5'3'3 3'3'5 . 

( 1.31) 

(1.32) 

( 1.33) 

(1.34) 

(1.35) 

In particular the abo\·e sets of triangles (1.31), (1.32), (1.33), (1.34) and (1.35) define five different finite 
orbits under the action of the braid group. 
Remark. We observe that the above orbits (1.31), (1.32), (1.33), (1.34) and (1.35), contain also every 
permutation of the given triples. If we consider the action of the pure braid group ?3 on each triangle of 
the above orbits, except the (1.32), they again define the same orbits, with the same number of points. 
Concerning the triangles of ( 1.32), they define three different orbits of three points. So the orbit (1.31) has 
four points, the three orbits (1.32) have three points each, (l.33) and (1.34) have ten points each and (1.35) 
has eighteen points. These orbits give rise to all the algebraic solutions of the PVIµ equation, for µ is given 
by (1.20). The number of the points of each orbit with respect to the action of P3 coincides with the number 
of the branches of the correspondent algebraic solution. We stress that this theorem claims that the good 
triples have necessarily a finite orbit. 

Proof of the theorem 1.6. The braid group acting on the classes of triples ( x1, x2, x3), is generated by 
the braid {31 and by the cyclic permutation: 

(x1,x2,x3) t-+ (x3,x1,x2). 
As a consequence it is enough to study the operator: 

(x;,Xj,Xk) t-+ (-x;,Xj,Xk - XiXj), 

up to cyclic permutations. This transformation works on the triangles as follows: 

(r;, rj, rk) t-+ (1- r;, rj, rk), ( 1.36) 

where rk is such that: 
cos 1rr~ = cos 11"rk + 2 cos 11"Ti cos irrj. ( 1.37) 

As a first consequence we have immediately that the points (1.31), (1.32), (1.33), (1.34) and (1.35) define 
five different finite orbits. 

The first step is to classify all the rational triples (r;, rj, rk) such that r~, defined by (1.37) is a rational 
number, 1 > ~ > 0, for every choice of if: j f: k f: i, i, j, k = 1, 2, 3. Equivalently we want to classify all 
the rational solutions of the following equation: 

cosirrk +cos ir(r; + rj) +cos7r(r; - Tj) +cos7r(l - rk) = 0, 
or all the rational quadruples (cpi, cp2 , <p3, cp4) such that: 

cos 2ir<p1 +cos 21r<p2 +cos 21r<p3 +cos 21r<p4 = 0, 
where the 'fli are related with the r; by the following relations: 

r; +ri Ir;- ril 
'Pl = rk/2, 'f12 = - 2-, <p3 = 2 

11- rkl 
<p4 = 2 . 

Such a classification is given by the following: 
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Lemma 1.14. The only rational solutions (y1,<p2,<p3,<p4), 0::;: 'Pi< 1, considered up to permutations, of 
the equation {l.38) are the following non-tri,,·ial ones: 

( 
1 11 2 1) 
30'30'5'6 (a) 

(
7 17 1 1) 
30'30'5'6 (b) 

(
1 2 3 1) 7'7'7'6 (c) 

and the trivial ones, namely for cos 27r<p4 = 0: 
1 

94 = 4' cos 2..-;pl + cos 27r<p2 + cos 2:r ?3 = 0 ( d) 

which has the following solutions. obtained in {Cro}: 

(
1 1 3 1) ( 1 2 1) (1 1 1) (d.l): 3'10'10'4' (d. 2): ;p,<p+3,<p+3,4' (d.3): 4,cp,[cp-2[,4' 

where <pis any rational number 0::;: <p < 1; for cos 27r<p4 = l: 
<p4 = 0, cos 2..-.,:;1 +cos 27r<p2 + cos 2mpa + 1 = 0, 

which has the fallowing solutions, obtained in [Gar): 

(e.l): (~·~·~·o), (e.2): (~,<p,l<p-~l,o), (
1 1 2 ) 

(e.3): 3'5'5'0 ' 

where <p is any rational number 0::;: <p < 1; for: 
cos 2:.:pi +cos 27r<p2 = 0, 

which has the fallowing solutions: 

where <p1 , <pa are some rational numbers 0 ::;: 'Pi < 1. 

cos 27r<p3 +cos 2r.<p4 = 0, 

(e) 

(!) 

Proof of the lemma 1.14. \\"e follow the same procedure explained in [Gor] and [Cro]. In this proof we use 
the same notations as in [CroJ. except for the :Pi which there are called r;. Let us recall the notations. Let 
'Pk = ~ where 1"k, nk are either positive coprime integers, 1"k > nk, or n.~ = 0. Let p the largest prime which 
is a divisor of di, d2, da, or d4 and let 8k, lk, Ck, Vk be the integers such that 

dk = 8kp
1

k and nk = Ck8k + Vkp
1
"' 

where 8k is prime to p, 0 S Ck < p1•, Ck = 0 if lk = 0, but otherwise Ck is prime to p. So 
l/k Ck Ck 

'Pk = T + -::/ = fk + -I . 
Uk }' k pk 

\\"e assume that /1 ~ l2 ~ la ~ 14 and define, for the real variable x the function: 

{ 
! [e2.,,.if•xckp'•-•k +e-2.,,.ifkxP''-ckp'•-'k] if Ck# 0 

gk(x) = 2 
COS 27iyk if Ck = 0 

and, in our case: 
4 

U(x) = LYk(x). 
1 

2wt 2wi 

As in [Cro], gk(eTi) = cos2..-:pk and U(eTi) = 0. Let us introduce the polynomial 
•1-• 2 •1-l ( 1) •1-• P(x) = 1 + xP + x P - - ·x P- P . 

This is the minimal polynomial of e~;,; with coefficients in Q, such that i) P (e~i'"i') = 0 and ii) P(x) 
is irreducible in the ring of the polynomials with rational coefficients. A stronger result was proved by 
Kronecker (see [Kr]): the polynomial P(x) remains irreducible over any extension of the form Q((1, · · ·, (n), 
where (; is a root of the unity of the order coprime with p. As a consequence, the following lemma holds 
true (see [Cro]) 
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Lemma 1.15. If we express the polynomial U(x) as a sum of polynomials Ut(x), 

p1, -1 _1 

U(x) = L Ut(x), 
t=O 

where Ut ( x) contains those terms of U ( x) of the form bxc with c = t mod (p11 - l), then Ut ( x) is divisible by 
P(x). 

We now apply this lemma in our case. The indices of the powers of x are: 

if all the following conditions are satisfied: 

then there are no indices equal to each other mod (p11 - 1) and there is no solution of (1.38). So we have to 
study the cases in which one of them is violated. 
1): li = 1 ;:::: l2 ;:::: /3 ;:::: l4. In this case, since the degree of U(x) is less than p, and the degree of P(x) is 
p - 1, being U(x) divisible by P(x), we must have U(x) = mP(x), for some constant m. There are four 
possibilities: 
1.1) : l1 = l2 = l3 = l4 = 1 then U(O) = 0 and P(O)=l. Then m = 0 and U(x) = 0; moreover if the sum of 

1.1.1) 
1.1.2) 
1.1.3) 

two (three) terms representing two (three) of the functions 9k vanishes, then the sum of the two (three) 
functions vanishes. As a consequence there are only the following possibilities: 
: Oi = -gj and Ok= -g1 for some distinct i,j, k, l = 1, · · ·4. This gives rise to the trivial case (f). 
: Ot = 0 for some l = 1, · · ·4; this is the trivial case (d). 

U ( x) contains only two powers of x. If b1 , · · · , b4 are the coefficients if one of the powers xc, then: 

and 
1 1 1 1 
-+-+-+-=0, 
bi b2 ba b4 

namely b1, · · · b4 are the solutions of the following biquadratic equation: 

as a consequence bi +bi = 0, b1 +bk= 0, -b1 +bl· = 0 and -b1 +bl = 0, for some distinct i,j, k, l = l, · · ·4. 
• J l k 

Then this case reduces to the trivial case (f). 
1.2) 11 = 12 = 13 = 1, 14 = O; then U(O) = cos 2r.ip4 and then U(x) = cos 2r.cp4P(x), where P(x) is a 

polynomial with p powers of x. Since in U we have at most 7 powers and p must be prime, then p can 
only be equal to 2, 3, 5, 7. 

1.2.1) Case p = 2. Since pis the largest prime in di,···, d4, we must have di = d2 = d3 = d4 = 2 and Ok = 1. 
Then Vk = 0, Ck = 1 and this provides no solution. 

1.2.2) Case p = 3. In this case there are the two following possibilities: 

or 
~e-21fi/i + ~e21fi/2 + ~e21fi/3 =cos 2,.'P4 = ~e21fi/i + ~e-21fih + ~e-21fi/a. 
2 2 2 2 2 2 

In both the case one can show that there are no solutions. In fact, for example, in the first case, one 
has to solve the following equations: 

2 cos 2r.cp4 = cos 2r. Ii +cos 2r. /2 + cos 21i fa' sin 2r. ft +sin 211" h +sin 27r fa = 0. 
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Using the classification of all the possible rational solution of the case (d) given in [Cro], one can show 
that there are no solutions. 

1.2.3) Case p:::::: 5. In this case we have: 

.!.ez,,.;JJ, :::::: .!.e-2:rilk = .!.e2'1ri]i + .!.e±2'1ril; =cos 2:rrin 
2 2 2 2 r4> 

for some distinct i,j, k = 1, 2, 3. Then fk is 0 or ~ and <p4 = i or <p4 = ~ respectively. Following the 
same computations of [Cro] we obtain the two solutions (a) and (b). 

1.2.4) Case p = 7. In this case we have: 

1 2 ·1 1 2 ·1 1 ., ·1 1 2 ·1 1 2 ·1 1 2 '/ -e "' 1 = -e- ,,.. 1 :::::: -e_.,.., 2 = -e- 'Ir• 2 = -e ,,.. 3 = -e- 'Ir• 3 =cos 2:rr<p4, 
2 2 2 2 2 2 

which has the following solutions: 

Ji= h. =fa= 0 and 
1 

<p4:::::: -
6 

1 
or f 1 = f2 = fs = -2 

and 
1 

cp4 = -. 3 

Following the same computations of [Cro], we obtain the solution (c). 
1.3) l1 = l2 = 1 and l3 = l4 = 0. Then U(x) = (cos2:rr<p3 + cos2:rr<p4)P(x); again in U we have at most 5 

powers and then p = 2, 3, 5. The case p = 2 is treated as in [Cro]; 
1.3.1) : In the case p = 3 either 

1 2 ·1 1 2 ·1 1 ., ·1 1 2 ·1 -e ,,.. 1 + -e ,,., 2 = -e __ .,.., 1 + -e- ,,., 2 = cos 2:rr<p3 +cos 2rr<p4 
2 2 2 2 ' 

or: 
1 2 '/ 1 2 ·1 1 ., ·1 1 2 ·1 -e ,,.. 1 + -e- .,.., 2 = -e __ .,.., 1 + -e ,,., 2 =cos 2:rr<p3 +cos 2r.1.p4 
2 2 2 2 . 

In the former case, for Ji = h., with cos 2rr h = cos 2:rr<p3 +cos 2:rr<p4 and this gives again the solution 
(b). The latter case is equivalent. 

L3.2) : In the case p = 5 one has: 

1 2 ·1 1 2 ·1 1 ., ·1 1 2 ·1 -e ,,.. 1 = -e- ,,., 1 = -e-"' 2 = -e- ,,.. 2 =cos 2:rr<p3 +cos 2r.:,.?4, 
2 2 2 2 

which gives Ji = h. = 0 or Ji = h = ~- We treat the former case (the latter is equivalent); then 
cos 2:rr<p3 +cos 2:rr<p4 = ~ and we can show that this case reduces to the trivial solutions (d) and (e). 

1.4) /1 = 1 and /2 =la= l4 = 0. In this case, as in [Cro], there is no solution, but the trivial one (d). 
2) Li~ 2, l1 ~ l2,la,l4 • This case can be treated as the analogous one in [Cro]. This concludes the proof 

of the lemma 1.14. QDE 

We now use the above lemma to classify all the triangles which can give rise to the algebraic solutions. 
Every quadruple generates twelve triangles. In fact given a solution (<pi,·· ·<p4) we have six ways to choose 
the pair ( <p;, <;?j) such that 

cos 2:rr<p; +cos 21i!.pj = 2 cos :rr(<p; + <;?j) cos :rr(<p; - <;?j ); 

chosen the pair ( <p;, 'Pi), we have two ways for choosing 'Pk, in order to have the triangle 

The remaining <p1 is, by definition, such that the above triangle is mapped, by the braid (1.36), to: 
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Let us analyze all the triangles generated by the solutions of the equation (1.38), and keep the good ones, 
namely the ones for which the new rk, given by (1.37), is rational for every i,j, k, cyclic permutation of 
1, 2, 3. 

\Ve observe that, a necessary and sufficient condition for (r1, r2, r3) to give a good triple, is that every 
permutation of it, not only cyclic, must give again a good triple. In fact let us suppose that (ri, r 2, r3) gives 
a bad triple. Then there is not any rational r 4 such that 

cos ror 4 :::::: cos ror1 + 2 cos 1ir2 cos rrr3, 

or equivalently, for the correspondent ip1 , t.p2, 'P3 

there is not any rational ip4 such that <pi, tp2, <p3, 'P4 satisfy (1.38). We now show that the permuted triple 
( r 1. r3, r 2) is again bad. In fact, if it was good, then the correspondent 'P~, 'Pi, 'P3 admit a rational 'P4 such 
that 'P~, 'P~, 'Pa. 'P4 satisfy (1.38). But this is absurd because the new 'Pi. ip~, 'Pa coincide with the old ones 
'PI, t.p2, <p3. So the triple (r1, r3, r2) is again bad. As a consequence if (ri, r2, r3) is a good triple, then the 
permuted triple (r1, r3, r2) is again good (otherwise, by the above argument (r1, r2, r3) is bad). This proves 
our claim; in fact the good triples are defined up to cyclic permutations, then, allowing the permutation 
(r1, r2, r3) t--t (r1, r3, r2), all the permutations are allowed. 

So we will exclude all the triangles (r1, r 2, r3) for which there exists at least a permutation that gives 
rise to values of (ip1 ,<p2,<p3) for which there is no rational 'P4 such that (ip1, <p2, <p3,<p4) is a solution of (1.38). 

Solution (a). 

( 
1 1 23) 

15, 30, 30 ' ( 1 1 8) 
15' 5' 15 ' 

(4 2 1) 
5' 15' 5 ' (1 1 7) 

5' 5' 15 ' 

The la.st two points 

( 
1 7 17) 

15' 30' 30 , 

(
1 11 13) 
3' 30' 30 ' 

( 
4 7 13) 
15'30'30 , 

(2 1 7) 
3' 30' 30 ' 

(
11 11 13) 
15' 30' 30 , 

(1 1 3) 
3'5'5 ' 

(
11 2 1) 
15, 15' 5 , 

( 1.40) 

belong to the orbit (1.35). The above values, except the (1.40), give rise, for example, to the following values 
of (<,.:; 1 , <pz, ip3 ), given by (1.39), (written in the same order as the correspondent generating triangles): 

( 1 5 7) 
60' 12' 20 ' (1 3 7) 

10' 10' 30 ' ( 
7 19 1) 

60' 60' 4 ' (7 7 1) 
60, 20' 12 ' (11 7 3) 

60' 12' 20 ' 

( 
1 13 3) 
10' 30' 10 ' ( 1 1 3) 

15'2'10 , (o, ~· 310), ( 
1 11 23) 

20' 60, 60 ' ( 
1 9 13) 

60' 20' 60 . 

there isn't any rational number 'P4 such that any of the quadruples build with these triples and ip4 is in the 
class described by the lemma 1.14. 

Solution (b). 

( 
7 11 23) 
15, 30' 30 , ( 7 2 11) 

15' 5' 15 ' 

(2 1 2) 
5'15'5 , (

2 11 2) 
5' 15' 5 , 

( 7 1 11) 
15' 30, 30 , 

(
1 1 13) 
3' 30' 30 , 
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( 
2 1 19) 

15' 30' 30 , 

(
1 11 23) 
3' 30' 30 , 

( 
2 1 17) 
15'30'30 , 

(2 1 4) 
5'3'5 , 

( 2 1 3) 
15' 15, 5 , 



The last two points are equivalent to: 

(I I 3) 
3'5'5 (2 I I) 

3'3'5 (1.4I) 

of the orbit (1.35). As before one can show that if (r1 , r 2 , r3) is one of the above values, except the (1.41), 
then there exists a permutation such that the r~ defined by (1.37) is no-more rational. In fact we obtain for 
example the following values of ( ip1 , ip2 , ip3 ), which don't fall in the values obtained in the lemma l.I4: 

(
11 37 3) 
60' 60' 20 ' (I 3 2) 

5'5' I5 ' (1 5 I) 
60' I2' 20 ' ( 

I 3 23) 
60' 4' 60 ' ( 

I 47 7 ) 
60' 60' 20 ' 

( 
I 23 11) 

30' 30' 30 ' (
11 2 ) 
30' 5' 0 

' ( 
I 23 I ) 

60' 60' 20 ' (
11 11 I3) 
60' 20' 60 . 

Solution (c). 

(2 I 5) 7'7'7 ' 
(2 5 I9) 7' 42' 42 ' 

(2 11 25) 7' 42' 42 ' 
( 4 11 25) 

7'42'42 ' 
(4 2 4) 7'7'7 ' 

( 4 1 I3) 
7' 42' 42 ' 

(1 I 29) 
7' 42' 42 ' 

(1 5 23) 
7' 42' 42 ' (~'~'~)' (~'~'~), (1 2 4) 3'7' 7 ' (~, ~' ~). 

As before one can show that if (r1 , r 2 , r3 ) is one of the above values then there exists a permutation such 
that the r~ defined by (1.37) is no-more rational. In fact we obtain for example the following values of 
(<p1 , ip2 , ip3 ), which are not included in the values described by the lemma l.I4: 

( 1 1 3) 
14'2'14 ' 

( 5 3I 1 ) 
84' 84' I2 ' 

(11 37 I3) 
84' 84' 84 ' 

(11 7 I) 
8.t' I2' 84 ' (~.~,o), (I 37 11) 

84' 84' 84 ' 

( I 5 23) 
84' 12, 84 ' 

( 5 29 I7) 
84' 84' 84 ' (~,~,o), (1 8 I) 

14' 2I' 2I ' 
(119 5) 

7' 42' 42 ' 
(1 11 4) 

14' 2I' 21 . 

Solution (d.l). 

(2 3 3) 3' 20' 20 ' (1 I 9) 3' 20' 20 ' (11 1) 5' 20' 20 ' 
(1 1 19) 5' 30' 30 ' 

(1 I 7) 
5'12'I2 ' 

(2 I 5) 
5'12'I2' 

(3 3 7) 
5' 20' 20 ' 

(3 7 I3) 5' 30' 30 ' 
(1 7 I3) 

2' 30' 30 ' 
(11 11) 

2' 30' 30 ' 
(2 I 2) 

3' 5' 5 ' (~'~' ~). 
The last two points are equivalent to: 

(1 I 3) 
3'5'5 (~·~)~) (1.42) 

of the orbit (1.35), which is now complete. We can again exclude all the other values of(ri, r 2 , r3), with the 
same trick as above. 

Solution ( d.2). In this case we have that any of the triangles generated is equivalent to one of the following: 

(I
I-2 I II-4i,ol I+4tp) tp, 4 ' 4 ' (~ II - 4cpl 13 - 4cpl) 

2' 4 ' 4 ' (~ II - 4ipl 1+4tp) 
2' 4 ' 4 , 

( 2 II - 4sal 13 - 4sal) 
<p, 4 1 4 I (~ ~ II - 4i,ol) 

2' 2' 2 ' 
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where rp is an arbitrary rational number. The last triangle is forbidden because it has two right angles, and 
the first four ones are all equivalent to a flat triangle, so they are again forbidden because they give rise to 
a resonant value ofµ. 

Solution (d.3). The generated triangles are the following: 

(
1 2 2 ) 
2' 3' 3 + 2"' ' 

( ~ 2 11-4"°1 1+4"°) 
3 + "°' 4 ' 4 , (I ~_ 2 I 11- 4'PI 1+4rp) 

3 "°' 4 ' 4 , 

This case must be studied carefully because we have to classify the allowed values of the rational variable 'P 
in order that, applying the transformation (1.36), we obtain always rational values. Let us analyze the first 
triangle. It is mapped by (1.36) to a triangle equivalent to the second: 

(1.43) 

If we apply the braid (1.36), with Ti= ';, Tj = Tk = 2',0 +~.we have to solve: 

or, equivalently, for rp and for the new rpk: 

2rr 1 
cos 3 + cos 21r(2rp + 3) + 1 +cos 2iiyk = 0. 

We classify the values of the allowed rp using the lemma 1.14 in the case (e). We have six possibilities for i.p: 

i) if 'Pk = t· then 'P = ~!. In this case we obtain, from (1.43), all the points of the orbit (1.32). 
ii) if 'Pk = f' then <p = 0. In this case we obtain, from (1.43), all the points of the orbit (1.31). 

iii) if 1Pk = 2 , then <p = ~- In this case we obtain, from (1.43), the following points: 

(1 1 5) 
2'3'6 ' (1 2 1) 

6'3'6 . 
We exclude them because there exists a permutation such that the rJ. defined by (1.37) is no-more 
rational. 

iv) if 1Pk is free to vary, then 2'P + ~ = !· In this case we obtain, from (1.43), the forbidden point: 

so we have to exclude it. 

(1 1 1) 
2'3'2 , 

v) if l{)k = ~'then rp = io, and we obtain, from (1.43), the following two points of the orbit (1.34): 

(1 1 2) 
2'3'5 ' (

2 2 2) 
5' 3'5 . 

vi) if !pk=~' then rp =~~'and we obtain the following two points of the orbit (1.33): 

(1 1 1) 
2'3'5 ' 
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In the same way we can study all the other triangles and show that we don't obtain any other value but 
the ones described in the theorem. 

Solution (e.l). The generated triangles are the following: 

(o,o,~)' (o, 1~· 172)' (0·~·~)' (~. 1
1
2' 1

7
2) (~·~·~)' (~·~·~)' (~·~·~); 

the first four are forbidden because there exists a permutation such that the r~ defined by (1.37) is no-more 
rational. So we have to exclude them. The fifth and the sixth are points of the orbit (1.31) and the last of 
(1.32). 

Solution (e.2). The generated triangles are the following: 

( 1 11- 2cpl 11 - 2cpl) (o ! 11- 4"°1) 
I 2 > 2 I > 2' 2 I ( 

11 - 2cp I 1 + 2cp) 
(11- 2cpl, <p, 'P)' 0, 2 '-2- ' 

( ) (2 
ll-2cpl ll-2cpl) (11-2 1 ll-2cpl 1+2cp) 0, cp, 1 - <p l 'P1 2 J 2 I <p > 2 I 2 > 

They are all forbidden, the first three because they have two right angles, the next three ones, because we 
can prove that necessarily <p = ~, then the first has two right angles, the second gives I cos 11-r~ I = 3 and the 
last gives I cos 11-r~ I = 2; all the others because they are equivalent to a flat triangle. 

Solution (e.3). The generated triangles are the following: 

(4 1 1) 
5' 5'5 ' 

( 1 11) o, 15' 15 ' 

(2 1 1) 
3' 5 > 5 I 

(2 1 3) 
3 > 5 > 5 I 

(
2 2 2) 
3' 5' 5 ' (

2 2 2) 
5' 5' 5 ' 

(2 1 11) 
5'15'15 I 

(2 1 1) 
5'3'3 ' 

(4 2 8) 
5 I 15 l 15 1 

We exclude the first six because we can show that there exists a permutation such that the r~ defined by 
(1.37) is no-more rational. The seventh and the eighth give two points of the orbit (1.34), the ninth and 
tenth two points of the orbit (1.37) and the last two, two points of (1.37). 

Solution (f) We have obtained all the points of all the orbits of the theorem. To show that there are no 
other points we still have to examine the case (f). In this case all the obtained triangles are equivalent to 
the following: 

(1.44) 

Applying the transformation (1.36) to the above triangles, we find that we have to solve for cp1, <p3 and for 
the new ip obtained from the (1.37), the following three equations respectively: 

l2-cp3I cos 7r 2 + cos rr<p1 + cos 2rr<p + 1 = 0, 

11 + <p1 - <p31 11 - <p1 - <p31 cos rr 
2 

+cos rr 
2 

+cos 2rr<p = 0, 

<p1 + <p3 l3<p1 - <p31 2 cos 7r 
4 

+ cos 7r 
4 

+ cos 2rr<p = 0. 
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We again can use the lemma 1.14 to prove that we don't obtain any new point. Let us show this in for the 
first triangle 

(
cp1 12- cp1 + cp3I 12- i;1 - ip3I) 
2 ' 4 , 4 . (1.45) 

\\"e have to solve the equation 

12- cp3I cos ii 2 +cos 7i<p 1 +cos 2mp + 1 = 0. (1.46) 

lising the lemma 1.14, the possible values for (1 2 - 2"' 3 1,<p1,i;) are the (e.l), (e,2) and (e.3). Consider the case 
( e. l), then the possible solutions for the pair (<p 1 , cp3), are 

Let us substitute these solutions in (1.45); we obtain the triangles 

which are all flat, and then forbidden. Let us now consider the case (e.2). In this case we obtain two 
possibilities: either <p3 = 0 and <p1 is a free parameter, or Yl = 1 and <p 1 is a free parameter. In both the 
cases the triangle (1.45) is flat, and then forbidden. Let us now consider the last case (e.3). The possible 
solutions for the pair (<p1, <p3), are 

Substituting these values in (1.45), we obtain all flat angles. We can repeat the same proof for the other two 
triangles in (1.44). In this way we conclude the proof of the theorem. QDE 

1.4. Monodromy data and reflection groups. 

We reformulate here the above parameterisation of the monodromy data by classes of equivalence of 
triples (x1 , x2, x3) in a more geometric way. Let us consider a three-dimensional space V with a basis 
(e1, e2, e3) and with a symmetric bilinear form ( ·, ·) given, in this basis, by the matrix 

(1.47) 

namely 
(e;,e;)=2, for i=l,2,3, and (e1,e2)=x1, (e2,e3)=x2, (e1,e3)=x3. 

Observe that the bilinear form (1.47) does not degenerate. Indeed, 

due to the non-resonance assumption 2µ ¢ Z. The three planes p1 , p2, p3 orthogonal to the basic vectors 
(e1, e2, e3 ) posses the following properties: 

1) The normal vectors to these planes are non-isotropic (i.e. (e;, e1)-:/:= 0). 
2) None of the planes is orthogonal to the other two. 

Conversely, a real three-dimensional space V with a non-degenerate symmetric bilinear form (-, ·) and 
with an ordered triple of planes, satisfying the above conditions, uniquely determines the matrix g of the 
form (1.47), and then the monodromy data of a solution of PVIµ. 

29 



We define three reflections R1, R2, R3 with respect to the three planes (P1, P2, p3): 

V-t V R;. 
· xi---tx-(e;,x)e; 

i = 1, 2, 3. 

These reflection have the following matrix representation in the basis ( e1, e2, e3): 

-X3) 
0 ' 
1 

R3 = ( ~ -X3 
0 
1 ( 1.48) 

Let us consider the group G C O(V, ( ·, ·)) of the linear transformations of V, generated by the three reflections 
R1 , R2 , R3 . The matrix g is the Gram matrix of the reflection group G. We observe that, for an admissible 
triple, the group G is irreducible, namely there are no non-trivial subspaces of V which are invariant with 
respect to all the transformations of G. 

We conclude that the branches of the solutions of PVIµ can be parameterised by three-dimensional 
groups with a marked ordered system of generating reflections R1 , R2, R3. Let us describe what happens 
with the triples of generators under the analytic continuation of the solution. 

We define an action of the braid group B3 on the systems of generators R1, R2, R3 of the reflection 
group G: 

/31 : (R1, R2, R3) i---t (R1, R2, R3)131 :=(R2, R2R1R2, R3), 
/32: (R1,R2,R3) i---t (R1,R2,R3)P 2 :=(R1,R3,R3R2R3), 

(1.49) 

where /31,2 are the standard generators of the braid group. Observe that the groups generated by the 
reflections (R1, R2, R3) and (R1, R2, R3)/J coincide for any /3 E B3. In particular the following lemma holds 
true: 

Lemma 1.16. For any braid /3 E B3, the transformations /3(R1, R2, R3) are reflections with respect to 
some planes orthogonal to some new basic vectors (ef, eg, e~). The Gram matrix with respect to the basis 
(ef, e~, e~) has the form: 

/Jp /33 3 /33 /J /J/J /J (e;,e;)=2, i=l,2,3, (e1,e2 )=x1, (e 2 ,e;d=x2 , (e1,e3)=x3, 

where (xf, xg, xg) = /3(x1, x2, x3). 

Proof of the lemma 1.16. It is sufficient to check the statement for the generators /31,2. For f3 = /31: 

Computing the Gram matrix we prove the lemma. QDE 
Reflection groups and algebraic solutions \Ve observe that all the triangles, obtained in the classi-
fication theorem 1.6, are spherical. For them, the reflection group G, defined above, acts in the Euclidean 
space (in fact the correspondent Gram matrix g is positive definite), and it is finite. These groups coincide 
with the Coxeter groups A.3 , B3 and H 3 • They describe respectively the symmetries of the tetrahedron, of 
the cube and of the icosahedron. 

The classes of the algebraic solutions, described by the triangles in the list given by the theorem 1.6, 
are in one-to-one correspondence with the pairs of the reciprocal regular polyhedra or star-polyhedra in 
the three-dimensional Euclidean space. Namely (1.31) corresponds to the regular tetrahedron, (1.32) to 
the pair regular octahedron-cube, (1.33) to the pair regular icosahedron-regular dodecahedron, (1.34) to 
the pair regular great icosahedron-great star dodecahedron, (1.35) to the pair regular great dodecahedron-
small star dodecahedron. To establish the correspondence we associate a triple of planes in the Euclidean 
three-dimensional space to a polyhedron on the list, using the following construction (see figure 7): 
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Fig.7. Here we show how to obtain a triple of planes, with a common intersection point, starting from a cube. 

1) Take a face of the polyhedron. 
2) Connect the center 0 of the face with a vertex P of it. 
3) Take an edge of the face passing through the vertex P. 
4) Connect the center Q of this edge with 0. 
5) Consider the hyper-planes through the center Hof the polyhedron and the sides OP, OQ and PQ. 
6) Intersect such hyper-planes with a sphere of center in the center of the polyhedron. 

Classification of the monodromy data, second proof. We present here another proof of the above 
classification result, based on an idea suggested by E. B. Vinberg. We start with the following: 

Algebraic Lemma. Let (x,y,z) be an admissible triple of real numbers, satisfying the inequalities: 

x2 + y2 + z2 
- xyz > 4, (1.50) 

and 
lxl, IYI, l=I S 2. (1.51) 

Then there exists a braid ,B E B3 such that the absolute value of some of the coordinates of f3(x, y, z) is 
strictly greater than 2. 

Before proving the lemma, we observe that we can assume, without loss of generality, that all the 
coordinates of ( x, y, z) are non-zero; in fact, for any admissible triple, there exists a braid ,3 E B3 such that 
all the coordinates of f3(x, y, z) are non-zero. Let us denote by bx, by and bz the following braids: 

bx:= /32, bx(x,y,z)=(z,-x,x-yz), 
by:= /32 1/31/32, by(x,y,z) = (-y+xz,-x,-z), 
bz:= /31, bz(x,y,z)=(-x,z-xy,y). 

Lemma 1.17. Let (x, y, z) be a triple of non-zero real numbers, satisfying 

0 < lzl, lxl, IYI S 2 (1.52) 

and 
x2 + y2 + z 2 - xyz = 4 + c2 , c > 0. (1.53) 

Denote (x',y',z') := f3(x,y,z), where 

Then: 
min{jx'I, ly'I, lz'I}? min{lxl, !YI, lzl} ( 1.54) 

and 
lx'I + IYI + lz'I ? lxl + IYI + lzl +min{ z2

, 2c }. (1.55) 
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Proof of the lemma 1.17. Let us prove the lemma in the case where lzl ~ lxl, \y\ and f3 = b,. The other 
cases can be proved in the same way. If the signs of z and of xy are opposite then: 

ly'\ = \zl + \xy\ ~ lzl + z2
, \x'I = lxl, \z'I = lzl 

and the (1.54), (1.55) are proved. Let us suppose that the signs of z and of xy are the same. Changing the 
triple (x, y, z) to an equivalent one, we can assume that all the coordinates are positive. If we prove now 
that: 

2z + 2c ~ xy, (l.56) 

where c is given in (1.53), we have that \y'I = lxy- zl 2: z + 2c and the lemma is proved. To prove (1.56) 
we find the constrained minimum of the function xy on the domain D defined by the conditions (1.52) and 
(1.53). The Lagrange function: 

F(x,y,z) :=xy->.(x2 +y2 +z2 -xyz), 

has the local maximum at: 
. /4 + c2 - z2 

x=y=v 2-z ' 

and no minimum in the interior of D. It remains to study the values of the function xy on the boundary of 
D. If, say z :::: y, then the positive root x of the equation 

x 2 + 2z2 xz2 = 4 + c2 

is greater than 2. So the boundaries z = y and z = x are not reached for (x, y, z) ED, and then \zl < \xi, \y\. 
It remains the last boundary to be studied. If, say y = 2, \Ye find x = z ± c. Since x 2: z, then x = z + c and 
xy = 2(z + c); this is the minimum of the function xy. QDE 

Proof of the algebraic lemma. As observed above we can always reduce to the case where all the coordinates 
(x, y, z) are non-zero. Put: 

Using the lemma 1.17, we can build a braid bi such that the coordinates: 

satisfy the inequalities 

(1.57) 

Since the quantity x 2 + y2 + z2 - xyz - 4 is preserved by the action of the braid group, we obtain: 

If the absolute value of some of the coordinates ( x 1 , Yi, zi) is greater than 2, the lemma in proved. Otherwise 
we apply again the construction of the lemma 1.17 to the triple ( x 1 , Yi, zi). In this way we obtain a sequence 
of braids b1, bz, b3 ···such that the corresponding triples 

satisfy 
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Iterating the inequality (1.54), we obtain that 

lx,.I + IY1<I + lzkl 2 lxl + IYI + lzl + kl\(x, y, z). 

Hence, in a finite number of steps we build a triple such that the absolute value of at least one of the 
coordinates in greater than 2. This concludes the proof of the algebraic lemma. QDE 

Corollary 1.3. For an algebraic solution of PVIµ, specified by an admissible triplex;= -2cos2rrr;, the 
·value ofµ must be real, the strict inequalities 

lx;l<2, i=l,2,3, (1.58) 

hold true and the matrix g defined in (1.47) is positive definite. 

Proof of the corollary 1.3. Let us prove that, for an algebraic solution, the triple (x 1 , x 2 , xs) must satisfy the 
inequality: 

XI+ X~ + x§ - X1X2X3 < 4. (1.59) 

In fact, if xr + x~ + x~ - x1x2x3 > 4, then, according to the algebraic lemma the triple is not a good one, 
and this contradicts the assumption that the solution is algebraic. If xi+ x~ + x~ - x1x2 x3 = 4, then, form 
(1.20), µ = ~ + k with k E Z. This contradicts the basic assumption 2µ <f. Z. Then (1.59) is satisfied andµ 
is a real number. Let us now prove (1.58). If, by absurd, one of the coordinates, say x1 is such that x 1 = ±2, 
then 

xi+ x~ + x5 - X1X2X3 = 4 + (x2 =F X3)2, 

and, being x2 x3 real numbers, (1.59) is violated. Then x; #- ±2, for every i. Finally, applying the Sylvester 
criterion to the matrix g, we prove that g is positive definite. In fact 

<let G = 8 - 2(xi + x~ + x§- X1X2x3) > 0, 

and, for any minor: 

<let ( X
2,· x;) 2 

2 = 4 - X; > 0. 

QDE 

Lemma 1.18. For an algebraic solution of PVIµ the reflection group G acts in the Euclidean space. 

The proof immediately follows from the fact that the correspondent Gram matrix is positive definite. 

Corollary 1.4. For a good triple (x 1 , x2 , x3) and for any braid /3 E 83, there exists three integer positive 
numbers n~2 , n~3 and n~3 such that: 

(1.60) 

Proof of the corollary 1.4. If ( e 1 . e,) = x1 = -2 cos rrr with r = ~, m, n E Z, then Ri R2 is a rotation by 
the angle 2rr~, hence: 

This holds true for any pair R; and Rj. Moreover, for any braid /3 E 83, the triple /3(x1, x,, xs) is again 
good, then (1.60) is proved. QDE 

Corollary 1.5. The set of the solutions of the PVIµ equation, with a real value ofµ and real parameters 
(x1, x2, X3) satisfying 

lxd < 2, i = 1, 2, 3, 

is invariant with respect to the analytic continuation. 

Proof of the corollary 1.5. Applying the Sylvester criterion to the matrix g defined in (1.47), we obtain 
that g is positive definite. So the reflections R1 , R2, R3 can be realized in the Euclidean space. After a 
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transformation (x1,x2,x3) ....+ (xf ,xg,x~) = ,B(x1,x2,x3), the new numbers (x1P,xl,xl) are the entries of 
the Gram matrix: 

xp 
1 

2 

of the basis (ef, eg, e~), in the same Euclidean space. Then this matrix must be positive definite, namely xr < 4 as we wanted to prove. QDE 

In the second part of this paper, we will identify the set described in the corollary 1.5 the class of 
solutions of PVIµ having asymptotic behaviour of algebraic type. This identification will be crucial in the 
computation of the five algebraic solutions of PVIµ we obtain. 

As we have just shown, a good triple 

corresponds to a representation of the Coxeter group generated by three reflections Ri, R2, R3 satisfying 

( 1.61) 

in the three-dimensional Euclidean space. We denoted by G the image of this representation. Moreover, for 
any braid ,BE B3, the matrices 

(Rf, Rg, R~) := /3(R1, R2, R3), 

satisfy the same identities ( 1.61), with some new integers nf, ng, n~. We stress that the reflections Rf,~,~ 
generate the same group G. 

Theorem 1. 7. It follows from the above property that G is an irreducible finite Coxeter group. 

Before proving the theorem, we recall some algebra. Let n be the least common multiple of n1 , n2 and 
n3. Put: 

Lemma 1.19. The numbers 

11" ( = 2cos-. 
n 

m; 
Xi = -2 COS 11"-·-, i = 1, 2, 3, 

n; 

belong to the ring Ko of the integers of the field K := Q[(]. 
Recall (see [Wey]) that K is the normal extension of Q generated by ( and Ko is the ring of all the 

algebraic integer numbers of K, namely it consists of all the elements x EK satisfying an algebraic equation 
of the form 

xk + a 1xk-l + · · · + ak = 0, with a; E 7l.. 

Proof of the lemma 1.19. Let n = n;mi, then 

where 

COS11"- = Tm·m' COS- , m; ( 11") 
ni • • n 

k-1 
Tk(x) = cos(k arccos z) = 2k-lzk + L 23

-
1aksZ 3

, 

s=O 
{l.62) 

are the Tchebyscheff polynomials of the first kind (see [Bat]). Recall that all the coefficients ak• are integers, 
so cos 11"~ = is a polynomial of ( with integer coefficients. Moreover ( is a root of the algebraic equation 

2Tn(() + 2 = 0, 
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so it is a root of a monic polynomial in JC with integer coefficients. Hence ( E /C0 and x; = -2Tm,m: ( % ) E JC 0 

being a polynomial of ( with integer coefficients, as we wanted to prove. QDE 

Proof of the theorem 1.7. From the formulae (1.48) it follows that the matrices R1, R2 and R3 are all 
defined over the same ring JC0 of the integer algebraic numbers of JC: 

R; E ~lat(/Co, 3). 
Moreover these matrices are orthogonal with respect to g; 

RfgR;=g, 
where g is defined in (1.47). Let 

r := Gal(JC, Q) 
the Galois group of JC over Q, namely the group of all the auto-morphisms 

¢:JC-+ JC, 
such that they are constant on Q. 

For any¢ E f we denote by ¢(R;) and ¢(g) the matrices obtained from R; and g by the action: 

( 1.63) 

(x1, x2, x3) 1--1- (9(x1), ¢(x2), ef>(x3)). (1.64) 
Lemma 1.20. For any ¢ E f the following statements hold true: 

i) det ¢(g) i 0, 
ii) The matrices ¢(R;) are orthogonal with respect to </>(g). 

iii) For any /3 E B3 the matrices 9(R;)3 satisfy the Coxeter relation (1.60). 
The proof is obvious, due to the fact that any auto-morphism preserves all the algebraic relations .. 

From the above lemma, and from the algebraic lemma, it follows that for any ¢ E f, the real symmetric 
matrix ¢(g) must be positive definite. We will show that this implies that the group G is finite. Let N be 
the order of the Galois group r. \Ye construct the block-diagonal matrices 

'R; E )lat(JCo,3N), i = 1,2,3, 
as the matrices formed by 3 x 3 blocks on the diagonal, such that the j-th block is i/>j(R;), for Oj E f, 
j = 1, 2, · · ·, N. the matrices 'R; are orthogonal with respect to g, that is the block-diagonal matrix having 
</>j(G), for </>j Er, j = 1, 2, · · ·, N, on the diagonal blocks. We can apply the lemma 1.20 to the matrices 'R; 
to show that they satisfy the Coxeter relation (1.60). As a consequence we obtain a representation of our 
reflection group G into the orthogonal group 

G-+ 0 (IC3N, g) 
R; ....+ 'R;. 

By construction the matrices 'R; preserve the sub-lattice 
JCg.'' C JC3N 

( 1.65) 

of the vectors whose components are algebraic integers of the field JC. We recall (see [Wey] that the ring 
JC0 of the algebraic integers of the field K, is a finite-dimensional lattice. As a consequence the image of 
the representation (1.65) is a discrete subgroup of the orthogonal group. Since g is positive definite, this 
subgroup is compact and, hence, G must be finite. The theorem is proved. QDE 

To complete the classification of the monodromy data related to the algebraic solutions it remains to 
classify the objects 

(G,R1,R2,R3), 
where G is one of the Coxeter groups A3 , B3 and H3 and (R1, R2 , R3 ) is a triple of generating reflections 
considered modulo the action (1.49) of the braid group. This can be done by a straightforward computation 
of all the orbits of the triples of generating reflections. All of them were described and classified by Schwartz 
(see the introduction). We arrive again at the list of the theorem 1.6, where the triples (1.31) generate the 
group A 3 of the symmetries of the tetrahedron, (1.32) generate the group 83 of the symmetries of the cube, 
while (1.33), (1.34) and (1.35) correspond to three inequivalent triples of the generating reflections of the 
group H3. 
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2. GLOBAL STRUCTURE OF THE SOLUTIONS OF PAINLEVE' VIµ HAVING CRITICAL 
BEHAVIOUR OF ALGEBRAIC TYPE 

In the first part of this paper, we found a class of solutions of PVIµ invariant with respect to the analytic 
continuation. For them, the reflection group G acts in the three-dimensional Euclidean space. Recall that 
the parameterµ must be real, the coordinates of the admissible triples (x1 , x2, x3) must be real and satisfy 
the inequality 

-2 < Xi < 2, i = 1, 2, 3. 

In this second part, we prove that this class of solutions coincides with the class of the solutions of PVIµ 
having critical behaviour of the algebraic type: 

y(x) = {I aox10 (1 + O(xE)), 
a1(l - x)1' (1+0((1 - x)E)), 

aooxl-loo (1 + O(x-E))' 

as x-+ 0, 
as x-+ 1, 

as x-+ oo, 

(2.1) 

where£ > 0 is small enough, and the indices !0 , li, 100 are real and the coefficients a0 , a 1 , a00 are some 
complex numbers. We compute the behaviour of any branch of these solutions near the critical points. 
These results will be used to compute explicitly all the algebraic solutions classified in the first part. 

First of all, we fix the notations. Let us choose: 

U1 = 0, U:J = X, U3 = 1. 

Then the Fuchsian system (Ll) reads: 

d ~ ( (A1 A2 A3 ) -d} =A z,x)Y = -+--+-- Y, :: z z-x z-1 

and putting: 

we obtain: 
i_y= (Ao +~+~)Y. 
dz z z - l z - x (2.2) 

The branch cuts in G:' are the same as in the section 1.1. We call now the basic loops ·10 • !r, "Yi; they are 
fixed as before, namely /o, •tr· ·y1 play the role of the preceding "Yl, 12, /3 (see picture Nl). The Schlesinger 
equations read: 

d A ( ) _ [Ao, Ar] - ox-----dx x ' 
~Ai(x) = _ [A1,-4r], 
dx x- l (2.3) 

~A ( ) _ [Ao, Ar] [Ai. Ar] 
r X - + . dx x x - 1 

The correspondent monodromy matrices are 

which play the role of the preceding M1 , M2 , M 3 respectively. We recall that they satisfy 

(2.4) 

with 
M _ (exp(2i11"µ) 0 ) 

00 
- 0 exp(-2i11"µ) · (2.5) 

36 



With the above choice of A 00 , A1 , Ax and Ao, satisfying 

detA; = 0, Tr(A;) = 0, i = 0, l,oo, (2.6) 

the non-degenerate solution A(z, x) of the Schlesinger equations turns out to be related to the solution of 
PVI, with parameterµ in the following way (see [JMU]): 

[A(y, x)]i2 = 0, iff y(x) solves PVIµ, (2.7) 

with y not identically equal to 0, 1, x. 
We now state the first main theorem of this second part: 

Theorem 2.1. For any admissible triple (xo, x1, x00 ), x; ER, lxd < 2 for i = 0, 1, oo, there exists a unique 
branch y(x; xo, x1, x 00 ) of the solution of PVIµ, with the parameterµ satisfying the equation: 

with the asymptotic behaviour (2.1) around the critical points 0, 1, oo. The indices are given by 

1 { 2r; 
l; =; arccos(cos 27rr;) = 

2- 2r; 

with 

l"f 1 0 < r; < --2 
1 if - < r· < 1 2 - • 

i = 0, l,oo, 

i = 0, l,oo, 

(2.8) 

(2.9) 

and the leading coefficients a 0 , a 1 , a 00 are single-valued functions of the equivalence class of xo, x 1 , x00 and 
ofµ, namely the coefficient ao, for xo '/= 0 , is given by: 

where 

and for xo = 0 

a - exp(-ir.¢) f2 (1-lo)f2 (~)r(~+µ)f(~-µ) 
o - 4(2µ +lo - 1)2 f2(lo)f2( 1-;lo )r(1-;lo + µ)r( 12/o - µ) (2.10) 

(2.11) 

(2.12) 

The coefficient a 1 is given by the same formula with the substitution x0 ++ x 1 , 10 t-t Li; a 00 is given by the 
same formula too, after the substitution (xo, x 1 , x 00 ) t-t (xcc, -x 1 , xo -x1xoo) and lo t-t loo. Conversely any 
solution of the PVIµ equation, with a real value ofµ, having critical behaviour of algebraic type, can be 
obtained by the above construction. 

Remark. The relation (2.8) determinesµ up to the transformations 

µ t-t ±µ + n, n E Z. 

From the results of the section 1.2, it follows that a change µ -+ -µ corresponds to the action of the 
symmetry (1.21) on the solution y(x; x1 , x 2 , x 3 ), and a change µ -+ µ + 1 corresponds to the action of the 
symmetry (1.23) on the same solution; these transformations preserve the class of the algebraic solutions. 

The theorem 2.1 will be proved in the section 2.4. 

2.1. Local theory of the solutions of PVIµ having critical behaviour of algebraic type 

Local asymptotic behaviour around 0. In this section we characterize the local asymptotic behaviour 
of the solutions of PVIµ near the singular point x = 0. First of all let us characterize the type of asymptotic 
behaviour that can be related to the algebraic solutions: 
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Lemma 2.1. Let us suppose that y(x) is an algebraic solution of PVIµ; then the first term of its Puiseaux 
series is 

y(x)...., aox1-"0 as x-+ 0. (2.13) 

for some constant a0 =j:. 0 and, the rational number <To must satisfy 0 ~ <To < 1, with ao =j:. 1 if uo = 0. 

Proof of the lemma 2.1. If y(x) is an algebraic function, as x-+ 0, then it admits an expansion in Puiseaux 
series around 0: 

oc 

y(x) = I>kx~, ko E Z, 
ko 

where n is some natural number. As a consequence, for ko =j:. 0, '"e have the following relation between the 
orders of the first and second derivative of y: 

O(x2 y") = O(xy') = O(y). (2.14) 

We now reduce to the common denominator the PVIµ equation and collect together all the terms of the 
same order, using the rule (2.14). The first term of the Puiseaux series must be chosen in order to kill the 
lowest term in the numerator of the PVIµ equation. If ko < 0, the lowest term is 

which, for 2µ f/:. Z cannot be zero for any choice of k0 • Then k0 cannot be negative. If n ~ ko > 0, the lowest 
term is: 

h. h . ~ !ii. F k w 1c 1s zer~ 10r y = ak 0 X ,. • or o > n: 

3 ,2 3 If .., -x y + 2.z: y y + y~. 

which cannot be zero. l\loreover for k0 = 0, the lowest term in the numerator of the PVIµ equation is 

4( .., ., -a0 ao - 1)~(2µ - l)~ 

and, since by assumption 2µ <I. 'll. and a0 =j:. 0, the only possible value of ao is 1. Putting y = 1 + a1x!!t, we 
obtain, in the same way that a 1 = O. This is the forbidden solution y(x) = 1. Then k0 can not be zero, and 
y(x) satisfies (2.13) with 0 < l = ~ ~ 1, namely 0 ~ u0 < l. QDE 

In the above lemma we have seen the expected asymptotic behaviour of the algebraic solutions. We now 
state the main result of this section, which is more general, namely it holds also for non algebraic solutions. 

Theorem 2.2. For any pair of values (ao, uo), 0 ~ uo < 1, there exists a unique branch of the solution of 
PVIµ, for a fixedµ, with the asymptotic behaviour 

y(x) = aox1-"0 (1 + x' f(x)) as x-+ 0, (2.15) 

for some e > 0 and f(x) smooth function such that lim,,-+o f(x) = const. 

In order that x 1-" 0 is well defined, we have to make some cut in the complex plane, namely, from now 
on, we cut along the line argx = 'P for some 'P· 

Proof of the existence. First of all we state the existence of solutions of the Schlesinger equations with 
a particular asymptotic behaviour. The following result will play an important role also in the section 2.3. 
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Lemma 2.2 (Sato-Miwa-Jimbo). Given three constant matrices A~, i = 0, 1, x with zero eigenvalues 
such that A= Ag +A~ has eigenvalues±~, 0:::; u < 1, and A~= -A-A00 , in any sector of( containing 
none of the branch cuts, and sufficiently close to 0, there exists a solution of the Schlesinger equations that 
satisfy 

IA1(x) - A~I:::; Klxl1-u' lx-A(A1(x) -A~)xAI:::; Klxl1-"'
1 

Ix-A Ao(x)xA -Agl:::; Klxll-u' Ix-A Ax(x)xA -A~I:::; Klxll-u', 

where f{ is some positive constant and 1 > u' > u. 

(2.16) 

(2.17) 

\Ve want to show that it is possible to choose Ao,1,z and A such that the corresponding solution y(x) 
of the Painleve VI equation, obtained via the equivalence (2.7), has the asymptotic behaviour (2.15). Let 
us consider an arbitrary constant matrix A with eigenvalues ±~; let T be the diagonalizing matrix of A, 
namely: 

The choice of T fixes A and vice-versa. Now we choose A~ = -A00 - A and A8,z such that A8 +A~ = A, 
namely 

for some constant matrix F. Then: 

where we can choose E = ( ~: bi), for some non-zero constant b. \Vith this choice of E, .4.o,z have zero 

eigenvalues. Using the lemma 2.2, we obtain that, as x -r 0: 

(
x% 

Ao,z--+ T O ~a ) [ ( ~ o ) ( O _ b"'{ ) ] ( x -2a 
X°2 Q -~ ± -O'Z a 0 0 

4 4b 

o )T-1 
x'! ' and .41 -r -AC<> - A. 

Substituting such asymptotic behaviors in the relation (2.7), taking Ti2, Tu=/::. 0 we obtain: 

T12x1-u 
y(x) ~ - 4bTu ; (2.18) 

we are now free to choose the arbitrary constants b, Tu, T12, u in such a way that - 4r,E, = ao, er= ero, for 
any fixed ao and uo. 

Proof of the uniqueness. ~ow we prove that the solution y(x), x E B(O, r), of Painleve VI equation such 
that it satisfies (2.15) for some given constants a0 and uo E [O, 1), is uniquely determined by a and er. Here 
B(O,r) = {xllxl:::; r, argx =/::. i.p, x =/::. O}. 
The proof is based on the fact that Painleve VI is equivalent to the following reduced Schlesinger equations 
( 1.16): 

where: 

. (q - l)q + 2p(q - I)q(q - x) 
q = ( ) ' x-lx 

. -p2 (x - 2q - 2xq + 3q2 ) - p(2q - 1) - (1 - µ)µ 
p= (x-l)x 

q= y, 
x(x - l)y - y(y - 1) 

p= 2(y-x)y(y-I) ' 
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and the dot means the derivative :,, (see the system (1.16) above). We shall prove the local uniqueness of 
the solutions of the Hamiltonian system with the following asymptotic behaviour: 

q(x) - ax1 + x1+< f(x) ( ) 
l - 1 1 x< g ( x) 

px ----+---
2a x 1 x 1 (2.20) 

where l = 1 - u 0 , a= a0 , £ > 0 and f(x) and g(x) are some smooth functions in B(O, r) which tend to zero 
as x-+ 0. 

This is equivalent to show the main theorem. In fact from the uniqueness of q follows trivially the 
uniqueness of y and the following lemma holds true: 

Lemma 2.3. The estimates (2.20) on the asymptotic behaviour of(q(x),p(x)) are a consequence of (2.15). 

Proof of the lemma 2.3. Since q = y, the assertion on y is obvious due to the hypothesis (2.15); concerning 
p, we use its definition: 

p= 
x(x - l)y - y(y - 1) 

2(y- x)y(y - 1) 
and by a straightforward computation we show the ansatz for p. QDE 

We now distinguish two cases: 0 < l < 1, and l = l. Let us consider the former case; it is convenient to 
introduce the new variables (ij,p): 

ij = J!_ p = x' p; x' 
which have a similar asymptotic behaviour: 

ij(x) =a+ x< f(x) 

and the equations of the motion become: 

with: 

and 

q = fq(p, ij, x, x 1), 

p = fp (p, ij, x, x1
), 

J. = -ij(l - 1 - 2pij) _ ij(l + 2pij) + ij(l + 4pij) - 2x-1pij - x11f (1+2jjij) 
q x x 1- 1 1- x ' 

~ _ p(l - 1 - 2pq) µ - µ 2 + 2pij + 3p2 ij2 ~ - p(l + 4pij) + x1 (µ - µ 2 + 2pij + 3p2ij2 ) 
Jp - + 1-1 + 1 . x x -x 

(2.21) 

(2.22) 

We want to prove the uniqueness of the solution (ij,p) of (2.22), satisfying the ansatzs (2.21) fort E 8(0, r), 
in the ball llfi- '2a1 II, llii - all :::; Cr, where Cr is a constant that vanishes when the radius r -+ 0, and 
llfll = supB(O,r) IJ(x)I. Let us suppose that there are two solutions (ij1,fi1) and (q2,fi2) of the system (2.22), 

satisfying (2.21). Then, if we define X = ( ~1 - ~2 ), we obtain, as a consequence of (2.21), that the followino-
~ -~ 0 

limits exist: 

lim X(li)l(x) = 0, i = 1, 2, (2.23) 
lxl-+0, arg(x)=d X < 

for some 0 < £, X(i) being the i-th component of X. Moreover X satisfies the following: 
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where 
~Q; = Q;(iii,pi, x) - Q;(q2, p2, x), and ~P; = P,(qi, Pi, x) - P;(q2, iJ2, x), 

Q _ q-(1 + 2p_q_) Q _ -2p_q_ Q _ q(i+4p<j)-2x 1
-

1pq-x'q2 (i+2pq) p _ 2 + 2 -- + 3 -2-2 p _ -2 
i - • 2 - , 3 - i-x , i - µ - µ pq P q , 2 - P , 

p - p~x1-1 _p(l+4p.j)+x' (µ-µ2+2p<j+3p2ql) 
3 - 1-x 

We want to prove that, under the hypothesis (2.23), X = 0 (this is equivalent to prove our theorem). 
Performing the constant linear transformation X = T Z, where 

we obtain 

(2.24) 

where 

and, from (2.23): 
. zC'l(x) 

hm --- = 0, i = 1, 2. 
lxl-+O,arg(x)=tl lxlc (2.25) 

In order to prove that Z :::: 0, we fix any direction in the complex plane, namely we take x such that 
arg( x) = 1'J, for some fixed 1'J and we consider the real variable t = Ix 1- Then we define: 

We want to prove that the assertion y(il(t 0 ) :p 0 for some t0 > 0 leads to an absurd. To this aim we prove 
a differential inequality for the right derivative D+ y(i) of y(i) (t). Since D+ y(i) :$ IZ(il'!, to obtain such a 
differential inequality is enough to estimate from above the modulus of the components of the right-hand-side 
of (2.24). To this aim we notice that all the polynomials Q,, P; have the form: 

3 3 

Q; = L atnpnqk' P; = L b~,npnqk, 
k,n=O k,n=O 

with ak,n(x), bk,n(x) regular functions x E B(O, r). As a consequence, we obtain, in the ball \\p- 12a1 II, lki-
al\ :$Cr, the estimates: 

(2.26) 

for some positive constants c{, c~. In-fact 

l~Q;I = IL:ak,n[qt(.Pl -fi2) +fi2(q~ - qi)JI:::; { I: c$1»(1lak,1ll + 2c$2lllak,2ll)} 
k,n k=O,i,2 

· IPi - P2I + { L c~2l"(llai,nll + 2c~i>11a2,nll + 3C~i)2 llaa,nll)} ·\qi - q2I, 
n:O,i,2,3 

where d 1l = Cr + 2lal and d 2l = Cr + Tar· We obtain the (2.26) observing that lq1 - q2I, I.Pi - .P2I are 
related to 1z(l) I, 1z<2> I by the constant linear transformation T. 
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For the terms of order 0( ~) in (2.24) we have: 

(2.27) 

and 

(2.28) 

for some positive constants c$3l, ... ,C~6 l. Let us prove (2.27): 

1[1- z + 2f5i(ii1 + ii2)](ii1 - ii2) + 2ifHPi - v2)I < 1- (1 - l)(ii1 - ii2) + 2a2(fi1 - fi2)I + 
lxl - lxl 

l2ag1(x) + ¥Ui(x) + f:i(x)) + xE 91 (x)(/1 (x) + h(x)) 11- - I+ 
+ lxl-Ej qi - q2 

l2Ji(x)xe + 4a/2(x)l I- _ I I - (1 - l)(ij1 - q2) + 2a2(P1 - i>2)I 
+ lxl-EI p1-P2::; lxl + 

c(3) c(4) 

+ lx;-el lii1 - ii2l + lx;-£1 li>i - P:d, 

for some positive constants d 3 l and d 4 l. The proof of (2.28) is analogous. From the estimates (2.26), 
(2.27), (2.28), we obtain: 

(2.29) 

for some constant matrices A1 , A2 , A3 and A.1 (Here we mean::; component by component). Finally, choosing 
l = max{l - c, 1 - l, l}, \Ve obtain from (2.29): 

(2.30) 

for A = A1 + A2 + Aa. To show that Z = 0 we use the following: 

Comparison Theorem. Let us consider the following systems of n first order OD Es in the real variable 
t E (0, a], for some a > 0: 

D+ y(il ::; p(i) (t, V), y(il(x0) = V~i), i = 1, .. , n (2.31) 

(i) 
d~t = p<il(t, U), uUl(xo) = U~il, i = 1, . ., n (2.32) 

where p(il(t, U) are continuous functions int E (O,a], llU - Uoll < b, non-decreasing in U(il. IfV~i) 2: U~il, 
for i = l, .. n, then y(il(t) 2: U(il(t), for every 0 < t::; t 0 , i = 1, .. n. 

For the proof see [Lak]. 
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We now apply this lemma to show that the hypothesis Z(to) :f:. 0 for some t 0 > 0 leads to an absurd. 
In fact our V satisfies (U9) with Vbi) > 0 and F linear in V given by: 

By the comparison theorem, for any solution of (2.32) with U(il(to) = Vbi)' we have y(il(t) ~ U(il(t), for 
every 0 < t :::::; t 0 , i = 1, 2. Moreover by standard arguments it is possible to take U in such a way that 
U(il(t) ~ 0 and to continue the functions U, V tot= 0 preserving the relation: 

then, by the (2.25) we obtain that 

I\ow, we use the following lemma: 

U(il(t) 
lim--- = 0, i= 1, 2. 
t-+0 t• 

Lemma 2.4. The only solution U of (2.31) satisfying (2.33) is U(t) := 0, 

(2.33) 

Proof of the lemma 2.4. We perform the following change of variable t1-i = z, the differential equation 
for U in the new variable z is: 

A A4 ...L 
with A(z) = ---+---z1-r, 

1-l 1-l 

- ( 00 log(ozl/i)) u-T. namely the matrix A(.:) is a rational function of 0 :::::; z :::::; r. Defining U such that U = 
we obtain: 

(2.34) 

where the functions aij(z) are the matrix elements of A(z). The matrix A(z) is a diagonalizable matrix 
function of 0 :::::; z :::::; r with integrable eigenvalues 0, - log(z1/i)a2i(z), and regular invertible diagonalizing 
matrix 

- ( 1 1) T( z) = _ a,t ~ O . 
<l:i:i z 

Then the general solution of (2.34) is 

- - ( r (o U = T(z)exp lo 0 

which gives: 

( 0 log(z1/i)) - ( r (0 0 ) -) U = Uo 0 0 T(z) exp lo 0 - log(.z1/l)a21(z) dz , (2.35) 

for some constant matrix U0 . Now it is obvious that (2.35) satisfies (2.33) if and only if Uo = 0, namely 
U = 0, as we wanted to prove. QDE 

Using the above lemma, we obtain ugl = V~i) = 0, and this is absurd. This concludes the proof of the 
uniqueness in the case 0 < l < 1. 

Let us briefly explain how to prove the uniqueness in the case l = 1; since the procedure is essentially 
the same as before, we shall skip the details. First of all we introduce some new variables (q,p): 

q(x) = q(x) - a+ x" f(x) 
x 

p(x) = p(x) - µ(1- µ) "'x"g(x) 
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which satisfy the equations of the motion: 

q= Qi(ij,P) + ~1Q2(q,p) x-
:.. p P(--) l P(--) p = -- + 1 q,p + --1 2 q,p x x-

where Qi(q,p) = 2(µ - µ2 + p)(q - l)q2 , Q2(q,p) = ij(q - 1)[1 + (2µ(1 - µ) + 2p)(ij - 1)], P1(q,p) = 
(µ - µ2 + ji)2 (2- 3q)q - µ(l - µ),and P2(q,p) = p + (µ - µ2 + p) 2 (4q - 3q2 - 1) - 2(µ - µ2 + p)ij. Then, if 
we define X as before, we obtain 

that gives rise to the differential inequality: 

Ix.,,::; ((oo 0) 1 . A2 ) IXI . 1 j;j+.;.i+lx-11 • 

for some constant matrices Ai and A'.l. Obviously X satisfies (2.23) with any 0 < c < 1. Again we apply the 

(
1x<i)1) comparison theorem to V := ( ) , along anv fixed direction on the complex plane, namely we take x IX 2 I . 

such that arg(t) ={),for some fixed{) and define t = lxJ. V satisfies (2.31) with: 

(1 ( 0 0) A2 ) • F(t, V) = t O 1 +Ai + t _ 1 V. 

If, V~i) > 0, then, thanks to the comparison theorem, it is possible to take a solution U of (GlO), with 
u~i) = v6i)' i = 1, 2, in such a way that: 

namely U(i) satisfies (2.33). The general solution of (2.32) is 

that satisfies (2.33) iff U0 = 0, namely U = 0 that is absurd. This concludes the proof of the uniqueness. 

Asymptotic behaviour of the solutions of the Schlesinger equations. An important corollary to 
the theorem 2.2 is the following: 

Theorem 2.3. The solutions of the Schlesinger equations Ao, i,r (x) corresponding to the solution of Painleve 
VI equation with asymptotic behaviour (2.15) must satisfy the relations (2.16) and (2.17). 

Proof of the theorem 2.3. Let us consider the solution y(x) of Painleve VI equation with asymptotic behaviour 
(2.15) and let us suppose by absurd that the corresponding solutions of the Schlesinger equations Ao,i,r(x) 
do not satisfy the relations (2.16) and (2.17). As shown in the lemma 2.2, for any constant matrices A8, 1,,,,., 

A such that A= A8 +A~ has eigenvalues±~, u E [O, 1[, and A~ = -A-A00 , there exists a solution Ao,i,r(x) 
of the Schlesinger equations that satisfy the relations (2.16) and (2.17). Now, as shown in the section 2.2, 
we can choose A8,i,r in order that the corresponding solution y(x) of Painleve VI equation has exactly the 
asymptotic behaviour (2.15). But for the uniqueness proved in theorem 2.2, we have that y(x) = y(x), 
namely Ao,i,r = Ao,1,r, which is absurd. QDE 

Asymptotic behaviour of the PVIµ transcendent around 1 and oo. We now state the analogues 
of the theorem 2.2 for the local asymptotic behaviour of the solutions of (PVI) near the singular points 
x = l,oo: 

44 



Theorem 2.2'. For any pair of values (a1 ,u1), o-1 E[O,1[, there exists a unique branch of the solution of 
(PVI) with the asymptotic behaviour 

y(x)....., 1- a1(l - x) 1-"1 as x -t 1. (2.36) 

The proof of this theorem is analogous to the proof of theorem 1, namely one can state the analogous of the 
lemma 2.2 replacing x .....;, 1 - x, and then choose suitably A, A8 1 .,; the uniqueness is proved in the same 
way as the case x .....;, 0. ' ' 

Theorem 2.2". For any pair of values (a00 , 0-00 ), 0-00 E [O, l[, there exists a unique branch of the solution 
of (PVI) with the asymptotic behaviour 

y(x),...., a00 x"00 as x -too. (2.37) 

The proof of uniqueness is analogous to the one of theorem 2.2. The proof of existence follows the same 
strategy as the one of theorem 2.2, but with a different formulation of the lemma 2.2: 

Lemma 2.2~. Given some constant matrices A?, i = 0, 1, x with zero eigenvalues such that A = A8 +A~ 
has eigem1a]ues ±~, 0 ~ u < 1, in any sector ofi containing none of the branch cuts, and sufficiently close 
to oo, there exists a solution of the Schlesinger which satisfy: 

lxAxA"" Ao,1(x)x-A 00 x-A -A~I ~ I<lxl"'- 1 , 

where J( is some positive constant and 1 > u' > u. 

(2 .38) 

(2.39) 

Proof of the lemma 2.2'. Let us consider the Schlesinger equations (2.3) and perform the change of variable 
x = t· Moreover we put: 

A;(x) := x-A,., A;(x)xA""; 

Then we can apply the lemma 2.2 to the system: 

and obtain the estimates (2.38) and (2.39). 

2.2. The local asymptotic behaviour and the monodromy group of the Fuchsian system 

QDE 

The asymptotic behaviour of the PVIµ transcendent around 0 and the monodromy matrices. 
In this section we relate the local asymptotic behaviour of the solution y(x) of (PVI) to the monodromy 
data of the associated Fuchsian system (2.2). We essentially follow the same strategy of [Jim], even if we 
have to introduce some more tricks (see sections 4.2, 4.3, 4.4) due to the fact that our matrices A8. 1,., are 
strongly resonant, namely their eigenvalues are all zero. The main result of this section is the following: 

Theorem 2.4. For the solution y(x) of PVIµ, such that y(x) ,...., aox 1-a0 (1 + O(xe)), 0 < uo < 1, the 
monodromy matrices of the Fuchsian system (2.2) are parameterised as follows: 

(2.40) 
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where iJ00 = 2µ and: 

-1 -i ( ei11:<10 - 1 
C MxC = -.-- 2 -i11:<1o • 2 ~ sm 1r'O'o - a-e sm 2 

-i ( ei11:<1o - 1 
CMoc- 1 = -.-- 2 . 2 1!.!!ll. sm 1r'O'o "i sm 2 

-2ssin~ 1T-) 
1 - e-•11:<1o 

~ __ 1_2µ + uo r 2 (1 + O'o)r2 (1- E!f-)r(1 +µ-Elf- )r(1- µ - Elf") 
r - 4ao 2µ- uo f 2 (1- uo)f2 (1 + E?f")f(l + µ + E?f")f(l - µ+Elf") 

with an arbitrary complex number r and the matrix C is: 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

In the case where O'o = 0 the monodromy matrices of the Fuchsian system (2.2) are parameterised as follows: 

wheres= ao. 

-iuexp(i11:¥l) 
COS rri!J2oo 

1 +is tan~ ' 2 

-i(l-•)11:exp(i,,.~) ) 
COS "'t1

2
gq 

1 + i(l - s) tan ,,.~,., ' 

(2.45) 

(2.46) 

(2.47) 

The main idea to prove this theorem is that, due to the theorem 2.3, the solutions of the Schlesinger 
equations corresponding to the PVIµ transcendent with the asymptotic behaviour (2.15) must satisfy the 
relations (2.16) and (2.17); using these relations we relate the monodromy matrices of the Fuchsian system 
(2.2), to the ones of two simpler systems, which are given in the following two lemmas (see [Sl\IJ] and [Jim]): 

Lemma 2.5. Under the hypotheses (2.16), (2.17), the limit of the fundamental solution of the system (2.2), 
normalized at infinity, limx-+O Y00 (.:, x) = Y(z), exists, for z E {\{Bo U Bx U B1 U B00 }, Bo Br, B1 and Bc;;o 
being balls around 0, x, 1 and oo respectively. Moreover this limit Y satisfies the differential equation: 

d · ( A? A) · -Y= --+- Y; dz z -1 z 

and it has the following behaviour near the singularities of (:E) 

Y(z)=(l+O(~))z-A"" z-+oo 

= (1 + O(z)) zACo z-+ 0 (2.48) 

= G1 (1 + O(z - 1)) (z - l)J1 C1 z-+ 1 

where Ji is the Jordan normal forms of A?, GiJ1G1 1 =A?, A 00 = (~ ~µ) and C0, C1 are the connection 

matrices of the system (f::). 

Remark. Observe that the matrix Co is uniquely determined by the conditions (2.48). 
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Lemma 2.6. Under the hypotheses (2.16), (2.17), the limit of the fundamental solution of the system (2.2), 
normalized around 0, limx-+O x-AYo(xz, x) = Y(x)Co exists for z E [\{Bo U Bx U B1 U B00 }. It satisfies the 
differential system: 

~ y = ( A~ + A8) y; 
dz z - I z 

and it has the following behaviour near the singularities of (:E) 

Y(z) = (1 + O(~)) zA 

= Go (1 + O(z)) zJ°Co 
= Gx (1 + O(z - 1)) (z - l)J.,{;x 

(E) 

z-+ 00 

z-+ 0 
z-+ 1 

where Jo,x are the Jordan normal forms of A&,x, Go,x a.re such that Go,xJo,xGo,; = A8,x and Co,1 are the 
connection matrices of the system (E). 

As we have seen above, the matrices of the two systems have the following form: 

0 1 0 1 0 Ao= 2A+F, Ax= 2A-F, Ai= -Ax, -A, 

for some constant matrix F, and for A and T such that 

A=T(~ _0~)r- 1 . (2.49) 

Using the relations (2.6), we have that 

F = T ( _ou 
4b 

bu) T r-1 
0 ' (2.50) 

for some parameter b. As a consequence the systems (i:) and (E) are determined, up to diagonal conjugation, 
by the four entries of the matrix T and by b. 

Now, we explain how to compute the monodromy matrices of the original system (2.2), knowing the 
ones of the systems (:E) and (E). Later we will show how to compute the matrices A8,x,l and the monodromy 
matrices of (:E) and (E). 

Lemma 2.7. Let Mo_, M1 , M00 = A/00 be the monodromy matrices of the sys~em fE) :!fith respect to the 
fundamental matrix Y and the basis i'o = /Q/x, ~fl in 7!'1({\{O,1, oo}); let 1'rlo, M1, M00 = exp(-27l'IA) 
be the monodromy matrices of the system (E) with respect to the fundamental matrix Y and the basis 
i'o, 71 = 'Yx. The the the monodromy ma.trices of the original system (2.2) are given by the formulae: 

Mo= tc; 1if0Co, M;r: = CQ' 1J,/1Co, M1 =Ali, (2.51) 

where Co is defined by (2.48). 
Proof of the lemma 2. 7. By the definition of Y, the system (E) is obtained by the merging of the singularities 
0 and x of the system (2.2). We can then consider the path ..Yo to be homotopic to 'Yo'Yx, with i'o not crossing 
a ball Bo around) (see figure 8). 

Fig.8. The paths 'Yz and 'YO merge together, as x-+ 0. 
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As a consequence we obtain a relation between the monodromy matrices of the system (2.2) and the 
ones of the system (E): 

iI00 =Moo, 

kfi = l\lf1' 

iio = 1\!f:cMo. 

Similarly, by the definition of Y the system (E) is obtained by the merging (see figure 9) of the singularities 
~ and oo of the system for Y'(xz') := Y(.:): 

~Y'= (Ao+~+~)Y'. 
dz' z' z' - ~ z' - 1 

' ... ________ _ 

- .... , - \ 
I \ I 

' A -~ 

1, 
x 

I y 

I 
I 

Fig.9. The paths 'Y~ and 'Yoo merge together, as x -t 0, in the space of the z' variable. 

So, in the basis Y, the monodromy matrices of (E) have the following form: 

The lemma is proved. QDE 
Now we want to compute the monodromy matrices M; and iW; and the connection matrix Co. To this 

aim we have to solve the systems (E) and (:t), namely we have to determine T and b. For cr0 f 0, this can 
be done introducing a suitable gauge transformation of Y and Y such that the differential systems (f:) and 
(E) are equivalent to a Gauss equation. The case u0 will be treated later. 

Reduction to the Gauss equation. First of all let us notice that both the systems (E) and (E) have 
similar form; we want to reduce them, via a suitable gauge transformation, and a appropriate choice of the 
parameters a,/3,'J', to systems of the form: 

d (Bo Bl ) . -d Y(z,Ck,/3,At)= -+-- Y(z,Ck,/3,'J') z z z -1 
(2.52) 

where B0, B1 are some constant matrices with eigenvalues 1 - 'J', 0 and 'Y - a - f3 - 1, 0 respectively and 

Bo + Bi = - ( ~ ~). 
Lemma 2.8. For a :fa /3, the system (2.52) is uniquely determined, up to a diagonal conjugation 

Bo -t r- 1 BoT, Bi -t r- 1 BiT, with T = ( ~ ~) , r =f 0. (2.53) 
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The entries b?; and bf; of the matrices Bo and B1 respectively, are given by the formulae 

0 a{1 - 1 - ,B) 
b11 = ,B - Q ' 

0 -j3(1-1-o) 
b22 = f3 ' -a 

1 -o(J - 1- a) 
b11 = /3- Ct ' (2.54) 

bl - /3(-y - 1 - ,B) 
22- /3-o ' 

bo bo -bi bl - -o/3(1-1-/3)(1-1-a:) 
12 21 - 12 21 - (/3 - Q )2 (2.55) 

The system (2.52) can be solved using the Gauss hypergeometric function. So, we can compute its 
connection matrices via the Kummer relations (see [Luke]) of the hypergeometric functions. 

Lemma 2.9. The solutions of (2.52) have th~ form Y = ( :: ) , with y1 being an arbitrary solution of the 

following Gauss equation: 
z(l - z)yi' + [c - (a+ b + l)=]y~ - aby1 = 0 

where a= a+ 1, b = ,B, c = "f and Y2 given by: 

,B-a: { d [ o(l-/3-1)] } Y2(z) = r ,B(i- ,B- l) z(z - 1) dzyi(=) + a=+ /3- 0 yi(z) 

where r is the arbitrary parameter due to the ambiguity (2.53). 

Proof of the lemma 2.9. Let us consider the system (2.52); performing the gauge: 

Y(z, a:, /3,"f) = zb~ 1 (l - z)b: 1 U(z,a,/3, "!) 

it is easy to show that u1 satisfies the following Riemann equation: 

II [l+b~l-bg2 l+bi1-b~z+l] 1_ b~lbg2 _ 0 U1 + + 1 U1 2( 1)2 tt1 - . z z- z z-

(2.56) 

(2.57) 

~ow u1 is related with the solution YG of the Gauss equation (2.56), with a= -b~ 1 - bf 1, b = 1- bg2 - b52, 
c = 1-b~1 - b0 11, via the relation u1 = z-b~i(l-z)-b:'YG· As a consequence, thanks to (2.54), (2.55), we 
obtain that Y1 = YG and a= a+ l, b = ,B, c = "f· Y2 it is given by: 

...ll + _g_ Y2 = Y~ - ....!..!. + - 11- Yi (
bo bi ) (bo bl ) 
z z-1 z z-1 

that gives the equation (2.57) for r = -%'"'.::i;~12>. QDE 

To reduce the systems (E) and (E) to the system (2.52) we need to diagonalize the matrices AY +A = 
-A00 and A respectively, and to perform a suitable gauge transform. We need to introduce some notations. 
\Ve denote C~'f'..., are the connection matrices of the system (2.52). The matrices Jo, 1 are the Jordan normal 

forms of Bo,1 and the matrices Gg;f·..., are such that Gg;f·...,Jo.1 ( Gg;f·...,)-1 
= Bo, 1. Then for the asymptotic 

behaviour of an appropriate fundamental matrix Y (z, a, /3, "!) of the system (2.52), we have: 

Y(z,a,P,o) = (i+o(~)) ,-(~ ~) 
= Gg•p,..., (1 + O(z)) zJ0 ci·p,..., 
= Gf·p,..., (1 + O(z - 1)) (z - l)J1 Cf·p,..., 

z--+ 00 

z--+ 0 
z--+ 1. 

Some further remarks on the notations: from now on all the quantities with the hat are referred to the 
system (E) and all the quantities with the tilde to the system (E). When we don't put any hat or tilde, the 
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formulae are true for both the systems, namely they hold true for the generic system (2.52), and, sub_stituti12g 
all the quantities with the correspondent hat or tilde ones, the formulae hold true for the systems (E) or (E) 
respectively. • 

We now choose the values of a, /3, I in relation with the eigenvalues of the matrices of the systems (E) 
and (E). Namely for (E) we take: 

and for (E) we take: 
- O'Q a=2, 

fi= fJoo + O'o 

2 

- O'Q /3 = --, 2 

\Vi th this choice of the values of a, /3, 7, one has: 

A (l-1 0) Jo= 0 0 ' 

i = 1 - O'Q, (2.58) 

;y = 1. (2.59) 

Now we can reduce the systems (E) and (E) to the system (2.52) via the following gauge transformations: 

A 2:.±.! • A A 

Y = z 2 Y(z,a,/3,1), Y- _ Gcd,i Y(- ;:;, /3- ;:;,) - 0 -Ju., 11' (2.60) 

where G~·/3,i is such that 

As a consequence the connection matrices of (2.52) are related to the ones of (E) and (E) by the following 
formulae: 

G' - G&,/3.i c· - c&,/3,i A - G&),ic&,P.i 
l - 1 ' 1 - 1 , vo - o o (2.61) 

G- _ 0 c..a.-:1 0 &,/J.:r 
0,x - O 0,1 ' C- _ c&./J,;;(G"·P.i)-1 

O,x - 0,1 0 · (2.62) 

Local behaviour of the solution of (2.52). The solutions of (2.56) around the singular points 0, 1, oo 
are known and one can compute y2 by (2.57). In this way one obtains the local behaviour of the fundamental 
solution Y for z-+ 0, 1, oo, and one can compute the connection matrices by the Kummer relations (which 
are the connection formulae for the hypergeometric equation). The difference w.r.t. the situation of [Jim] is 
that in our case the Gauss equation is degenerate, namely: 

c-a- b = o, c -a - b = o, c = 1. 

Then we have to consider the logarithmic solutions of the Gauss equation around z = 1 for both the systems 
(E) and (E), and around z = 0 for (E); moreover we shall use the extension of the Kummer relations to this 
logarithmic case (see [Nor]). 

In what follows we denote F(a, b, c, z) the hypergeometric function and with g(a, b, z) its logarithmic 
counterpart for c = 1, namely: 

~ (a)k(b)k k 
F(a, b, c, z) = ~ k!(c)k z , 

k=O 

g(a, b, z) = E (a)~~b)k zkOn z + t/;(a + k) + t/;(b + k) - 2'1/;(k + 1)], 
k=O 
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lrn(z) .. ~· .. ,. · .. / .. ····· ······ ...... 

:-:::-' •• ;.;; ••• ,,;+. -+---) Rc(z) 

"·· ... 

Fig.10. The branch cut larg(z)I < r.. 

with the branch cut larg(z)I < r. (see figure 10); here t/; is the logarithmic derivative of the gamma function, 
and the expressions of the parameters a, b, c via a, /3, I are given in the lemma 2.9. 
Fundamental solution around oo Since a - b-=/: 0, the solutions of (2.56) around oo are regular. We obtain 

Yoo= 
( 

-a 1 -a/3 z-!3- 1 r . 1 ) 
z F(a,-/3,a-/3,-) (/3 )(/3 )F(.B+l,1-a,/3-a+2,.-) z -a -a+l z 

-a/3 z-<>-l 1 1 
r(/3- a)(/3- a_ l) F(a+ 1, 1- /3,a - /3 + 2, ;) z-/3 F(/3, a,/3- a,-;) 

namely: 

y~ - (1 +0(~)) z -( ~ ~) z-+ 00 

. (exp(27ria) 0 ) and the local monodromy around oo is 0 exp(2rri,8) · 
Fundamental solution around 1. Since c - a - b = 0, the solutions are logarithmic: 

namely: 

with 

y -( F(a,/3+1,1,1-z) rg(a,/3+1,1,1-z)) 
i- ~F(a+l,/3,1,1-z) g(a+l,/3,1,1-z)' 

Ga,{3 _ ( 1 r[t/;(a) + t/;(1 + /3) - 21,b(l)]) 
I - ~ tf;(l +a)+ !f;(.8) - 2t/;(l) 

. ( 1 2i7rr) and the local monodromy around 1 is 0 1 . 

Fundamental solution around 0. We have to distinguish the case (E), where the solutions of (2.56) around 
0 are regular, and the case (:E), where c = 1 and the solutions are logarithmic. 

For (E) one has: 

Yo= (- 13~&=-&-PF(-P,l-&,l-&-/3,z) r_afaF(~,/3+_1,~+~+1,z)) 
- r(/_&) z-&-$ F(l - /3, -&, 1 - & - /3, z) HF(o: + 1, /3, o: + /3 + l, z) 

namely 

( -&-fl 0) 
Yo,.., ag . .B z o o 

where 
&,,B_ 1 (-~ fa?) Go - -.-. ~ -/3-a -.,, 
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. (exp(-2i7r(a+~) 0) and the local monodromy around 0 1s 0 1 · 

For (:E) one has: 

namely: 

with ca_ ( 1 r[t/1(1 - a)+ tti(a) - 2V;(l)J ) 
o - -~ -V->(1 +a) -V->(-a) + 2v,.(1) 

. (1 2i7rr) and the local monodromy around 0 1s 0 1 . 

Connection formulae. In order to compute the connection matrices we write }'~ in the form: 

( 

. -a{3 exp(-i7r({3 + l))r ) 
_ exp(-zrra) U(a, {3 + 1, z) ({3 _ a)(.8 _a+ l) U({3 + 1, a, z) 

Yoo - -a.B exp(-i7r( a + 1)) . 
r(.8 _ a)({3 _a_ l) U(a + 1, {3, z) exp(-mf3) U(,B, a+ I, z) 

where U(a, b, z) := (z- 1eir.) F( a, 1 - b, 1 +a - b, ~ ). We have the following connection formulae: 

I - exp(i7ra)r(l +a - b) { . / U(a, b, z) z-+I = r(a)f(l _ b) [i7r + V,.(1 - b) - ip(b)]F(a, b, 1, 1- z)+ 

g(a,b,1,1-z)}, 

I -f(2a) . 
U(a, 1- a, z) z->O = r(a) 2 {[-m + V,.(a) - t/1(1 - a)]F(a, 1- a, 1, z) + g(a, 1- a, 1, z)}, 

U(a b ::)I =f(l+a-b)r(l-a 
' ' z-;0 f(l - b)2 

b)F( b b ) r(l+a-b)f(a+b-1) 
a, ,a+ ,z + r(a) 2 · 

. zl-a-b F(l - b, 1- a, 2 - a - b, z). 

Using these relations we obtain the analytic continuation of Y 00 around 0 and 1, and by the definition of the 
connection matrices: 

v I - Yr ca,/3,"'/ 
~ 00 z-+0,1 - 0,1 0,1 ' 

we obtain, by straightforward computations: 

-exp(-ir.a)r(&+/3)r(l-&+ffi)) 
-r q,B)q1+.Bl 
_ exp(-ir.P)r(-&-/3)r(l-a+P) ' 

r(-&)r(i-&) 

r(-&+#) [' t( {3.)]) - r(-&)r(/3) l7r +~co 7r 
- r(-&+/3) , 

r(-&)r(/3) 

(2.63) 

r~~(.:~; exp(imi)[7rcot(mi) - i7r]) 
r(-2&) (' -) , r 2(-a) exp ma 

(2.64) 

( 

r(2a) [" t( -)] a - - P(&) 11!" - 1l"CO 1ra 
C1 - _1r~('~l ,: r &) 

-r~i(.?!)[7rcot(r.&) + i1r]) 
_r~-2&) · 

r (-&) 
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Now we have to compute the monodromy matrices; using the formulae (2.51), (2.61) and (2.62) we have: 

Now we fix 

and 

• - exp[-irr(& - P)Jr(& - fi)r(fi)r(-&) 
r = . . r 

r(,B- &)r(-,B)r(&) 

_ exp(-2i11"ci)r(2ci)r(-a) 2 _ 

r= r(-2ci)r(&)2 s. 

In this way we immediately obtain the formula (2.40) for .M1 and it turns out that 

where C is given in the formula (2.44) and: 

• ( exp(iir.6lr(P+&)r(1-P+&) 
va,,6 := &r(&)2 sin ir& 

0 -exp(-iir,6)r(~P-&)r(l+B-&)) · 
r(l-a)r(-a)sin ... c. 

As a consequence, one has: 

By straightforward computations one can easily check that, for 

_ exp(2i11",B)r(,8 + &)f(l - fi + ii)f(l - ii)f(-&) 
s = - . . s 

f(-,B- &)f(I + ,8- &)iif(&)2 

namely: 
r r(I-uo)2r(T) 2 r(1+~)r(1+-11:/0'0 )s 
r f(l +cro) 2r(-T)2 r(I + Uag;-0'0 )r(1-~) r' 

the formulae (2.41), (2.42) hold true. 
To conclude the proof we have to prove the relation (2.43), namely we want to prove that ~ = - 4~0 ;z~~~. 

To this aim we compute the matrices Ag 1 x and A and then the asymptotic behaviour of y in terms of cr0 
and r. To compute the matrices A8,l,r a~d A we observe that, thanks to the gauges (2.60), 

• &+ J3 
A=Bo+--1, 2 

First of all one has to compute the Bo,1 : 

then 
· 1 ( a 2 
Bo=-.--. ~ 

/3- a r 

and 
- a (-1 Bl= - 1 2 -.,, r 

Ao - G°'·pB- (G°'·P)-1 0,r - 0 0,1 o • 

· _ &/3 (-1 r) Bi - -.-- i I ' /3-ii -7 

- a ( I Bo= -- 1 2 -.,,, 
r 
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It is then obvious that, referring to (2.49) and (2.50), b = r, T = G~·p, namely, using the formula (2.18), 

() r(cro+2µ) 1-<To y x ...., - x . 
4r(2µ - cro) 

This proves the formula (2.43) and concludes the proof of the theorem, in the case cro :f. 0. 
For completeness we write here the result for the matrices A8,i,x and A: 

.0 2 ? Ao - voo - cr5 
1 - 4fJoo (

-1 r) 
-4 1 ) 

r 
(2.65) 

Case of cro = 0. In this case the solution of the system (E) has logarithmic behaviour around 0. Moreover, 
as seen before, it has a logarithmic behaviour around l; then for this system we can use all the formulae 
derived for (f:), substituting a by a. The treatment of the (E), it's even easier; in fact in this case A has 
zero eigenvalues and it is straightforward to solve the system (2.52) exactly. In fact in this case we have 

Bo+ Bi = ( ~ ~) , <let B; = TrB; = 0, i = 0, 1. 

Then the matrices Bo and Bi are uniquely determined up to an arbitrary parameter s: 

Bo= (~ ~), 
and we can solve the differential equation (2.52) explicitly: 

1- s) 0 ) 

Y- -(1 slogz+(l-s)log(z-1)) 
- 0 1 . 

The solution Y has the following asymptotic behaviour near the singular points: 

as z-+ oo, 

=Go (1 + O(z)) zJCo, as z-+ 0, 

=G1(l+O(z-l))(z-l)JC1 as z-tl, 

where J = ( ~ ~). It's easy to verify that 

- (1 0) Co= 0 s ' - (1 0 ) Ci= 0 1- s ' - (1 0) Go= O ~ , - (1 0 ) G1 = O _1_ . 
1-.. 

As a consequence the monodromy matrices of the system (2.52) are 

M _ (1 2rris) 0 - 0 1 ' 
- (1 2rri(l-s)) .Mi = 0 1 . 
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The correspondent monodromy matrices of the full system (2.2) are given by: 

where: 

and 

\Ve observe that 

where: 

and 

& -1 - & and Mo,r = (C0 ) Mo,1C0 , 

•7rr(-2&)exp ir.&)) 
-r -&)sm7r& 

_r(-2&) . 
P(-&) 

C·o _ Co,1D& 
0,1 - ' 

( 

7rr{:l&) exp(-i,,.&) 
D& = r(&psin,,.& 

0 

-r7r ) sin 7r& 
exp(iir&) ' 

We can factor out the diagonal matrix D 0 in (2.68), and take f = 1. In this way, we obtain the formulae 
(2.45), (2.46), (2.47). The asymptotic behaviour of y(x) can be computed as before. For uo = 0 we obtain: 

y ....... aox, for ao = s. 

This concludes the proof of the theorem. 

The asymptotic behaviour around 1, oo and the monodromy data. \Ve can prove the analogous of 
the theorem 2.2 around 1 and :x:; namely for any pair of values (a1 , u1) there exists a unique branch of the 
solution of (PVI) with the asymptotic behaviour 

(2.69) 

and it is possible to parameterise the monodromy matrices as in the theorem 2.2, substituting u 0 with u 1 
and Afo with Mi and vice-versa. Analogously for any pair of values (a00 ,u00 ) there exists a unique branch 
of the solution of (PVI) with the asymptotic behaviour 

(2.70) 

and it possible to parameterise the monodromy matrices as before, substituting u 0 with <T::;o and applying 
the braid /32 to the monodromy matrices. 

2.3. From the local asymptotic behaviour to the global one. 

In this section we prove the theorem 2.1, which gives the asymptotic behaviour of the branches of the 
solutions in terms of the triplets (x0 , x 1 , x00 ). 

Lemma 2.10. For the solution y(o) (x) of PVIµ behaving as 
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with 0 ~ u0 < 1 and a0 =f. 0, a0 =f. 1 for u 0 = 0, the canonical form (1.19) of the monodromy matrices 
MJ 0l, M~o), M} 0l given by (2.42), (2.41), (2.40), or (2.46), (2.47), (2.45) for uo = 0, is the following: 

(
1 (0)) 

JVfo = 0 -~o ' 

(x(o))2 ) 
-~ 

"'o 
(0) (0) ' 

1-~ 
Z'(O) 

0 

where the triple (x~o), x~o), d~l) is defined, up to equivalence, by the following formulae, for uo =f. 0: 

with</> given by 

and for uo = 0: 

(o) . truo 
x 0 = -2smT, 

. "" (0) _ / Sill-;;-
X1 =-v2(costruo-cos21iµ). ~, sm 2 

,.---------COS .-(O'o+<P) 
x~) = -y'2(costru0 - cos 211µ) . ~ , 

sm 2 

; .. .p _ 1 uo + 2µ f(l + uo) 2f(l - -T-) 2f(l + µ - -T-)f(l - µ - -T-) 
e -- , 

4ao uo - 2µ f(l - ua) 2f(l + -T-flf(l + µ + !lf )f(l - µ + T) 

.,.(0) - 0 
"'O - ' 

x~o) =-I sin r.µIJI=liO 
x~) =-I sin r.µIJQO. 

(2.71) 

(2.72) 

(2.73) 

The proof of this lemma can be obtained by straightforward computations, using the algorithm of lemma 
1.5. Similar formulae for the parameters (x~1 >, x~1 ), x~~,l) and (x~oo), x~xi), xt')) can be obtained respectively 
starting from a solution y( 1l(x) of PVTµ behaving as 

or from another solution y(00 l(x) of PVTµ behaving as 

So, given an admissible triple (xo,x 1 ,x00 ), with x; ER, lxd < 2 for i = 0, l,oo, we choose the parameters 
µ, (ao,uo), (a1,u1) and (a00 ,u00 ) in such a way that (2.8) is satisfied and 

x\0 ) = x\1) = ,,.\oo) = "',· ~or i - 0 1 oo • • "'• .., , l' - ' , • 

Using the explicit formulae (2.71), (2.72), for x 0 =f. 0, we derive the expressions (2.10), (2.11), and using 
(2.73) for xo = 0, we derive the expression (2.12). In the same way, we derive the analogous expressions 
for (a1 , ui) and ( a00 , u00 ). The three correspondent branches y(O) (x), y< 1> (x), y(oo) (x)o of solutions of PVIµ, 
with µ given by (2.8), must coincide. In fact, the associated auxiliary Fuchsian systems have the same, 
modulo diagonal conjugation, monodromy matrices. This proves the existence of a solution of PVIµ with 
the asymptotic behaviour (2.1), with indices given by (2.9) and the coefficients specified as above, for any 
admissible triple (xo,x1,x00 ), with x; ER, Ix;!< 2 for i = 0, l,oo. The uniqueness of such a branch follows 
from theorem 1.3. 

Conversely, for any such a solution we obtain an admissible triple (xo, x 1, x00 ) = (x~o), x~0l, x~)) = 
( (1) (1) (1)) ( (oo) (oo) (oo)) • h ( ) ( ) ( ) h · 1 · x 0 ,x1 ,xoo = x 0 ,x1 ,xoo , usmg t e formulae 2.71, 2.72 or 2.73 and t eir anaog1es. Let us 
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prove that the numbers (x 0 , x1 , x00 ) are real and satisfy lxd < 2 for i = 0, 1, oo. Indeed, from the definition 
of the parameters, it follows: 

(x~0)) 2 = 4sin2 7ru0 , (xl1
))2 = 4sin2 7ru1, (x~))2 = 4sin2 7rU00 • 

This proves that our construction covers, for real µ, all the solutions of PVIµ with critical behaviour of 
algebraic type. 

Finally, using corollary 1.5, we infer that the class of solutions of PVIµ, with real µ, having critical 
behaviour of algebraic type is invariant with respect to the analytic continuation. The law of transformation 
of the critical indices 10 , l 1 ,l00 of the expansions (2.1), is described by theorem 1.5. 

2.4. The complete list 
By theorem 1.6, there exist only five algebraic solutions, up to the symmetries (1.21) and (1.23), which 

are determined by the orbits, under the pure braid group, of the points (1.31), (1.32), (1.33), (1.34) and 
(1.35). As we remarked in the section 1.3, these algebraic solutions have 4, 3, 10, 10 and 18 branches 
respectively. By (2.8), the value ofµ of every solution can be computed. Within the ambiguityµ t-t ±µ + n, 
n Ell, we choose respectivelyµ=-~,µ=-!,µ= -k, µ=-~,andµ= -i· \Ve arrive at the following 
complete list: 
Coxeter group W(A3), of symmetries of tetrahedron. We have (xo,x 1 ,xoc) = (-1,0,-1), then 
µ=-~and 

with 

(s - 1)2(1+3s)(9s2 - 5)2 

y = (1 + s)(25 - 207s2 + 1539s4 + 243s6)' 

(s - 1)3 (1+3s) 
x = (s + 1)3 (1 - 3s) · 

The monodromy matrices, in the canonical form (1.19) are: 

Mo=(~~) Mx=(~l ~) ;V/1=(~ ~)· 
This solution was found in [Dub] in the implicit form (E.29). This was also obtained, independently, by I\. 
Hitchin (see (Hit2]). To reduce it to the above form, \Ve have to solve the cubic equation (E.29 b) with the 
substitution: 

Then the three roots of (E.29 b) are: 

32(1- 18s2 + 81s4 ) 

t = 27(1+9s2 + 27s4 + 27s6) · 

13 - 66s2 - 27s4 

3(1+3s2 )2 
-5+42s2 ±144s3 + 27s4 

W2,3 = 3(1 + 3s2)2 

Coxeter group W(B3), of symmetries of cube. We have (xo,x 1 ,x00 ) = (-1,0,-J2) andµ= -i· 
The solution 

(2 - s)2 (1 + s) 
y= (2+s)(5s4 -10s2 +9)' 

with 
(2 - s) 2 (1 + s) 

x= ' (2 + s) 2 (1 - s) 
was obtained in [Dub]. The canonical form for the monodromy matrices is: 

Mo=(~~) Mr=(~1 ~) M1=(~2 ~)· 
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Coxeter group W(H3 ), of symmetries of icosahedron. We have three possible choices of the point 
(x 0 , x 1, x00 ) which lead to three different solutions: 

i) (xo, X1, x 00 ) = (-1, 0, -¥), thenµ=-~ and 

with 

and 

(8 - 1 )2 (1 + 38)2 (-1 + 48 + 82 )(7 - 10882 + 31484 - 58886 + 11988)2 

Y = (1+8)3(-1+38)P(8) 

(-1+8)5 (1+38)3 (-1+48 + 82 ) 

x= (1+8)5 (-1+38)3 (-1-48+82)' 

P(s) =49 - 213382 + 3430884 - 25904486 + 1642287888 - 7616646810 + 13758708812 

+ 5963724814 - 719271816 + 42483818. 

The canonical form for the monodromy matrices is: 

The above solution was already obtained in [Dub] in the implicit form (E.33). The above explicit formula 
can be obtained solving (E.33 b) in the form: 

(1 - 48 - 82)(-1- 48 + 82)(-1+582 ) t = --------------
(1+382 ) 3 

25 - 585 82 + 3530 8 4 - 6690 8 6 - 3955 8 8 + 507 8lO 
W1 = 

(1+3 82 )
5 

-7 + 215 82 - 1910 8 4 - 4096 s5 + 5150 8 6 + 20480 8 7 + 6125 8 8 - 357 810 
W2 = 

(1+382 )
5 

-7 + 215 82 - 1910 8 4 + 4096 85 + 5150 8 6 - 20480 87 + 6125 s8 - 357 810 
W3 = 

(1+382 )
5

. 

The last two solutions with the icosahedral symmetry are new. To compute them we use the following 
algorithm. The leading terms of the Puiseaux expansions near the ramification points 0, 1, oo of each branch 
can be computed by the formulae (2.9), (2.10), (2.11) and (2.12). Form this, the genus of the algebraic curve 
F(y, x) = 0 is easily computed. Namely the genus of (1.34) is 0 and the genus of (1.35) is 1. Since the 
symmetries of PVIµ preserYe the indices 10 , 11, [ 00 (up to permutations), they preserve the genus too. 

Remark. The appearance of genus 1 in the last solution related to the great dodecahedron could seem 
less surprising, if we recall that the topology of this immersed two-dimensional surface is different from the 
topology of all the other polyhedra and star-polyhedra. In fact, this is a surface of genus 4, while all the 
others have genus 0 (see (Cox]). 

"") ( ) - ( 1 0 l-:,15") h - 1 d 11 xa, xi, x00 - - , , 2 , t enµ - -5 an 

y = (1+8) (-1+38) (1+382) (9 - 34282 +485584 - 28852 8 6 + 6301588 - 1942810 +121812)' 

with 
(-1+8)5 (1+38)3 (-1+48+82 ) 

x= (1+8) 5 (-1+38)3 (-l-48+82 ). 

The canonical form for the monodromy matrices is: 

Mo=(~ i) Mx=(!1 ~) Mi=-(-31:/5" ~)· 
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iii) The last solution y(x) of PVIµ, withµ = -i, as we have already said, is an algebraic function with 
18 branches. It has two branch points of order 5, two of order 3 and two regular branches, over each 
ramification point 0, 1, oo. The branches y1 ( x), · · ·, Y1s(x) near x = 0 have the form: 

2!'..!k. 7 -2 .1 
( )

2 

Yk(x) = e " 13 6Txs + O(x), k = 1, .. ·,5 

21"tk 6i 2 .. 
Yk+s(x) = e-,.- 192 x"&" + O(x"&"). k = 1, .. ·, 5 

2~·· 2t 1 + iM i Y10+k(x)=e_3_ls 4 x 3 +0(x), k=l,···,3 

2~·· 2t 1 - iM , Y13+k(x) = e-.- 18 4 
x3 + O(x), k = 1, .. ·, 3 

3±./5 2 Y11,1s(x) = -
6
-x + O(x ). 

The Puiseaux expansions of the branches near x = 1 and x = oo can be obtained from these formulae 
applying the symmetries 

and 

xr-+l-x, 

1 
x >-+ -, x 

y .....+ l -y, 

1 y .....+ -, 
y 

respectively. Using these formulae, one can compute any term of the Puiseaux expansions of all the 
branches. Due to computer difficulties, at the moment, we do not manage to produce the algebraic 
equation for y(x). 
The canonical form for the monodromy matrices is: 

( 1 -ltl:fi) Mo= O -
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