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INTRODUCTION. 

The aim of this paper is to classify the Lie-CR-structures of a real Lie-algebra go. By 

a LCR-structure on a real Lie-algebra go we mean a triple ro = (gO, p, J) such that p is 

an ideal in go and J is an endomorphism of p whose square is minus the identity (so p has 

to be even-dimensional) and which commutes with the adjoint derivations adx, VX Ego. 

Of course LCR-structures are a particular kind of CR-structures [GT]. Remind that 

a CR-structure (p, J) on a real Lie-algebra go is given by a linear subspace p and by an 

endomorphism J : p -+ p such that 

1. J2 = -id 

2. [X,Y] - [JX,JY] E p, VX,Y E P 

3. [JX, JY] = [X, Y] + J[X, JY] + J[JX, Y], VX, YEp. 

If one denotes with g the r of go and with r the conjugation of g with respect to go, 

then the linear space q = {X + iJX : X E p} is really a complex subalgebra of g which 

does not intersect its conjugate q = rq. Given such a q, g can be written as a direct 

sum g = q EB q EB V, \vhere V = Eei=lCXi, XI",XT E go- The integer r is called the real 

codimension of the CR-structure. 

It is quite easy to introduce some basic CR-concepts: CR-subalgebra, CR-ideal, CR

homomorphism, equivalence between CR-structures. In fact, consider a subalgebra ho in 

go, a natural question is "when does ho assume a CR-structure induced by ro7". Let 

h be its complexification. Let us denot~ by k and k the subalgebras h n q and h nq, 

respectively. Since h is a linear subspace in g, it is h = k EB k EB h n V. Obviously, 

k n k = k n (h n V) = k n (h n V) = {Ole But, in the general case, k and k are not 
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isomorphic. Take, for instance, h = q, then you have k = h and k = {Ole So we are 

forced to say that a real 3ubalgebra ho admit8 the CR-3trncture k induced by ro if k and 

k are isomorphic as Lie-algebras. In that case h is said a CR-3ubalgebra in g. Let ho be 

an ideal, then h is said a CR-ideal. One can easily notice that q is not a CR-subalgebra; 

every subalgebra of V is a trivial CR-subalgebra; let h be a CR-subalgebra which doesn't 

intersect V, then k is an almost complex structure on ho. In order to compare different CR

structures, we introduce the CR-homorphism3: given two CR-structure, ro = (go, Pg, J go ) 

and Eo = (ho, Ph, Jho), a Lie-homomorphism (resp. Lie-derivation) u : go -+ ho is a CR

homomorphi8m (resp. CR-derivation) if UPg C Ph and uJgO = JhoU. 

Now, let ro = (go, Pg, J) and Co (ho, Ph, JI) be CR-structures and cp : go -+ ho a 

CR-monomorphism. In that case, we say that ro is cp-compatible with coand that ro is 

a cp-CR-8ub3trncture of Ho. Hence, if one considers the triple cp*ro = (cpgo,CPPg,cpJcp-l), 

one obtains a CR-structure. It is a fact that ro is cp-compatible with Co if and only if cpg 

is a CR-subalgebra of h. "Ve can say that ro and 3 0 are equivalent (or CR-i8omorphic) if 

there exist cp : go -+ ho and 'if; : ho -+ go such that r 0 is cp-compatible with =0 and =0 is 

tP-compatible with roo In that case, go and ho are Lie-isomorphic (via cp and tP); cp (resp. 

tP) sends Pg in Ph (resp. Ph in Pg); and cpJgO = Jhocp. Obviously we can replace the 

tP-compatibility with the cp-l-compatibility. Two equivalent CR-structures are given, for 

instance, by ro and cp*ro, for any CR-monomorphism from ro in another CR-structure 

If Go is the associated Lie-group, giving a CR-structure ro on go is the same as 

consider a structure of CR-manifold on Go for which the left translations are CR-maps. 
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If the CR-structure ro is such that p is a real Lie-subalgebra (i.e. q EB q is a complex 

one), the Lie-group Go with the CR-structure ro is a Levi-flat manifold: such CR-manifolds 

have Levi-form vanishing at each point, [AHR], [BO], [WE]. Moreover, if p is an ideal (i.e. 

q is it), then p (with the complex structure J) is really a complex subalgebra, the Lie-

group Go is foliated with complex Lie-subgroups and both the translations are CR-maps. 

Such a case is studied in this paper. In these conditions we say that the CR-structure ro 

is a LCR-3tructure. 

In [SN] the reader can find a study on left-invariant complex structure on reductive Lie-

groups. Such results have been translated by [GT] in terms of CR-structures on reductive 

Lie-algebras of the first category (in these algebras the involutiolldetermined by a Cartan-. 

decomposition is an inner automorphism [HE]): the authors stu~y, essentially, the case of .... 
04".; 

real co dimension 1. 

In this paper we explore the case of LCR-structures without any hypothesis on the 

Lie-algebra. This exploration permits us to classify all the LCR~structures. vVe base our 

work on the classical Levi-IvIal'cev theorem which assures that all the Lie-algebras admit a 

decomposition go = rEBads, ,vhere r is the solvable radical and s is a semisimple subalgebra 

[VA]. Remark that we denote Vv;th 9 the direct sum of linear spaces; with EB6 the semidirect 

sum by fJ of Lie-algebras; with 0 the direct sum of Lie-algebras. 

Thanks to Levi-Mal'cev decomposition, we have to study LCR-structures in the 

semisimple and in the solvable cases (Sections 1 and 2): in the first one the LeR-structures 

are sums (in the sense of the last proposition of Section 1) of simple ideals endowed ,vith 

a complex structure (described by Cartan in the classical classification [HE]); in the sec
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ond one they are given by even-dimensional ideals p, decomposed as p = u EB Au and by 

J = JA • (~ - ~-:1 ) , endomorphism of p. Section 3 shall proof when one has a LCR

structure on a semi direct sum whose factors are endowed with two LeR-structures. Finally, 

Section 4 concludes with the Theorem 4: let go be decomposed following Levi-lVlal'cev de

composition. Then ro = (go, p, J) is a LeR-structure if and only if its projections on the 

factors are LCR-structures whose semidirect sum by ad is ro itself. Obviously this result 

let us describe all the LeR-structures. The only indetermination is due to the knowledge 

of the ideals of solvable Lie-algebras. The last Section is devoted to some examples. 

1.THE SEMISIMPLE CASE. 

In this Section we denote by go a real Lie-algebra and by B its Killing form (remind 

that if go is semisimple, B is nondegenerate). Just by computation, one can observe that J 

is an anti-isometry with respect to B. In fact, adJxY = -adyJX = -JadyX = JadxY. 

So we have adJx = adxJ = Jadx and B(JX,JY) = -B(X,Y). 

In the sequel we shall divide our study in two subcases: the first one considers compact 

semisimple real Lie-algebras; the second one those noncompact. Remind that a Lie-algebra 

go is compact if there exists a compact Lie-group whose Lie-algebra is go. That is equivalent 

to the decomposition go = (go) (=) [go, go], where (go) is the center of go and [g01 go] is 

semisimple [GR]. 

It is a classical fact that the existence of a complex structure on a compact (not 

semisimple) Lie-algebra implies the abelianity of the algebra itself [GR]. lVloreover, if p 

is in the center of go, fo is trivially a LCR-structure, so we can hopefully expect a CR 

analogous of the complex result. Such an analogous result is based on the 
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Lemma. Given fo = (go, p, J) LCR-structure, p admits a biinvariant metric if and only 

if p is abelian. 

Proof. A metric 9 is biinvariant iff g([X, Y], Z) = g(X, [Y, Z]). Suppose p is abelian, 

then any metric is, certainly, biinvariant. Let us prove the converse. We can impose that 

J is an isometry with respect to 9 (otherwise we substitute 9 with g'(X, Y) . g(X, Y) + 

g(JX, JY)). With this hypothesis the follo\ving chain of equivalences is true, V_:r, Y, Z E 

p: g([X, Y], Z) = g(J[X, Y], JZ) == g([X, JY], JZ) == g(X, [JY, JZ)) == -g(X, [Y, Z]) = 

-g([X, Y], Z) = 0, therefore g([X, Y], Z) = 0, which concludes the Lemma. Q.E.D. 

Since any compact Lie-algebra admits a biinvariant metric the above lemma implies the 

following 

Proposition. Given go compact (not semi3imple), fo = (go, p, J)':is a LCR-structure if 

and only if p is abelian. 

The previous proposition permits us to conclude about compact Lie-algebras with the 

Theoreml. There are no LCR-structures on a compact semisimple Lie-algebra. Further

more, when go is compact, fo = (go, p, J) is a LCR-structure if and only if p is in the 

center ((go). 

Proof. The nonexistence of abelian ideals in a semisimple Lie-algebra concludes the 

first part of the assertion. About the second one, remind that a compact Lie algebra go 

takes the form go = ((go) 0 [go, go], where [go, go] is semisimple. Now suppose that go 

supports a LCR-structure ro = (go, p, J), then p takes the form PlffiP2 where P2 is an ideal 

in [go, go]. Suppose that J maps P2 in itself, then ([gO, go], P2, J) is a LCR-structure, that 

is impossible. Hence, p = PI C ((go). Let us conclude proving that J maps P2 in itself. 
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Consider the complex subalgebras qj = {X',-- iJX : X E Pj}. Obviously it is q = ql E9 q2 

and q2 is another LCR-structure of go. Hence, it is given the endomorphism J2 : P2 -+ P2. 

Take X E P2, then X - iJX E q (resp. X + iJX E q) and X - iJ2XE q2 C q (respo 

X +iJ2X E q2 C q), so i(J2X-JX) = (X -iJX)-(X-iJ2X) = (X+iJ2X)-(X+iJX) E 

q n q = {O}, which means that J maps P2 in itself. Q.E.D. 

In Section 2 we shall study LCR-structures on abelian Lie-algebras. Hence we will 

describe completely LCR-structures in the compact case. Now we move to the study of 

LCR-structures on semisimple noncompact Lie-algebras. The simple case is trivial. In fact, 

since there are no nontrivial ideals, a LCR-structure on a simple Lie-algebra is, really, an 

ad-invariant complex one. Moreover, it is well known that a semisimple Lie-algebra is 

direct sum of simple ideals. These facts bring us to the 

Proposition. A L CR-.structure on a .semi.simple Lie-algebra i.s completely defined by it.s 

.simple ideal.s endowed with a complex .structure. 

Proof· Since go is semi simple, we can write go = PI 0 ... 0 Pk, where the Pi are . 

simple ideals (such a decomposition is essentially unique). Let P be the ideal on which is 

given the CR-structure, then P is direct sum of some Pi. As in Theorem 1, the restriction 

of J to Pi has image in Pi. This fact concludes the proof. Q.E.D. 

Hence, a LCR-structure on a semi~imple Lie-algebra is given by the complex structures on 

some simple factors. Each of these factors is described in the Cartan's classification of the 

complex simple Lie-algebras 
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g G U «U') dimU 

an(n 1) SL(n + 1, C) SU(n + 1) Zn+l n(n + 2) 
bn(n 2:: 2) SO(2n + 1, C) SO(2n + 1) Z2 n(2n + 1) 
cn(n 2:: 3) Sp(n, C) Sp(n) Z2 n(2n + 1) 
dn(n 2:: 4) SO(2n,C) So(2n) Z4,n = odd n(2n - 1) 

Z2 + Z2, n = even 
e6 Ef E6 Z3 78 
e1 Ef E1 Z2 133 
es E~ Es Zl 248 

F C14 4 F4 ZI 52 
g2 Gf G2 Zl 14 

In the Table, g is a simple Lie-algebra over C; n the dimension of a Cartan-subalgebraj 

G a connected Lie-group such that Lie(G) = gR; U an analytical subgroup such that 

Lie(U) is a compact real form of g (i.e. U is a maximal compact su~group); and U' is its 

universal covering [HE]. 

The present Section will be concluded by the complete description of LCR-structures on 

semisimple Lie-algebras. As already showed in Theorem 1, when the algebra is compact 

there are no LCR-structures. Otherwise, is given the following 

Classification: let go be semisimple and noncompact. Then we give the (essentially 

unique) decomposition go = rl 0 ... 0 rj 0 PI 0 ... 0 Ph, where: 

1. both ri and Pi are simple real ideals; 

2. on the r i there are no complex .structure.s; 

9. any Pi takes one of the forms in the Table. 

With(8~:~ a gecomt)Sition we may choose any sum p = 0~lPil with the en~omorphism 

J =: :. The triple (go, P, J) is the generic LCR-structure in the semisim

o 0 Jilc 

pIe case. 
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2.THE SOLVABLE CASE. 


A real Lie-algebra go is solvable if one of its derived subalgebras vanishes. Remind that 


any ideal of go is solvable, a LCR-structure on go is an ad-invariant complex structure on 

a solvable ideal. Let us study such structures on solvable Lie-algebras. In the sequel, when 

we speak of a complex structure, we mean a ad-invariant one. 

Lemma. Suppose go is solvable and (go, J) i3 a c0111:plex structure. Then there exi3ts 

II 
a 3ub3pace u such that go = u e Ju and J = J'0 J0 ) ' where J' (re3p. JII) i3 the( 

re3triction of J to u (re3p. Ju). 

Proof: since go is solvable there exists a codimension one ideal PI [VA]. It is easy to 

show that JpI f:. PI- Then, there exists Xl E PI such that go = L(XI,JXI ) e PI n JpI: 

Moreover (go, PI nJpI, J) is a LCR-structure. Now we repeat the same proof with PlnJpl 

and P2 (where P2 is a co dimension one ideal in PI n J PI) instead of go and PI- In that 

way, we find a family Xl ... Xk, such that go = L(XI ... Xk, JXI .. '. JXk) and the space 

u = L(XI .. .Xk) is the desired one. Q.E.D. 

Now \ve want to sho\v the converse, in the sense that any solvable Lie-algebra admits 

a complex structure if and only if it is even dimensional; in' that case \ve \vrite go as the 

sum go = u 9 v, where u and v have the same dimension. Chosen a linear monomorphism 

A : u ...... go such that ~ = Au, the complex structure J = JA .:. (~ _~-l) is 

generic: so the complex structures depend only on the splitting of go in equal-dimensional 

subspaces. Let us proof this fact by induction. 

The simplest solvable algebras are the abelian ones, I.e. the ones whose first derived 
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vanishes. On these, a complex structure is just the "multiplication by i", in fact you have 

the 

Lemma. Let go be abelian. Then there exists a complex structure J if and only if go is 

even-dimensional. In that case there exist a linear subspace u and a linear monomorphism 

A : u -+ go such that 

1. go = u EB Au 

. (0 -A-I)2. J = JA = A a . 

Moreover, all the pair (go, J A) are isomorphic as complex Lie-algebras, independently on 

the subspace u and the morphism A. So we may say that the structure is unique. 

Proof: suppose that go is endowed with a complex structure J, ~:£.en previous lemma 

gives us the pair (u, J') desired. Vice versa, let go be even-dimensional.· Then, choose u and 

A, such that go = u ED Au. The endomorphism JA is trivially a complex structure on go. 

If one considers the automorphism 9AB . (~ B~-l), one has an isomorphism between 

(go, JA) and (go, JB). Hence, the complex structure does not depend on A. Finally, \ve 

show that does not depend neither on u: let (v, C) be a pair such that go = v EB Cv. Then 

we have v = Du and go = Du 6 A.Du, 'where we have taken D Lie-isomorphism. It is 

easy to show that (Du EB ADu, JA) and (u EB D-I ADu, JD-I AD ) are isomorphic. Q.E.D. 

In the previous Section we have shown that, given a compact Lie-algebra go, ro = 

(go, p, J) is a LCR-structure if and only if p is contained in the center «go). The last 

Property permits us to describe these LCR-structures. In fact, suppose ro = (go, p, J) is 

a LCR-structure, then p has to be even-dimensional and takes the form p = u €a Au, \vith 

J = J A. Finally, the datum of a LCR-structure on a compact Lie-algebra is equivalent to 
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the choice of an even-dimensional1inear subspace of the center. Let us return to solvable 

algebras. 

Theorem2. A solvable Lie-algebra go admits a complex structure if and only if it is 

even-dimensional. Let (go, J) be a complex structure, then there exist two vector spaces 

u and v and an isomorphism A between u and v such that go = u E9 Au and J = JA. 

Moreover, all the pair (go, JA) are isomorphic as complex Lie-algebras. 

Proof: let k be the minimum integer such that Dkgo = 0, then make the proof by 

induction over k. The base of the induction is given by the abelian case. Now, let go be 

solvable but not abelian. In any case, go' ...:. gO/Dlgo is abelian. Furthermore J maps 

D1 go on itself, since J adx = adx J. So (go', J') is a complex structure, where J' is the 

quotient of J. If we apply the previous lemma, we have that go' = w' E9 J'lw/w' and 

J' = J Jllw / ' If we choose a subspace w in the class w', we obtain go = w EB J+w EB"D1go

0 J+ 0)
and J J+ 0 0 , where J+ is the restriction at wand J1 the one at D1g0'( o 0 J1 

Finally, we apply the inductive hypothesis on the pair (D1 go, J1 ). Q.E.D. 

Let go be solvable, then go admits one LCR-structure on each 2l-dimensional ideal 

(in the hypothesis that it exists) given by an isomorphism J of the form JA. Hence LCR-

structures are essentially given by the choice of even-dimensional ideals. Remark that it 

is possible to have different LCR-structures of the same dimension. The study of LCR-

structures on a solvable real Lie-algebra is now completely equivalent to the knowledge 

of the ideals of the algebra itself: all even-dimensional ideals support one, and only one, 

LCR-structure. 
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3.SEMIDIRECT SUMS. 

Take two LeR-structures ro == (go, p, J) and rb == (go', p', J'). Let 8 : go' ~ Der(go) 

be a Lie-homomorphism. The semidirect sum of go and g~ by 8 is the Lie-algebra go EBcS go' 

defined on the linear space go EB go' by the product [(X, X'), (Y, Y')]6 == ([X, Y] +8(X')Y 

8(Y')X, [X', y'n. The actual problem is whether the triple ro EB6 r~ == (go EB6 go', p* == 

p ED p', J* = (~ J,)) is a LeR-structure. When it is, one shall say ra ED6 r~ the 

semidirect sum by 8 of ro and rb. vVe will answer by steps. 

Lemma. Given the linear subspaces p C go and p' C go I, their sum p * = p EB p' is an 

ideal if and only if 

a) p and p' are ideals; 

b) 8(X')go C p, VX' E pi; 

c) 8(Y')p C p, W' E g~. 

Proof. Let us suppose that (X, X') stays in p* and that (Y, Y') is the generic element of 

go EBcS go'. The relation [(X, X'), (Y, Y')]cS E p* is equivalent to 

1. [X, Y] +8(X')Y - 8(Y')X E Pi 

2. [X', Y'] E p'. 

Particular choices of (X, X') and (Y, Y') imply that the first one is equivalent to the 

following three 

1.1 [X, Y] E Pi 

1.2 8(X')Y E Pi 

1.3 8(Y')X E p. 

The conditions 1.1 and 2. say that p and p' are ideals; while 1.2 (resp. 1.3) coincides with 
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letter b (resp. c). Q.E.D. 


Moreover, impose that adex,X/) is a CR-derivation, YX E go and \IX' E g~ (i.e., J* is 


ad-invariant). Hence, one obtains the following necessary and sufficient conditions: 

d) adx and ad'x are CR-derivations; 

e) J8(X') = 8(J'X'), YX' E p' 

f) 8(X') is a CR-derivation, \IX' E g~. 

The previous computations let us conclude with the 

Theorem3. Given two LCR-structures ro and r~, their semidirect .sum by 8 is a LCR

structure if 

1.1 8(X')go C p, \IX' E p'; 

1.2 J8(X') = 8(J'X'), \IX' E p'; 

2.1 8(Y')p C p, W' Ego'; 

2.2 8(Y')J = J8(Y'), w' Ego'. 

Obviously, direct sums of LCR-structures are LCR-structures: in fact, they correspond to 

8 = O. From the proposition it follows that if ho is endowed with a complex structure 

and if 8(X) is holomorphic, ho 66 go supports a LCR-structure, w'here go is a generic 

real Lie-algebra. That is the case of noncompact semisimple Lie-algebras where go is the 

sum of the real factors and ho is the sum of the Cartan-classified ones. A basic example 

is given by a reductive Lie-algebra. In fact, in that case the algebra is the direct sum of 

its center and of a semisimple Lie-subalgebra. So, a LCR-structure is direct sum of an 

abelian LCR-structure with a semi simple one. Such a situation bring us to consider Levi

Mal'cev decomposition. 	 In this decomposition one factor is semisimple while the other 
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one is solvable, a little more generic than abelian. Its study is the object of the following 

Section. 

4.LEVI-MAL'CEV DECOMPOSITION. 

The tool of this Section is the study of LCR-structures ra = (go, p, J) on a generic 

Lie-algebra go decomposed, following Levi-Mal'cev, as go rEfJad 5, where r is the solvable 

radical and 5 is a Levi-subalgebra. Remind that a Levi-subalgebra is semisimple. 

Due to the Lemma in Section3, one decomposes P as P = Pr 6 Ps, where Pr and Ps 

satisfy the following relations 

1.1) [Pr, r] C Pr 

1.2) [Ps,5] C Ps 

1.3) [Ps, r] C Pr 

1.4) [Pr, 5] CPr; 

1.1 (resp. 1.2) means that Pr (resp. Ps) is an ideal in r (resp. s); 1.3 and 1.4 coincide 

respectively with the letters b and c of the Lemma. 

The second characterizing property of a LCR-structure is J2 = -id. Just computing the 

square of J = (~ ~), we obtain 

2.1} A2 + BC = -I 

2.2) AB + BD = 0 

2.3)DC+CA=O 

2.4} D2 +CB = -I. 

Finally, let ad(x,x/) be a CR-derivation. That means (A[U, V] + A[U, Y] + A[X, V] + 

B[X, Y], C[U, V]+C[U, Y]+C[X, V]+D[X, Y]) = ([U, AV+BY]+[U, CV+DY], +[X,AV+ 
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BY], [X, CV + DY]). In particular, one may consider the cases given by the conditions 

X = Y = 0, X' = y'"' = 0, X = Y' = 0 and X' = Y = O. The corresponding equations are 

3.1) A[U, V] = [U, AV] + [U, CV] 

3.2) A[X, V] = [X,AV] 

3.3) A[U, Y] = [U, BY] + [U, DY] 

3.4) B[X, Y] = [X, BY] 

3.5) C[U, V] = 0 

3.6) C[U, Y] = 0 

3.7) C[X, V] = [X, CV] 

3.8) D[X, Y] = [X, DY]. 

Proposition. The equation.s 1.1, ... 1.4, £.1, ... £.4, 3.1, ... 3.8 define a nece.s.sary and 

.sufficient condition in order that ro ffic5 r~ be a LCR-.structure. 

The above Proposition is just a "translation" of the LCR-structure's definition on a semidi

rect sum. Now we have to study the role played by the solvability af r and the semisem

plicity of s. In this context, their most important consequence is the 

Property. The matrice.s Band C vani.sh. 

Proof. Since C[X, V] = [X, CV], C(Pr) is an ideal in s. But [CV, CVI ] = C[CV, Vi] = 

0, so C(Pr) is abelian. Consequently C(Pr) vanishes. 

It is a classical fact that every ideal and every quotient of semisimple algebras are 

semisimple [SE], moreover PsI K erB is semisimple. Otherwise, r solvable implies that 

every subspace t C r verifies nnt = o. So B(ps) does. As linear spaces, we have that 

psIKerB ~ B(ps), via the isomorphismjX+ = EX, vlhere X+ = X +KerB E psIKerB. 
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Let us compute [jX+,jY+]: first of all, 'v'X,Y E Ps, [BX,BY] = A[BX,Y]

[BX, DY] = AB[X, Y] - B[X, DY] = -BD[X, Y] - B[X, DY] = -2BD[X, Y].· By (2.2), 

you see that D sends KerB in KerB and hence [jX+,jY+] = -2j(D[X, Y])+. So, we 

can conclude that nn(psiK erB) = 0, since B(ps) does. But the fact that PsiK erB is 

semisimple implies that its solvable radical vanishes. So Ps = KerB. Q.E.D. 

Remark: the condition "C = 0" is true even in a more general case. The only required 

hypothesis is the semisemplicity of s. So if you take a semi direct sum with second factor 

g~ semisimple, a LeR-structure takes the form (go EB. g~, p ffi p', (~ ~)). 

The Property shows that J takes the particular form J = (~ ~). Hence, our list 

of equations simplify itself to 

1.1) [Pr, r] C Pr 

1.2) [Ps, s] C Ps 

1.3) [Ps, r] C Pr 

2.1') A2 =-1 


2.4') D2 = -I. 


3.1') A[U, V] = [U,AV] 

3.2) A[X, V] = [X, AV] 


3.3') A[U, Y] = [U, DY] 


3.8) D[X, Y] = [X, DY]. 


1.1,2.1' and 3.1' say that R = (r,Pr,A) is a LCR; 1.2,2.4' and 3.8' say that S = (s,Ps~D) 

is a LCR-structure; finally 1.3, 3.3', 1.4 and 3.2 correspond to 1.1, 1.2, 2.1 and 2.2 of 
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Theorem3, respectively. So \ve can conclude \vith 

Theorem4. Let go = r ffiad s be a real Lie-algebra. Suppose ro = (go, p, J) is a LCR-

structure; then Rand S are, too; and ro is their semidirect sum by ad. Vice versa, if one 

considers two LCR-structures R = (r, Pr, A) and S = (5, Ps, D) which verify 

1.9} [Ps, r] C Pr 

1·4} [Pr,s] C Prj 

9.2} A[X, V] = [X, AV] 

9.9}' A[U, Y] = [U,DY] 

their semidirect sum by ad is a LCR-structure on go. 

5.EXAMPLES: LCR ON LOW-DIMENSIONAL REAL LIE-ALGEBRAS. 

In this Section \ve conclude the paper describing LCR-structures for low dimensional 

Lie-algebras go. First of all, remind that there exist just two different bidimensional Lie

algebras: the abelian one and the Lie-algebra ho of the matrices (~ ~a)' a, b E R, 

which is solvable. Both of them are endowed with the complex structure given by the 

"multiplication by i." 

If one wants to consider LeR-structures on real Lie-algebras go which are not complex 

structures, it must be dim go ~ 3. Let us start with dim go = 3. Such Lie-algebras are 

completely classified in [NIl). The classification makes use of the map c.p : go -+ R : X ~ 

tr(adx). Since tr([adx, ady]) = 0, c.p is a Lie-homomorphism. The kernel u . kerc.p is an 

ideal called unimodula: kernel; go is said unimodular if go = :u. An important result is 

given by the 

Lemma. Let go be an unimodular 3-dimensional Lie-algebra endowed with a scalar 
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product. Then there exists an orthonormal base (E1 , E2 , E3 ) such that 

1. [E2, E3]= )..lEl , [E3, El ] = )..2E2 and [~, E2]= )..3E3; 

2. B(X, Y) = -2()..2)..3Xlyl + )..1)..3 X2Y2 +AIA2X3y3), where X = XiEi, Y = yiEi 

(for a proof, see [GR]). 

The 3-dimensional Lie-algebras are classified by the following cases 

1. )..1 = )..2 = )..3 = 0 

2. Al # 0, )..2 = )..3 = 0 

3. )..1)..2 # 0, )..3 = 0 

4. )..1)..2)..3 # o. 

Casel: go is abelian and isomorphic to R3. Each plane supports..: a LCR: in fact, let 

p = L(X, Y) a fixed plane; a structure as desired is given by J(X, Y) = (-Y,X). 

Case2: the Lie-product is described by [E2,E3 ] = AIEl, [E3, E l ] = [El, E2] = O. The 

planes P2 = L(El , E3) and P3 = L( El , E2) are abelian ideals endowed with the LCRs 

J2(El ,E3) = (-E3,El ) and J3(El,E2) = (-E2,E1 ). 


Case3: as in the Case before, the plane P3 = L(El ,E2 ) is an abelian ideal endowed with 


the structure J3(El , E2) = (-E2' El). 


Case4: B is nondegenerate, i.e. go is semisimple. But 3-dimensional semisimple Lie


algebras are simple. Hence go has no nontrivial ideals. So there are no LCR-structures 


on such a go. A deeper analysis shows that if all the )..i are positive go is isomorphic to 


su(2); while if one of them is negative it is isomorphic to sl(2, R). In both the cases go is 


a real form (compact or not) for sl(2, C). 


The last case is when go is not unimodular. Which means that <.p is a nonvanishing real 
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linear form. So its kernel u is an abelian 2-dimensional ideal. 

Summarizing all the case, one obtains that a 3-dimensional real Lie-algebra go either 

is a (simple) real form of 51(2, C) either is endowed with (at least) one LCR-structure given 

on a 2-dimensional abelian ideal. 

The study of LCR-structures on 2- and 3-dimensional Lie-algebras, make easy the 

classification on 5-dimensional ones (remark that, if one considers the 4-dimensional case, 

the only non-solvable Lie-algebra endowed with a LCR-structure is R ffi So, where So is a 

real form of sl(2, C)). Such a study is quite interesting since it makes use of Levi-:rvIal'cev 

decomposition as we have sho\\'~ in Section4. In the sequel, let dimgo = 5. Suppose that 

go is decomposed as go == rO Sad SO. Let us consider the dimension dim rOo 

When dim ro = 0, go is semisimple. Since there are no semisimple algebras of dimension 1 

and 2, go may not have nonvanishing ideals. So go is simple and it has no LCR-structures 

(cfr the Table). 

Let dim ro = 1. Then ro = R is abelian and So is simple. Any LCR-structure, if it is, is 

in So. But, So does not contain ideals. So go has no LCR-structures. 

In the case dimro = 2, ro either is abelian or it is the solvable algebra ho. The correspond
• 

ing Levi-subalgebra So is simple and coincides either with su(2) or with sl(2, R). Even in 
i 

this case, So does not admit LeR-structures. The only one is given by the solvable ideal 

ro endowed with an endomorphism of the form JA. 

The cases dim ro = 3,4 can not occur, since So should be 2- or I-dimensional. 

The last case is dim ro = 5. Then go is solvable and it admits LCR-structures on all its 2

and 4-dimensional ideals. 
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