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Abstract 
!~ 

In this paper we investigate classical and quantum properties of t'he solutions of a 
one-parameter class of exactly solvable models of two dimensional dilaton gravity. It is 
shown that the particular structure of these geometries, where the natural frame in which 
the metric is static is accelerated with respect to a distant inertial observer, may have 
interesting consequences. ' 

An important feature of these spacetimes is the appearance, in some cases,' of an 
acceleration horizon besides the usual black hole horizon associated to the black hole and 
the maximal extension of the geometry beyond it is not trivial. 

Furthemore the redshift and blueshift factors at the black hole horizons are no more 
exponential as in general relativity, but power law. In particular, as a consequence, classical 
charged black hole solutions possessing Cauchy horizons can be stable under generic grav
itational perturbations generated in the external region and the mass inflation behaviour 
doesn't show up. Despite this fact, however, quantum back-reaction seems to produce a 
scalar curvature singularity there. 

Moreover, the presence of a 'natural' accelerated frame implies that at the quantum 
level an additional flux, the acceleration heat bath, can be present. Some possible impli
cations of it are considered. 
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1. Introduction 

Two-dimensional theories of gravity have proven to be very useful and simple toy 

models to understand the issues related to the processes of black hole formation and 
evaporation. In particular the quantum corrected CGHS action [1], in the form advocated 
by RST [2], turned out to be an exactly solvable model describing the semiclassical physics 
of an evaporating black hole. 

In [3] we considered a one-parameter class of exactly solvable simple models, which 
contain RST as a special case. We showed that the associated quantum physics is similar 
to the usual one, but that the classical black hole solutions present interesting differences. 

The most striking feature of our models is that the natural frame in which the metric is 
static is not asymptotically minkowskian; this means that an inertial observer 'sufficiently 
far away' sees the black hole to be accelerated. 

Depending on the value of the parameter characterizing our geometries the 'asymptotic 
region' where the spacetime becomes flat corresponds either to 'true' infinity, in the sense 
that it takes an infinite amount of proper time to reach it, or is just the location of another 
horizon, the acceleration horizon, and inertial observers there can cross it in a finite time. 

Another characteristic of our spacetimes is that the redshift factor at the event horizon, 

which is exponential in the asymptotic inertial time coordinate t in both general relativity 
and CGHS theory, has now a power-law behaviour. This simple fact turns out to have 
interesting implications. 

In fact let us consider the Reissner-Nordstrom solution of General Relativity. It de
scri~es charged black hole solutions and possesses two horizons, one of which is the event 
horizon and the other is a Cauchy horizon. Besides, since in this geometry the singularity 
is timelike, it seems possible that an observer travels through the black hole tunnel and 
then emerges into another universe [4]. However, as many authors have shown [5], the 
Cauchy horizon is unstable because generic·small perturbations in the external universe 

are seen infinitely (exponentially) blueshifted by free falling observers. The backreaction 
on the geometry of such perturbations drastically changes the form of the spacetime, re
sulting in a scalar curvature singularity at the Cauchy horizon. This is the mass inflation 
phenomenon [6]. 

Our models turn out to possess classical charged black hole solutions, whose causal 

structure is similar to the Reissner-Nordstrom one, but now at the Cauchy horizon the 
blueshift factor is power law. And in the space of the parameters characterizing the 
geometry it is possible to find a region of nonzero measure for which both instability and 
mass inflation at the Cauchy horizon are avoided. However quantum backreaction seems 
to alter these conclusions. Such an analysis has already been carried out in the RST model 
in [7] and here similar results are obtained, suggesting that a scalar curvature singularity 
always forms at the Cauchy horizon, thus forbidding any further extension of the geometry 
above it. 
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2. The Classical theory 

Our models are described by the classical action Sel = So + SM, where 

and 

(2.1) 

(2.2) 

In the case n = 1 this reduces to the classical CGHS [1] action. 

The equations of motion derived from this action are 

4 1 1 2 2 2 2 2- 271. tP 4 1 
n9 1I[-(--+-)('\1</J) --('\1 </J)-2A e- ]+-(1--)8 </J811 </J

JJ. n 2n n n nJJ. 

(2.3) 

R 4 2 4 2 2 2-271. tP 
- - - ('\1</J) + - '\1 </J + 4A e 71. = 0 , (2.4) 

n 2n n 

(2.5) 

We have already derived in [3] the solutions to the above equations. Now we just outline 

that we can express the general static eternal black hole solutions in the 'S chwarzschild , 

frame (u, t), where 

(2.6) 

and f is defined by f = 1 - 2r e! tP. m can be regarded as the mass of the black hole. 

Charged black hole solutions generalizing the definition of f to 

(2.7) 

have been found in the case n = 1 [8]. For n =1= 1 such solutions exist if we add to the 

action the electromagnetic term 

(2.8) 


where FJJ.II is the e.m. field tensor and a is a constant to be fixed later in terms of n (for 

the n = 1 theory a = 1). 
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The equations of motion of F,.", are easily derived from SEM: 

V II(e-2a¢F"'II) = 0 . (2.9) 

The e.m. field tensor is totally antisymmetric and so can be written as F",II = Fe ",II, where 
e",11 = e[",II] and e01 = Fu. Inserting this into (2.9) we get the solution F",II = Qe2a¢e"'II' 
where Q is a constant representing the charge on the black hole. 

Since in the following we will be interested also in solutions arising from purely in
coming massless matter it is suitable to work in the light-cone gauge and look for metrics 
of the form 

(2.10) 


where v is an advanced time coordinate defined by dv = dt + d;. Besides in analogy with 
the n = 1 theory we require the dilaton to be linear in the u coordinate cP = -n.\u. The 
addition of SEM modifies (2.4) to 

R _ ~(VcP)2 + 4V2cP + 4.\2 e 
2

-",2"'¢ 4aQ2e 
2A:+2

¢ = O. (2.11) 
n 2n n 

It is easy to show that 

R = e-2>.(1-n)0'[_1,0'0' - 2,\(1 - n)/,O'] (2.12) 

and 
(2.13) 

We fix the value of a requiring that all the Q2 terms in (2.11) are coupled in the same way 
to the dilaton. This gives a = 2~n.1 Moreover (2.3) now reads 

9 lI[i(_~ + ~)(VcP)2 - 2V2cP + F",II F II - 2.\2 e (2-",2"')¢] + i(l- ~)8 cP8l1cP
"'n2n n '" n n'" 

a 2 l..t/J M
-4F",aFIl + - V",811 cP + e '" T"'II = 0 . (2.14)

n 

Allowing for purely ingoing Ii-wave Ii = li(V) the vv component of (2.14) gives the addi
tional condition 

dm 21"
dv = 4: L...J{811 Ii) . (2.15) 

For Ii =f:. 0 the solution resembles the Vaidya solution of General Relativity, apart from the 
conformal factor e2(1-n)>.0'. In general m is a function of v and we will refer to the scalar 
mIn 

("\7c/»2 n 2,\2e-2(1-n)>'0'(1 _ 2m e-2>'0' + Q2 e-4 >'0') (2.16)
.\ .\2 

as the mass function of the black hole. 

1 Note that for n = 2 the e.m. field is completely decoupled from the dilaton and the insertion 

of SEM, once (2.9) are taken into account, is then equivalent to adding a cosmological constant 

to the action. 
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£.1. Oausal structure 

Consider the case Ii 0, that is from (2.15) m = mo = const., and let us discuss the 

causal structure of these spacetimes separately for the cases Q = 0 and Q =f:. O. 

The singularity, as can be seen from a direct computation of R, is located at 0' -00. 

The horizons, as usual, are defined as the surfaces where the Killing vector eO! 8;tG. has 

zero norm. It is easy to see, from (2.6), that 

(2.17) 

For n ~ 1 the horizons are located where I = O. This equation, as Q 0, defines the 

black hole horizon 0' O'bh, where 

(2.18) 


When Q =f:. 0, along with mo > IQI, we have two horizons located at 0' = O'±, where 

2AO"± _.l..l..± (mo ± v'm~ - Q2)e - e n. 'Y - ~--..:....-~--..:...- - A . (2.19) 

0'+ is the location of the outer, or black hole, horizon and 0'-, the inner horizon, is also a 

Cauchy horizon. mo IQI represents the extremal case, where the two horizon coalesce, 

and for mo < IQI the equation I 0 has no real solutions and the spacetime is that of a 
naked singularity. The Penrose diagram is identical to that of the Schwarzschild geometry 

for Q = 0 and to Reissner-Nordstrom as Q =f:. 0 (see for example [9]).~ 

More interesting is the case n > 1. As can be seen from (2.17), besides (2.18) or (2.19) 

there's one more horizon, namely that defined by 0' = 00. While for n ~ 1 the region 0' = 00 

is truly the asymptotic region, in the sense that it is infinitely distant, in this case inertial 

observers can cross it in a finite time despite the fact that the accelerated (0', t) observers 

never reach it. This is, in fact, just an acceleration horizon and the geometry can therefore 

be further extended beyond it. 

Explicitly, let us consider the line element (2.6) in the double null form 

ds 2 = _e2(1-n)AO"Idudv . (2.20) 

The relation between 0', t and u, v is given by 

JdO' 
(2.21) .v=t+ /' 

(2.22)u=t-J7· 
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For Q = 0 it is 

JdO' = 0'+ ~lnlfl
f 2A 

and as Q =1= 0 (together with mo > IQI) 

In the region 0' -7 00 it is v -7 t +0' and 1£ -7 t - 0', so we can introduce the 'asymptotic' 

minkowskian coordinates 
e).(l-n)v 

(2.23)AY+ = (1 - n) , 

e-).(l-n)u 
(2.24)-AY- = (1 _ n) 

for which the metric in region I of figs 1 and 2 (y+ < 0, y- > 0) takes the form (for 

simplicity we consider the case Q 0) 

(2.25) 

The boundary of region I (y+ 0 or y- = 0) is the acceleration horizon. There the scalar 

curvature vanishes. The metric of eq. (2.25) can be easily extended in region III (y+ > 0, 

y- < 0) just noting that f depends only on the product y+y-. 

In order to extend the metric in the two remaining regions II (y+ > 0, y- > 0) and 

IV (y+ < 0, y- < 0) one has to distinguish two different cases: 

i) odd extension (-1) ft:l = -1; 

ii) even extension (-1) ft:l 1. 

When neither i) nor ii) are verified then (-1) ft:l is complex and we don't know how 

to give a physical meaning to a complex geometry. 

New coordinates (1£, v) can be defined in II, III and IV. In III the metric takes exactly 

the same form as in I, while in II and IV the line element becomes 

ds2 e2(1-n».0' fd1£dv , (2.26) 

where 

(2.27)f 

Let's consider first the odd extension. It is easy to see that both to the future of region II 

and to the past of region IV there is a spacelike singularity located at 0' -00, where the 

scalar curvature diverges. The proper time needed to reach ,the singularity is finite. The 
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Fig. 1: Causal structure in the odd extension. The bold lines represent the 
singularity. H± denote future and past black hole horizons and AH is the 
acceleration horizon. 

resulting Penrose diagram is given in fig. 1, which closely resembles that of a Schwarzschild 

black hole immersed in a closed Friedmann universe. 

In the case of the even extension region II is free of singularities. The only difference 

with respect to (2.20) is the signature of the metric. The boundaries y+ = +00 and 

y- = +00 of this region are Killing horizons. By further extending the metric across these 

horizons we find a region where the curvature diverges on timelike singularities (see fig. 2). 

As can be seen from fig. 2, these horizons are Cauchy horizons for initial data given on a 

spacelike hypersurface extending from region I to III. Again we can repeat the procedure 

for further extension in the future and in the past and the result is again shown in fig. 2. 

Special care is needed in order to understand the meaning of the points i± of figs 1 ... 

and 2. These are the only points in region I which are located at infinity for the accelerated 

observers. Every geodesic observer either cross the black hole horizon or the acceleration - "" 

horizon. 

As Q =1= 0 the procedure is analogous, but the structure much more complicated, due 

to the splitting of the black hole horizon in an outer and an inner one. The details will be 

given elsewhere. Here we just consider the analytic extension inside the black hole horizon, 

which leads to a structure similar to Reissner-Nordstrom as in the case n S 1, where the 

asymptotic region ([±) is now replaced by the acceleration horizon. 

A quantity that will be useful in the following is the local surface gravity k, defined 

by (see for example [10]) 

11 8u 9tt I I 1 I (2.28)'" = -2 J = '\(1 - n)/ + 2/'u . 
-guu9tt 

One finds that at O"± (or, for Q = 0, at O"bh) it is "'± = ~ I/,u± I = '\e-2AU±(e2AU+ - e2AU
- ) 

(or "'bh = ~ I/,uu- ,\1). Note that, provided rno > IQI, it is always k_ > k+. In the case 

n > 1 at the acceleration horizon K,a,h =K,( (T = 00) = ,\(n 1). 
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Fig. 2: Penrose diagram of the even extension. The meaning of bold lines, 
H± and AH are as in fig 1. CHis the Cauchy horizon for initial data in 
regions I and III. 

3. Stability of the Cauchy horizons 

Cauchy horizons in our geometries arise in several cases. As n ::; 1 they are present 

only for Q i= 0 at u == u _. When n > 1 we will consider two different possibilties. The 
first is in the charged case at u == u _ and the second is Q == 0 in the case of fig. 2. 
The considerations that follow concern only the first such surface; we will comment on the 
stability of the second one at the end of the paragraph. 

It has been shown [5] that the Cauchy horizon of the Reissner-Nordstrom spacetime is 
unstable and that perturbations on the background geometry induced by the gravitational 
collapse grow and become infinitely large in its vicinity, so that a free falling observer 

crossing this surface measures a divergent energy flux. A similar analysis has been carried 
out in the Reissner-Nordstrom type solution of n == 1 dilaton gravity [7] and the conclusions 
are the same. 
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N ow we will check if the same behaviour is present for n ¥= 1. We will see that this is 
not true in general and that there remains a region of nonzero measure in parameter space 

(n, k_) where the Cauchy horizon is stable to the same type of perturbations. 

Such perturbations close to the Cauchy horizon follow ingoing null geodesics and decay 

with an inverse power law in the advanced time of the asymptotic inertial observer. 

y+, defined in (2.23), is the 'asymptotic' inertial ingoing null coordinate. In the case 

n = 1 it is y+ .v, which is 00 both on future null infinity and on the Cauchy horizon, while 

it is not in general for n ::J. 1 because of the conformal factor present in the metric (see for 

example (2.6)). In general when expressed in 'asymptotically' minkowskian coordinates 
the metric is non static and the black hole is itself seen to be moving, so we will just write 

down the form of T++ and then transform to T.rru • Note that for n < 1 y+ E [0, +oo[ and 

y- E ] - 00,0], while as n > 1 y+ E ] - 00,0] and.y- E [0, +00[. 
N ow we can construct the perturbation appropriate for the problem we are studying and 

write, following [11], T++ = !Ct~\)2 = ,(AY+)P, where p > 0 for n > 1 and p < 0 when 

n < 1, with Ipl > 12. , is just a constant. Transforming to v coordinates we get 

,eA(1-n)(p+2)11 
(3.1)Tl1l1 = (1 - n)P , 

so that the mass function from (2.15) is given by 

,eA(1-n)(p+2)11 
(3.2)m(v) = mo - 2A(1 n)p(n - l)(p + 2) . 

This formula clarifies the fact that the black hole settles down to a final mass mo. Let 
us consider a free falling observer close to the Cauchy horizon defined by v = 00. Solving' 
the geodesic equation we get V f'oJ ek - 11, where a dot means derivative with respect to the 

proper time. Thus the energy density he measures is 

(3.3) 

This quantity remains finite whenever 

(1 - n )(p + 2)A + 2k_ ~ 0 . (3.4) 

There is a region, in particular close to extremality as k_ ,...., 0, where this inequality can 

be satisfied by properly choosing the value of n. 2 In the case n > 1 a similar analysis 

has already been made in [12]. There the role of the acceleration horizon was played by 
the cosmological horizon of Reissner-Nordstrom-De Sitter spacetime. In particular they 

2 Again, the key feature is that while for n = 1 the blueshift is exponential in the null inertial 

time coordinate v, it has a power law behaviour in y+ as n ¥= 1. 
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considered the effect of finite perturbations on the cosmological horizon and noted that the 
Cauchy horizon is stable if (k_ kc):::; 0, where kc is the surface gravity associated with 

the cosmological horizon. If we now replace kc with kah and set p = 0 (3.4) reproduces 
the same result. 
This simple calculation shows that in our spacetime the Cauchy horizon is not necessarily 

a pathological surface and suggests that a further extension of the geometry above it could 
in principle be meaningful. To check the validity of the above affirmation we now consider 
a more realistic situation where also an outgoing flux is present and see how the geometry 
gets modified. Remember that both in general relativity and n = 1 dilatoIt gravity this 
results in a drastic change of the geometry and a scalar curvature singularity appears at 
the Cauchy horizon, where the mass function is seen to diverge. This is the mass inflation 
phenomenon. 

A final remark concerns the stability of the Cauchy horizon for the case Q = 0 depicted 
in fig 2. What we need to check is essentially whether regular perturbations on the black 
hole horizon of region I or III are seen divergent or not by our free falling observer at the 
Cauchy horizon. In principle we should repeat all the previous analysis, neverthless it is 
enough to note, as pointed out in the discussion following (3.4), that only the comparison 
between the two surface gravities is relevant. And since in this case the two surface gravities 

coincide, we conclude that this Cauchy horizon is always stable.3 

4. Mass Inflation 

We want to construct an approximate solution to the equations of motion in the 

presence both of incoming and outgoing fluxes of null radiation close to the Cauchy horizon. 
It is useful to write down (2.11) and (2.14) in the conformal gauge and to introduce the 
quantity F = e2(p-<!». It is 

8+8_(ln F) _2Q2 Fe-!<!> , 

8+8_(e-~<!» = (_A2 Q2e~<!»F, 

while the constraints are 

(4.1) 

(4.2) 

(4.3) 

We imagine for simplicity that the inflow is turned on at a finite advanced time ::c+ == ::Cd 
and the outflow, crossing the Cauchy horizon, at ::c- == ::c;. The spacetime is then divided 

3 The stability of the black hole horizon to perturbations in the external regions I and III is 

currently under investigation. 
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in four different parts: a pure inflow and a pure outflow regions whose geometry is correctly 
described by the Vaidya type metric (2.10) and m satisfies (2.15) (in the outflow case v 

is replaced by u and (2.10) remains the same apart from a minus sign in dudu) , static 
'Reissner-Nordstrom' and finally the most interesting one where both fluxes are present. 

We concentrate our discussion to this l~st region where z- zo' Note that forrv 

z- < Zo and close to the Cauchy horizon the solution is almost static (see (2.15) in the 
limit v -;. 00), with the dilaton reaching a finite value <p-. We fix the z+ coordinate in 
such a way that F(zo,z+) = F(z-,zt) = e-2<p- [7]. This ensures that z+ is regularly 
related to the kruskal advanced time coordinate associated with the inner horizon of the 
Reissner-Nordstrom spacetime, i.e. rv - e - k_l1. The form ofTf+ then follows from (3.1) 
after a coordinate change, that is 

(4.4) 

while the exact relation between u and z- along with the shape of T~ (=/= 0) will not con
cern us here, since the conclusions that we'll be able to draw will result to be independent 
of them. 

An approximate solution to F at first order in (z- - zo) and close to the Cauchy 
horizon following from (4.1) and with the above initial conditions is 

F ~ e-2<P- ezp( _2Q2 e(-!-2)<P_(z- - zo)(z+ - zt) ) . (4.5) 

This permits to solve, in the same limit, the constraints (4.3) along with (4.2) giving 

e--!~ ~ e--! ~(:l:t ,:1:;) - 1:+ df,F(e) 1: F~')Tf+(()

- e'-1; tteF(e) 1; F%'?~(() + :1:+( 

o 

_.\2e-2~- + 

0 

Q2e(~-2)~_)(:I:- - :1:;) . (4.6) 

Note that both F and the metric stay bounded as z+ -;. O. However when one calculates 
the Ricci scalar R = 4F-1 e-2<P8+8_(2<p +In F) we have a sum of different terms of which 
only one is potentially divergent, namely that proportional to 

[z+ a,e M [Z- de' M ' 
(4.7)JZd F(e) T++ Jz;; F(e') T__ (e ). 

The result we get is that if 

A(1 - n)(p + 2) + k_ :s; 0 (4.8) 

then R remains finite, while when this inequality is not satisfied the Ricci scalar is seen to 
diverge. We note that also at this level the possibility of having a regular Cauchy horizon is 
not completely ruled out. Again there's a region in (n, k_) space where the last inequality 
is true, in particular close to extremality, and the mass inflation doesn't occur. For p 0 
and n > 1 the same kind of result, in the context of the Reissner-Nordstrom-De Sitter 
spacetime, has been found in [12]. 

The next step is to see whether or not quantum effects can modify this picture. 
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5. Quantum effects in fixed background 

In two dimensions conservation equations and conformal anomaly determine the v .e. v. 

of the energy-momentum tensor of a conformally coupled scalar field 4J up to two arbitrary 

functions. These functions, in turn, select the vacuum state of the quantum field. 

It is convenient to work in the conformal gauge where 

(5.1) 

Here F = e2(1-n)~0' and f has been defined previously in (2.7) (here we consider only the 

case m = mo . const. and Q # 0). Therefore p = .\(1 - n)o- + ~ In f. A straightforward 
calculation gives 

N 2 tU)
(Tuu) = - 12 (8up8up - 8up + 4 = .

= - :a [/2((1 - n).\ + ~ 1j)2 - 11.,,((1 - n).\ + ~ I;) - I; (17 - ~;) + tuJ (5.2) 

and similarly for (Tvv). Let's consider static configurations, for which tu = tv =C = const .. 

We can require that as 0- -4 00 (Tuu) = (Tvv) = o. Since in this limit the Ricci scalar 

vanishes this choice is the analog to select the Boulware vacuum of the n = 1 theory and 

thus defines a zero temperature ground state (for which also the inertial observers see 

that 'asymptotically' the energy-momentum tensor vanishes). This fixes C= _.\2(1_n)2. 

With this choice at the black hole horizon 

(5.3) 

where k+ is the associated surface gravity, defined in section 2. (5.3) describes a black hole 

of Hawking temperature TH = *immersed in a thermal bath at the temperature ~I~~nl. 
In general k+ depends on both Q and mo and vanishes in the extremal case mo = IQ I. That 
the two terms in (5.3) indeed represent thermal fluxes of radiation at those temperatures 

can be checked for example using euclidean continuation techniques. 

The energy density measured by an infalling observer, for which as f -4 0 iL f"V ]- and 

v is finite, diverges as 1'J. The same divergence is present, once we replace k+ with k_ • 
and u with v, at the Cauchy horizon. 

One interesting possibility is when 

k+ = ,\ 11 - n I, n i= 1 . (5.4) 

In this case paba is finite at the event horizon 0- = 0-+. This is possible because the relation 
1c+ubetween the Kruskal retarded time coordinate regular at the event horizon z- = - 1c~ e-

and the inertial coordinate at 0- = 00 y- = - ~(/_n)e-~(l-n)u (see (2.24)) becomes very 

simple and the Bogolubov transformation between the modes of the field 4J defined in terms 
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of these two coordinates is trivial. In particular, as n > 1 it is x - = 1/- , exactly the 
same relation among the corresponding coordinates of an extremal Reissner-Nordstrom 

black hole, which is known to have vanishing Hawking temperature. The new feature here 

is that while in the extremal Reissner-Nordstrom case the horizon is quantum mechanically 
unstable [13], now the black hole horizon is not as a result of our choice of C. 

The picture which arises is now quite clear and is very similar to that of [14]. There, as 

here, the preferred observer is accelerating with respect to the 'asymptotic' inertial one and 

is comoving with the black hole. As it is well known, due to the Unruh effect [15] he feels 
immersed in a bath of thermal radiation (just as an accelerated observer in Minkowski 

spacetime). And with the fine-tuning k+ = ).11 - nl as u -t 00 this heat bath exactly 

balances the Hawking radiation of the black hole and no thermal effects are detected. A 

similar cancellation is obtained in [16] in the Reissner-Nordstrom-De Sitter spacetime and 
y± for n > 1 are the analog of the Kruskal coordinates regular at the cosmological horizon. 

However, also in this case the Cauchy horizon is unstable and free falling observers 

keep on measuring divergent energy densities there. 

6. Backreaction 

The semiclassicaI theory we consider that keeps into account the effects of the Hawking 

radiation is described by the action (see [3]) 

where", = r; and 80, 8M , 8EM are considered in (2.1), (2.2) and (2.8). 

Let's perform the field redefinitions 

1 2..1. 
X = "'P +(- -1)",4> + e-n'l', (6.2)

2n 

(6.3) 

and work in the conformal gauge. If Q 0 (6.1) can be cast in the 'free field' form [17] 

(6.4) 

and the models become exactly solvable. For Q =1= 0 it is no more possible to write 
down explicitly the action, 'cause we don't know the inverse transformation ~ ~(X, n). 
However we can still derive the equations of motion, i.e. 

(6.5) 
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2 2e~tP 2(··0)
8+8_(X - n) = ;'K.Q Wei; X- , (6.6) 

and the constraint equations 

1 . 1 N 
K.t± = -(-8±X8±X+ 8±n8±O) + 8lx + "2 L 8±fi8±fi. (6.7) 

K. ~1 

Here the choice of t+ becomes crucial. It measures how the physical vacuum state is related 
to the vacuum defined in terms of the modes z±, regular at the Cauchy horizon, and 
transforms with the Schwarzian derivative. We could require, as in [7], physical conditions 
such that the black hole is in thermal equilibrium with a heat bath in order to isolate 
effects on the interior from those of the evaporation or, as we did in [3], just demand 
that t+( v) = O. (6.1) was determined by this last requirement in the case Q = O. In 
general the form of the quantum action in terms of the fields p and <P will depend on the 
physical conditions assumed, that is on the type of vacuum state of the scalar fields, but 
what matters here is that (6.5), (6.6) and (6.7) remain the same. And when we go to the 
Kruskal z+ coordinate (= 0 on the Cauchy horizon) we find that the leading behaviour " 
is t+(x+) '" z~2' where a is a positive constant (this is easily seen by performing the 

~ k+17 =Schwarzian derivative of e- = (Z+)II- or v -k~ In(-k_z+) with respect to z+). 
The form of both t_(x-) and T~ is again not important for our discussion as long as 
they remain =1= o. 

Much care is needed in order to determine whether or not the r.h.s. of (6.6) diverges 
before the inner horizon is encountered. Classically, there's a range of values of rno, Q 
and A such that it is always e--!-tP > e-!tPC = ~ as u ~ u_. Moreover at the quantum1" 

level the t+ considered is equivalent to introduce a negative energy flux along the Cauchy 
horizon, thus providing a 'defocussing' effect that is likely to guarantee that n' =1= 0 during 
the entire evolution up to z+ --+ o. In fact it is easy to show (see [7]) that, as z+ --+ 0, we 
are again in a weak coupling region and (only finite terms are written) 

- e 
X ~ n ~ -altln(-Az+) + It I" de Jde'[L(e') - T~(e')l· (6.8) 

The Ricci scalar in the same limit behaves as 

(6.9) • 

Provided the term inside the square bracket is positive, R diverges to -00 as n > 0 and 
to +00 for n < O. 

Therefore while at the classical level we could always choose our parameters n and k_ 
such that the spacetime is regular at the inner horizon, quantum-mechanically this is no 
more possible and a singularity always forms. 
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