
\\ 
.ISAS - INTERNATIONAL SCHOOL 


['~ r"', r:'t '",<. J'\L~i~rtn.'(,'·iI" FOR ADVANCED STUDIES 

JUL 27 1999 
SISSA 139/FM/98 

LIBRARY 
One Dimensional Many-Body Problems 

with Point Interactions 
\ , 


Sergio Albeverio1, Ludwik Dq,browskP and Shao-Ming FeP 

u .' 
Institut fur Angewandte Mathematik, UniversiHit ~_, D-53115 Bonn 


and 


Fakultat fur Mathematik, Ruhr-Universitat Bochum, D-44780 Bochum 
.r,. L"'i U Do c,t,,1'",,"ii,\ 
I 

Abstract 

The integrability of one dimensional quantum mechanical many-body 
problems with general contact interactions between two particles char­
acterized by boundary conditions is studied. It is shown that besides 
the pure (repulsive or attractive) a-function interaction there are other 
kinds of singular point interactions which give rise to two new one­
parameter families of integrable quantum mechanica1 one dimensional 
many-body systems. The bound states and scattering matrices are 
calculated for both bosonic and fermionic statistics. 
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A quantum particle moving in a local singular potential concentrated at one point 

(x = 0) has been extensively discussed in the literature, see ego [1] and references therein. 

In one space dimension the problem is generally characterized [6] (see also [1-5]) by one of 

the two types of, respectively, nonseparated and separated boundary conditions imposed 

on the (scalar) wave function ¢ at x = 0: 

1. (generic four dimensional family) 

where 

o ::; B < 7r; a, b, e, d E IR with ad - be 1. (2) 

2. (special two dimensional family) 

(3) 

where 

h±EIRU{oo}. (4) 

(Note that the values B = b 0, a = d = 1 in (1) correspond to positive (resp. negative) 6­

function potential for e > 0 (resp. e < 0), while in (3) h+ = 00 or h- = 00 correspond to 

Dirichlet boundary conditions and h+ = 0 or h- = 0 correspond to Neumann boundary 

conditions) . 

We consider here wave functions ¢ that are not just scalars but have n components 

('spin' states). Then the above boundary conditions are not the most general, it is possible 

to make (1) and (3) 'spin' dependent or even to nlix different 'spins; but we are not 

considering such possibilities in the present paper. 

The one dimensional N-boson and N-fermion problems with 6-function interactions 

have been investigated in [7] and [8] respectively in terms of Yang-Baxter equation. In 

this paper we study the integrability of one dimensional systems of N identical particles 

with more general contact interactions described by the boundary conditions (1) and/or 
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(3) that are imposed on the relative coordinates of the particles. We show that besides 

the delta-interaction for two other one parameter (sub)families, one with nonseparated 

boundary conditions (1) and another with separated boundary conditions (3), the N­

particle system also satisfies a Yang-Baxter relation. The wave functions can be obtained 

by Bethe's hypothesis. The scattering matrix can be explicitly given. 

We first consider the case of two particles (N = 2) with coordinates Xl, X2 and 

momenta kl' k2 respectively. Each particle has n- 'spin' states designated by 81 and 82, 

1 :s; 8i :s; n. For Xl =1= X2, these two particles are free. The wave functions 7jJ are symmetric 

(resp. antisymmetric) with respect to interchange (Xl,8l) f-7 (X2' 82) for bosons (resp. 

fermions). In the region Xl < X2, the Bethe's hypothesis states that the wave function is 

(5) 

where CY12 and CY2l are n 2 x 1 column matrices. In the region Xl > X2, 

(6) 

where according to the symmetry or antisymmetry conditions, p12 = p12 for bosons and 

p12 = _p12 for fermions, p12 being the operator on the n 2 x 1 column that interchanges 

81 f-7 82. We now transform to the center of mass coordinate X and the relative coordinate 

X defined as X = (Xl X2)/2, X = X2 - Xl' Set k12 = (k1 - k2 )/2. Substituting (5) and 

(6) into the boundary conditions at X 0, we get respectively for (1) 

(7) 

and for (3) 

ik12(CY21 - CY12) = h+(CY12 + CY21) , (8)
{ ik12P12(CY12 - CY2d == h_p12(a12 + CY2d . 

As far as the system (7) is concerned, eliminating the term p12CY12 we obtain the relation 

(9) 

where 

(10) 
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The system (8) instead is contradictory unless 

(11) 

and in this case it also leads to equation (9), where this time 

y;12 _ ik12 + h (12)
21 - ik12 h 

For N ~ 3 and Xl < X2 < ... < XN, the wave function is given by 

(13) 

The columns a have n N x 1 dimensions. The wave functions in the other regions are 

determined from (13) by the requirement of symmetry (for bosons) or antisymmetry (for 

fermions). Along any plane Xi = Xi+l, i E 1,2, ... , N - 1, from similar considerations as 

above we have 

(14) 


where 

(15) 

for nonseparated b.c. and 

iklilHl + h (16) 
iklilHl - h 

for separated b.c. Here klilHl := (kli - klHJ /2 play the role of spectral parameters and 

pii+l = pii+l for bosons and pii+l = _pii+l for fermions, where pii+l is the operator on 

the n N x 1 column that interchanges Si +-+ Si+l' 

For consistency [7] Y must satisfy the Yang-Baxter equation with spectral parameter 

[9], i.e., 

y~,m+l Y;kn:-+l,m+2Y;k~)m+l = Y;k~+1,m+2Y;kn:-,m+l y,~+ 1,m+2 
1,J J 't 1, J 1,J ' 

or 

Y mry;rsy;mr y;rsy;mryrs 
~ " k'J k'I = k'

1, 
k'J ~.. (17) 

if m, r, s are all unequal, and 

Y mry;sq y;sqymrY??"Lr Y?:Lr = 1 (18)'LJ J1, , ij kl kl ij 
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if m, r, S, q are all unequal. 

Clearly, }r given by (15) satisfies the relation (18) for all 0, a, b, c, d. But calculations 

show that Y satisfies the relations (17) only when 0 == 0, a d and b == 0, that is, 

according to the constraint (2), 0 = 0, a d = ±1, b 0, c arbitrary. The case 

a == d 1, 0 == b == 0 corresponds to 6-function interactions, which has been investigated 

in [7,8]. The case a == d == -1, 0 b == 0, which we shall refer to as 'anti-6' interaction, 

is related to another singular interactions between any two particles (for a d -1 and 

o= b c 0 see [2]) and has not been studied before for the N-particle case. Concerning 

Y given by (16), it satisfies both the relations (18) and (17) for arbitrary h. 

We have thus shown that regarding the N -particle (either boson or fermion) problern 

in addition to the known one parameter family there are two new one parameter fan1ilies, 

which can be also dealt with via the Bethe hypothesis. Hence, altogether there are three 

integrable one parameter families with contact interactions of type delta, anti-delta and 

separated one, described respectively by one of the following conditions on the wave 

function along the plane Xi Xj for any pair of particles with coordinates l;i and 

respecti vely, 

¢(O+) +¢(O_), ¢'(O+) c¢(O_) + ¢'(O_) , c E 1R ; (19) 

¢(O+) == -¢(O_), ¢'(O+) == c¢(O_) ¢'(O_), c E 1R ; (20) 

¢'(O+) == h¢(O+), ¢'(O_) -h¢(O_) , hE 1R U {oo} . (21) 

The wave function is given by (13) with the a's determined by (14) and initial conditions, 

with respectively 

(22) 

(23) 

and 

(24) 

We now study further the new one dimensional N-particle systems having two particle 

point interactions. We refer to [10] for the discussion of selfadjointness question in the 
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three-body case. In the following we shall proceed without paying attention to this prob­

lem. First we investigate the question of bound states. Concerning the 'anti-o' boundary 

conditions (20) when c > 0 the system has a single bound state (differently from the pure 

o-function interaction case where the N-particle system has a single bound state when 

c < 0). For N = 2, the space part of the unique bound state has the form, in the relative 

coordinate x X2 Xl, 

(25) 

where O(x) = (1 + sgn(x))/2 is the step function, see [5]. The eigenvalue corresponding to 

the bound state (25) is -c2/2. By generalization we get the bound state for the N-particle 

system 

WN 0; II[O(xk 
k>l 

xd - O(Xl xk)]e-~ Ei>i (26) 

where 0; is the spin wave function. It can be checked that WN satisfy the boundary 

condition (20) at Xi Xj for any i :f. j E 1, .'" N, by noting that in this case either 

Xk > Xi, Xj or Xk < Xi, Xi for k :f. i, j. The spin wave function 0; here satisfies pijo; = -0: 

for any i :f. j, that is, pij 0; = -0; for bosons and pij 0; = a for fermions, 

It is worth to mention that WN is of the form (13) in each of the above regions, For 

instance comparing WN with (13) in region Xl < X2 .. · < XN we get 

(27) 

The energy of the bound state WN is 

2 

E = -~N(N2 1). (28)
12 . 

It is interesting that, although the interactions between two particles are different fron1 

the ones in the pure o-function case, the binding energies (28) of the bound states are of 

a similar form as the ones in the pure o-function interaction case considered in [8]. 

Concerning the separated boundary conditions (21) it turns out that when h < 0 the 

system has a 2N(N-I)/2-times degenerate bound state. For N 2, the space part of the 

orthogonal basis (label ±) in the doubly degenerate bound state subspace has the fonn, 
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again in the relative coordinate x = X2 - Xl, 

'l/J2,± = (B(x) ± B( -x) )eh1xl . (29) 

The eigenvalue corresponding to the bound states (29) is -h2 • By generalization we get 

the 2N (N-l)/2 bound states for the N-particle system 

'l/JN& = O:fII(B(xk - Xl) + tklB(Xl xk))ehLi>i (30) 
k>l 

where a f is the spin wave function and f {tkl: k > l}; tkl = ±, labels the 2N(N-l)/2_fold 

degeneracy. 

It can be checked that also 'l/JN,f:. satisfies the boundary condition (21) at Xi = Xj for 

any i i= j E 1, ... , N. The spin wave function 0: here satisfies pij0: = tij 0: for any i i= j 1 

that is, pij0: = tijO: for bosons and pij 0: for fermions. 

Again 'l/JN,f:. is of the form (13) in each region. For instance comparing 'l/JN,r:. with (13) 

in the region Xl < X2'" < XN we get 

(31) 

The energy of the bound state 'l/JN is 

E = - ~N(N2 1). (32) 

Now we pass to the scattering matrix. For real kl < k2 < ...kN' in each coordinate 

region such as Xl < X2 < ",XNl the following term in (13) is an outgoing wave 

(33) 

An incoming wave with the same exponential as (33) is given by 

,,/. [plNp2(N-1)]0: ekNXN+...+klXl
'f'in ... N(N-1) ... 1 (34) 

in the region XN < XN-1 < ... < Xl' The scattering matrix is defined by 'l/Jout = S'l/Jin' 

From (14) we have 

"\?'12y23 y(N-1)N] _ 
0:12... N = [ .1 21 31'" N1 0:2 ... N1 - ... 

"\?'12y23 y(N-l)N] [y12y23 y(N-2)(N-1)] [y12 ]= [121 31 ... Nl 32 42'" N2 ... N(N-l) O:N(N-l) ... l S'O:N(N-1) ...1, 
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where Yz;~~ii is given by (23) or (24). Therefore 

Defining 

x .. = yijpij
tJ tJ (35) 

we obtain 

(36) 

The scattering matrix S is unitary and symmetric due to the time reversal invariance of 

the interactions. < s~s; ... s:VISlsIS2",SN > stands for the S matrix element of the process 

from state (kls l , k2s2, ... , kNsN) to state (kIS~, k2s;, ... , kNS:V). 

The momenta (27) (c > 0) and (31) are imaginary for bound states. The scattering 

of clusters (bound states) can be discussed in a similar way as in [8]. For instance for the 

scattering of a bound state of two particles (Xl < X2) on a bound state of three particles 

(X3 < X4 < xs), the scattering matrix is S = [X32X42XS2][X3IX4IXsd. One thing should 

be noted here is that the space part of the wave function (26) is antisymmetric under 

interchange of any two particles, a situation which is different from the case of the pure 

o-function interaction case. Therefore the spin part of the wave function is antisymmetric 

for bosons and symmetric for fermions. 

An interesting question is if, and up to what extend, the two new families we found 

are really physically different from those already known due to Yang [7]. ~For that aim 

consider the unitary transformation U in L2(R) (a 'local kink-type gauge transformation') 

that consists of the multiplication by sgn(x). Under this transformation a separated 

point interaction (1) with parameters B, a, b, c, d goes to a separated point interaction 

with parameters B, -a, -b, -c, -d. In particular the c5 interaction with arbitrary strength 

c goes to the anti-o interaction and thus these two Hamiltonians are formally unita~ily 

equivalent. The physical status of such a discontinuous gauge transformation of the 

'kink' type should however be further clarified. On the other hand the nonseparated 

point interaction (3) remains invariant under U. In fact its Hamiltonian can not be 
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unitarily equivalent to the one for the 5 or anti-5 case as seen by the fact that their 

spectra are different (there are two (degenerate) bound states for the interaction (3) !). 

We note however that a separated point interaction can be regarded as consisting of two 

independent subsystems, each of them having the same spectrum (taking h = c/2) as the 

5 or anti-5, but living on different spaces (halfaxes instead of the whole R), which again 

excludes the unitary equivalence of the associated Hamiltonians. 

Let us pass now to the many-body case, N > 1. It can be checked that under the 

"kink type" gauge transformation 

u II sgn(xi - Xj) 
i>j 

the N-boson (resp. fermion) delta type contact interaction goes over to the N-fermion 

(resp. boson) anti-5 interaction. In particular, in the region Xl < X2 < ... < ,"£N, the 

action of the unitary transformation U is just the identity, which corresponds to the fact 

that (22) exchanges with (23) if we simultaneously send c -t -c and pii+l -t - pii+l. In 

other regions, it is the factors pii+l which guarantees the correct transformations rules 

(see ego (6) for the case N 2). We can thus affirm that for N-body systems there is a sort 

of duality 4 between bosons (resp. fermions) with 5 interaction of strength c and fermions 

(resp. bosons) with anti-5 interaction of strength -c. Indeed the exchange of these two 

interactions type together with the exchange of statistics (boson and fermion) should give 

the "same physics". These two situations are in fact unitarily equivalent though we do 

not know what may be the physical significance of such a gauge transform~tion U which 

is non smooth and does not factorize through one particle Hilbert spaces. 

We close with a remark that the equality of the binding energies of the bound states for 

anti-5 and 5 has a simple consequence. If we take the particles to be fermions, the number 

of 'spin' states to be n = 4 and c to be 2 in suitable units, we have that the model has 

SU(4) symmetry and the binding energies E can be compared with the binding energies 

4 After completing this work we became aware of [11], where another kind of duality is observed between 
the system of two bosons (resp. fermions) with delta-interaction and two-fermions (resp. bosons) with 
delta'-interaction. Note however that the N-body system with fl interaction is not included in our list 
(19,20,21) of exactly solvable models. 
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of the ground states for light nuclei. For instance, taking N = 3 we get E = 8 which is 

the nuclear binding energy (in Mev) of He3 and H3 (as pointed out in [8]). We remark 

that also in our 'separated case' (32) by tuning the parameter h it is possible to get the 

above nuclear binding energies. 

In our opinion an interesting future task is to include into considerations also the 

three-body interaction and to see wether there are any consequences of such an inclusion 

for the integrability of this quantum mechanical system. 
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