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Abstract: We apply here KAM theory to the fast rotations of a rigid body with\a 
fixed point, subject to a purely positional potentiaL The problem is equivalent to a small 
perturbation of the Euler system. The difficulty is that the unperturbed system is properly 
degenerate, namely the unperturbed Hamiltonian depends only on two actions. Following 
the scheme used by Arnol'd for the N-body problem, we use part of the perturbation to 
remove the degeneracy: precisely, we construct Birkhoff normal form up to a suitable finite 
order, thus eliminating the two fast angles; the resulting system is nearly integrable and 
(generically) no more degenerate, so KAM theorem applies. The resulting description of 
the motion is that, if the initial kinetic energy is sufficiently large, then for most initial 
data the angular momentum has nearly constant module, and moves slowly in the space, 
practically following the level curves of the initial potential averaged on the two fast angles; 
on the same time the body precedes around it, essentially as in the Euler-Poinsot motion. 
We also provide two simple physical examples, where t ttrelto'esapply. 1,~--.... 
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1. INTRODUCTION 

1.1. The aim of this paper is to apply KAM theory to generic analytic perturbation 

of the free rigid body with a fixed point (analytically perturbed Euler system). Using 

the action-angle variables (11, 12 , J, fPh fP2,j) of the free Euler system, the Hamiltonian is 
written: [1] 

(1.1) 

(see section 2 for a description of such coordinates). The kinetic energy T is known to be a 

homogenous function of (11 ,12 ) of degree two. Concerning V we shall assume it is derived 

from a purely positional potential (a potential, say, that in the familiar Euler coordinates 
depends only on the angles); the immediate consequence is that V is a homogenous function 

of degree zero of the actions. Due to such homogeneity property, it is clear that the 

Hamiltonian problem (1.1) is equivalent, via a trivial rescaling, to the fast rotations of a 

rigid body in a fixed analytic potential (with p. ,-..; Ilw11-2 , if w is the angular velocity of 
the motions one deals with). 

The absence of the third action J from the .unperturbed Hamiltonian reflects the so
called proper degeneracy of the system. In special although relevant cases, like the gravity, 

the perturbation is symmetric, namely is independent of j; one then immediately reduces 

to a system with only two degrees of freedom, so degeneracy disappears and KAM theory 

applies. [2] For a general non-symmetric perturbation, instead, degeneracy prevents a direct 

use of KAM theorem. The situation is in fact similar to the N -body problem studied by 
Arnol'd)3] We follow here the same idea, namely we use the perturbation to remove the 

degeneracy. More precisely we proceed as follows: 

i) We perform a finite number of Birkhoff perturbative steps, namely we introduce a 

canonical transformation 

such that the new hamiltonian H' = How has the form: 

H' T'(I' I') V-'(I']' J' ") 1+1 V-'(I' ]' J' , ")I= l' 2 +p. 17 2' ,3 +p. l' 2' ,fP17fP2,3 , 

where V' = V + O(p.), V denoting the average of the potential on the fast angles 

(cpt, CP2). 

ii) We profit of the fact that T' +p.V' depends only on one angle, and thus it is integrable, 
to give the Hamiltonian the new form: 
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Fig. 1 

More precisely, this can be done in the neighbourhood of every level curve of V', at 

Ii, I~ fixed, that does not contain singular points of V' (see figure 1); let us notice 
that, for p, small, it is enough to assume that the corresponding level curve of V does 

not contain singular points. 

iii) 	 Then we make the "genericity assumption" that V, and thus (for small p,) V", does 

depend on I~' , namely the degeneracy is removed and KAM theorem applies, e = JL 1+ 1 

being the perturbative parameter. For sufficiently large I (I = 4 will suffice) the 

procedure actually works. 

Let us remark that the possibility of such a procedure of removing the degeneracy of 

the Euler problem, is not unexpected, and certainly not surprising among people who 

are familiar with KAM theory. On the same time we believe it is worthwhile, and not 

trivial, to work out this procedure with all of the necessary details, making, whenever 

possible, precise estimates, determining the minimal number of the Birkhoff steps, and 

establishing, in particular, the relation between the small parameter JL appearing in (1.1) 

and the measure of the set of the preserved tori. This is indeed what we shall do in 
this paper. In addition, in order the treatment not to be abstract, we shall provide two 
simple examples where the procedure does apply. For simplicity we study here the case 

in which the potential has a "natural cutoff", namely it contains only a finite number of 

Fourier components in the fast angles <Ph <P2- The generalization is annoying, because of 
the presence of many logarithmic corrections, but is not difficult (see Section 3.4). 

1.2. We provide here a rough description of our results; for a precise statement, see 

Section 3. The notation A indicates here the action space (see section 3.1 for a precise 

definition), slightly restricted by removing a small neighborhood of the gyroscopic rotations 
and also, for triaxial bodies, of the separatrices of the unstable rotation; such a restriction 
is necessary because, as is well known, the action-angle coordinates are there singular. 
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Our statement is essentially as follows: 

Let us consider the Hamiltonian (1.1) defined in the domain A X T3. Consider any of the 

above described level curves of V. H p. is small enough, and 71 is such that 

p. < const. 7~ , 

then there exists a tube l' C .A. X T3 around this curve, which decomposes in two subsets 

such that 1'2 has small Lebesgue measure: 

while PI is the union of three-dimensional invariant tori, and for every initial datum 

the motion on the corresponding torus is described by 

i = 1,2 . 

Correspondingly (J(t),j(t» stay close to the level curves of the averaged potential at fixed 

(11 ,12 ) = (If ,Ig), namely one has 

In a word: if the potential removes the degeneracy, and p. is small enough (or equiv
alently, if the initial kinetic energy is sufficiently large), then for the majority of initial 

data the angular momentum has quasi-constant module, and moves slowly in the space, 

practically following the level curves of the initial potential averaged on the fast angles 

('PI, '(2); on the same time the body precedes around it, essentially as in the Euler-Poinsot 

motion. Such a behavior is not so different from the one emerging from the Nekhoroshev 
study of the same problem; [4] as usual, in the Nekhoroshev approach, the description holds 

for all initial data, but only for finite, although long, time scales. 

1.3. Now we introduce the version of KAM theorem that we use here as the reference 

statement. Such a statement essentially coincides with the one produced in [5], although 
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it was necessary to make it more precise in some details, in view of the application to 

the properly degenerate problem of the rigid body. We also included in the statement the 
time-dependent case, as it will be useful for one of our examples (namely a model of the 

satellite spin precession). 

Let us :fix some notations. We are concerned with quasi-integrable Hamiltonian sys

tems with n degrees of freedom, of the form: 

H(p, q, t) = h(p) +e/(p, q, t), (1.2) 

with: 

t E R, 

where B is some ball; / is assumed to be periodic in t with given period T. 
Denote by hp the frequency map hp : p ~ w(p) = :~(p), and define n = hp(B). Given 

P = (pp,Pq,Pt), with Pp,Pq,Pt > 0, we let: 

Bp = U~p(p), with ~p(p) = {p E en : (pi - Pil ~ PP' i = 1, ... ,n}, 
pEB 

T; = {q E en : IImqil ~ Pq, i = 1, ... ,n}, Ep = {t E e : IImtl ~ Pt}, 

and finally Pp = Bp X T;; we call Pp,Pq,Pt the extension radii respectively in the variables 

p, q, t. 
All functions are assumed to be real analytic (namely analytic and real for real vari

abIes), periodic of real period 271" in the angles, and periodic of real period T in time. For 

any F : Bp x T~ x Ep -+ e and any p = (pp,Pq,Pt) ~ (pp,Pq,Pt) (the inequality is intended 
to work component by component), we let: 

IIFlip = sup IIF(p, q)/I.
(p,q,t}EB, xlr; xE, 

Finally, we denote by " mes" the Lebesgue measure. 

KAM THEOREM. Consider the Hamiltonian system (1.2). Suppose that H is real 

an.alytic in the domain P p x E p with given PP' Pq and Pt = Pq i:r. Assume that h is bounded 
and non-degenerate, more precisely that the frequency map hp is a global diffeomorphism 

B -+ 0, and there exist constants m and M, 0 < m ~ M < 00, such that: 

(1.3) 

Finally, let 'Y be such that: 

(1.4) 
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where 6(n,pp,pq,M) is a suitable constant: 

1 p p2n+1 ) 2 

S(n,M,pp,pq) = ( 32210n+l452n+l[(2n -1)1]2 M~2q+ 11/11 

Then there exists a decomposition P =PI U P2 , such that: 

C(n)Mn-li 
mes (P2 ) ~ d· {d (h (»} mes (P), (1.5)

mInpEB et pp P 

where d is the diameter of B and C(n) = r~::;1:):~, while P 1 is the union of invariant 
n-dimensional tori Tw depending in a Lipschitz continuous way on w E n"Y c n, 

e}" = {w :(k,w) > I~n VI!: E zn \{O} } . 

More precisely, such tori are defined parametrically by equations of the form 

q = Q+ gw(Q,t), with Q E Tn and t E R, (1.6) 

where Po = h;l(w), while Lw is some constant, and Iw, gw are real analytic functions, 

periodic in t with period T; Lw, Iw and gw depend in a Lipschitz continuous way on w. 

The tori Tw are near the unperturbed ones {po} x Tn, more precisely one has 

IIL... II < c(n) GMP; + 11/11) ~v: (1.7a) 

./ II < c(n) (iMp; + 11/11) :. (1.7b)11 Jw - 2n+1 pq i 

< c(n) (iMp; + 11/11) Vi (1.7c)II gw II - 2n ' 
PPPq i 

c(n) being a suitable constant depending only on the number of degrees of freedom. 

As remarked above, the statement does not really differ in an essential way from 

the one appearing in [5]; the time-dependent case is there not explicitly treated, but the 

generalization is straightforward. The only point which is not treated in [5], but is crucial 
to our application to the degenerate problem, is the estimate (1.5) of the measure. A 

sketch of the proof of this point is deferred to Section 5. 

1.4. The paper is organized as follows: in Section 2 we recall a few basic facts on the action
angle variables for the rigid body; in Section 3 we describe the procedure of removing the 
degeneracy, then we state our result and we prove it. Section 4 is devoted to two examples: 
the former is not physically relevant, but the application of our method is straightforward; 
the latte.r is a model for the satellite spin precession. In Section 5 we report the proofs of 

a few technical lemmas. 
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2. ON THE EULER-POINSOT SYSTEM 

We recall here some basic facts on the dynamics the Euler-Poinsot system. For a detailed 

treatment, see for example [4,6]. 

2.1. The Hamiltonian setting. The Euler-Poinsot system has three degrees of freedom; 

the configuration space is 503 and the phase space is its cotangent bundle T*503 that can 

be identified with R3 x 503 in two different ways according to consider the angular mo

mentum in the body frame (0, eh e2, e3), as we do, or in the inertial frame (0, e z , e" e z ). 

By body frame, of course, we mean the one whose axes are the principal axes of inertia. 

The so-called Andoyer variables are defined as follows: if m is the angular momentum, 

then (see figure 2): 

i) 	 The Andoyer angles are three real functions j(mod27r),g(mod27r),I(mod27r) where j 

is the angle between the directions of e z and of ez A m; 9 is the angle between e z A m 

and m A e3; l is the angle between m A e3 and el-

ii) The Andoyer momenta are: 

1 
G = (m,m)'2, L = (m, e3)

z 

y 

Fig_ 2 

Remark: the Andoyer variables are not defined for m II e3 and m II ez ; since the choice of 
the" e z axis is arbitrary, the singularity m II ez can be avoided by an appropriate choice of 
the z-axis. On the contrary the singularity m II e3 reflects a real singularity of the system 
(a family of two-dimensional tori collapse there into a periodic orbit) and must be removed 

from the phase space. The subset of the phase space R3 X 503 obtained by removing such 
singularities will be denoted by M. 

More precisely the following holds: 

7 



i) The map: 
.;~ 

M -+ A X T3 
(m, X) ~ (J, L, G, j, 1, g) , 

..' where.'-:'f 

A = {(J, L, G) E R3 : G > 0, ILl < G, IJI < G} , 

is a real analytic canonical diffeomorphism. 

ii) Denoting by 8,x.,.,p the familiar Euler angles, one has: 

cost? = e (~, ~,g) i 9(z,y,g) = zy - Jl- z2Jl - y2 cosg (2.1a) 

~( ) y-z9(z,y,g)
cos(x - j) = 'I? (~, ~ , g) i ';1' Z,y,g - (2.1b)VI - 9 2(z,y,g)v'1 - z2 

lP(z,y,g) = ~(z,y,g) (2.1c)cos('" - I) = 1}i (~, ~ , g) i 

and: 

Px = J, Pt/J = L. (2.2) 

For a detailed proof, see [4,6]. 

It is easy to prove (see for example [7]) that the kinetic energy, i.e. the unperturbed 

Hamiltonian, has the form: 
• .1 
.~ 

Sin21 cos21) L2 
ll(J,G,L,j,g,l) = (G2 - L2) ( -2- + -2- + -2 ' (2.3) 

al a2 a3 

where ai are the principal moments of inertia; from the equations of motion associated to 

the Hamiltonian (2.3) it follows that (G, J,j) are constant (this expresses the fact that the 

angular momentum m is constant in the inertial frame). Moreover the energy is conserved, 

so there are four independent constants of motion for our three degrees of freedom system: 

the system is 8uperintegrable, and correspondingly, the Hamiltonian is properly degenerate. 

2.2. The action-angle variables. In the symmetric case the Andoyer variables are already 

action-angle variables, II = L, 12 = G and rpl = I, rp2 = g. In fact we can always assume 

a3 f= al = a2, and obtain 

(2.4) 
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For 11 :I 0 (non spherical ellipsoid of inertia) the rank of the Hessian matrix in the actions 

(L, G) is two. 
In the triaxial case the action-angle variables (11,12,CP1, CP2) are also easily constructed 

(see for example [1]). The simplest procedure is to preliminarily introduce, for any fixed 

G, a pair of action-angle variables (II, CP1) in place of (L, I); in particular one has: 

r2T - G2 (sin' I + cos' ') I 
I 1(G, T(L, G, I» = 2: f Ldl = 2: f (at a,) dl (2.5) 

" II _..L sin' I + cos' I 
Cl3 ClI Cl2 

where the integration path is given by the curves of constant energy, at constant G; energy 

levels corresponding to gyroscopic rotations must be avoided. Such a transformation is 

easily canonically extended to a transformation 

(L,G,I,g) ~ (It,I2,cpJ,CP2), 

where 12 = G (but t.p2 :I g). The new Hamiltonian has then the form T(IbI2) and the 
following holds: [1] 

The energy function T(I1 ,I2) is continuous, is a homogeneous function of degree 2 and is 

analytic in the region 

2 2T 1 } !::J. = { (11,12) E IR : 0 < 1111 <12, -12 :1- . 
. 2 a2 

Moreover the canonical transformation: 

is analytic in !::J. X T3 . 

The domain !::J. is the union of four connected subregions (see figure 3), bounded by 

the lines 1111 = 12, 12 = 0 and 1111 = PI2 , where Pis a constant defined as follows: one 
preliminarily observes that the level curves of ~ are straight lines through the origin, with 

2 

angular coefficient P depending on ~: 
2 

p(2T) = ~f122 21r 

The singularity jf :2 (that is the one associated to the separatrix) corresponds then to 

the line with angular coefficient p= f3( :2). 
If we consider T(Il' 12 ) as the Hamiltonian of a system with two degrees of freedom, 

it turns out that it is non-degenerate; more precisely one proves that: [2,1] 

The Hessian r of the function T(IJ,I2) is strictly positive in the subregions. of 6. adjacent 

to the lines 1111 = 12 , strictly negative in the remaining connected subregions. 
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3. KAM THEOREM FOR THE PERTURBED EULER SYSTEM 

Let us consider the Hamiltonian of the triaxial rigid body with a fixed point: 

H(Il ,I2, J,V;1,V;2,i) = T(Il ,I2) + p.V(Il ,I2,J,CPl,V;2,i), (3.1) 

where 

3.1. Regularity properties. As already remarked, the kinetic energy T is real analytic in 

the whole infinite domain~. However, in order to dominate the Hessian of T, we shall 

restrict (11 ,12 ) to a subset of the form 

moreover, to be later able to suitably extend the domain of H without introducing sin

gularities, we further restrict the action domain by eliminating a narrow strip around the 

singular lines which border ~; so we introduce the reduced domain (see figure 4) 

~(To,ro) = {(Il ,I2) E ~(To): 1111 > 2ro; III -,8121 > 2ro, 12 -IIll > 2ro}, (3.2) 

where ro is a small free parameter. 
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So, the kinetic energy turns out to be analytic in every complex extension ilr(TO' TO) of 

~(TO,TO), with extension radius T < ro, and the norm M of the Hessian matrix is there 
finite and its determinant r is bounded away :£rom zero. 

Let 

and denote by Ar(To, TO) the complex extension of such a set, with extension radius T < To. 
We shall assume that V is analytic and bounded in Ar(To,To) X T:o up to T = roo We 

stress that such assumption is certainly satisfied, for not too large ro, So, if V is derived 

by a purely positional potential, which is a real analytic function of the Euler angles. 

The domain of the above Hamiltonian H coincides, of course, with the domain of V. For 

simplicity, in the following we shall use the short notation Ar in place of Ar(To, TO). 
As remarked in the Introduction, we shall consider the particular case of a potential 

with a finite number N of harmonics in the fast angles, but the extension to the general. 

case is easy. 

3.2. Birkhoff steps. In the following we shall denote by V(1!,12,J,j) the average of 

V(l!, 12, J,CP1,CP2,j) over the fast angles cP!' CP2 and by Yo the sup-norm of V on Aro X T: •o
As remarked in the Introduction, we shall restrict ourselves to the case in which the Fourier 

series of V in the angles CPl, CP2 contains only a finite number of terms, say up to Ikl ::; N 

with Ikl = Ikll + Ik2 1· 

Lemma 1. Consider the Hamiltonian (3.1), let it be real analytic in A,. X T: ' and assume o 
V has truncated Fourier series, with N as above. Assume;1 and r be such that: 

< ;1 (3.4)
r - M(4N -1)3 ' 

where C = 36~22' and consider the real sets 

A' = {(11)12) E A(To,ro): 1"'1k1 + "'2k21 > Ik12 ' Vk E Z2: 1.1:1 ~ 4N -I} 
A' = {(l1,12,J) : (11,12) E il', IJI < 12 - TO} , 

where Wi = gI, i = 1,2. Then there exists a real analytic canonical transformation 

lP : A'r. x Tk ~ Ar X T! ,
2 2 0 

(11 ,12,J,CP1,CP2,j) = lP(l~,l~,J',cpi,cp~,j'), that conjugates the Hamiltonian (3.1) to a 
new Hamiltonian H' = H 0 lP of the form 

H' = T'(l~,l~) + p.V(l~,l~,J',j/;p.) + p.sV(l~,l~,J/,cp~,cp~,j';p.) , (3.5) 
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where V is close to V: 

IIV - VII!:. ~ < (3.6)8CIV02 
2' 2 - JL "Y1'''8~ , 

and H' is real analytic on Ai X T~. Moreover, one has: 

(3.7) 


and the canonical transformation q; is near the identity: 

(3.8) 

A sketch of the proof is reported in Section 5. 

3.3. Action-angle variables for the normal form Hamiltonian. The next crucial point 
concerns the introduction of the action-angle coordinates for the normal form Hamiltonian 

T'(I~, I~) + JLV'(Ii, I~, J' ,j'). To this purpose, let us preliminary fix (Ii ,I~), and consider 

the one degree of freedom Hamiltonian 

h' I' 
l' 

I'
2 
(J' , J") =V-'(I'I' I'2 , J' , J.') .. 

Such a system is obviously integrable and the domain of the variables (J' ,j') is the cylinder 

{IJ'I < I~ - ro, j' E T}, or equivalently the sphere of constant angular momentum from 

which one removed the poles and small bowls around them. Since h~, I' is an analytic
l' 2 

function on this sphere, there are at most finitely many singular level curves, namely level 

curves containing points in which Vh~, [' = O. 
l' 2 

Let us consider a regular level curve h~, I' (J' ,j') = h*; if 6.h is small enough, then 
l' 2 

the tube 

3;~,I~ {(J',j') : h* - 6.h ~ h~~,1~(J',j') ~ h* + 6.h} 

does not contain singular level curves. It is then possible to introduce, in ..1;, [" the action-
I' 2 

angle variables (I~' , cp~) for the Hamiltonian h~1 I' , with cp~ E T and If belonging to some 
l' 2 

interval II", I': namely there exists a canonical transformation g}I' I', parametrized by
l' 2 l' 2 

(I~, I~), such that 

(J',j') = g}I~,I~(I~/,cp~), 
and g}I' [' is analytic in a suitable complex neighbourhood of II", l' X T. 

I' 2 l' 2 
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Remark: We implicitly assumed that 3}, I' is completely contained in the domain of h~I I" 
l' 2 l' 2 

namely in the cylinder {IJ'I < I~ - ro, ;' E T}. But this can be always realized because 
the choice of the z axis is arbitrary, and for smallfl.h, one can always take it in such a 

way that it does not intersect 3}, I'. 
l' 2 

In order to apply KAM theorem to the whole Hamiltonian T'(I~,I~)+JLV'(Ii,I~,J',;';JL), 
one needs to extend the above canonical transformation to all coordinates. To this purpose, 

let us notice that by varying (If, I~) in some disc D'(R) c fl.' of radius R, the singular 

level curves in general move: however, if R is small enough, then for every (If, I~) E D'(R) 

the set {(J' ,;') : h* -fl.h ::; h~I I' (J' ,;') ::; h* + fl.h} is still a tube free from singularities,
l' 2 

and it is possible to extend the above defined change of variables to a set P' defined by 

(I~,I~) E D'(R) , 
(3.9)

(J',;'): h* 

correspondingly, the interval of definition I"(R) of the new action I~' in general reduces, 

but for R small enough, such reduced interval has radius larger or equal to R. It is then 

clear that: 

Lemma 2. There exists R such that for every disc D'(R) C fl.' the above canonical 

transformation <.P I' I' extends to 
l' 2 

~ : B" X T3 ~ P', 

where B" is a ball of radius R , and <.P is such that I'1 -- I"l' [,'2 -- I"2' and (J' , J.) 
~I~,I~ (I~', 'P~); CR conjugates the Hamiltonian (3.5) to H" = H' 0 CR of the form 

H" - T"(I" [''') + ILV"(J" I" I"·IL) + 1L5V"(I" [," I" II II II. IL) (3.10)- l' 2 r l' 2' 3' r r l' 2' 3' 'PI , 'P2 ,'P3 'r , 

where V" and V" satisfy (3.6) and (3.7). The new Hamiltonian H" is real analytic on the 
domain B~ x T!, with some nonvanishing extension raclli PI and PI(J. 

Re"marks. (i) We cannot compute explicitly the radii PI and PI(J' since they depend in an 
essential way on the form of the considered potential. Anyway since, by (3.4), r is small 

with 1", while PI is finite, for I" small enough one has certainly PI ~ r. Concerning PI(J and 

So, we shall denote by s the smaller between them. (ii) In order for R, PI and PI(J to be 

appropriately defined, we made reference, in the above Lemma, to the level curves of the 
w hole normalized Hamiltonian V. However, it is important to stress that, if I" is small, 
the regular level curves of V do not differ significantly from the corresponding level curves 
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of the average V. So, every assumption can be verified, for small J,L, on V. This is relevant 

because in any example V, and not V, is immediately computed. 

3.4. Main result. Every set B" x T3 , as described above, is the union of invariant three-tori 

for the Hamiltonian Til + I'V". We want to apply KAM theorem to prove the persistence 

of a set of large Lebesgue measure of such tori for the perturbed Hamiltonian H". 

In order to do this, one has to verify that T" +I'V" is non-degenerate; to this purpose, 

as we shall see (Lemma 3), it is enough to assume that there exists m > 0 such that 

{)2V-1I . "T3
--2 >m m Br x .' (3.11)I{)Ir I

It is then natural to give the following definition: 

Definition. The potential energy V (It, 12, J, CPl, CP2, j) is said to remove the degeneracy, 

jf the assumption (3.11) is satisfied. 

Remark: This assumption too could be formulated only for V. Indeed, in order for an 

inequality of the form (3.11) to be satisfied for small J,L, it is enough it be satisfied by 

V"(I~I ,I~ ,I~'; 0), and this is nothing but the function one would obtain by using V in 

place of V in Lemma 2. 

We can now state our main result. 

Proposition. Let the Hamiltonian 

be real analytic in the above defined domain 

A X T 3 •of"\.r • , 

assume the potential removes the degeneracy. Denote Co = c(VOM)-l (4N - 1)-3, C1 = 
cM3V;3(4N 1)6 c~r'V;4(4N 1)9 

Q m - ,C2 = cMVO (4N - 1)3 and 0 3 = Q m - ,c being some suitable con

stant depending only on s. If I' is small enough, and 11 is such that 

(3.12) 


then for every disc D(R) C il' of sufficiently small radius R, and for every regular level 
curve C of the averaged potential at fixed (11 ,12 ) E D(R), there exists a tube P around C, 
which decomposes as 
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with 'P2 such that 

(3.13) 

whlle 'PI is the union of three-dimensional invariant tori, and for every initial datum 

the motion on the corresponding torus satisnes 

1 

11j(t) - I?I ~ C1 p.: (3.14) 
II 

Icpi(t) - cP~ - witl < C2 ~ , (3.15) 
II 

for i = 1,2. Correspondingly (J(t),j(t)) stay close to the level curves of the averaged 

potential at nxed (11,12) =·(lr ,1~), namely one has 

1 

\V(It,12,J(t),j(t)) - V(It,12,Jo,jO)1 ~ C3 p.:. (3.16) 
II 

Remark. In the case in which the Fourier series of V in the angles CPl, CP2 contains an infinite 
number of terms, the procedure still works, although it requires a few technical changes. 
Indeed in Lemma lone should cut-off the Fourier series at order N such that (4N 

1)3 e-(4N-l)8 p.; this leads to logarithmic corrections in the estimates (3.7) and (3.8), 

in the sense that r acquires a logarithmic dependence on p.. Such corrections then appear 

in every successive estimate, in particular in our Proposition; in fact in the definition of 

Co, ... , C3 , whenever N appears, a logarithmic dependence on p. is introduced. Everything 

runs then quite smoothly. 

3.5. Proof of the Proposition. The proof is based on the following 

Lemma 3. Let us consider the Hamiltonian: 

T"(I" I") + II.V"(I" I" I" 11.) + 5V- II (I" I" I" lI," lI," tfl" )1'2 ,- 1'2'3',- P. 1'2'3'Tl'T2'T3'P., 

real analytic on the domain B" X T3 with extension radii rand s, and such that V", VII 
- -IIsatisfy (3.7) and V" is close to V ,see (3.6). Suppose that: 

8
2V" B" T3

8I~'2 ~ m, on PI X P'P' 

where m > 0 is some constant, and let 12 be such that: 

11.5 < c(s) r6~4~2 
,- - 6 (3.17)V 11 12' 

0 
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-() .26 1L:b b:bwere c 8 = 39 4 54 519 • Tllen t ere exists a su set 

P'K c B" X T3 

of measure 

(3.18)
"," 

such that P'k is the union of invariant three-dimensional iori Tw" parametrized by w" = 

(wi', w~, w~) E noy, where w~' = 8T'~~:~VII and noy = {w" : (k, w") ~ l~i2 'Vk E 7l.2 
\ {O}}. 

More precisely, such tori are defined parametrically by the equations: 

I" = I~ + Lw" + /w,,(Q), t(J" = Q+9w,,(Q), with Q E y3 

fIT' -" where Ib' is such that 8~~V (I~) = w", while L~ is some constant, and /w", 9w" are 

real analytic functions. The 
I 

tori 73' are near to the unperiurbed ones {Ig} X T 3 , more 

precisely one has the esiimates 
3 

II "II 3 Mp."fLw ~ c3 Vo ( )2 ' milT 12 
(3.19) 

where C3, C4 and C5 are some suitable constants depending on 8. 

See Section 5 for the proof. 

Proof of the Proposition. It is easy to check that, by the construction of the domain 

A, our Hamiltonian satisfies the hypotheses of Lemma 1 (one should choose r = M(4iJ-1 )3 ) 

and that it is possible to apply Lemma 2 to the new Hamiltonian (3.5). Then there exists R 
such that for every disc D(R) and for every P', defined as in (3.9), we can apply the above 

canonical transformation which conjugates H' to the new Hamiltonian H" real analytic 

on a set of the form B; x T!, where B" is a ball of radius R, r = (4N 2~)3 l-rl • 

Let us then consider a regular level curve C of the averaged potential, free from 

singularities; then for small p., thanks to the fact that V is close to V, see (3.6), and 
that W is close to the identity, see (3.8), for p. small enough there exists a tube P around 

C, composed of non-singular level curves of the averaged potential, such that the set P' 
defined by 

P = W(P') = W0 iR(B" X T 3 ) 

has the form (3.9). Now, with the natural1 choice 12 = P.'h the new Hamiltonian H" 
fulfills all the hypotheses of Lemma 3. 

1 By definition, '11 and "Y2 are some non-resonance parameters respectively for the two frequencies 
~ . (" " ") h - 8T II - 8T" - + O( )(Wl,W2 ), and the three lrequencles WI 'W2 'W3 , were WI,2 - ~, WI2 - ~ - WI,2 P. 

1,2 , . 1,2 

" 8V"and w3 = p.7!fT'T". 
3 
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Applying Lemma 3 to the Hamiltonian H", one obtains that there exists a subset 
Pi< c B" x T3 which is the union of invariant three-dimensional tori for which the 
estimates (3.18), and (3.19) hold. Let us define 

(3.20) 


Then p1 is also the union of invariant three-dimensional tori for the Hamiltonian H. The 
estimate (3.13) on the measure of P2 directly fonows from the definition (3.20) and from 
the estimate (3.18). 

We now prove the estimates (3.14), (3.15). To this purpose let us take 

thanks to the fact that q; is close to the identity, and that I~ ,2 = I~',2' one has, for i = 1,2: 

IIi(t) - I~I ~ IIi(t) - IHt)1 + IIHt) - IHO)I + IIHO) - Irl 

~ 2c1 VO !!:... + II;'(t) - 1;'(0)1,
3

S ;1 

and by the lemma 3 

(3.21) 


In the same way, thanks to the fact that q; is close to the identity, and that cp" and cp' 
differ only for a change of the origin, one has: 

i = 1,2 . (3.22) 

Let us now study (J(t),j(t)), and to this purpose, let us consider the value of the averaged 
potential V at fixed (11 ,12 ), Thanks to (3.6) one has 

2 
V(Ji> ,I~, J(t),j( t)) = Y'(I~ (0), I~(O), J' (t),j'(t)) +8C1 JLVo 

;lTS3 ' 

and since Y'(Ii (0), I~ (0), J'(t),j'(t) = Y"(Ii'(O), I~' (0), I: (t»), it follows 

IL\VI = ylI(I~'(O),I~'(O),I~'(t» - ylI(Ii'(O),I~'(O),I~(O)) + 16c1 JL 
V

o23 ' 
;ITS 

where ~V = V(Ir,I~,J(t),j(t» - V(Ir,I~,Jo,jO). Now by Lemma 3 one has 

(3.23) 


17 




:. 


and for the above choice of the parameters 12 and r, using (3.21), (3.22) and (3.23), one 

easily gets the estimates (3.14), (3.15), and (3.16); in fact, for the (3.14) one has 

while concerning (3.15) one finds, 

5 1 

3 1'2 I' 31'"2 
CsVo 2 3 + 2C2 Vo- ~ cMVo(4N -1) -2 , 

~r~ rn ~ 

and finally for(3.16) one has 

M 4 Il.~ II.V? cM4V,4(4N - 1)9 Il.! 
2 TT r + 16cl _r_O_ < __-'-0---'--___ r 
C3- Yo 2 3 3 6 

m 11 r 12 11 rs - m 11 

4. EXAMPLES 

4.1. Elastic forces. Let us consider a rigid body with a fixed point, subject to two elastic 

forces, namely one, of elastic constant kl' acting between the point 5(1) = SI el + S2e2 + 
S3e3 and its projection on the (x, z)-plane, and the other, of elastic constant k2, acting 

between the point 5(2) = Se3 and its projection on (x, y)-plane (see figure 5). 

" . 
" " 

Fig. 5 
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The potential is positional, and considered as a function of the Euler coordinates has 

the form: 

V =!k1 [Sl(sin X cos..p + sin..pcosxcos") - S2(sin X sin..p
2 (4.1) 
- cos,p cos X cos 11) - S, cos X sin 11]2 +~k2 (S cos 11)2. 

If we apply the transformation equations (2.1) to (4.1) we obtain the potential as a function 

of the Andoyer variables and to apply our result we have to check that the average of 

the potential on the fast angles (g, I) realizes our assumptions. Assuming, for simplicity, 

S~ + S~ = Si, it turns out that: 

this means that the Andoyer variables coincide with the action-angle ones for the averaged 

motion and the change of coordinates of Section 3.3 is practically not necessary. One 

immediately obtains that: 

so for g =J i the potential does remove the degeneracy, while for g = i the averaged 

potential does not depend on J. 
As a consequence, we can apply our Proposition on the domain g X £, X :J X T3 where: 

I:. = [~G+2ro,G - 2ro] U [-~G +2ro,~G - 2ro] U [-G +2r,-~G +2ro] , 

g = {G E R : G > 2ro} and :J = {J E R: IJI < G - 2ro}. As a result we obtain the 
estimates (3.13), (3.14), (3.15), and (3.16), that is, for a large set of initial data, with large 

enough kinetic energy, the angular momentum has almost constant module and direction in 

the body frame, while it slowly precedes around the z-axis in the inertial-frame, essentially 
as in the ordinary top. 

4.2 Gravitational potential. Let us now consider a symmetric homogenous rigid body T 

with figure axis e3, mass MT, and barycenter BT, that moves on an elliptic orbit of given 
eccentricity e and major axis 2a. Let us suppose that T is subject to the gravitational field 
due to a point mass Ms that lies in one focus O. We choose the inertial frame (O,z,y,z) 
such that the (z, y)-plane contains the orbit. Let r denote the position of BT in such 
inertial frame (see figure 6). 

A Hamiltonian which suitably describes this physical situation is 

H(L,G,J,g,j, t) = G22- L2 + 2L2 - w~a2MT[l - ecos A(t)] +VeL, G,J,g,j, t), (4.2) 
al a3 
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[ 
L2 ( J 

2 
) J2 (L2) LJn2R2 ]+ - 1-- +- 1- cos2 g-2 1- 1--cosgG2 G2 G2 G2 G2 G2 G2 

Fig. 6 

where A(t) = wt + Ao is the mean anomaly and: 

X sin2(>.(t) - i) - 2 sing sin(>.(t) - i) cos(>.(t) - j)VI - ~: 
x [L VI _J2 _ J V1 _L2 cos 9] }

G G2 G G2 . 

In fact, to obtain the above Hamiltonian, one approximates the gravitational potential 

v = _kMsMT r dx 
ITI iT IT + xl 

by: 

( 4.3) 

where f3 is the angle between e3 and T; such an approximation [8] is meaningful if the 

equatorial radius R is negligible with respect to ITI, and if the body has the ellipsoid of 

inertia close to a sphere. In the Euler coordinates one has: 

cosf3 = sin 19 sin(x - AT), 

where AT is the longitude of BT on the ellipse, so that Irl = l-ec~s AT. In our model we 
neglect the terms of order e2 , and write 

1 1 - e cos A ( t) 
Irl3 = a3 
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Using the third Kepler law with, for simplicity, M'iJ~s = 1, we then obtains (4.2) from 

( 4.3). 

Let us consider the autonomous system associated to the (4.2): .. 

H(L, G, J,g,;, 'A) = T(G) +wrA - w}a2MT[l - e cos 'A] +VeL, G, J,g,;, 'A), (4.4) 

where A is the action conjugate to the angle 'A and L is considered as a parameter. 

We can study the (4.4) in two ways: either we consider aa - al as a small perturbative 

parameter, aa - al = paa (this is meaningful because of our assumption on the ellipsoid of 

inertia) or, for aa - al small but finite, we consider the fast rotations with large angular 

velocity n = 1. In the former case we study the Hamiltonian: po 

H = T(G) +wrA - w}a2MT[l - e cos 'A] + p.V(G, J,g,;, 'A), 

which, after the canonical transformation 

cp = 'A, 

takes the form: 

H = T(G) +wrI +p.V(G,J,g,;,cp). 

This Hamiltonian is similar to the one considered in the first example, namely it has an 

integrable term T(G) + wrI depending only on two actions (G, A), and a perturbative 

term pV depending also on the third degree of freedom (J,;). Here of course, the degree 

of freedom (I,cp) plays the role of (L,l). 
As before we have to check that the average of the potential on the fast angles (g, A) 

satisfies our assumptions. The averaged Hamiltonian is: 

so in this case too, the Andoyer variables coincide with the action-angle ones for the 

averaged motion; moreover the potential removes the degeneracy: 

82K 3 21 
= -P'2a3wT G2 =1= o.8J2 

We can then apply our Proposition in the domain: 

{(G,L,J) E rR3 : G > 2ro, ILl < G - 2ro IJI < G - 2ro} , 

and obtain the estimates (3.13), (3.14), (3.15), and (3.16). Their meaning is now that, for 

a large set of initial data, with finite kinetic energy, if the planet is sufficiently close to 
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a sphere, then the angular momentum has almost constant module, constant direction in 
the body frame, and, as in the previous example, it slowly precedes around the z-axis in 
the inertial-frame. 

We can obtain analogous results also in the second case. Indeed, after a suitable 
rescaling, the Hamiltonian takes the form: 

WT (WT)2 .H=T(G)+nA + n v(G,J,g,],>'), 

where v(G, J,g,j, >.) = a2 MT(l - ecos >.) +4, and so:
WT 

H = T(G) + pA + p2v(G,J,g,j,>.). 

2We now consider T(G) + /LA as the unperturbed part, properly degenerate, and p. v as 
the perturbation. Since the unperturbed Hamiltonian contains also terms of order p., we 
should slightly modify our procedure: in this case it turns out that four perturbative steps 

are not enough to remove the degeneracy, but it is easy to see that seven are enough; a 

part from this point the procedure is the same of the previous case. 

As before, we have to study the properties of the Hamiltonian averaged on the angles 

(>.,g) which is 

So once more the Andoyer variables coincide with the action-angle ones for the averaged 

motion, the potential removes the degeneracy and we can apply our Proposition (with 

minor modifications on the estimates) in the domain: 

{(G,L,J) E 1R3 : G ~ 2ro, ILl < G - 2ro IJI < G - 2ro}. 

The resulting description of the motion is the same of the former approach. In particular 

in both cases, if M and e3 are close each other (although not coinciding, for we need 

ILl < G - 2ro) we obtain, in the above simplified model, a description of the planetary 

spi.n precession. 
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5. TECHNICAL PROOFS 

5.1. Proof of the estimate (1.5). It is well known that 'P2 =h;l(X"'I) X Tn, where in the 

time-independent case it is • 

n"! = {w E 01 3k E zn \ {O} : l(k,w)1 < I~n } , 

while in the time-dependent case one has 

n"! = {w E 01 3(k, ko) E zn+1 \ {O} : I(k,w) + kol < (Ikl : ko)n } , 

with fl = hp(B). Then we have: 

so we have to estimate the measure of X"'I; in both cases it turns out that: 

2n +1 

mes (X"'I n fl) < --,S,
n 

with S = maxk Sk where Sk is the (n-l)-dimensional volume of the set {w E fl: {k,w} = 
o}. Now it is easy to show that, thanks to (1.3): 

where d is the radius of the ball Band Cn = r(i~I)' Then we have: 

(Ald)n-I C _ 2"+1 Aln- I, 
mes (h;l (n"!)) ~ d. {d n(~ ())} 'Y ~ C(n) d. {d (h ())) mes (8),

IDlnpEB et pp P mmpEB et pp P 

Mn-I 
mes (1'2) < C(n) d· {d 0 ())} mes(1').IDlnpEB et pp P 

5.2. Sketch of the proof of the lemma 1. We perform four perturbative steps; at the l-th 
step we deal with an Hamiltonian of the form: 
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defined on the domain A~-2(I-l)P x T!o-3(I-l)U, where p = 1~ and (1' = ~, such that: 

and - " ( )'-1 IIVn' 1' Vi-I :;:; 4c ( ")'-1 . 
71rsO 

When I = 0 we put A~-2(I-I)P X T!o-3(1-I)U = ~ X T!o' V,-1 = 0 and Vi-I = V. 
To remove the dependence on the fast angles at the order p.l, we construct a canonical 
transformation l}I, by the Lie method, that is l}I, is the time-one map of a Hamiltonian 
flow C)~ induced by a Hamiltonian X. By the properties of the Poisson bracket one has 

we then choose X in such a way that 

By the hypotheses on r we obtain an estimate on the norm of X, on the complex domain 

A~_2IpT!o-3Iu, namely 

1 1 ( Vo ' 
-IIXllr-21p,.o-31u :;:; p. c-- with)p ;Irs6 

o 

and then: 

finally we obtain: 

H 0 l}I = T, + p.Y, + p.'+lV" 

where H is real analytic on the domain A~_2Ip x T!o-31u, IIV,II :;:; (l:~-1 i.) IIVII and 

"V,II < (4c)' ~~~:i;,. Iterating four times this procedure, the lemma is easily proved. 

5.3. Proof of the lemma 3. We want to show that it is possible to apply KAM theorem 
to the unperturbed Hamiltonian: 

h" - Til (I" [.11) + II.V- II (I" [." [''') - 1,2 ,- l' 2' 3 , 
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with the perturbation: 

5 -"(I" I" I" " II ")ef = J.L V l' 2' 3 ,lPl ,lP2,lP3 , 
• 

The full Hamiltonian h" + ef is real analytic on B~ X T:. Let us show that h" is non 

degenerate. In fact, for J.L small enough, 

and 

82h" ) 
det ( 8I:'8Ij' .. 

',J=1..3 

• 

for J.L small enough one has then 

82 h" ) 82(V")det - IL • r + 0(11.2) ~ lI.mr + 0(11.2) ...t. o. 
( 8I!'8I'! -,- 81"2 ,-,- ,-., 

3, J i,i=1..3 

Now we find the constants m, Ii : 0 < m :5 M < 00 such that V." E B~1 one has 

We estimate M and mrespectively by the maximal and the minimal module of the elements 

of the Hessian matrix of h. Concerning M - it is clear that the term due to T" dominates, 

so M - is the same of the one computed for T, with an error of order J.L. For m instead 

the dominant term is due to J.LVi (in fact Til is properly degenerate) and thanks to the 

hypothesis (3.11) one has m= pm. Now we show that 72 and e satisfy: 

where c= 3 4 2!059 • By the definition of e and by the assumption (3.17), one has 

A 7 ) 2 A2 26
Now 5 ~ 

( 

~lfV: and, by definition, C(8) is equal. to c4: 
2 

; as a consequence one has: 
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:::t To sum up, the Hamiltonian h" + ef satisfies all the hypotheses of KAM theorem; as a 
consequence there exists a subset "P'K C B" X T 3

, of measure: 

where r = minltlE:r/{det(h~tll,,(I"»} 2:: pm¥, such that P'K is the union of invariant 

three-dimensional tori TwlI parametrized by w" = (~1;;, ~1;; ,~1;;) E Oi', 
1 :I 3 

{P = {Wll : (k,w") ~ lijn Vk E zn \ {OJ} . 

More precisely, such tori are defined parametrically by the equations: 

I" = I~ + LwlI + fWII(Q), 

where I~ = h11(w"), while L~ is some constant, and fwll , 9w" are real analytic functions. 
The tori T~' are near the unperturbed ones {I~} x T 3 

, more precisely one has the estimates 

(1.7 a, b, c) or, by the definition of e, the (3.19). 
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