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Abstract 

The Whitham equations are a collection of one-dimensional quasilinear hyperbolic systems. It is 
known that this collection of systems is enumerated by the genus g=O,l,2, ... of the corresponding 

Riemann surface. We study the Cauchy problem for the Whitham equations for monotone analytic 
initial data. We show that if the initial data feu) satisfies the conditions f{2N+1}(u) < 0 for all 
'11, E 1R except for a number of isolated points, then the solution of the Whitham equations has 
genus at most equal to N where 1 :;; N E IN. 

1 Introduction 

The Whitham equations are a collection of quasilinear hyperbolic systems of the form [1],[2],(3] 

aU;. aUiat + Ai(Ul,'U2, ••• ,'U29+l) ax ::::: 0, t, 'Ui E JR, i::::: 1, ... , 2g + 1, 9 = 0,1,2, ... , (1.1) 

with the ordering Ul > 'U2 > ... >'U2g+l' For a given 9 the system (1.1) is called g-phase Whitham 

equations. The zero-phase Whitham equation has the form 

au auat +6uax = 0. (1.2) 

This equation is also called Burgers equation. 

For 9 > 0 the speeds Ai(Ul,U2, •.. ,1£2g+1), i 1, 2, ... ,2g + 1, depend through 1£1,'''' '11,2.9+1 on 
complete hyperelliptic integrals of genus g . 

•e-mail: grava@sissa.it 
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The initial value problem of the Whitham equations for a monotone decreasing smooth initial data 

x ,= f (u) It=o consists of the following: 
1) for t 2 0 the (x, t) plane is split into a number of domains Dg , where 9 = 0,1, .... In the inner 

part of each domain Dg we look for a solution Ul (x, t) > U2(X, t) > ... > U2g+1 (x, t) of the g-phase 

Whitham equations (1.1). For any t 2 0 the functions Ul (x, t) > U2(X, t),'" > U2g+1 (x, t) can be 
plotted on the (x, u) plane as branches of a multivalued function. The g-phase solutions for different 9 

must be glued together in order to produce a CI-smooth curve in the (x, u) plane evolving smoothly 

with t (see Fig. 1.1). 

2) At the time t 0 we have only the Do domain for any x. The correspondent zero-phase solution 

u(x, t) of the equation (1.2) must satisfy the initial data x = f(u(x, 0)). 

u 

Figure 1.1: The solution of the Whitham equations for a certain t > O. 

We say that a solution of the initial value problem globally exists if it has a bounded genus, namely 
if it is defined for any x and t > 0 and the domains Dg are empty for 9 > 90 where 90 < +00. 
The equations (1.1) were found by Whitham [1] in the single phase case 9 = 1 and more generally 
by Flaschka, Forest and McLaughlin [2] in the multiphase case. The Whitham equations were also 
found in [3] when studying the zero dispersion limit of the Korteweg de Vries equation. The hyperbolic 

nature of the equations was found by Levermore [4]. 
Dubrovin and Novikov [5] found the geometric Hamiltonian structure of the equations (1.1). Based 

on this structure, Tsarev [6J showed that equations (1.1) can be integrated by a generalization of the 

method of characteristics. This result was put into an algebro-geometric setting by Krichever [7]. 
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The investigation of the initial value problem of the Whitham equations was initiated by Gurevich and 

Pitaevskii [8]. In the case g ::; 1 they solved the initial value problem of system (1.1) for step-like initial 

data and studied numerically the case of cubic initial data. The Cauchy problem for the Whitham 

equations has been extensively studied by Tian in the case 9 ::; 1 [9]. He showed that if the monotone 

smooth initial data x = f(u) satisfies the condition t"(U) < 0 except at one point, then the global 

solution of the Whitham equations has genus at most one. 

In this paper we extend partially Tian's result. Namely we prove that if the monotone analytic initial 

data x = f (u) satisfies the condition 

d2N+1 


du2N+1f(U) f(2N+1)(U) < 0, 1::; N E:IN 


for all real 'U except for a number of isolated points, then the global solution of the Whitham equations 

has genus at most N. 

Riemann surfaces and Abelian differentials: notations and 

definitions 

Let 

9 
2 +1}

Sg:= P = (r,p), p2 = P (r-uj) (2.3)1 

{ 
J=1 

be the hyperelliptic Riemann surface of genus 9 ~ O. We shall use the standard representation of Sg 

as a two-sheeted covering of ClPl with cuts along the intervals 

[U2k' U2k-l], k = 1, ... ,g + 1, U2g+2 = -00 . (2.4) 

We will call the above intervals bands while the intervals 

[U2k+l, U2k], k = 0, ... ,g, Uo = +00 (2.5) 

will be called gaps. We choose the basis {(Xj, {3j g=l of the homology group HI (rg) so that {3j lies fully 


on the upper sheet and encircles clockwise the interval [U2j,U2j-d, j = 1, ... ,g, while (Xj emerges on 


the upper sheet at the point 1.£2j+1, passes to the point U2j and return to the initial point UZj through 


the lower sheet. 

The one-forms that are analytic on the closed Riemann surface Sg except for a finite number of points 

are called Abelian differentials. 


We define on Sg the following differentials [10]: 


1) The canonical basis of holomorphic one-forms or Abelian differentials of the first kind <Pl, ¢2 ... ¢g: 


k 1, ... ,g. (2.6) 
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The constants -'If are uniquely determined by the normalization conditions 

(2.7)l. </>k Ojk, j, k = 1, ... ,g. 
J 

2) The set ale, k 2:: 0, of abelian differentials of the second kind with a pole of order 2k + 2 at infinity, 

with asymptotic behavior 

(2.8) 

and normalized by the condition 

1 ak = 0, j 1, ... ,g. (2.9) 
O'.j 

We use the notation 

ao(r) = dp(r) , 12al (r) = dq(r) . (2.10) 

In literature the differentials dp(r) and dq(r) are called quasi-momentum and quasi-energy respectively 

[5]. The explicit formula for the differentials ak, k ~ 0, is given by the expression 

(2.11) 

where il (Ul' U2,' .. , u2g+d and the coefficients af af(il) , i = 1, ... ,g+k, are uniquely determined 


by (2.8) and (2.9). 


3) The abelian differential of the third kind wqqo(r) with first order poles at the points P = (q,/-1(q)) 


and (qo,/-1(qo)) with residues ±1 respectively. Its periods are normalized by the relation 


l.wqqo(r) =0, j=I, ... ,g. (2.12) 
J 

This differential satisfies the identity [11] 

(2.13) 

where dq and dp denote differentiation with rt:>Qnt:>(~t. to q and p. 

Preliminaries on the theory of the Whitham equations 

The Ai(Ul,U2, ... ,u2g+d of the g-phase Whitham equations (1.1) are given by the ratio [1],[2]: 

Ai (il) = dq((r )) I ' i = 1,2, ... ,2g + 1, (3.14)
dp r r=Ui 
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where dp(r) and dq(r) have been defined in (2.10). In the case 9 = 0 

;dp(r) = dr dq(r) = 1~ dr, 
r-u 

so that one obtains the zero-phase Whitham equation (1.2). 

We consider monotone decreasing analytic initial data of the form 

x = f(u) = Co + CI U + ... + Ckuk + .... (3.15) 

For such initial data the solution of the zero-phase equation (1.2) is obtained by the method of 

characteristic [1] and is given by the expression 

x = 6tu + f (u) . (3.16) 

The zero-phase solution is globally well defined only for 0 :::; t < tc where tc i minuElR[ - f'(u)] is 

the time of gradient catastrophe of the solution (3.16). The breaking is cause by an inflection point 

in the initial data. Thus for t < tc we have only the domain Do. For t ~ tc we expect to have single, 

double and higher phase domains. The solution of the Whitham equations is obtained gluing together 

CI-smoothly solutions of different genera. The g-phase solution is obtained by a generalization of the 

method of characteristic and reads [6],[12] 

1, ... , 2g + 1, (3.17) 

where Ai(U) has been defined in (3.14) and w,(il) = ~; Ir=u,' i = 1, ... 29 + 1. The differential ds is 

gi ven by the expression 

= 2kk! 
ds L (2k _ I)!! Ck(7k , (3.18) 

k=O 

where the differentials (7k, k ~ 0 have been defined in (2.11). 


The solution (3.17) of the g-phase Whitham equations can also be written in an equivalent algebro­


geometric form [7, 12]. Let be 


nCr, u) = -xdp(r) + tdq(r) + ds(r) (3.19) 

where dp, dq and ds have been defined in (2.10) and (3.18) respectively. Then the g-phase solution is 

determined by the equations 

nCr,'il) !r=u;= 0, i = 1,2 ... ,2g+ 1. (3.20) 

The solution Ul > U2 > ... > U2g+I of the g-phase Whitham equations (1.1) is implicitly defined as a 

function of x and t by the equations (3.17) or (3.20). The solution is uniquely defined only for those 

x and t such that the functions Ui(X, t) are real and OxUi(X, t), i = 1, ... ,2g + 1, are not vanishing. 

One of the problems in the theory of the Whitham equations is to determined when (3.17) or (3.20) are 

solvable for real Ul, ... ,U2g+1 as functions of x and t. We will study this problem in the next section. 

First we need to determine the phase transition boundaries of the domains D g , 9 = 0,1,2, .... 
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3.1 Boundaries of the domains Dg 

The!solution of the Whitham equations (1.1) with initial data (3.15) is obtained attaching C 1-smoothly 

solutions of different genera. From this condition we can determined the boundary between the domain 

Dg and D g+1 . To the common boundary of these domains it correspond the degenerate Riemann 

surface 

2g+1 
2 2f.Lv=(r-v) 	 II (r-Uj)' v E IR Ul > U2 > ... > U2g+1 v =1= Uj, j = 1, ... 2g + 1. 

j=1 

The point v E IR must be determined requiring that the g-phase solution and the 9 + I-phase solution 

are attached C 1-smoothly when two branch points of the Riemann surface Sg+1 coalesce to the point 

v. We first consider the case in which v belongs to one of the bands defined in (2.4). Vve call the 

corresponding boundary trailing edge. In this case the common boundary of the domains D 9 and 

Dg+l is determined by (3.20) and by the equations 

O(v, u) = 0, :r (f.L(r )O(r, '17)) Ir=v = 0 	 (3.21) 

where the differential O(r, u) has been defined in (3.19). Equations (3.20) and (3.21) determined a 

system of 2g + 3 equations in 2g + 3 real unknowns v, t 2: 0 and Ul > U2 > ... > U2g+1' When this 

system is solvable we can determine the function t = t(x) which describes on the x - t plane the 

boundary between the domains Dg and Dg+1 . 

When v belongs to one of the gaps defined in (2.5), namely U E (U2k+l, U2k), 0 ::; k ::; g, we call 

the corresponding boundary leading edge. In this case the common boundary of the domains D 9 and 

Dg+l is determined by (3.20) and by the equations 

O(v, u) = 0, (V O(r, '17) =0. 	 (3.22)
JU 2k+l 

We also consider the limiting case in which v -+ Uj, 1 ::; j ::; 2g + 1. In this case the g-phase solution 

has a point of gradient catastrophe on the ul-branch. The differential O(r, '17) has a triple zero at 

Example 3.1 
We study the boundary between the domains Do and Dl (see Fig 3.2). On the Riemann surface 

So := {f.L2 = r - u} the differential O(r, u) reads [9] 

O(r',u) = -X+~j(U)dr+ [(r 6~)d~l dr, 
r-u Ju r-~ 

so that the zero-phase solution (3.20) is given by 

x=6tu+j(u) 	 (3.23) 
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On the trailing edge where U2 = U3 = v and Ul = U the equations (3.21) become 

(V6t+f'(~) (V f"(~) 
(3.24):lu ~ d~ 0, lu ~d~ ° 

On the leading edge where Ul = U2 = v and U3 = U the equations (3.22) read 

(" 6:;!i) dE, = 0, (" (6t + f'(€))~dE, = 0 (3.25)Iu v lu 
The equations in (3.24) and (3.25) are equivalent to the ones obtained in [9]. 

U Do 

v=u I(X)=U lx) 

x 

Figure 3.2: Boundaries between the domains Do and D1 • 

When f(u) = -u3 the solution of the Whitham equations has genus at most equal to one [13]. On 

the x - t, t ~ 0, plane we have only the domains Do and D1 • In this case we can solve explicitly the 

systems obtained from (3.23), (3.24) and (3.25). On the trailing edge we obtain t = 1/(21/ 36)( _x)2/3, 

x ::; 0, while on the leading edge we have t = 3/(4v'5")!x!, x ~ 0. This is a well known result obtained 

in [14). 

Main result 

In this section we show that if the monotone analytic initial data f(u) defined in (3.15) satisfies the 
condition f(2N+l)(u) < 0 for all u E R except for a number of isola.tes points, then the global solution 

of the Whitham equations has genus at most N. 

For the purpose, we first need to study some properties of the Abelian differentials. 
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4.1 Properties of the Abelian differentials 

Letlwl and W2 be two Abelian differentials on Sg. Suppose that all the residues of WI are equal to zero. 

Then the integral d-1wl does not have logarithmic singularity on Sg. We have the following relation: 

l (4.26)t, [1; w, ~, W2 -1, W2 ~, WI] = 21fi f Res(d- w,)W2' 

This formula is known as the Riemann bilinear period relation [10). 

Let w;::(r) be the normalized Abelian differential of the third kind with simple poles at the points 

P±(z) = (z,±,u(z)) with residue ±1 respectively. The differential wz(r) is given by the expression 

(4.27) 

1, 

where ¢k(r), k 1, ... , g, is the normalized basis (2.6) of holomorphic differentials. 

In order to obtain the explicit expression of the coefficients Ak(z, it) we apply the Riemann bilinear 

relation (4.26) to wl(r) = O"m(r) and w2(r) = wz(r) getting 

p+(Z) 

j" O"m(~) = - Res 
. P-(z) 

(4.28) 

In the above formula the coefficients 1'7 have been defined in (2.6) and the rl'S are the coefficients of 

the expansion for ~ -t 00 of 

dl; r 1 r 2 r l
,u(~) ~-g-2 

1 

(ro + T + 1;2 + ... + E! + .,. )d~. 

Inverting (4.28) and introducing the quantities Bj(Z,it) = L~=1 Ak (z,it)1'J we obtain 

to 0 0(Bl (Z,U)) (
B 2 (z, il) r 1 to 0 

Bg(~~it) = t;~, t g- 2 ro·n 
1 JP+(Z} ()

-4' P-(z) 0"0 I; 

3 JP+(Z) ()

4' P-(z) 0"1 ~ (4.29) 

29-1 JP+(z) 
- 4 P-(z) O"g-I(';) 

where the r k 's are the coefficients of the expansion for ~ -t 00 of 

1 - t1 t2 tl
,u(~)d~ = I;g+2 (ro + + + ... + ""f + " . )d~. 

The following proposition is important for our subsequent considerations. 
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Proposition 4.1 The Abelian differentials of the second kind CTk (1'), k ~ 0, satisfy the relations 

(4.30) 

where wr(z) is the normalized Abelian differential of the third kind with simple poles at the points 

p±(1') = (1', ±,u(r)) with residue ± 1 respectively and dr denotes differentiation with respect to r. 

Proof: We prove the first equality in (4.30). Since the differential wz(r) is normalized, the differential 

Resz=oo[wz(r) zk-~dz] is also normalized. Furthermore the differential Resz=oo [w z (1') ~dz] has only 

a pole at r 00 and asymptotic behavior 

~~[wz(r) zk-!dz] = [r k-! + O(r-~)] dr, for large r. 

Consequently the first equality in (4.30) holds true. For the second equality in (4.30) we use the 

following argument. The quantity wz(r) zk+! is a single-valued function in the z variable in the 

neighborhood of z 00 where it has a pole. Consequently 

1. ( dz(wz(r) Zk+~) = 0 = Res[zk+~dzwz(r) + (k + -21)wAr)zk-~dz]
27r't 1Coo z=oo (4.31) 

=~~[zk+~drwr(z) + (k + ~)wz(r)zk-~dz] 

where Coo is a contour surrounding the point at infinity and the last equality in (4.31) is obtained 

from the identity dzwz(r) = drwr(z) which follows from (2.13). 0 

Let be 

F(u) =6tu + feu) - x, ( 4.32) 

where feu) is the initial data (3.15). We define the Abel transform of F to be equal to 

F(z) = (Z F(~) d~, (4.33)
10 vz:::-t, 

Using (4.30) the next proposition follows. 


Proposition 4.2 The differential nCr, '11) defined 'in (3.19) satisfies the following identity 


(4.34) 

where F(z) is the Abel transform (4.33) of F(u) and wz(r) has been defined in (4.27). 

The proof is obtained by straightforward calculations. 
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4.2 Bound to the genus of the solution of the Whitham equations 

Under certain hypothesis on the initial data, we give an upper bound to the genus of the solution of 

the Whitham equations. For the purpose we first write the solution (3.17) or (3.20) of the g-phase 

Whitham equations (1.1) in a new equivalent form. 

From (4.27), (4.29) and from the second equality in (4.34) we can write the differential O(r, it) in the 

form 

9 

O(r, it) =dr[lt(r)lJt(r, it)] I: drBk(r, it)qk(it) 
k=l 

29+1 ] 2g+1 () 9 

ar ;P(r, it) + ~ au, ;P(r, il) ",(r)dr + t; : r au, qg (il) - t; d,.B.(r, il)q.(it)
[ Ui 

(4.35) 

where 

Z9-k 1
W(r, it) - Res [ :F(z)dz 1 qk(it) - Res -(-) :F(z)dz , k = 1, ... ,g (4.36)

[Z=OCJ It(z)(z-r) , Z=OCJ It z. 

and for 9 = 0 we define 

- = Res [:F(Z) . (4.37)qo(u) - -(-)dz1 
Z=OCJ It z 

From the relation (4.29) it follows that 

2k - 1 k _ 
d.rBk(r, it) = ---2- I: rk-IO"l-l (r) . 

l=l 

Hence L:t:::1 drBk(r,it)qk(it) in (4.35) is a differential of the second kind with a pole at infinity of 

order 2g. Consequently we can write (4.35) in the form 

_ Z(r, il) <P(r, it) I1~;t1 (r - Uj) + R2g (r, 'it) 
(4.38)0(1', u) = ---;;:r;)dr = It(r) dr 

where 

2g+1 

<P('r, it) = Or lJt(r, 71) + I: aUi lJ!(r, it) (4.39) 
i=l 

and R2g (r, it) is a polynomial in the variable r of degree 2g and is equal to 

(4.40) 
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and Ql-1(r,il) has been defined in (2.11). 


The solution (3.20) of the g-phase Whitham equations (1.1) can be written in the equivalent form 

, 

Z(r, il)!r=ui = 0, i = 1, ... ,2g + 1, (4.41) 

where Z(r,il) has been defined in (4.38). From the expression of Z(r, it) in (4.38), we deduce that the 

solution (4.41) of the g-phase Whitham equations (1.1) is equivalent to the condition 

2g+1 2g+1 9 2k 1 k _ 
RZg(r,il) = 2:: oUiqg(il) II (r -Uj) + 2:: -2-qk(il) 2:: rk-IQI-l(r, it) == O. ( 4.42) 

i=l j=1,j#;i k=1 l=1 

Indeed R2g (r, it) is a polynomial of degree 2g and because of (4.41) it must have 29 + 1 zeros, conse­

quently R2g (r, it) must be identically zero. The condition (4.42) determines a system of 2g+ 1 equations 

in the variable Ul, ... ,U2g+1 with parameters x and t. A solution of the g-phase Whitham equations 

exists when (4.41) or equivalently (4.42) are solvable for real Ul > Uz > ... > U2g+1 as a functions of 

x and t and the derivatives OxUi(X, t) are not vanishing for i = 1, ... , 2g + 1. 

Proposition 4.3 If the Whitham equations (1.1) with the initial data (3.15) admit a g-pha8e solution, 

then the function <P(r, it) defined in (4.39) has at least 9 real zeros. 

Proof: If the Whitham equations admit a g-phase solution then the system defined by (4.42) is 

solvable for real U1 > Uz > ... > UZ g+1 as functions of x and t. On the solution U1 (x, t) > U2(X, t) > 
... > U2g+1 (x, t) of the g-phase Whitham equations (1.1) the differential O(r, it) in (4.38) reads 

O(r, it) = jJ.(r)<P(r, it)dr. ( 4.43) 

The differential O(r, it) defined on Sg satisfies the normalization conditions (2.9), consequently O(r, '11) 


must have at least one real zero in each of the gaps (U2j+l, U2j), j = 1, ... , g. 


Hence the function <p(r, it) must have at least 9 real zeros in the r variable in order for O(r, it) to be 


normalized. 0 


Proposition 4.4 On the common boundary of the domains D 9 and the function q,(r, it) in 

(4.39) defined on the Riemann surface S9 must have 9 + 2 real zeros. 

Proof: The domains Dg and Dg+1 have a common boundary when a couple of branch point.s of the 
Riemann surface Sg+l coalesce to a single point v E IR. 
The trailing edge (see Sec. 3.1) of the common boundary of the domains Dg and Dg+1 is determined 
from equations (3.21). Using (4.43) we can write (3.21) in the equivalent form 

q,(v, it) =0, aq,(r, il) I = o. ( 4.44) 
ar r=v 
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Now let us consider the leading edge of the common boundary of the domains D9 and Dg+1. When v 

belongs to one of the gaps defined in (2.5), let be U E (UZl+ 1 , U2l ), 0 :::; l :::; g, the common boundary 

of the domains Dg and Dg+1 is determined from equation (3.22). Using (4.43) we can write (3.22) in 

the form 

l.v 

<!lev, '11) = 0, /-L(r)cf!(r, u)dr = O. ( 4.45) 
U21+1 

Both equations (4.44) and (4.45) have a real solution if the function cf!(r,u) has two real zeros in the 

r variable. Combining this result with the one in Proposition 4.3, we deduce that on the common 

boundary of the domains Dg and Dg+1 the function <P(r, 'II) must have 9 + 2 real zeros. These zeros 

in the generic case are distinct. 0 

Theorem 4.5 (Main Theorem) If the initial data feu) defined in (3.15) satisfies the condition 

d2N+ 1 

du2N+1 feu) < 0, 1:::; N E JN, ( 4.46) 

for all U E 1R except for a number of isolated points, then the solution of the Whitham equations (1.1) 

has genus at most N. 

Proof: 

The solution of the Whitham equations (1.1) with initial data (3.15) determines a decomposition of 

the x - t plane, t 2: 0, into a number of domains Dg with g=0,1,2 .... To the inner part of each 

domain Dg it corresponds the g-phase solution (3.20) of the Whitham equations (1.1). The common 

boundaries of the domains Dg and Dg+1 are determined from equations (3.20), (3.22) and (3.21). 

We will show that each domain D g , 9 :::; N, does not have a common boundary with any of the 

domains Dm, m > N. Since the set of domains {Dg}g<N is not empty because Do 1= 0 the set 

{Dg} g>N must be empty. Indeed on the contrary the x - t plane, t 2: 0, which is a connected set, 

would be split into a number of domains whose union forms a disconnected set. 

From Proposition 4.4 it follows that when the domains Dg and Dg+l have a common boundary the 

function cf!(r, '11) defined on Sg has 9 + 2 real zeros for some value of x and t. We can easily generalize 

Proposition 4.4 considering the common boundary of the domains Dg and Dm, m > 9 2: O. When 

these domains have a common boundary, the function cf!(r, iI) defined on Sg must have at least 2m - 9 
real zeros for some values of x and t. 

'ATe estimate the number of real zeros of the function cf!(r, '11) defined on Sg when 9 :::; N. For the 

purpose we need the following two lemmas. 

Lemma 4.6 The function W(r', '11) defined in (4.36) is the unique solution symmetric in the variables 

12 



U1,· .. , U2g+1 of the Cauchy problem for the linear over-determined system 

B 
'lJ(r, it) - BB 'lJ(r, it) = 2(Ui - Uj) a B; 'lJ(r, it), i =I- j, i, j = 1, ... 2g + 1a~ ~ Ui ~ 

28 8 
'lJ(r, it) 2a 'lJ (r, 11) = 2(r - Uj) aaa 'lJ(r, it), j 1, ... 2g + 1 (4.47)ar Uj r Uj 

2g+1 


'lJ(r,r, ... ,r) = ( )"F(g)(r)

"--...--" 29 + 1 .. 

2g+1 

where F(g) (r) is the gth derivative of the function F(r) defined in (4.32). The solution 'lJ (r, it) of the 

Cauchy problem (4.47) can be written in the form 

(4.48) 

F (y) (1+6 ( (1+6 g (1+6 g +1 
1• + 1-{2g-l-1 U ) + 1-';29 U ) + ) + 1-6 U )

2 . • . 2 2 2 1 2 2 . . . 2 2g+1 

(2g + I)!! 1 (1+';)~
where K 2g+ 1 KIK2 ... 1(2g+1 and Ki = I-I vr=-e dE,. 

The proof is obtained from Lemma 3.4 in [9]. We state also the next elementary lemma. 

Lemma 4.7 If the real analytic function 9 (u) satisfies the condition 

dm 

dumg(u) <0 VuEIR, O~mE1N, 

then g(u) has at most m real zeros. 

We continue the proof of the main theorem. 

If the initial data feu) satisfies (4.46), then tr2

; __ggiJ.>(r,it) < 0 for all r E 1R and for all real U1 > Uz > 
... > U2g+1. Indeed using (4.32), (4.36),(4.39), (4.46) and (4.48) we obtain 

a2N g- (1 + e )ZN(1 + e )ZN-~ (1 + e )2N-g/1 /1 /1iJ.>( -) - . . • de de de 1,,1 1,,2 . • • 1,, 29+1 
--8r--:Z--N=---g r, U - <,,1 1,,2··· <,,2g+1 2(2g+1)(2N-g) K X 

-1 -1 -1 

(4.49) 

for all real Ul > U2 > ... > UZ g+l' Combining (4.49) and Lemma 4.7 it follows that the function 

<P(r, it) has at most 2N - 9 real zeros in the r variable for any real U1 > U2 > ... > UZ g +1 and any 
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x and t ;:::: O. If the domains Dg and Dm, 0 ~ 9 ~ N, m > g, have a common boundary the function 

.p(~, iE) has 2m - 9 real zeros for some values of x and t. Hence 

2N - 9 ;:::: 2m - 9 or m ~ N. 	 ( 4.50) 

This shows that set of domains {Dg}O:5g:5N does not have common boundaries with any of the domains 

in the set {Dndm>N. The theorem is proved. 0 

ExaITIple 4.6 We consider the initial data 

x = f(u) = _~(u5 + cu4 + u3) - 2u - sinu
5! 

The function f(u) is monotone decreasing and f(5)(u) -1 cosu < 0 for all real u except for 

'U (2k + 1)1i, k integer. Hence applying Theorem 4.5 the global solution of the Whitham equations 

for such initial data has genus at most equal to 2. 

5 Conclusion 

In this work we have proved that under certain conditions on the initial data the Whitham equa­

tions have a global solution. Indeed if the monotone analytic initial data f (u) satisfies the condition 

j(2N+l)(u) < 0 for all u E lR except for a number of isolated points, then the global solution of the 

Whitham equations has genus at most N. We believe that this results holds true also for smooth 

initial data. We are still working on this problem. 

AcknowledgITIents. I am indebted with Professor Boris Dubrovin who posed me the problem of 

this work and gave me many hints to reach the solution. 
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