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Abstract. We define a Fourier-Mukai transform for Higgs pairs and show that it preserves 
stability. This transform is compatible with the action of C· on the space of Higgs pairs, and 
therefore defines a transformation of systems of Hodge bundles. 

1. 	Introduction. 

The transform which by now is usually called Fourier-Mukai transform was introduced 
by Mukai [13] as a functor between the derived categories of V-modules on an abelian 
variety and of the dual variety (the transform is actually an equivalence of categories). The 
transformation of periodic instantons on R4 introduced by Nahm [14] was later recognized 
to coincide with the Fourier-Mukai transform [8]. Fahaloui and Laszlo [9] and Maciocia [11] 
showed that on 2-dimensional abelian varieties the Fourier-Mukai transform preserves the 
stability property of sheaves. A Fourier-Mukai transform for K3 surfaces was introduced 
and studied in [3] [4]; also this transform establishes an equivalence of derived categories 
and preserves stability. The proof given in [3] exploits partly transcendental techniques and 
allows for a generalization to higher-dimensional hyperkiihler manifolds [5]; this includes 
abelian varieties of even dimension, and therefore provides a generalization of Fahaloui­
Laszlo's and Maciocia's results. 

Similar results can be proved for Higgs pairs. A Higgs pair on a complex manifold 
X is an V x-module £. together with an element 8 E Hom(£., £. 0 n~) (where n~ is the 
sheaf of holomorphic I-forms) such that 82 == 0 (cf. [10] [16]). For such pairs there is an 
appropriate notion of stability. We define a Fourier-Mukai transform for Higgs pairs in the 
general setting where one has two complex manifolds X, Y and a fixed holomorphic bundle 
Q on the product X x Y. By standard algebraic techniques one can prove the preservation 
of stability for locally-free Higgs pairs (satisfying an additional technical condition) when 
X is a two-dimensional abelian variety, Y the dual variety, and Q the Poincare bundle on 
the product; or when X is a reflexive K3 surface, Y is the "mirror" reflexive K3 surface, and 
Q the universal bundle on the product (cf. [3] [4] [6] for details on reflexive K3 surfaces). 
This is done in Section 4. 

Simpson has proved a Kobayashi-Hitchin correspondence for Higgs pairs; namely, a 
locally-free Higgs pair (E,8) on a Kahler manifold is polystable if and only if E can 
be equipped with a hermitian metric h such that the connection Dh == \l h + 8 + B is 
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project. The first author acknowledges financial support from C.N.R. 
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Einstein-Hermite (here \7h is the hermitian connection of h). This generalizes to the higher­
dimensional case Hitchin's result that stable Higgs pairs on Riemann surfaces correspond to 
solutions of the vortex equations. By exploiting this correspondence in Section 5 we study 
the Fourier-Mukai transform of Higgs pairs by taking X and Y as hyperkahler manifolds, 
and Q as a quaternionic instanton on X X Y [15]. In this case the preservation of stability 
is proved by transcendental techniques. 

This definition of Fourier-Mukai transform for Higgs pairs appears to be quite natural in 
several respects. There is an obvious forgetful functor from the category of Higgs pairs to 
the category of coherent modules, and this commutes with the Fourier-Mukai transform. 
The latter also commutes with the action of C'" on the space of Higgs pairs (mapping (E, 8) 
to (E, A8), A E C~) and therefore, according to the results of [16], defines a transformation 
of systems of Hodge bundles. 

2. 	Higgs pairs. 

Let X be a complex manifold; we shall denote by A1-, A~q, and 01- the sheaves of 
smooth Cvalued k-forms, of differential forms of type (p, q), and of holomorphic k-forms, 
respectively. 

DEFINITION 1. [10][15] A Higgs pair (£,8) 'is a coherent Ox-module £ together with a 
morphism of Ox-modules 

such that 82 = O. 

The morphism 8: £ Q9 O~ -r £ 0 O~ is of course defined as 8( S Q9 w) = 8(s) /\ w. 
The datum of a Higgs pair is equivalent to a pair (£<XI, D), where £<XI is a Cx-module 

and D: £<XI -r £<XI Q9 A~ a morphism such that: 
(i) D satisfies the Leibniz rule D(Is) = I D( s) + s 0 8 Ii 

(ii) D2 = 0; 
(iii) the Ox-module £ = ker DO,l is coherent. 

The morphism 8 is recovered as 8 = Dl ,0; the condition D2 = 0 is equivalent to the 
integrability of DO,l and 8 and to the holomorphicity of 8. Since Cx is a faithfully flat 
ax-module, if £<XI is locally free, then £ is a locally-free ax-module (in this case we shall 
call (£,8) a Higg8 bundle). 

For Higgs pairs one can introduce a notion of stability, cf. Section 4. If X is a Rie­
mann surface, stable Higgs pairs correspond to solutions to vortex equations [10]. On a 
higher-dimensional manifold, the vortex equations are replaced by an Einstein-Hermite 
type condition, cf. Section 5. 

3. 	Transforming Higgs pairs. 

Assume now that X and Yare compact complex manifolds, and let Q be a holomorphic 
vector bundle on the product X x Y. After denoting by 71", * the projections from the 
product onto its factors, we consider the corresponding relative Dolbeault complexes 

lJ lJ ... "'AP'o :I ... "'AP,l :I
71" Y ----+ 71" Y ----+ ••• 
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To each coherent Ox-module £ on X we associate a double complex of sheaves on Y 
according to the formula 

P,q(£) = .;r* (11'"* £ 00xxY Q 00xxY 11'"* A~P 0c~XY.;r*A~q), 

whose differentials are the direct images via .;r of the twisted relative Dolbeault operators 
8- 1 and 8- 2. 1 

In particular, the Fourier-Mukai functors 

SA: ( • ) RA:.;r* ( 11'"* ( • ) 0 Q) 
I 

are the cohomology sheaves of the complex ;:-0,-(£) [13]. 
Following Mukai's terminology we shall say that the sheaf £ is WITA: if SiC = 0 for 

i i= k, and that £ is ITA: if Hi(X, £ 0 Qlxx{y}) = 0 for i k and all y E Y. By the base 
change theorem, a sheaf is ITA: if and only if it is both WITA: and the only non-vanishing 
direct image sheaf SA: £ is locally free. 

Given a Higgs pair (£,8) on X, we aim to obtain Higgs pairs (SA:£,OA:) on Y. One way 
to define such transformations of the pair (£,8) is to define differential operators bA: on Y 
induced by the differential operator D corresponding to 8; to this end we shall exploit the 
formalism developed in [2] (cf. also [7]). 

Let D be the operator on £00 corresponding to the Higgs pair (£,8), and define the 
differential operator on X X Y 

\1: 11'"* £ 0 Q 0 CxxY ---t 11'"* £ 0 Q 0 A~xy 

\1 = 11'"* D + 8Q 

This induces a relative differential operator \111" with respect to the projection 11'". Let us 
now consider the naturally defined relative differential operators 

6· 1I'"*Ao,p ---t 11'"* AO,p to.. .;r* Al• X X '<Y y, 

where 6(p)w is (-l)P times the component of dw on 11'"* A~P 0.;r* Air. One now introduces 
the relative differential operators 

on the sheaves 11'"* £ 0 Q 0 11'"*A~ which satisfy the compatibility condition VO, I = 82 and 
the anticommutation property 

This implies that the operators V induce differential operators on the cohomology groups 
of the complex ;:-0,-(£) 

bA::sA:£ 0 Cy ---t SA:£ 0 Air; 

(bA:)O,1 coincides with the Dolbeault operator of SAle. Since (11'"* D + 8Q)2 = 0, we have 

(bA:)2 = 0; then bA: determines a holomorphic morphism 

Ok: Sk £ ---t Sk£ 0 nir 
such that (OA:)2 = O. So we have: 

1 To simplify notation we denote all inverse images by the same symbol, understanding that they are inverse 
images of O-modules or COO-modules according to the relevant case. 
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PROPOSITION 1. The pair (Sk £, (Jle) is a Higgs pair on Y. 

When £ is WITk we shall write £ = Sk £ and iJ = iJk• 

REMARK 1. The holomorphic structure of the sheaf £ is given by a Dolbeault operator EJe, 
and D can be represented as D = EJe +8. The holomorphic structures of the cohomology 
sheaves Sk £ are given by Dolbeault operators which can be obtained by applying to EJe 
the construction previously developed for D. By comparing this with the transform of D 
we see that the morphisms iJk can also be constructed by defining the morphism 

0:7r*£ 0 Q0cCQ ~ 7r*£ 0 Q ® A~xY 
XxY 

o = 7r*8 ® id 

by making it into a relative morphism 0'1t', and noticing that this satisfies the anticommu­
tation property 

0'TC" 0 EJ1 = - EJ1 0 0'1t' ; 

it 	therefore induces morphisms on the cohomology sheaves Sk£ which coincide with {)k .• 

4. 	Stable Higgs pairs on projective surfaces. 

Let us fix a Kahler metric on X, and define the slope p,(£) of a sheaf £ of positive rank as 
p,(£) = deg(£)/rk(£). Given a Higgs pair (£,8) a subsheaf F of £ is said to be 8-invariant 
if 8(F) c F 0 n~. 

DEFINITION 2. A Higgs pair (£,8) is stable (resp. semistable) if £ is torsion-free and 
p,(F) <p,(£) (resp. p,(F) ~ p,(£)) for all 8-invariant proper subsheaves F of £. 

LEMMA 1. A Higgs pair (£,8) which is not stable can be destabilized by a 8-invariant 
subsheaf F such that the quotient £1 F is torsion-free. 

PROOF: If F' is a destabilizing subsheaf, T is the torsion of 9' = £IF', and 9 = 9'IT, 
the kernel F of the epimorphism £ ~ 9 is a subsheaf of £ with torsion-free quotient such 
that p,(F) ~ p,(F') > p,(£). We must show that the morphism 8 lifts to F, that is, that 
the morphism 8: 9' ~ 9' 0 n~ descends to 9. This is true because 8 maps T into the 
torsion of 9' 0 n~, which is the sheaf T 0 n~ since n~ is locally free. • 

A similar result is proved for non-semistable Higgs pairs. 
To get an algebraic proof of the preservation of stability we need to assume that 

the Fourier-Mukai transform is invertible, and that its inverse is given by the functor 
R·7r* ( 1i-* ( • ) 0 Q* ). ExampIes of situations where this condition holds are: 

1) X an algebraic torus, Y the dual torus, and Q the normalized Poincare bundle [13]. 
2) X a reflexive K3 surface, Y the canonical "mirror" surface, and Q the normalized 

universal sheaf on the product [3] [6]. 
For a general discussion of this issue cf. [12]; in particular, one shows that the condition 

of invertibility, together with a property of preservation of the Ext groups (the so-called 
Parseval formula), force the canonical sheaves of X and Y to be trivial. 
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Therefore, we restrict ourselves to projective surfaces with trivial canonical sheaf. If 
X is abelian, with polarization H, we consider on the dual variety Y the polarization 

A ­H = -cl(Ox(H). In the case when X is a reflexive K3 surface one shows that the "mirror" 
K3 surface Y has a natural polarization II (actually, Y is a component of the moduli space 
of stable sheaves on X, and II is half the polarization given by the determinant bundle on 
Y) [3] [4]. 

Let (E, 8) be a H~gs pair on X, with E a WITk sheaf; we know that the she~f £ is 

WIT2-k, and that £ ~ E. Under this isomorphism we have the identification B = 8, 
which follows directly from the construction of 8. 

Under the previous assumptions we have: 

THEOREM 1. Let (E, B) be a (semi)stable Higgs pair, with deg E = 0, and E a WITl sheaf. 
Then the Higgs pair (£,8) is (semi)stable. 

PROOF: We shall consider only the stable case, the semistable one being entirely analogous. 
If (£,8) is not stable by Lemma 1 there is a sequence 

0~F~£~9~0 

where deg F :;::: 0, F is 8-invariant, and 9 is torsion-free. Since £ is WIT1 we have go F = 
§2g = O. Moreover we have commutative diagrams 

o------+~ go9 -----;.)5I F ------l>-) K ------+) 0 

111 

o----;.) K ------l>-> E 

1 1 
o---+K ® A~ ---+E ® A~ 

where the vertical arrows are induced by 8. The arrow E --+ E ® A~ coincides with 8. As 
in the usual case (cf. [4]) one proves deg K :;::: 0; since K is 8-invariant the Higgs pair (E,8) 
is not stable, which is absurd. • 

5. 	The index-theoretic construction. ' 

The stability of the Fourier-Mukai transform of a stable Higgs bundle on a Kahler 
manifold can be proved under suitable hypotheses in the differential-geometric setting. Let 
E be the smooth bundle and D the differential operator D: EC'IO --+ EC'IO ® A~ corresponding 
to a Higgs bundle (E, 8) as explained in Section 1 (so EC'IO is the sheaf of smooth sections 
of E). We assume that E is ITk for some k (one can weaken this assumption, cf. [5]). Let 
h be any hermitian metric on E, and define a connection Dh on E by letting 

(1) 
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where \7 11. is the hermitian connection of (E, h) (the unique h-metric connection compatible 
with the complex structure of E) and 8 is defined as the pointwise h-adjoint of 8, 

with 81, 82 sections of E (note that the connection Dh. is neither h-metric nor compatible 
with the complex structure of E). From [16] we have the following result: 

PROPOSITION 2. A Higgs bundle (£,8) is polystable (i.e. is a direct sum of stable Higgs 
bundles having the same slope) if and only if there is a hermitian metric h on E such that 
Dh. is an Einstein-Hermite connection, i.e. AFDh. = c IdE. 

Here c is a constant, which turns out to be a multiple of the slope of E, FDh. is the 
curvature of D h., and A is the adjoint of the operation of wedging by the Kahler form of 
X. 	We also notice the relation 

FDh. = Fvh. + [8,8] 

where Fvh. is the curvature of the hermitian connection \711., and [8,8] = 8 A 8 +8 A 8 is 
the natural extension of the commutator of End E to End E-valued I-forms. From this we • 
see that Fri': = 0, so that the connection Dh. induces on Ea second complex structure; 
we denote by £1 the corresponding sheaf of holomorphic sections. Since Dh. is Einstein­
Hermite, the sheaf £' is polystable (so, if we assume deg E = 0, the pair (E, Dh.) is an 
instanton, i.e. Dh. is an SU(n) anti-self-dual connection). We assume that the sheaf £1 is 
IT1; this happens in several situations. 

REMARK 2. In the torus case it is enough to assume that £ is not a flat line bundle, and 
then £' is IT1 [9]. In the reflexive K3 case one takes Y as the moduli space of H-stable 
bundles on X with Mukai vector v = (2, £, -3), where the polarization H and the divisor 
£ satisfy the relations H2 = 2, £2 = -12, H . £ = °(cf. [3]); one then needs to assume 
v(£) (2, -£, -3). • 

The preservation of the (poly)stability of the pair (£,8), with deg E = 0, can be proved 
by transcendental techniques in a general setting where X and Y are hyperkahler manifolds, 
and Q is (the sheaf of sections of) a quaternionic instanton on the product [15] [5]. We do 
not need to assume that the Fourier-Mukai transform is invertible. Under these assumption 
we have: 

THEOREM 2. The Fourier-Mukai transform eE, Dh.) of(E, Dh.) is an instanton, so that the 
sheaf fi of its sections which are holomorphic with respect to the holomorphic structure 
determined by Dh. is polystable. 

Also the pair (E, \711.) can be transformed; the resulting Coo bundle is isomorphic to E 
(the families of elliptic operators used in the two transforms differ by zero-order operators, 
so that the two index bundles are isomorphic). The transformed connection VII. induces on 
E another holomorphic structure, whose corresponding sheaf of holomorphic sections we 
denote by £. Moreover on the bundle E a transformed hermitian metric hcan be naturally 
defined, cf. [2]. By taking the (1,0) and (0,1) part of the difference Dh. - VII. we obtain 
morphisms 
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PROPOSITION 3. (1) 4> is the pointwise h-adjoint of l/J, 

(2) The morphism l/J coincides with the Fourier-Mukai transform 0 of the morphism 8. 
(3) The morphism l/J is holomorphic (with respect to the complex structure t). 
(4) l/J2 = O. 

PROOF: In view of the observations in Remark 1 and the formula (1), and taking into 
account how the metric h is defined (cf. [8] or [2]), a direct calculation proves (1) and (2). 

(3) One needs to prove that [l/J,8t ] = l/J 0 8t + Bt 0 l/J = O. This follows from [8,8e ] = o. 
(4) We first notice that 

since [8el , 8el = O. As a consequence, from 

we obtain 4>2=0, hence, in view of (1), l/J2 = O. • 
SO (E,l/J) is a Higgs pair. Since the connection Dh is Einstein-Hermite [5], by Theorem 

2 we have: 

PROPOSITION 4. The Higgs pair (E, l/J) is polystable. 

6. 	Concluding remarks. 

There is an action of <C* on the space of Higgs pairs, given by (£,8) 1---+ (£, A8), with 
A E <C*. Let us recall that a system of Hodge bundles is a Higgs bundle (£,8) for which 
there is a decomposition 

with 

Any system of Hodge bundles is a fixed point of the <C* action, (£, 8) ~ (£, A8). Conversely, 
if £ is locally free, and (£, 8) ~ (£, A8) (where Ais not a root of unity) then the pair (E, 8) 
has a structure of system of Hodge bundles [16]. This structure is unique when the pair is 
stable. 

In view of Remark lone easily shows that the <C* action commutes with the Fourier­
Mukai transform, (lo)k = AOk. So, under the same hypotheses of Theorem 1, we have: 

PROPOSITION 5. Assume that a Higgs bundle (£,8) has a structure of system of Hodge 
bundles, and that £ is IT1 • Then (t, 0) has a structure of system of Hodge bundles as 
well. This structure is stable if the first one is stable. 
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An important role in the theory of Higgs pairs is played by the harmonic Higgs bundles; 
these are shown to be the stable Higgs bundles with vanishing first and second Chern 
class [16]. However, the Fourier-Mukai transform does not establish a transformation of 
harmonic Higgs bundles because these are never IT1 (for instance, if E was a rank r IT1 

vector bundle on an abelian surface, the transformed bundle would have Chern character 
(0,0, -r), which is absurd). 
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