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Abstract 

Starting from the observed distribution of Abell/ACO galaxy clusters in redshift space we 
use a two-step procedure to recover their distances and peculiar velocities. Mter statistically 
correcting for the unobserved cluster distribution in the zone of avoidance and also for a 
smooth absorption at higher latitudes, we use a dynamical iterative algorithm, based on 
that of Strauss & Davis (1988), to recover the real-space cluster positions by minimizing 
the redshift space distortions. The whole procedure assumes that clusters trace the mass, 
that peculiar velocities are caused by gravity and that linear perturbation theory applies. 
The amplitude of the cluster dipole measured in the 3D space turns out to be 23% less f',J 

than that measured in redshift space. In both cases the dipole direction is aligned with the 
Cosmic Microwave Background dipole within f',J 10°, taking into account the Virgocentric 
infall component of the Local Group motion. Using linear theory we obtain,Be(= n~·6 /be ) ~ 
0.21(±0.03), where the uncertainty is due to observational errors and limitations in the 
reconstruction procedure while the intrinsic cosmological variance amounts to 0.07f',J . 
This ,Be value implies that for a cluster-mass bias parameter of be~ 5, a flat Universe 
is not excluded, contrary to previous cluster-dipole z-space analysis. A more stringent 
determination of ,Be will be obtained from the analysis of the peculiar velocity field in a 
forthcoming paper. .~".~""; 
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ABSTRACT 

Starting from the observed distribution of Abell/ACO galaxy clusters in redshift space 

we use a two-step procedure to recover their distances and peculiar velocities. Mter 

statistically correcting for the unobserved cluster distribution in the zone of avoidance and 

also for a smooth absorption at higher latitudes, we use a dynamical iterative algorithm, 

based on that of Strauss &; Davis (1988), to recover the real-space cluster positions by 

minimizing the redshift space distortions. The whole procedure assumes that clusters 

trace the mass, that peculiar velocities are caused by gravity and that linear perturbation 

theory applies. The amplitude of the cluster dipole measured in the 3D space turns out to 

be i"J 23% less than that measured in redshift space. In both cases the dipole direction is 

aligned with the Cosmic Microwave Background dipole within i"J 10°, taking into account 

the Virgo cent ric infall component of the Local Group motion. U sing linear theory we 

obtain f3c("= n~·6 /bc} ~ O.21(±O.03}, where the uncertainty is due to observational errors 

and limitations in the reconstruction procedure while the intrinsic cosmological variance 

amounts to 0.07 . This f3c value implies that for a cluster-mass bias parameter ofi"J 

be ::5 5, a flat Universe is not excluded, contrary to previous cluster-dipole z-space analysis. 

A more stringent determination of f3c will be obtained from the analysis of the peculiar 

velocity field in a forthcoming.paper. 

Subject headings: cosmology: observations galaxies: clustering - galaxies: distances and 

redshlfts - large-scale structure of universe 
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1. Introduction 

The best evidence that cosmic structures can have significant velocities, above their cosmological 

expansion velocities, came from the interpretation of the CMB temperature dipole anisotropy ~s a 

Doppler effect, originating from the motion, with VLG == 622 ± 20 km/sec, of the Local Group of 

galaxies (LG hereafter) in the isotropic CMB radiation sea, towards 1 == 2770 and b == 300 (Lubin & 

Villela 1986; Kogut et al. 1993) 

IT linear gravity is responsible for the observed peculiar velocities then according· to the linear 

gravitational instability theory (cf. Peebles 1980) the peculiar gravitational acceleration should be 

aligned and proportional to the peculiar velocity; the constant of proportionality being a measure 

of the present-time growth rate of mass fluctuations and therefore a measure of the cosmological 

density parameter, 0 0 , The gravitational acceleration of an extragalactic object can be estimated 

by calculating the dipole moment of the distribution of mass surrounding it. Since, however, the 

latter is unknown one has to resort in estimating the dipole moment of the distribution of luminous 

e:dragalactic objects using some simplifying assumption about the relation between fluctuations in 

the matter and light distributions; which usually is non other than the linear-biasing assumption 

(cf. Kaiser 1984). In this picture the galaxy fluctuations, 5g , are related to those of the matter 

distribution 5 by a constant factor, the biasing parameter, 5g == b5. 

FUrther difficulties arise from the fact that one can observe galaxies or other extragalactic objects 

limited in magnitude or flux, which then implies that distant contributions to the dipole could be 

missed if the characteristic depth of the galaxy catalogue is less than the convergence depth of the 

dipole. Moreover, most catalogues of extragalactic objects have also limited sky coverage which is 

usually due to light absorption near the Galactic plane. 

Up to now the dipole of various populations of extragalactic objects has been determined: optical 

galaxies (Lahav 1987; Plionis 1988; Labav, Rowan-Robinson & Lynden-Bell 1988; Lynden-Bell, 

Lahav & Burstein 1989; Hudson 1993b), mAS galaxies (Meiksiil & Davis 1986; Yahil, Walker 

& Rowan-Robinson 1986; Villumsen & Strauss 1987; Strauss & Davis 1988; Strauss et al. 1992; 

Rowan-Robinson et al. 1990; Plionis, Coles & Catelan 1993), X-ray active galactic nuclei (Miyaji & 

Boldt 1990); X-ray clusters (Lahav et al. 1989) and Abell clusters (Scaramella, Vettolani & Zamorani 

1991 [hereafter SVZ91]; Plionis & Valdarnini 1991 [hereafter PV91]). In all cases the dipole moment 

was found to be well aligned with the CMB dipole suggesting that gravity is indeed responsible for 

the Local Group motion and that light traces mass. 

An interesting historical fact, originating from these studies, is that the estimated dipole 

convergence depth has been a function of cosmic volume sampled; the deeper the catalogue the larger 

the dipole convergence depth. This is true out to the largest depths, traced by the Abell/ACO cluster 

catalogue, for which Rconv ~ 17000 km/sec (PV91 and SVZ91). This implies that the apparent 
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dipole convergence of the shallower galaxy catalogues (being optical or mAS) is probably artificial, 

determined by their limiting depth. In fact a careful investigation of the QDOT-IRAS sample 

provided some evidence for a contribution to the dipole from scales comparable to the cluster Remu) 

(Plionis, Coles & Catelan 1993; Plionis 1995). Furthermore, a simulation based study did indeed 

show that if contributions to the LG exist from depths comparable to the cluster Ream" then the 

!RAS 0.6 Jy selection function is such that the lRAS dipole would be underestimated by on average 

15% - 20%(Kolokotronis et ale 1995). 

A further interesting outcome of the Abell/ACO cluster dipole analysis is the fact that there 

seems to be a coherent dipole anisotropy out to r-..- 17000 km/sec; i.e., the differential gravitational 

acceleration induced on the Local Group by the distribution of clusters in large equal-volume shells 

is roughly aligned with the CMB dipole in each shell (PV91). Furthermore, there is strong evidence 

for the existence of coherent large-scale galaxy flows in the local Universe, extending from the 

Perseus-Pisces region on the one side to the Hydra-Centaurus/Great Attractor region on the other. 

These flows are well established both for elliptical (cf. Lynden-Bell et ale 1988) and spiral galaxies 

(cf. Rubin et ale 1976; Dressler & Faber 1990; Mould et ale 1991; Willick 1990; Han & Mould 1990; 

Courteau et ale 1993; Hudson 1994; Mathewson & Ford 1994) and point in the general direction of the 

CMB dipole. These results put together present a consistent picture in which the LG participates in 

a large-scale bulk motion induced by gravity, encompassing a large volume of radius ~ 6000 - 15000 

km/sec (for recent reviews see Dekel 1994 and Strauss & Willick 1995). 

This picture has been recently challenged by Lauer & Postman (1994) [hereafter LP94] who have 

extended the cosmic flow studies to very large scales, those traced by galaxy clusters, and who find 

that the LG motion with respect to the frame defined by Abell/ACO clusters, within 15000 km/sec, 

moves in a direction very different than that of the CMB dipole which then implies that, if the CMB 

dipole is a Doppler effect, the whole cluster frame is moving with respect to the CMB rest-frame with 

f'>" 700 km/sec. Such a large velocity on such large scales is in contradiction with most theories of 

structure formation (cf. Strauss et ale 1994; Feldman & Watkins 1994; but see Jaffe & Kaiser 1994). 

Furthermore, the LP94 result puts into doubt the gravitational instability scenario, for the origin of 

cosmic structure, because on the scales traced by galaxy clusters linear theory should apply, in which 

velocity and acceleration are aligned and as mentioned before, the cluster dipole (acceleration) is 

indeed very well aligned (58emb ~ 15°) with the CMB dipole (PV91; SVZ91). 

So we are left with the following puzzling picture: the acceleration determined from the 

distribution of galaxies (within ~ 10000 km/sec) and of clusters (within ~ 25000 km/sec) is well 

aligned with the CMB dipole (which is in itself a strong indication that the CMB dipole is Doppler 

generated) while the LG velocity (as determined by LP94), with respect to the cluster frame within 

15000 km/sec, points to a direction almost perpendicular to the CMB dipole direction. One would 

then be forced to explain the alignment of the LG gravitational acceleration, determined from 
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the distribution of clusters and galaxies, with the CMB dipole direction as a 'cosmic' coincidence. 

However, the random joint probability of having the cluster dipole, the optical and mAS galaxy 

dipoles aligned with the CMB dipole within a few degrees 10°, 10° and 25° respectively), (f'V f'V f'V 

assuming that they are independent, is :-::; 3 X 10-6• Furthermore, as we discussed previously, PV91 

found evidence for a coherent dipole anisotropy, in which the differential cluster dipole in each 

equal-volume shell roughly points towards the CMB dipole. In fact, the dipole in the first shell 

(R~ 100 h- 1 Mpc) has 58~ 20° while in the most distant shell (140~ R~ 160 h- 1 Mpc), for which 

the dipole is aligned with the CMB, it has 58~ 10° and the distance·between the centers of the 

two shells is 90 h- 1 Mpc, a distance at which ecc(r) < 1, where ecc is the spatial cluster-clusterf'V 

correlation function (note that even the edges of the two shells are 43 h- 1 Mpc away). Therefore, f'V 

these two volumes could be considered independent which would then decrease even further the 

probability of random alignment with the CMB dipole to ~ 8 x 10-8! 

We attempt to throw light to this paradox by using linear perturbation theory and a dynamical 

reconstruction algorithm (based on that of Strauss &; Davis 1988) to determine the 3D cosmic density 

field, traced by the Abell/ACO galaxy clusters within ~ 20000 km/sec, with the aim of investigating 

1. 	whether the large cluster-dipole convergence depth, its asymptotic amplitude and the alignment 

of the z-space cluster dipole with that of the CMB, are artifacts of redshift space distortions, 

2. 	 the peculiar velocity field, within 20000 km/sec, as predicted by linear theory and compare it 

(a) to that derived using galaxy samples and (b) to the LP94 results. 

However, there are a number of possible concerns in using clusters as mass tracers. Firstly, 

their large relative separation causes them to sparsely trace the mass distribution and therefore 

they cannot provide information about the small scale density field. Nevertheless, it is exactly this 

fact that allows linear theory to be applied efficiently. Furthermore, Bachall et ale (1994) have 

shown, using numerical simulations, that clusters are very efficient tracers of the linear velocity 

field. The second concern is related to the linear biasing assumption and although there is some 

physical justification for its use, it is expected to be only a crude approximation to the true relation 

between the cluster and underline density fields. However, Plionis (1995) and Kolokotronis et ale 

(1995) provide some recent support for linear biasing between clusters and galaxies on large scales. 

A third possible problem is the 'zero-point' uncertainty from which the cluster dipole is bound to 

suffer since nearby Abell-like clusters, like Virgo, are missed in the Abell/ACO catalogue. In this 

study we do attempt to correct for it but in any case such a problem is local and cannot affect the 

reconstruction procedure as a whole. Finally we note that, as shown by Scaramella (1995) and in our 

preliminary analysis (Branchini &; Plionis 1995), the use of the Abell/ACO cluster as mass tracers 

can be convincingly justified also by the agreement a posteriori, both quantitative and qualitative, 

between the galaxy and the cluster velocity and density fields. 
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In this first paper we will present our method of analysis and we will address the first set of 

questions, outlined above; while the second will be addressed in a forthcoming paper. The plan of 

this paper is as follows: In section 2 we present an extended discussion of the two subsamples used, of 

their biases and homogenization procedure. In section 3 we present both the zone of avoidance filling 

procedure, the dynamical real-space reconstruction algorithm and its reliability tests. In section 4 

we present the cluster dipole estimate, possible systematic effects and an extended error analysis. In 

section 5 we derive interesting cosmological parameters from the dipole analysis and finally in section 

6 we present our conclusions. 

2. The Cluster Sample 

Our present analysis is based on a cluster sample extracted from the original Abell sample (Abell 

1958) and from its southern extension, the ACO cluster catalogue (Abell, Corwin & Olowin 1989). 

The north declination limit of the ACO sample is 5 = -17, so that the two catalogues overlap in 

the strip -27:S 5 :S -17. The overlapping region has been used by Abell, Corwin & Olowin (1989) 

to calibrate the J magnitudes of the ACO to the Abell magnitude system. However, systematic 

differences in the two calibrated catalogues have been noticed by ACO (1989), Batusky et al. (1989), 

S.\:aramella et al. (1990) and PV91 which cannot be ascribed to the suspected incompleteness of the 

richness class R = 0 clusters since the differences are evident, although less pronounced, even in the 

R ~ 1 samples (see PV91 and section 2.2 below). 

The problem of obtaining a composite and statistically homogeneous catalogue from the Abell 

and ACO samples, is particularly important in dipole studies since artificial systematic differences 

(density gradients or global density variations) can enhance or even produce a dipole signal. Although 

this issue has been addressed by a number of authors (cf. Scaramella et a1. 1990 and PV91) we will 

also discus.s it, following the PV91 line of reasoning. 

Cluster distances, r, are estimated from redshifts using the standard relation: 

(1) 

where c is the speed of the light and qo the deceleration parameter. The number of clusters within 

our subsample is not fixed since the distances slightly depend on qo which we do not fix a priori. 

We also merge cluster pairs with relative distance :S 3 h-1 Mpc into unique 'clusters' having as 

position their center of mass and as mass their combined total mass. We made this approximations 

to avoid nonlinear effects on small scales for which our reconstruction method fails to account for. 

The combined subsample we consider is composed by: 

1. 	Abell clusters of richness class R ~ 0 in the roughly volume-limited region r ~ 250 h-1 Mpc, 

Ibl ?= 130 and with mlO < 17. mlO is the magnitude of the tenth brightest galaxy in the 
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cluster in the magnitude system corrected according to PV91. This sample is 100 % redshift 

complete. Note that the number of objects in this subsample varies between 269 and 276 for 

qo = 0.2 and 0.5, respectively. Out of these we have merged 5 cluster pairs. 

2. ACO clusters of richness class R ~ 0 with r $ 250 h- l Mpc, Ibl ~ 130 and mlO < 17. Among 

the 217 objects within the sample,..., 77% have measured redshift. For the remaining objects 

the redshift is determined using the mlO - z relation used by PV91. Note that we have merged 

7 cluster pairs. 

Note that although Abell cautioned that the R :::: 0 cluster sample is not complete and therefore 

probably not suitable for statistical studies, many recent studies have been interestingly utilizing 

them (c.f. Tully 1987; Postman et al 1989; Huchra et ale 1990; Tully et ale 1992; Scaramella et al 

1994). Furthermore, the density distributions and clustering properties of both the R = 0 and R ~ 1 

Abell samples have been found to be similar out to z ~ 0.2 possibly indicating the weakness of such 

effects (Postman et ale 1992; but see Peacock &; West 1992). In any case the stability of our main 

results as a function of cluster richness will be discussed in the relevant section. 

2.1. The Selection Biases 

In order to obtain a statistically homogeneous all-sky sample of clusters we quantify separately 

the observational biases, of the Abell and ACO subsamples, and then we calibrate these sub samples 

applying a homogenizati9n procedure. 

At low galactic latitudes, absorption of optical photons makes it unlikely to observe luminous 

objects. In the galactic strip Ibl :5 20°, to which we refer as the Zone of Avoidance (ZoA), there are 

only 20 clusters in our subsample. The galactic absorption outside the ZoA has been always found to 

be consistent with a cosecant law: 

10gP(b) = a(l - coseclbl), (2) 

where P(b) gives the probability that a cluster in the range b to b + Ilb would have been included in 

the catalogue. There is no general agreement on the precise value of a. Bahcall &; Soneira (1983) 

and Postman et ale (1989) found 0.3 for Abell clusters, Batuski et ale (1989) found a ,..., 0.2 for 

ACO clusters while LP94 found an even lower value (a ,..., 0.15) for both ACO and Abell clusters 

contained in a volume-limited 15000 km!sec sphere. To allow for this experimental uncertainty we 

will consider, in what follows, two different sets of values: (a, a)= (0.3,0.2), that better matches the 

behaviour of the number density of our cluster as a function of the galactic latitude and (0.2,0.2). 

The first value in each set refers to the Abell sample while the second to the ACO one. 

The finite depth of the cluster sample was modeled with the redshift selection function that was 

estimated as in Postman et ale (1989). We modeled the probability that a cluster in the range z to 
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z +Az would have been included in the cluster catalogue as: 

1 if z ~ Zc
P(z) = (3)

{ A exp(-z/zo) ifz>zc 

where Zc is the redshift up to which the space density of clusters remains constant (volume-limited 

regime). We obtain Zc "" 0.0787 and 0.0664 for the Abell and AGO subsamples respectively. 

No appreciable declination dependence has been detected in the Abell/AGO subsample (but see 

Scaramella et ala 1990 for a possible zenithal dependence). 

2.2. Homogenization of the Abell/ACO sample 

In this work we will follow the PV91 homogenization scheme, used to minimize the density 

variations of the Abell and ACO subsamples. The estimated observational biases allow us to assign 

the following weight to clusters: 

(4) 

The individual number density of clusters of the two subsamples is therefore n = v-l Li Wi(Z, h), 

where the sum extends over all clusters within the sampled volume V. Since at low galactic latitudes 

the patchy galactic absorption is not well described by eq.(2) we compute n above Ihl = 30°. We 

divided V into equal volume shells with 5V "'" 2.6 X 106 h-3 Mpc3 in whlchwe estimated the Abell 

and AGO cluster number densities separately. Due to the complex geometric boundaries, the volumes 

were computed by Montecarlo calculations. 

Within f'..J 200 h- l Mpc the space densities of the R ;::: 0 Abell and AGO samples are constant 

h3(F(z) = 1) with n "" 1.6 ± 0.3 x 10-5 and "" 2.7 ± 0.3 x 10-5 Mpc-3 , respectively, while the 

corresponding values for the R ;::: 1 samples are n f'..J 8.2 ± 1.3 X 10-6 and f'..J 11 ± 1.2 X 10-6 h3 Mpc-3 • 

The scatter was computed from the density fluctuations in the different bins. These values would 

be reduced by 18% if no obscuration correction is applied (ie., assuming P(h) = 1). Note thatf'..J 

although the Abell-AGO density differences are reduced in the R ;::: 1 sample they are still present, 

indicating that these density differences are not due to the possible incompleteness of the R = 0 

clusters (see also Postman et ala 1990; PV91). Furthermore, the Abell-AGO density differences in the 

richest subsample (R ;::: 2) are a factor"'" 3 larger even than those of the R ~ 0 one. 

An approximate homogenization of the two samples was then applied by equating the number 

density of the two catalogues in each equal volume shell. Assuming that the two catalogues are 

simply radially inhomogeneous, we computed the following weighting function: 

if5~-17 
(5)

if5<-17 
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where ri is the distance of the ith bin. No significant difference was found when using the two different 

sets of absorption coefficients. Note, however, that this is not the only possible homogenization 

scheme since we do not know a priori which is the true value of the cluster density. We could, 

therefore, homogenize the two samples by using the inverse of eq.(5), Wrel(r)-l. As we will show in 

section 4 our main results remain stable on the choice of the homogenization scheme. 

3. The Reconstruction Method 

The whole reconstruction procedure can be schematically represented by the following diagram: 

Starting from the observed sky redshift space distribution of galaxy cluster, Zob,H we generate 

a synthetic cluster distribution to account for unobserved clusters. This procedure allows us to 

reconstruct the whole-sky cluster distribution in the redshift space, Zid. An iterative reconstruction 

algorithm, similar to that proposed by Strauss & Davis (1988), is then applied to minimize the 

redshift space distortion, allowing us to recover the real-space distribution of the observed clusters 

3I?oba and therefore also their peculiar velocities. The intrinsic reliability of the entire procedure has 

been tested using a simulated catalogue of clusters kindly provided to us by S.Borgani. 

3.1. z-Space reconstruction scheme 

To reconstruct the whole-sky redshift space cluster distribution, Zid, we adopted a 

phenomenological approach. The basic idea is to fill the artificially (due to Galactic absorption) low 

density regions of the surveyed volume with a synthetic cluster population having the same clustering 

properties as the distribution of the real clusters and then generate many Monte-Carlo realizations of 

this population. To this end we divide our procedure into two steps; one to reconstruct the cluster 

density field above 161 = 20° and one to fill the ZoA. 

3.1.1. 161 > 20° 

The first step is to recover the cluster distribution for 161 > 20°. We divided our volume into 

two regions: an inner sphere with a radius of Rin=200 h-1 Mpc, which we consider as the region of 

reliable determination of the cluster density field, and an external region Rin < r < 250 h-1 Mpc. 

In the inner part, in which P(z) ~ 1, we used a Montecarlo rejection method to generate a 

population of synthetic clusters distributed according to the adopted P(6) probability function and 
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weighted them by 1/P(z) with the further constraint of being spatially clustered around the real 

clusters according to the observed spatial cluster-cluster correlation function (cf. Bahcall & Soneira 

1983; Postman et ale 1992; Plionis, Valdarnini & Jing 1992). The following weights are then assigned 

both to real and mock 1: 

(6) 

Finally, the total number of synthetic clusters outside the ZoA is determined by requiring the overall 

number density of clusters to match the observed number density 

n = t ~Wi(z,h), (7) 
• 

where Wi(Z, h) = Wrel(ri)wi(z, h). Beyond 200 h-1 Mpc the radial selection function, mainly for the 

ACO sample, falls below one roughly exponentially causing the simple 1/P(z) weighting to generate 

non negligible shot noise errors. To avoid this problem we reconstructed the cluster distribution in 

the external regions as follows: the mock cluster distribution was Montecarlo generated to account 

for the P(h) selection function but with no spatial correlation with real clusters. Then, instead of 

weighting them by 1/P(z), for each synthetic objects we generated 1/P(z) mock clusters at the same 

galactic latitude as the parent object but at a randomly chosen galactic longitude. Finally, the actual 

number of clusters in the outer region has been adjusted by adding or subtracting a few clusters at 

random until the cluster number density in the external region equates n. 

3.1.2. Filling the ZoA 

The second step is to fill the ZoA. The method we used is close to that proposed by S. Faber 

and used by Yahil et al. (1991). We divided the equatorial strip -200 < h < +200 into 18 bins of 200 

in longitude. In each bin we divided the distance range into bins of 2000 km/sec. The clusters were 

then sampled in the two northern and southern adjacent strips, defined so that their joint solid angle 

is equal to that of the ZoA. This requirement leads to the following limiting latitude for the strips 

The number of synthetic clusters in each ZoA bin was then set equal to the sum of the clusters (real 

and synthetic) found in the two bins of the northern and southern, adjacent to the ZoA, strips while 

their position, inside the ZoA bin, was randomly assigned. Finally, the real clusters in the range 

13° < Ihl < 20° are inserted and the total number of synthetic ZoA clusters is adjusted by subtracting 

a. few at random until the average number density of real clusters is reached. 

3.1.3. The Zid Cluster Distribution 
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In what follows we will refer to the above 2-step z-reconstruction scheme as the Randomized 

Standard Cloned Mask; [RSCM}. At the end of the whole procedure nearly 50 % of the cluster 

population is composed by synthetic objects. A typical Zid reconstruction is shown in panels (a) 

and (c) of Figure 1. Black dots represent real clusters while open dots are synthetic objects. The 

figure displays the projection of the reconstructed cluster distributions onto the supergalactic plane 

(Xsup-Ysup projection; panel a) and orthogonal to it (Xsup·Zsup projection; panel c). A simple visual 

inspection reveals that the synthetic clusters :fill the ZoA and smoothly reproduce the clustering 

observed in the two nearby galactic-latitude strips. Outside the ZoA, as expect.ed, synthetic objects 

are clustered with the true ones and their density decreases towards the galactic poles. 

However, since each cluster has a different weight a more relevant visualization of the z-space 

cluster distribution is presented as smoothed density maps in panels (b) and (d) where we have 

overlayed a 20 X 20 grid (each cell being 2000 km/sec wide) on the cluster distribution of panels (a) 

and (c) and smoothed the projected distribution using a 2D-Gaussian kernel with Rsm = 1 cell, 

while weighting each cluster by Wi. What, in fact, we present in these figures is the 'mean' smoothed 

density field; an average over 10 random realizations of the z-space reconstruction procedure. 

3.2. 3D-Space Reconstruction Scheme 

Our 3D reconstruction scheme is based on the assumption that the peculiar velocities of clusters 

are caused by gravitational instability and that linear perturbation theory applies on the scales 

relevant to the cluster distribution. The distribution of clusters in redshift spa.ce differs from the true 

three-dimensional one by a nonlinear term in the redshift-distance relationship: 

r 
cz = Holrl + [u(r) u(O)] . j;j' (8) 

where r is the position of the generic cluster, u(r) its peculiar velocity, u(O) the peculiar velocity of 

the observer placed at the centre of the coordinate system and Ho is the Hubble parameter. 

3.2.1. Linear Theory 

In linear theory the peculiar velocities are proportional to the peculiar acceleration (cf. Peebles 

1980) 

u(r) (9) 

where 5(r) = [p(r) - Pb]/Pb is the mass density fluctuation about the mean Pb, /(00 ) == 0~·6 and 0 0 is 

the cosmological density parameter at the present epoch. We assume that cluster density fluctuations 

are related to the mass fluctuations by a constant linear biasing factor: 

(10) 

http:expect.ed
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where be is the bias parameter of clusters with respect to the mass. We can therefore replace S(r) 

with Se(r) in eq.(9) provided that we substitute /(00 ) with O~·6 /be (= f3e) 

In order to apply linear theory we need to smooth the discrete cluster density field on an 

appropriate scale, where non-linear effects could be important. Since we are using galaxy clusters to 

probe the density and the peculiar velocity fields, a natural smoothing scale, large enough for linear 

theory to be valid, would be the cluster correlation length (Le. the distance ro at which the spatial 

cluster-cluster correlation function is unity). Recently Croft & Efstathiou (1994), analysing large 

N-body simulations, found that the velocity fields traced by galaxy clusters are highly non-linear 

below t"V 10 h-1 Mpc. Therefore we allow the smoothing radius to vary in the range [10, 30] h-1 Mpc. 

Although the cluster peculiar velocity field, the analysis of which will be presented in a forthcoming 

paper, does depend on the choice of the smoothing length, the dipole parameters depend only weakly 

on its choice, as we will see below. 

The discrete cluster distribution was smoothed with a top hat window function which is 

equivalent to smooth the peculiar acceleration with: 

Ir-rl if Ii- rl < Ram
W(Ii- - rl) R~m (11){ 1 if Ii- rl 2: Ram 

where Ram is the smoothing length. Since Zid is reconstructed up to Rmax = 250h-1 Mpc, the integral 

in eq.(9) is converted into a sum over all the observed and synthetic clusters within R maz: 

f3e ~ (Mi ) W(I' I) -(') ri r f.l r u ()r = -4- L...J M. r - r w ri I'. _ 13 + flC'S . (12)
1rnc i C r, r 

The average cluster density nc is obtained by dividing the average cluster mass density Pc with Me 

(mass of Coma cluster); Pc is given by: 

pc = ~ ~Mi'w(ri) (13) 
I 

where Mi is the mass of the generic cluster. As in PV91 and SVZ91 we assume that cluster masses 

are proportional to the the Abell-catalogue listed number of galaxies per cluster, Mi ex N A,i (and 

Ne = 106); while the mass of the synthetic clusters was set equal to the average mass of the real 

clusters. The last term corrects for the net gravity of the homogeneous density background. The 

correction is necessary since the summation calculates the contribution from the density rather than 

from overdensity. Eq.(12) measures the true peculiar velocity only if density inhomogeneities outside 

the surveyed volume can be ignored. 

As shown by Vittorio & Juskiewicz (1987) and Juskiewicz, Vittorio & Wyse (1990) in a multipole 

expansion of the external gravitational field the leading term is the dipole. Its effect is naturally 

removed if the peculiar velocities are evaluated in the LG frame because the dipole contribution is 

constant for all objects and does not affect the relative peculiar velocities. The only disadvantage of 
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the LG frame is that the correction for the solar motion relative to its barycenter is uncertain by ...... 

50 - 100 km/sec (Yahil et al. 1977) which, as we will see, is smaller than the errors on the predicted 

LG velocity. For this reason we used eq.(13) to evaluate the cluster peculiar velocity in the LG frame. 

The higher order terms in the multipole expansion of the external gravitational field fall off faster 

than the dipole with distance and are generally negligible for distances smaller than Rmaz/2 (Yahil 

et al. 1991). Possible systematic errors when computing peculiar velocities are therefore expected 

orily at larger distances and should not appreciably affect the reconstruction reliability within 200 

h-1 Mpc. 

3.2.2. The Reconstru.ction Algorithm 

There are various methods to correct for redshift space distortions which can be divided in two 

general categories. The first category contains the so called iterative methods derived from that 

proposed by Strauss & Davis (1988) and used, among the others, by Yahil et al.(1991) and Hudson 

(1993a). Here the idea is to start from the observed redshift space cluster distribution and attempt 

to recover the cluster true positions by iteratively computing their peculiar velocities according to 

e'l.(9), assuming therefore linear theory and linear biassing. These methods also require that the 

mass fluctuations responsible for the peculiar motions are within the volume considered. The second 

and more recent one contains the direct methods by which the true density field is obtained from the. 

redshift space one by means of some inversion technique that relies on a self-consistent formulation 

of;the linear equation in redshift space. The Nusser & Davis (1994) technique is an example as well 

as the recently proposed Fisher et al. (1995) method which also minimizes the shot noise error by 

Wiener filtering. 

In this work we use an iterative scheme based on the former methods, to which we refer as 

Linear Iterative Reconstruction Algorithm, [LIRM} and the steps of which are the following: 

1. 	All the clusters are initially placed at their observed distance, riO) = cz, with no peculiar 

velocity and with an arbitrary value for the input f3c parameter. The index (0) refers to the 

zeroth iteration. 

2. 	The weighting function w(ri) is computed and its value is kept constant in the subsequent 

iterations (i.e. the selection function is not upgraded). This speeds up the algorithm while it 

also does not lead to appreciable errors, since P(z) ~ 1 within 20000 km/sec. 

3. 	The average density nc within the sampled volume is computed and its value is updated. 

4. 	The window function W(Ii"~k) - r(k) I) is computed for each object. 
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5. 	The peculiar velocity of the i-th cluster u(k)(ri) is computed according to eq.(12) taking into 

account both, the clusters within Rmax and those that during the iterations were placed beyond 

the volume limits (we will refer to these as 'passive' objects). 

6. 	Radial positions of 'active' clusters are updated. Their new positions are given by 

r(k) 
r(k+l) - cz - u(r)(k) - u(O)(k) .-- (14)[ 	 ]-	 Ir(k)!" 

Positions of 'passive' objects are not updated. 

7. For each real active cluster we compute the difference of its position between the last two 

iterations. If the difference is larger than 0.5% r, then we jump back to step (ill). The 

convergence is typically reached within 10 iterations. 

Note that from now on distances are in km/sec units with which we avoid problems related to 

the definition of distance and to the uncertainties on the Hubble constant. 

Since the smoothing scheme treats clusters as spheres of radius R lJm , clusters in the spherical 

shell Ir - Rmazl < Rllm need to be weighted properly by computing how much of the sphere lies 

within Rmax. But since we will estimate the dipole and the cluster velocity field only within 20000 

km/sec and since we regard the cluster distribution beyond this radius as an improvement over a 

simple homogeneous distribution, we do not need to implement this correction. 

Our iterative reconstruction algorithII1 can fail to recover the true 3D object position within high 

cluster density regions ('triple value regions') (cf. Yahil et ale 1991; Hudson 1993a). In our case, 

however, the objects are so sparsely distributed (which is the reason why the smoothing scale used is 

relatively large) that this problem is negligible. Obviously, the sparseness of the clusters introduces 

different problems, as we will discuss below. 

3.3. Testing the reconstruction reliability and the stability of our results 

To test the intrinsic reliability of the whole reconstruction procedure and to optimize its 

performance we considered a catalogue of mock clusters extracted from a simulation performed by 

Borgani, Coles & Moscardini (1994) in which the present time cluster positions were determined by 

the Zel'dovich approximation in a standard CDM model Universe. The mock clusters were identified 

as peaks above a density threshold which was chosen so that their space density matches that of 

the observed clusters (f'V 2 X 10-5h3 Mpc-3). We considered a spherical volume centered around a 

LG-like observer (see Borgani et ale 1994). Each cluster peculiar velocity was determined according 

to linear theory after having computed the gravitational acceleration generated by all the clusters 

within the sampled volume. This ideal cluster distribution was then degraded by Montecar10 rejecting 
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clusters according to the probability distributions P(z) and P(b) and by de voiding the ZoA. Finally, 

an artificial Gaussian distributed noise was added to the cluster velocity to mimic experimental errors 

in their measured redshift. According to observational indications we used a variance of 200 km/sec 

(Strauss, Cen & Ostriker 1994). 

Finally, we applied the RTCM together with the LIRM to recover the original object distribution 

and velocities with 10 independent runs to asses the stability of the reconstruction algorithm. Three 

different indicators were used to assess the intrinsic reliability of the reconstruction procedure: 

• 	 The difference between reconstructed and true peculiar acceleration acting on the observer. 

• 	The volume averaged discrepancy between the true and the reconstructed position: 


(Ei) = (Irtrue,i - rrec,il/lrtrue,il) 


• 	The spatial cluster-cluster correlation function. 

The reconstructed peculiar acceleration vector is very close to the original one. The per cent 

discrepancy between the amplitudes of the true and the reconstructed peculiar velocities, based 

on the 10 different reconstructions, was 3 ± 6%. The two vectors were misaligned by 2° ± 5°. In 

Figure 2 we present the distribution of the Ei values which peaks at ~ 1% and has a mean value of 

(Ei) ~ 1.6% (it is skewed towards large errors); while the probability of having Ei > 3% is quite low. 

We found, as expected, that Ei depends on the initial displacement of the i-th cluster with respect to 

its true position Irtrue,i - r(O)I. The reliability of the method greatly improves if clusters are initially 

placed close to their real positions, which would be possible if reliable redshift independent distance 

measurements were available for some nearby clusters. Finally, the spatial two point correlation 

function of the reconstructed cluster distribution turns out to be indistinguishable from the true one. 

We stress that these tests are aimed at assessing the intrinsic reliability of the reconstruction 

method; cluster velocities are computed according to linear theory and no allowance for contribution 

from external gravitational fields is made (a set-up that needs not be true in the real Universe). To 

get an estimate of the actual uncertainties in the whole procedure we need to account for several 

other effects, which will be quantified in Section 5. 

The intrinsic stability of the method has been assessed by computing the variance of the 

recovered cluster positions after the 10 reconstructions which turned out to be typically :5 150 

km./sec, being larger near the ZoA and within high density regions and smaller at high galactic 

latitudes. The stability of the method when applied to the real Abell/ACO catalogue will be 

quantified in section 4.2. 

3.4. Smoothed cluster density maps in z- and 3D-space 
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In Figure 3a and b we plot in supergalactic Cartesian coordinates the reconstructed whole-sky 

smoothed density field for a slice of 8000 km/sec wide, centered on the supergalactic plane, in z-space 

and in 3D space, respectively. Note that the same Gaussian smoothing is used as in figures 1b and 1d 

and units are km/sec. As also outlined by Scaramella (1994) who derived and discussed similar maps 

but only in redshift space, the sparseness of the cluster distribution and the heavy smoothing could 

miss some features of the cosmic density field. Nevertheless, our reconstruction technique should 

reveal the main large-scale features of the 3D cosmic density field. 

From these plots it is evident that eliminating the distortions due to peculiar velocities suppresses 

significantly the amplitude of the density peaks in 3D with respect to that in the z-space. This 

effect is particularly evident in the Virgo-Hydra-Centaurus (or else Great Attractor) region [centered 

at (X,Y) = (-3000,2000)], in the Leo region [centered at (X,Y) = (1000,9000)] and around the 

Ursa-Major supercluster [centered at (X,Y)=(10000,18000)]. Interestingly, in the Perseus-Pegasus 

region [centered at (X,Y)=(6000,0)] the opposite is true, ie., the 3D density amplitude is slightly 

higher than in the z-space case. This could be easily understood if there exists a coherent gradient of 

negative peculiar velocities, increasing in amplitude towards the near side of this structure (towards 

smaller X's, ie., towards the LG). 

Also, the shape of the density peaks, in the 3D case, appears to be slightly elongated along 

the line of sight. This effect, which is mostly prominent in the Great Attractor and in the Shapley 

concentration [centered at (X,Y)=(-8000,8000)], arises from the fact that in the linear regime the 

infall peculiar velocities within high density regions are coherent and tend to twist the isodensity 

contours along the line of sight. 

In figure 4 we present the 3D cluster density field for the four slices, each of 8000 km/sec width, 

above and below the supergalactic plane. Panel (a) and (b) correspond to the 4000 < Z < 12000 

km/sec and 12000 < Z < 20000 km/sec sli~es respectively, while panel ( c) and (d) represent the 

corresponding slices but for negative Z's. Our intention is not to present a detailed analysis of 

the structures evident in our contour plots (for such a task see Tully 1987 and Tully et ale 1992). 

However, we would like to emphasize the fact that, most structures found in the supergalactic plane 

extend not only to the first 8000 km/sec wide slice, above or below the supergalactic plane, but also 

to the second such slice. For example the overdensity corresponding to the Shapley concentration 

extends to both negative Z slices. Also the Great Attractor region is connected to the Lepus region 

[centered at (X,Y)=(-2000,0) in panel c] which seems to extend even further to the next slice (panel 

d) while a similar behaviour is found also for Perseus-Pegasus region. From panels (a) and (b) 

we see that the same is true for the Ursa Major supercluster, the Grus-Indus region [centered at 

(X,Y)=(-14000,-16000) in the supergalactic plane slice], the Leo region which seems to be connected 

with Hercules [centered at (X,Y)=(0,7000) in the (a) and (b) slices] as well as the Pegasus-Pisces 

region [centered at (X,Y)=(15000,-13000)] which is evident in the supergalactic plane and the two 
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4. The Abell/ACO Cluster Dipole 

The dipole vector, for an observer placed at the center of the coordinate system, is defined as 

(15) 


which, in linear theory is related to the peculiar velocity (eq. 12) by u = f3cHoD /3{pc). For our 

discrete cluster density field, smoothed with a top hat window, the dipole becomes: 

(16) 


while the monopole of the smoothed field is defined as: 

(17) 


Computing the dipole and the monopole separately is important for assessing the effective convergence 

of the peculiar velocity vector since a necessary condition for final convergence is that while the 

dipole converges, the cumulative monopole continues to grow linearly with distance. This condition, 

however, is not sufficient to guarantee the final dipole convergence, which could still increase after 

having reached a plateau (cf. Plionis, Coles & Catelan 1993). 

One of the major scopes of this work is to compare the cluster dipole as measured in z-space with 

the reconstructed one in 3D-space. A simple eye inspection of figures 3 a,b revealed that the peaks 

of the true density field have larger amplitudes when observed in redshift space. However, to see how 

these distortions affect the estimate of the cluster dipole require a quantitative discussion. From a 

theoretical point of view the problem has already been addressed by Kaiser (1987). He showed that 

gravitationally driven peculiar velocities can have a large effect on the peculiar acceleration vector of 

an object. If Dr is the amplitude of the true dipole and Dz is the z-space dipole, then the relationship 

between Dr and Dz depends both on the selection function 4> and on the on the power spectrum 

considered. IT one considers each power mode separately then, in the limit leRma:c :> 1 (Rma:c is the 

depth of the survey and Ie is the wavenumber), Kaiser has shown that 

Dz-;rDr = ~!3c [1 +E(k)] , (18) 

where 

(19) 


Clearly the sign of E(Ie) depends on the selection function and on the sample's depth. Although a 

precise E (Ie) evaluation requires an accurate determination of the selection function, we are confident 



-18 ­

that in our case 4>(Rmax) ~ 1 which then implies E(k) > O. The final value of Dz - Dr can be 

obtained in the linear regime by combining each mode separately (for large k the nonlinear evolution 

couple the different modes, and this approximation does not hold). Obviously to properly combine 

the different modes requires the knowledge of the density fluctuation power spectrum. However, 

unless one considers cosmological models with very large power on small scales, which are in conflict 

with current observations, we expect that for our cluster sample Dz - Dr > O. 

4.1. Possible Systematic Effects 

The reconstructed cluster distribution could depend on a number of free parameters that are only 

partially determined by observational constraints and theoretical requirements. We systematically 

explored the influence of the parameter choice by allowing each free parameter to vary within 

an experimentally plausible range. In practice the reconstructed cluster dipole, and therefore the 

predicted LG peculiar velocity, can be regarded as a function of many variables (the free parameters) 

that are listed in table 1. Boldface quantities refer to what we call the standard case, defined by the 

following choice of parameters: (a, a) = (0.3,0.2), Rsm = 20 h-1 Mpc, qo =0.5, f3c = 0.25, direct 

homogenization scheme (eq.5) with the 200 h-1 Mpc sphere being divided into 10 equal volume shells. 

For each of the 48 possible combinations of the free parameters, to which we refer to as "models", 

we performed 10 independent reconstructions and we computed the corresponding 3D dipole. To 

explore the influence of each variable on the predicted LG dipole separately we adopted the following 

procedure: 

• 	The parameter of interest is selected and models are divided according to the value chosen for 

that parameter (e.g. qo = 0.2 or 0.5). Models having the same parameter values are grouped in 

the same category. 

• 	The average dipole at 170 h-1 Mpc is computed for all the models in the same category and 

the same procedure is repeated for all different categories. 

• 	The different average dipoles are compared. The differences in amplitude and the misalignment 

angles between different average dipoles are listed in table 2. 

It is evident from table 2 that the only appreciable systematic effect comes from the choice of 

the f3c parameter, and not from either the galactic absorption coefficients, the smoothing radius or 

the Abell-ACO homogenization procedure. To further appreciate the influence of the f3c parameter 

on the reconstruction process we have to disentangle two different effects: the role of the deceleration 

parameter, go, that enters through eq.(I) in defining the outer limit of the sample, and that of the f3c 

factor, whose arbitrary initial value has to be specified for the LIRM to be applied. The first effect 

turned out to be much smaller than the second one. 
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The effect of varying the f3c parameter in the LIRMwas explored by performing the reconstruction 

with the same qo value but using two different f3c values (0.25 and 0.114). Although these values are 

different by a factor,...., 2, the asymptotic amplitudes of the reconstructed dipole are very similar, 

differing only by 8%, being smaller for the standard f3c = 0.25 case, while the direction does not 

change appreciably. 

It is interesting to compare this result to that obtained by Strauss et ale (1992, [ hereafter 

SYDHF92]). The asymptotic amplitude of their!RAS galaxy dipole, on scales larger than ,...., 100 h-1 

Mpc, strongly depends on the input f3c value. The reason for this behaviour was ascribed to redshift 

space distortions, to which they refer as the 'Kaiser effect', that in their case is mainly due to the LG 

motion with respect to the distribution of distant galaxies. In this simple situation the problem is 

similar to that of a 'rocket-born' observer who resides in a uniform Universe at rest with respect to 

the CMB on large-scales and whose peculiar acceleration originates locally (Kaiser & Labav 1988). In 

this idealized case the redshift space distortions appreciably affect the measured peculiar acceleration 

only if the selection function t/J falls below one, well within the sample's depth. This is the case for 

the mAS galaxy sample studied by SYDHF92, where t/J <:: 1 well within 100 h-l Mpc. For our 

sample, however, P(z) is close to unity within 200 h-1 Mpc so that the 'Kaiser Effect' is much less 

important, as demonstrated by the stability of our dipole against the variations of f3c; especially at 

large depths where the sensitivity to the input f3c-parameter would be manifested by variations of the 

dipole amplitude shape as a function of f3c (cf. Fig.6 of SYDHF92). 

4.2. Error Estimate 

To obtain a reliable error estimate of the reconstructed dipole we need to account for several 

different sources of errors. We estimate the intrin6ic error, D'i, in the reconstruction algorithm from 

the 10 independent reconstructions performed for each model explored The intrinsic error (which is 

typically smaller than 150 km/sec) represents therefore a stability measurement of the reconstruction 

procedure. Other sources of errors, which will be described below, are the observational error 0'0 and 

the 'shot-noise' error Usn. In what follows we will assume that all these errors are independent so 

that the total uncertainty O'T will be simply estimated by adding the errors in quadrature. 

4.2.1. Observational error 

:! We define as observational error the uncertainty derived from the different free parameter choice, 

listed in table 1, whose separate influence on the reconstructed dipole was explored in the previous 

subsection. The reconstructed dipole can be therefore regarded as a function of the smoothing length, 

the homogenization scheme and its binning, parameters that we allowed to vary in a plausible range 
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of values. The galactic absorption set and the f3c factor, instead, are considered fixed by observations 

to (0.2,0.2) and to f3c = 0.25, respectively. We chose f3c = 0.25 since, as we will see in section 5, 

this value is closer to that one derived from the comparison with the CMB dipole. We found that 

varying these parameters does not produce any systematic effect in the dipole determination and 

thus we can consider them as Gaussian variables Ml:d the dipole as a multivariate Gaussian function 

of the explored parameters. Following this argument we compute (1'0 as the variance of the dipole 

obtained by averaging over all models having (0,0) = (0.3,0.2) and f3c = 0.25 (our standard case). 

The observational error at 170 h-1 Mpc produces an uncertainty of f'¥ ±65 f3;1 kIn/sec in the dipole 

amplitude and of ±4° and ±2° along b and I directions respectively. 

4.2.2. Shot-Noise error 

The usual shot-noise estimate assumes that luminous objects have been drawn by a Poisson 

process from the underlying density field. However the reconstruction procedure relies on the 

hypothesis that clusters of galaxies are biased tracers the mass. A more meaningful and self­

consistent estimate of the shot noise error has been proposed by SYDHF92 that accounts for two 

different effects: 

• 	The Poissonian error due to the fact that luminous objects become random tracers of the 

density field when the selection function falls below unity. 

• 	An uncertainty due to the fact that cluster masses are randomly taken from an underlying mass 

distribution. In our case we estimated the mass of real clusters from their Abell listed number 

of galaxies while for synthetic clusters, which constitute f'¥ 50% of the whole cluster population, 

the mass was set equal to the average real cluster mass. 

Using our formalism, the SYDHF92 shot noise computed for the Wrel = 1 case, reduces to: 

(20) 

where the sum extends only over the Ns synthetic clusters, nc is the average cluster density defined 

from eq.(13) and K = (p~) - 1, with Pi being the mass of the real clusters in units of average mass. 

From the real clusters mass variance we have K=0.25. To compute the influence of the shot noise on 

the amplitude and the direction of the dipole we will assume that each component of the dipole is a 

Gaussian with zero mean and O"sn,x = O"sn,y = (1'sn,z' The I-dimensional shot noise error at 170 h-1 

Mpc refiects in an f'¥ ±60 f3;1 kIn/sec amplitude and a f'¥ ±4° directional uncertainty. 

4.3. The 3D Cluster Dipole 
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After reconstructing the cluster distribution with the RSCM and the LIRM, we computed the 

cluster dipole both in redshift and real-space. Figure 5a shows the amplitude of the peculiar velocity 

for the standard model, computed using eq.(12), as a function of distance. Open dots refer to the 

z·space dipole while filled symbols represent the reconstructed 3D cluster dipole. We also plotted, 

for reference, the dipole computed without any Abell/ACO homogenizing scheme (i.e. Wrel = 1) in 

z-space (continuous line). Errorbars represent 1 u total errors. 

Our main result is that the asymptotic value of the 3D dipole, Dr) is significantly less than the 

corresponding z·space one, D z , as predicted by eq.(18}. Removing redshift space distortions erases 

the artificial redshift space clustering, leading to (Dr - Dz)/Dz :::::: -0.23 or else (Dz - Dr)/Dr :::::: 0.3. 

Although the amplitude of the 3D dipole is significantly less than what previously found in cluster­

dipole z-space studies (PV91; SVZ91), the qualitative dipole behaviour is similar in z-space and 

3D-space: a "bump" of the velocity amplitude around 50h-1 Mpc followed by a decrease due to the 

competing pull of the Great Attractor with the Perseus-Pegasus regions, a secondary increase after a 

plateau and an asymptotic convergence beyond I'V 170 h-1 Mpc once that the Shapley concentration 

has entered into the sampled volume. The mass distribution beyond 60 h-1 Mpc is responsible for 

~ 30% of the total LG peculiar acceleration. As already noticed from the qualitative analysis of the 

density field maps, the effect of eliminating the apparent z-space clustering is particularly important 

in local high density regions, such as the GA area, which is clearly responsible for the significant 

d.ecrease of the ~ 50 h-1 Mpc bump in the 3D cluster dipole case. In Figure 5a we also plot, in 

arbitrary units, the 3D space monopole term, which grows linearly out to the depths sampled which 

indicates that the dipole convergence at '" 170 h-1 Mpc is not an artifact of ill sampling. 

Figure 5b displays the cumulative direction of the LG velocity. The starred symbol indicates the 

CMB dipole apex, while the skeletal symbol represents the CMB direction after correcting the LG 

for a Virgocentric infall of 200 km/sec. Errorbars represent the 1 (T total errors. The relatively large 

error ('" 10°) in the dipole direction, along b, is due to the uncertainty related to the amplitude of 

the Virgocentric infall. The reconstructed 3D dipole points 10° away from the CMB apex when I'V 

the Virgo infall is taken into account. No significant differences between the 3D and z-space dipole 

directions was found. 

4.3.1. The effect of varying the Mask model 

It is interesting to investigate the influence of the Mask model, adopted to reconstruct the whole 

sky z-space cluster distribution, on the reconstructed dipole. 

We explored two variants of the RSCM. In the first one we fill independently the northern and 

southern parts of the ZoA by applying the [RSCMJ to the northern and southern adjacent galactic 

strips (20° :5 Ibl :5 43.16°) separately. In the second case we identify the ZoA with the equatorial 
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strip Ibl < 13° and then we consider the two adjacent strips defined so that their individual solid 

angles are equal to that of the ZoA. The [RSCMj is then applied by half counting the number of 

Clusters in the adjacent bins. In both cases there is a small increase of the dipole's amplitude, by 

rv 3% - 4%, and the direction points rv 4 ± 40 away from the original one (uncertainties refer to the 

intrinsic errors). We conclude that no significant dependence was found on the Mask choice, which is 

to be expected since all of them are based on a cloning scheme. 

A more relevant comparison is probably between two conceptually different methods. For 

example between our RSCM and the spherical harmonic reconstruction method (cf. Lahav 1987; 

Yahil et al 1986; Plionis 1988 and PV91 for use of this method in the cluster dipole context). In 

Figure 6 we compare our standard RSCM z-reconstructed dipole with that derived using the PV91 

method for the same sample and the same set of parameters. In the insert we plot the relative 

velocity fluctuations, defined as 2 X (VRSCl\1 - VSH )/(VRSCAI + VSH). It is evident that both methods 

give identical results, except in the inner volume US 50 h-1 Mpc) where the number of clusters is 

extremely small and therefore shot noise effects are large. This is quite extraordinary given the 

completely different methods used. 

Finally, we also use an alternative scheme to reconstruct the region beyond 200 h-1 Mpc which 

is based on extending the reconstruction technique used in the inner volume to the external region, 

coupled with the RSCM. We found that the 3D dipole differs from the standard one only beyond 200 

h-1 Mpc, where the amplitude monotonically increases (by t".J 8%) and the direction systematically 

drifts towards lower galactic latitudes. As we discussed in section (3.1), using this schemes increases 

the shot noise errors in a region where the selection function is significantly smaller than 1 and then 

is probably responsible for the drift in the dipole direction, while it also enhances the 'Kaiser Effect' 

which causes the observed amplitude increase. 

4.9.2. Abell richness dependent effects 

As discussed in section 2, our Abell/ACO sample includes also richness class R = 0 clusters 

which although suspect of being incomplete, such effect is not apparent within the volume considered 

in our analysis. However we have tested, using the above mentioned Spherical Harmonic method, the 

effect of excluding them from our dipole analysis. Using R ;::: 1 clusters we reduce our original sample 

by rv 57% but we still find that their dipole has a similar overall shape with that of the R ~ 0 case; 

similar convergence depth (rv 170 h- l Mpc) and CMB-alignment (50cmb~ 20°) while their amplitude 

difference is 5v t".J -15%. We are therefore confident that the possible incompleteness of the R = 0 

sample does not significantly affect the behaviour and asymptotic value of our cluster dipole and it 

probably becomes important only at distances considerably larger than the apparent cluster dipole 

convergence depth (see section 2.2 and Postman et al. 1992). 



- 23­

We point out however, that the R 2:: 1 dipole increases initially in a much smoother fashion than 

the corresponding R 2:: 0 one, which is due to the fact that 10 out of the 12 clusters withln I'V 60 h-1 

Mpc are R = 0 clusters and it is these clusters that constitute the large overdensities seen in the 

Great Attractor and Perseus-Pisces regions (see figure 3), and thus responsible for the initial kick of 

the LG peculiar acceleration. 

5. Constraints on the Value of Pc 

LFrom the measured asymptotic value of the cluster dipole it is possible to constrain the value 

of f3c. An estimate of this parameter can be obtained by using the fact that the cluster 3D dipole 

has converged to its final value at '" 170 h-1 Mpc, in accordance with SVZ91 and PV91. We have, 

however, to take into account a zero-point offset in the cluster-dipole which originates from the fact 

that the Abell-like Virgo cluster, due-to its proximity and thus low surface brightness, is not included 

in the Abell/ACO catalogue and therefore its contribution to the cluster dipole has been missed. 

A possible way to deal with this problem is to merge the cluster dipole with that of some galaxy 

sample that trace more densely the local mass distribution (Scaramella et al. 1994). With this 

approach, however, the offset can be evaluated only assuming an a priori value of the cluster-galaxy 

relative bias, whose value is very uncertain (for a complementary approach see Plionis 1995). Instead 

we adopt a simpler phenomenological correction by identifying the zero point offset with the LG 

Virgocentric infall, the velocity of which we take to be 'YinJ ~ 170 km/sec. We choose this value to ­

be the average of the traditional", 260 km/sec value with the lower one of Faber & Burstein (1988) 

['" 85 km/sec]. 

Comparing the cluster dipole amplitude to the LG peculiar velocity (as inferred by the CMB 

dipole) via eq.(12), we then obtain: 

!(Yin ) == [622 - 'YinJ cos 5-0]Pc = 0.21(±0.03) !(YinJ) , (21)
J 622 - 170 cos 5-0 

where the function !(YinJ) represents the parameterization of 'YinJ and 5iJ is the angle between the 

Virgo and CMB dipole directions; '" 45°. If we erroneously did not account for the Virgo infall we 

would obtain Pc ~ 0.26 and similarly if the Virgocentric infall velocity is underestimated then a 

lower value of Pc can be obtained (for example if 'YinJ = 260 km/sec then Pc ~ 0.18). The quoted 

uncertainty in eq.(21) comes from the total dipole scatter, as discussed in section 4, Although this 

uncertainty is quite wide, our estimate of the value of f3c is still more than I'V 20' larger that previous 

estimates based on the z-space cluster distribution (PV91, SVZ91, Scaramella et al. 1994). Assuming 

no = 1 we obtain a cluster bias parameter with respect to the underline mass distribution of: 

be = 4.8(±0.8). 

According to the linear biasing prescriptions if bA and bB are the biasing factors of objects A and B 

with respect to the matter with bA > bB, the following relation holds: bAB bA/bB, where bAB isI'V 

http:0.21(�0.03
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the biasing factor of objects A with respect to objects B. If the biasing factor of Abell/ACO clusters 

with respect to IRAS galaxies is bcl:S 4.5 (cf. Peacock & Dodds 1994; Jing & Valdarnini 1993) we 

have that the above be value is consistent with a bias parameter of IRAS galaxies with respect to the 

mass of bl~ 1.1~g:~. 

A final note regarding the possible external contributions to the cluster dipole. Juskiewicz, 

Vittorio & Wyse (1990) computed the probability distribution of the peculiar velocity of a generic 

observer, constrained to be moving with a velocity of 620 km/sec with respect to the CMB, as a 

function of the sampled volume. From this distribution they computed the expectation value for 

the estimated LG velocity and its variance (their eq. 8a and 8b). The expectation value at 170 

h-1 Mpc weakly depends on the cosmological model adopted. We explored a number of possible 

models ranging from the Standard CDM one to the phenomenological model proposed by Branchini 

etal. (1994) that resembles a tilted CDM with n = 0.7 and to the Peacock & Nicholson (1994) 

spectrum with more power on large scale (similar to a standard CHDM model). In all these cases 

the expectation value for the LG velocity, at 170 h-1 Mpc coincides with the true one. Also the 

variance slightly depends on the cosmological model, being larger in correspondence to the Peacock 

& Nicholson (1994) spectrum. We take as the typical cosmic variance the value I"V 150 f3;1 km/sec, 

which then gives a further uncertainty in f3e of ~g:g~. 

6. Conclusions 

In this work we described a self consistent method to reconstruct the 3D distribution and 

peculiar velocities of galaxy clusters from their observed positions in the redshift space. Our approach 

is valid within the framework of gravitational instability and relies on the assumption of linear theory 

and linear biasing. The technique presented aims at recovering, in a statistical sense, the distribution 

of unobserved clusters and corrects the apparent cluster positions for peculiar velocity driven redshift 

space distortions. Tests performed using synthetic cluster distributions, obtained from numerical 

experiments, showed that the intrinsic reliability of this technique allows the true cluster positions 

to be recovered with an average error of"" 1.6 %, much better than the best available experimental 

determination of cluster distances (~ 10%). However, the actual reconstruction uncertainty is larger 

since we adopted a phenomenological method, to reconstruct the whole sky z-space distribution of 

clusters, characterized by several parameters with associated observational errors. As necessary in any 

phenomenological approach, we tested the stability of the final results on the various experimental 

parameters and found them to be surprisingly robust. 

The main result of this first paper is that redshift space distortions cause an artificial increase 

of the cluster dipole amplitude by I"V 23%, while they do not affect appreciably the dipole direction 

which points 10° away from the CMB apex. The cumulative 3D dipole qualitative matches theI"V 
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behaviour of the z-space one: there is a bump at f",J 50 h-1 Mpc and, after a plateau, it rises by f",J 30% 

and stabilizes beyond 170 h-1 Mpc where it reaches a real, although not necessary final, convergence. 

The reduction of the 3D dipole amplitude with respect to that of the z-space one arises mainly from 

the removal of the strong apparent clustering in the Great Attractor and Shapley regions and its 

enhancement in the Perseus-Pegasus region, as can be clearly seen in the smoothed density maps of 

Figure 3a,b. These results are robust in the sense that a search for the presence of systematic biases 

gave negative results. In practice we found that the freedom of modelling the galactic absorption, the 

radial selection function, the ZoA filling scheme, the homogenization and the smoothing procedures 

cause systematic errors much smaller than the intrinsic error in the reconstruction procedure. 

Interestingly, since the selection function ~f our cluster sample is f",J 1 up to f",J 190 h-1 Mpc, our 3D 

dipole determination is only marginally affected by the 'Kaiser effect ' which has been found to be a 

serious problem in the 3D galaxy dipole estimations. 

From the asymptotic dipole amplitude we have estimated f1c =0.21(±0.03). This value is larger 

than previously found based on the analysis of the z-space cluster distribution, the reason being 

that we have accounted for redshift space distortions. The intrinsic cosmological variance, however, 

reflects in a larger uncertainty whose magnitude depends on the unknown cosmological background. 

In the conservative and widely accepted hypothesis that the cosmic density field is characterized 

by a large correlation length we estimate the cosmic variance to provide a further uncertainty of 

5f3c f",J 0.07 and therefore we cannot set stringent limits on the value of f1co Better constraints may be 

obtained from the comparison of the reconstructed cluster peculiar velocities with those determined· 

observationally that we will present in a forthcoming paper. 
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Table 1: Experimental Parameters. Boldface quantities represent the 'St dard Model' set. 

Galactic absorption coefficients[l] (0.2,0.3) (0.2,0.2) 

Deceleration parameter qo 0.2 0.5 

Smoothing length Mpc h-1 [2] 10 20 30 

Wrel( r) binning[3] 10 15 

Abell-ACO homogenizat.~on scheme[4] Direct Inverse 

[1] Strength of the galactic absorption (eq.2). 

[2] Smoothing radius of the top hat sphere. 

[3] Number of radial bins dividing the 200 :r...Ipc h-1 sphere. 

[4] Homogenization scheme as described in section 2.2. 
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Table 2: Cluster dipole variations as a function of different parameters. 

Parameters Au Al A·b 

(0.2,0.3) vs. (0.2,0.2) -1 ± 10% +3 ± 5° -2 ±4° 

f3c = 0.25 vs. f3c = 0.114 =8 ± 12% -1 ±4° °± 5° 
Ram = 20 Mpc vs. Ram =10 Mpc -3 ± 11% °±4° +3 ± 3° 

Ram = 20 Mpc vs. Ram =30 Mpc -2 ± 11% +1 ±4° +1 ±4° 

bin = 10 vs. bin=15 -4 ± 11% +1 ±4° °± 4° 
Direct vs. Inverse +4 ± 11% +1 ± 4° °± 4° 

First colwnn displays the parameters defining the two compared categories. Column 2 shows the % difference 

of the dipole amplitude at 170 h-1 l'vlpc together with the relative standard deviation. Columns J and" contain 

the average misalignment and its standard deviation at 170 h- 1 IVlpc along I and b, respectively. 
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Figure Captions 

Figure 1: 

(a) 	and (e): The projected whole-sky z-space cluster distribution in C tesian supergalactic 

coordinates. Filled symbols represent real Abell/ACO clusters while pen symbols the synthetic 

objects. Short dashed lines delineate the Ibl ~ 20° region. (a) Xsup Y sup projection and (c) 

Xsup-Zsup projection. 

(b) 	and (d): The projected smoothed whole-sky z-space cluster density field (of panels (a) and 

(e». A 2-D Gaussian kernel was used with Rsm = 2000 km/sec. (b X"up-Y"up projection and 

(d) 	Xsup-Zsup projection. 

Figure 2: The distribution of relative percentage differences, Ei, between he true and reconstructed 

positions of simulated clusters (see text for details) which were used to as eS8 the reliability of our 

reconstruction method. 

Figure 3: The projection onto the supergalactic plane of the smoothed luster density field with 

-4000 < Zsup < 4000 km/sec. (a) z-space (b) reconstructed 3D-space. S e smoothing procedure 

and same units used as in figure 2. 

Figure 4: Xsup-Ysup projections of the smoothed 3D-space cluster densit field for 4 slices in Zsupo 

Units used are km/sec. (a) 4000 < Zsup < 12000 km/sec. (b) 12000 < Z up < 20000 km/sec. (e) 

.....:12000 < Zsup < -4000 km/sec. (d) -20000 < Zsup < -12000 km/sec. 

Figure 5: Cluster dipole. 

(a) 	Dipole amplitude as a function of distance with open symbols repre enting the reconstructed 

whole-sky z-space dipole and filled ones the reconstructed 3D dipole The continuous thin line 

refers to the z-space dipole without any Abell/ACO homogenizing s eme (Le. Wrel = 1). In 

arbitrary units, we plot also the 3D-space monopole (small filled sq es). 

(b) 	Dipole misalignment angle. The starred symbol indicates the CMB dipole apex, while the 

skeletal symbol represents the same but after correcting for a Virgo entric infall component of 

the LG motion, with an amplitude of 200 km/sec. 

Errorbars are 1 (J' total uncertainty (see text for details). 
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Figure 6: Comparison of the z-space dipole derived by using our standard RSCM method to 

reconstruct the whole-sky cluster distribution and that derived using the spherical harmonic method 

(cf. PV91) for the same sample and the same set of parameters. In the insert we plot the relative 

velocity fluctuations between the two determinations. 
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