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Abstract 

We construct in a fairly elementary and simple way the rational solutions of the KP 
hierarchy. Our starting point is a geometric approach to soliton equations, which relies 
on the concept of a bihamiltonian system. As a consequence, we establish a Wronskian 
formula for the polynomial T-functions of the KP hierarchy. This formula, though 
known in the literature, is obtained in a very direct way. 
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1 	 Introduction 

Among the many remarkable properties of soliton equations one finds the existence of rational 
(with respect to the space variable x) solutions. It was discussed for the Korteweg-de Vries 
(KdV) equation as well as for the Kadomtsev-Petviashvili (KP) equation in many places, 
e.g., [1, 2, 3, 6, 12, 13, 15]. It was also observed that the poles of these solutions move 

according to finite-dimensional integrable Hamiltonian systems such as the Calogero-lVIoser 
hierarchy (see also the more recent papers [20] and [24]). Then, in the context of the Sato 
theory of soliton equations [19, 17], rational solutions of the KP hierarchy were seen as the 

solutions associated to polynomial r-functions. These solutions are rational with respect to 
all times of the hierarchy, hence they represent very particular instances of rational solutions 
of the KP equation. 

In this paper we recover the rational solutions of the KP hierarchy in a very elementary 
way using the framework introduced in [10], where a geometric approach to the linearization 
of the KP equations is presented. It starts from the geometry of bihamiltonian manifolds 
and arrives at a system of infinite-matrix Riccati equations, which are linearized by means 

of elementary methods. These equations already appeared in [22], where they are shown 

to describe linear flows on the Sato Grassmannian. For this reason, the above-mentioned 

system was called the Sato System in [10]. 
In this paper we explicitly determine the solutions of the Sato System when the initial 

condition has only a finite number of nonzero entries, and we show that these solutions give 
rise to the rational solutions of the KP hierarchy. 

The plan for this article is the following: In Section 2 we recall how to pass from the KP 
hierarchy (in conservation-law form) to the Sato System, through another important object, 

which is the Central System. In Section 3 we review the linearization procedure for the Sato 

System and we add some information on the solution of the linearized system for arbitrary 
initial data. In Section 4 the initial condition is assumed to vanish outside the m x n upper 
(left) corner. Under those assumptions the Sato System can be explicitly solved, and the 
solutions can be expressed in terms of a polynomial r-function. This is done in Section 5, 
and shows that they are the rational solutions of the KP hierarchy. Finally, an example is 
presented in Section 6. 

2 	 The KP hierarchy, the Central System, and the Sato 

System 

In this section (and at the beginning of the next one) we will recall some results from 
[10], where a description of the linearization of the KP hierarchy is given starting froln 
the bihamiltonian approach to the KdV hierarchy. We refer to that paper for motivations, 



details, and proofs. 
First of all we introduce the KP equations in a form which, although equivalent, IS 

different from the usual one see, however, [5, 23]. Let h(x, z) = z + hi(x)z-i be 
a Laurent series whose coefficients hi belong to a given space :F of COO-functions. Let us 

consider the Faa di Bruno iterates of h, defined as 

(2.1) 

They span a subspace := (h(i))i~O which is complementary to H_ := (zi)i<O' Let 7r+ 

and 7r_ be the corresponding projections, and let us call 

(2.2) 

the KP currents. They are the unique Laurent series in H+ having the asymptotic expansion 
H(k) = zk + O(z-I). 

Definition 2.1 The KP equations are the equations 

(2.3) 

for the Laurent series h. 

We refer to [10] for the relation with the usual description of the KP equations, in the 
language of pseudo differential operators (see, e.g., [7, 9]). 

Now we want to tackle the following problem: when h evolves according to the k-th KP 

flow, how do the currents H(i) evolve? The answer is given by 

Proposition 2.2 The KP currents H(i) evolve in such a way that 

(2.4) 

Explicitly, one has 

H(k+i) + Lk 

H! H(k-l) + Li 
Hlk H(j-l). (2.5) 

l=1 l=l 

It is important to observe that we can forget about the fact that the currents H(i) are 
constructed from h; then equations (2.5) define a hierarchy of vector fields in the space 1-£ of 
sequences {H(i)h~o of Laurent series of the form H(i) = zi + I:l~1 Hfz-l (i.e., the space of 
N x N matrices). 

Definition 2.3 The hierarchy defined by equations (2.5) is called the Central System (CS). 



It can be shown that the CS flows commute. Another important point is that the CS is a 
family of dynamical systems in 1-l (i.e., systems of ordinary differential equations), since the 
currents H(i) are no more supposed to depend on the space variable x. 

Remark 2.4 The Central System admits some interesting reductions, described in [4]. For 

instance, one can obtain the fractional KdV hierarchies [8] and the stationary reductions of 
the Gelfand-Dickey equations [9] (see the paper by G. Falqui, F. Magri, and G. Tondo in 

these proceedings). In particular, the KP hierarchy can be seen as the projection of CS on 
the space of the solutions of the first CS flow. 

We will show now that the solutions of CS can be obtained by the solutions of another system 
(the Sato System), which is easily linearizable. It is defined in the same phase-space of CS, 
but we will use different notations for the point, since the two systems are different. Hence 
we consider sequences {W(i)h~o of Laurent series W(i) zi + .L:l>l W/z- l , we introduce the 

subspace W+ :== (W(i))i~O' and we define the Sato System as ­

(2.6) 

Explicitly, it reads 

k 

W(k+j) + L W/W(k-l) , (2.7) 
l:::::1 

or 

k 

W!+j == LW/W!-l. (2.8) 
l=1 

Takasaki has shown ([22], p.29) that these equations represent linear flows on the Sato 

Grassmannian in suitable coordinates. He also showed [21] the connection with the pseu­
do differential operators formulation of the KP hierarchy. The key point is that W(O) is the 
dressing operator, i.e., W(O) exp L:i~1 tizi is the Baker-Akhiezer function, see, e.g., [7, 16]. 

The relation with the Central System (2.5) is given by 

Proposition 2.5 Let J.L : 1-l -+ 1-l be the map defined as 

{W(i)} M {H(il = tW::_1W(l) /W(Ol} . (2.9) 
l=O 

Then J.L sends solutions of the Sato System into solutions of the Central System satisfying' 
the constraint H(O) 1. 
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This result can be cast in the context of Darboux coverings, a concept introduced in [14] to 
study Darboux transformations (especially for the KP hierarchy). 

In conclusion, we have reduced the study of the KP equations to the one of the Riccati 

equations (2.8). Once a solution of (2.8) is known, the corresponding solution of the KP 

equations (2.3) is simply given by h(x; t) = H(l) (x + t 1, t2, ... ), where 

H(l) = (W(l) + W~W(O))/W(O) = z + a~l log W(O), (2.10) 

the last equality being nothing but equation (2.7) for j = 0 and k = 1. 

Linearization of the Sato System 

Thanks to the results of the previous section, we can focus on the Sato System. Equations 

(2.8) can be written in matrix form as 

aw +W.TAk-Ak.W=WfkW (3.1)
atk ' 

where W = [W~L~O,rn~l and 

o 1 0 o 1 0 

o 0 1 0 1 0 

(3.2)A= 

1 0 

Equation (3.1) is a matrix Riccati equation, which is known [18] to be (formally) linearized 

by putting W = V· U- 1. Indeed, (3.1) is equivalent to the constant coefficients linear system 

(3.3) 


The second equation is immediately solved, for all k, by 

V(t) = exp(L tiAi)C = LPi(t)Ai . C, (3.4) 
i~l i~O 



- -

where t = (tl' t2 , ..• ), the matrix C is constant, and the Schur polynonlials {Pi(t)hEZ are 

defined, as usual, by exp(Li~1 tiZi) = LiEZPi(t)Zi (clearly, Pi(t) = 0 for i < 0). Then we 
are left with the following equation for U: 

aU -
atk 

= TkA U ­ ~(ifk . L....tPi t)A . C. 
i~O 

(3.5) 

After putting 

U = exp(L tiT Ai)(UC + V), (3.6) 
i~l 

where V is another Gonstant matrix, equation (3.5) transforms into 

au 

(3.7) 

where Ok = exp(Li>1 tiTAi) ·fk ·exp(Li>1 tiAi) = (Li>OPiTAi ) ·fk · Li>OPi Ai , and Pi(t) 
Pi(-t) (or, equivale~tly, {pi(t)hEZ are defined by exp(-=Li~1 tiZi) L:~Zpi(t)Zi). Taking 

into account the form of fk' it is quite easy to show that 

Pl-k p2-k Po 0 


p2-k p3-k PI 0 

exp(L tiAi). (3.8)Ok = 

i~l 

pk
Then, using the fact that a -pk-j, one immediately proves 

tj ~ 
Proposition 3.1 The solution of equation (3.7) satisfying the initial condition U(O) = 0 is 

U(t) j£ . exp(L tiAi ), (3.9) 
i~1 

where 1-l is the Hankel matrix: 1-lij = pi+j-l, for i, j 2:: 1. 

We observe that, although (3.9) is a product of infinite matrices, every entry of U(t) can be 

explicitly computed, thanks to the special form of exp(Li~l tiAi) = Li~O Pi (t)Ai. Of course, 
the general solution of equation (3.7) is found by adding a constant matrix to (3.9), but this 

simply changes the constant matrix V into the expression 

(3.10) 

This matrix cannot be explicitly computed (and inverted) unless C and V (i.e., the initial 

conditions) are carefully chosen. In the next section we will show that this can be done if 

W(to) (where to = (tlO,t20"") is the vector of "initial times") has only a finite number of 



4 The finite-dimensional case 

In this section we will write explicitly the general solution of the Sato System in the case 

where the initial condition W(to) satisfies 

for all i > n, j 2': m. ( 4.1) 

In Section 5 we will show that in this way we obtain the rational solutions of the KP hierarchy. 
First of all we observe that (4.1) implies 

awl (t ) o for all i > n, j 2': m; (4.2)
atk 0 

this means that the flows of the Sato System are tangent to the subspace Wm,n of the matrices 

W such that wi = 0 for i > n, j 2': m, and therefore restrict to Wm,n' Hence equations 

(3.1) reduce to Riccati equations for finite matrices, 

(4.3) 

where Mm,n denotes the m x n matrix obtained from the infinite matrix M by taking its 

m x n upper corner. En passant, we remark that from the matrix form (3.1) of the Sato 

System it also follows that 

aw 
WE Wmn ===} -a = 0 for all k 2': m + n, (4.4) 

, tk 

so that the solution W(t) of the restriction to Wm,n of the Sato System depends only on 

times (tI' t 2 , ••• ,tm +n - I). 
For simplicity of notations, let us fix m and n, and let us redefine the matrices appearing 

in equation (4.3) as 

(4.5) 

Then equation (4.3) takes the form 

aw +WBk_AkW WGkW (4.6) 

and can still be linearized (as we did in the previous section for the infinite case) by setting 
W VU-1 , where V is an m x n matrix and U is an invertible n x n matrix, satisfying 

au 

(4.7)

{ ~~ 



It is not difficult to show that the general solution of this system is obtained by truncating 
the matrices U(t) and V(t) of Section 3, i.e., that 

m-l m-l 
V(t) = (V(t))m,n = exp(L tiAi)C = L Pi(t)Ai c (4.8) 

i=1 i=O 

n-l m-l 
U(t) = (U(t))n,n = exp(L tjEj)(D + if exp(L tiAi)C), (4.9) 

j=l i=l 

where C and D are constant (respectively m x nand n x n) matrices and if = iin,m (Le., 

if is the n x m matrix whose entries are iiij = Pi+j-1)' A simpler form of U(t) is obtained 
by means of 

Lemma 4.1 Let H be the n x m matrix defined by Hij = Pi+j-l; then 

n-l m-l 
exp(L tjEj)ii exp(L tiAi) -H. (4.10) 

j=l i=l 

Proof. Equation (4.10) is equivalent to if exp(L::~l tiAi) = 

m-l n-l 
ii L Pi Ai = - L pjEjH. (4.11 ) 

i=O j=O 

If we compute the (i, j) entry of both members of this equation, we see that it is equiv­
· ",m-1 - ",n-1 - h . ",m-1+i-I = 

- L:~-==~-nPrPj+i-1-r. But this follows from L:{:~-1 PlPj+i-l-l = 0, which is a consequence of 

(L:k~o Pk zk ) (L:h~o Phzh ) = 1. 

a ent to t 1 he re atlons L...Jl=O Pi+lPj-1-l = L...Jr=O Pi-r-1Pj+r, t at IS, L...Jl=i PlPj+i-1-l 

o 

Cornbining equations (4.9) and (4.10), we obtain the following expression for U(t): 

n-1 n-1 

U(t) = exp(LtjBj)D - HC = LPjBjD HC. ( 4.12) 
j=1 j=O 

At this point, in order to determine the corresponding solution W(t) of the Sato System 

(restricted to Wm,n), we should invert U(t) and compute 

m-1 n-1 
W(t) = V(t)U(t)-l (L pi(t)Ai)C(L pjEjD - HC)-I. (4.13) 

i=O j=O 

In the next section we will present a short cut to compute W(t), based on the introduction 
of the r-function. 



5 The T-function and rational solutions of KP 

The aim of this section is to show a quicker way to find the solutions of the Sato System 
corresponding to the finite-dimensional case discussed in Section 4, and to prove that such 
solutions lead to the rational solutions of the KP hierarchy. The main object is the function 
T det U, whose explicit form is 

Dll - ~~1 pjGjl 


D21 +PI D ll - ~j=l Pj+l Gjl

r(t) = 

(5.1) 

This expression appears (in a slightly disguised form) in [11], p.338, where it is shown to be 
the most general polynomial solution of (the Hirota form) of the KP hierarchy. It is clear 

that one can obtain in particular the T-functions associated with Young diagrams, that is, 

T = det [Pf'-i+J'] ' '-I ' where 11 ~ 12 ~ ... ~ In > O.\ ~,J- , ... ,n 

Remark 5.1 The function T'iS a Wronskian, where derivatives are taken with respect to t 1 ; 

more precisely, we have that 

This Wronskian property of T = det U could have been directly shown by multiplying the 
equation 

au (5.3)
atl 

by the vectors e2 [0,1,0, ... ,0], e3 = [0,0,1, ... ,0], ... ,en [0,0, ... ,0,1]. 

Remark 5.2 In [22], p.29, the evolution equations for the T-function were written. They 

can be easily obtained in our formalism noticing that 

a a (au )-a 10gT = -a logdet U = tr -au-1 = tr (Bk - GkW) = -tr (GkW) ,
tk tk tk 

(5.4) 

so that 

k 

8 I "'"' UTk-l-8 og T = - L...t VII l . (5.5)
tk l=1 



Now we want to show that r allows us to determine the whole matrix vV(t), i.e., their 
rows W(k). We begin by proving that the link between rand W(O) is expressed by the 

well-known formula (see, e.g., [7]) 

W (O) ( ) = r(t ­ [z-l]) 
t r(t) , (5.6) 

where, as usual, [Z-l] = (z-l, , ~z-3, ... ). First we must recall from [25] the following 
two lemmas. 

Lemma 5.3 The Schur polynomials satisfy the relations 

(5.7) 


Lemma 5.4 If VI, V2,' .. , Vj+1 are row vectors in Cj 
+ 1 and -X E C, then 

1 Vj+l 

Vj - -XVj+1 

-X V·J 
(5.8)= detdet 

VI - -XV2 
j-X VI 

Corollary 5.5 The following formula holds, 

1 - I:,J:=1 Pj-1 Cjl 

Du - I:,j=l pjCjl 

(5.9) 



so that the coefficient of z-l of r(t - [Z-l]), for l = 0, ... ,n, is given by 

- L1=lPi-1Gi 1 

Dll LJ=l Pi Gil 

(l + l)-st 

Pi-1 Gin 

(5.10)row missing 

Proof. Just combine equation (5.1) with Lemmas 5.3 and 5.4. 

D 

In order to prove relation (5.6), we have to compute WP(t) e1W(t)el, where W(t) is given 

by (4.13) and ei (resp. el) is the i-th row vector (resp. l-th column vector) of the standard 

basis. One has 

m-1 
wt = e1Wel = e1L GU-1el = r-1[1,P1,'" ,Pm-1]G (5.11) 

i=O 

where ut det(U)U-1 is the matrix of algebraic complements. Then 

m n 


TWP = LPi-1 L Gik (_l)k+l x 

i=l k=l 


Du 2:j=l pjCj1 

D21 +P1 D U - 2:}:1 Pj+1 Gj1 

(5.12) 

l-th row and k-th column missing 

which coincides with (5.10). Hence, we have shown that once r(t) is computed via equation 

(5.1), W(O) can be found using the relation (5.6). Then, all the rows of the matrix TtV(t) can 



6 

be recursively computed writing the first flow of the Sato System, which reads 

(5.13) 


and gives W Ci+1) in terms of the preceding W Cl ). Notice, however, that the corresponding 

solution of the KP equations (2.3) is simply given by 

h(x; t) (5.14) 


as explained at the end of Section 2. 

An example 

In this section we will explicitly find the solution of the Sato System (2.8) corresponding to 

the initial conditions 

W~(to) = Wi(to) = -2, wi (to) =°otherwise, where to = (0,1,0, ... ). 
(6.1 ) 

We already know that we are allowed to consider the restriction of the Sato System to W3,2, 

and that only the times (tl' ... ,t4 ) are involved. More precisely, we have to solve equations 
(4.6) in the case m 3, n = 2, with initial condition 

o -2 

(6.2)W(to) = 0 0 

o -2 

We also know that the general solution of the system (4.6) is given by Wr(t) = V(t)U(t)-l, 
with (see (4.12) and (5.6)) 

1 PI P2 

c, U(t) = 1 0 ] [PI P2 P3] (6.3)V(t) = o 1 PI 
[ PI 1 D - P2 P3 P4 C, 

o 0 1 

where C (resp. D) is a constant 3 x 2 (resp. 2 x 2) matrix. These matrices are determined 
from the initial value of U and "l, that we can choose as V (to) = W (to), U(to) I. This 



implies 

and therefore 

o 0 

(6.4)c= 0 0 

o -2 

so that 

(6.5)V(t) = U(t) = 

o -2 

2 
(6.6)W(t) = -;. pi -PI 

PI -1 

where 7 = det U = 2(P4 PlP3) = 2t4 + t~ - tit2 ~ti. Hence we have 

WeD) = 1 + 27-1 (PlP2 Z- l - P2Z- 2) 

W(l) == z + 27-1 (pi Z-l - PIZ-2 ) (6.7) 

W(2) = Z2 + 27- l (PlZ- l - Z-2) 

and, clearly, W(k) = zk for all k ~ 3. As an alternative, starting form 7 we can directly 

compute 

weD) == 7(t - [Z-l]) 
7(t) 

aweD)
W(l) == + zweD) - WDW(D) (6.8) 

1at l 
aw(l)

W(2) = + ZW(l) - W1W(D) 
1at l 

In any case, the corresponding solution of the KP hierarchy is given by (5.14). 
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