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VARIATIONAL PROPERTIES OF AN IMAGE SEGMENTATION
FUNCTIONAL DEPENDING ON CONTOURS CURVATURE

G. BELLETTINI(f) AND M. PAOLINI(*)

Abstract. We study a problem of image segmentation involving the lenght and the curvature of the
contours. The (possibly linear) curvature term in the energy functional is introduced to reconstruct the
hidden parts of the image occluded by regions which are closer to the observer. To deal with corners and
cusps, which are viewed as points where curvature is concentrated, we introduce the class of the continuous
curves having derivative of class BV, and we study their arguments. The proof is based on the techniques
of relaxation theory in the Calculus of Variations. We estimate the lower semicontinuous envelope of the
energy functional, and we compute it in some special cases.

AMS(MOS) subject classifications (1985 revision). 49J45, 49Q20

1. Introduction. A great attention has been recently devoted to the reconstruction
of the contours of a picture given by a camera. One of the approaches considered to solve
this problem if of variational type (see, among others, [16,6,24,23,21,13,19,25,26,27,12,1,
4,10]), where the solution is viewed as a minimum point of suitable energy functionals.
More recently, in a paper by Mumford and Nitzberg [22] an integral term depending on the
curvature of the contours has been added in the energy, in order to reconstruct the hidden
boundaries, that is those parts of the image which are occluded by other regions closer to
the observer. In this paper, starting from the suggestions of [22], we study the behaviour
of a functional involving lenght and curvature of boundaries of (possibly non smooth) sets,
from the viewpoint of relaxation theory. More precisely, let ¥ : R Xx R — [0,+00] be a
Borel function having the following properties:

(1) ¥(n,-) is convex on R for any 5 € R;
(ii) % is lower semicontinuous on R X R;
(ii) ¥(-,0) is locally bounded;
(iv) there exist two constants a > 0 and b > 0 such that

(1.1) P(m,€) 2 alll 620  V(n,{) e RXR;

(v) ¥(n,€) = ¥(n + 7,§) for any (n,£) € R X R;
(vi) ¥(n,¢é) = ’&b(n,—-ﬁ) for any (n,€) € R x R.
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Let n € N, n > 1, and let g € L°(R?) be a function with compact support. The aim
of this paper is to study the functional P, defined by

n+1

Pu(Bre Bn) =3 [ Mt wlanml] a + Y [ wi-g) da
i=1 i i=1 i

where Ej,...,E, C R? are bounded open sets of class C?, a;(z) is the angle that the
tangent unit vector of 0F; at z € F; forms with the positive direction of the z-axis, k;(z)
is the curvature of 8F; at z, H' denotes the one-dimensional Hausdorff measure in R?2,

and
i—1 n
Ey=E, Ei=E\|JEj,i=2,...,n, E,,,=R*\|JE;
(1.2) =1 j=1

'u.,'::f g dz, i1i=1,...,n, Up41 =20
E;

(see Section 7). Note that conditions (v) and (vi) ensure that the functional Py is inde-
pendent of the orientation of the boundaries 8F;.

In [22] the function ¥ has the specific form

a1 é? if |¢] < T,
calll —es if [¢] 2T,

with T'> 0, ¢; > 0, ¢1T? = ¢T — c3, ca = 2¢;T. Each partition FE;,...,E, is endowed
with the following ordering: E; > E; (i.e., E; is closer than E; to the observer) if 7 < j.
This ordering represents relative depth (or occlusion); in this context, if = 1,...,n, the
sets E; defined in (1.2) are the “visible” part of E;, and E; ,; stands for the background.
The partition minimizing the energy is called an optimal overlapping segmentation of the
image g.

The special case ¥(7,£) = |£|> and n = 1 has been studied in [3]. Here the quadratic
growth of 4 at infinity is the main difference with (1.3), and reveals very different effects
with respect to the linear case (see also [2]).

(1.3) ¥(n,€) = ¥(I¢]) ={

To study the functional Py, which, in our approach is considered as a function of the
sets E,,..., E, rather than of their boundaries dE;,...,0F,, we need a detailed study of
the variational properties of the functional

Fy(E) = /6 (e, dr

As usual in the relaxation method (see [7]), if M denotes the class of all Lebesgue mea-
surable subsets of R?, we define F, : M — [0,+00] as the lower semicontinuous envelope
of Fy, with respect to the L!(R?)-topology, i.e.,

(1.4) F,(E) = inf{]}.imj_nf Fy(Ex): Ey — E in L}(R?)}.
— OO
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The main purpose of this paper is to study the functional Fy and to compute Fy(E) for
some special sets E.

Simple examples show that there exist sets E € M with Fy,(E) < 400, whose boundary
is not smooth, as polygons and sets with cusp points. In particular, let us consider the set
of Figure 1.1, and let 9 be as in (1.3). Then the approximating sequence {E}}s of Figure
1.2, constructed by smoothing the corner p with circular arcs, shows that

Fy(E) < HOE) + [ oy MR O sl — ).
P

Note that the corner p is penalized, in terms of the energy, of a factor which is proportional
tor —a.

Fig. 1.2: This approximating sequeﬁée {En}» shows that Fy,(E) < +oo.

This penalization corresponds to the variation made by the unit tangent vector of the
curves parametrizing 0F} in a neighbourhood of p, in the limit as h — +o0. This example
shows that, if one deals with curves parametrized by arc lenght, it can be useful to identify
the tangent vectors as points of the unit circle S! and to consider the jumps at the corners
in terms of the corresponding angles. We are then led to look at the set OF of Figure
1.1 as the trace of a continuous closed curve v with 4 € BV (the space of the functions
of bounded variation) and with the constraint |§| = 1 (see also [17]). The convergence in
this class of curves must be considered (mod 27), as explained in Section 4, thus showing
that some care is needed in the definition of the energies.

We describe now in detail the content of the paper.

3



In Section 2 we fix some notation and, in particular, we define the concept of system
of curves of class B, that is a finite family of closed curves of class W' whose derivatives
are functions of class BV (Definition 2.2).

In Section 3 we introduce the argument of 4 (see Lemma 3.1), where v is a curve of
class B parametrized with constant velocity.

In Section 4 we study some properties of the space BV([a,‘b];R/ 2m), which, in turn,
are useful for the definition of the energy functional given in Section 5.

Section 6 is devoted to the study of the lower semicontinuity of Fy,. Precisely, we prove

(Theorem 6.1) that given a sequence {E.}; of bounded open sets of class C? converging in
L*(R?) to a bounded open set E of class C?, then

F¢(E) S lim inf F,p(Eh).
h—+o0

A similar result holds if we localize F,, on an open subset ) of R? (Corollary 6.1).

In Section 7 we show how to reduce the study of the functional Py, to the study of the
simpler functional Fy.

In Section 8 we show that, if F is a bounded open set that can be written, locally, as
the subgraph of a Lipschitz function having derivative of class BV, then Fy(E) < +oo.

Finally, in Section 9 we focus our attention to the case (1.3), and we prove the following
results (see Theorem 9.1 and Corollary 9.2): let E be the disjoint union of a finite number

of curvilinear polygons Py,...,P,. For anyi =1,...,q denote by a},..., a?(i) the angles
of the polygon P;. Then
g h(i) - . . —
H(OE) + ] ¥(|&|) dH (2) + ¢2 Z Zmin(a{,%r —al,|r —al]) S Fy(E) <
o-E i=1 j=i
g hk(3) )
<HIEB)+ [ b)) M) +ex DD m el
8.-E i=1 j=i

where 0.F denotes OF without the vertices, and x denotes the curvature of 8. E. If in
particular £ < ol < 2 for anyi=1,...,q and any j =1,...,h(3), then

g k(i)

(1.5) Fy(E) = H(OE) + /a R CEORTS 9 SLETH!

i=1 j=i

Moreover, we show that (1.5) does not necessarily hold if af: < 7 or af-' > %71’ for some
1,7, the result depending on the relative distance between the corners. Indeed (Theorem
9.2) let E = E, U E, be the set of Figure 9.1, and assume that

™

(1.6) ,0<a<2

4



Then if the distance D betweeen p; and p; is sufficiently small one has
F5(E) = H'(8E) + f B(|x]) dHL(z) + 2D + 220,
6. F

where 8. E = 0F \ {p1,p2}-
In particular, if D is sufficiently small,

FE) < 1(OE)+ [ #(ln]) dH(2) + 2ealr — o).

As the proof of this result has local character, we deduce that there are non convex sets E
having some angles o; verifying condition (1.6) such that the their energy (i.e., the value
of F,(E)) is strictly less to the energy of the smooth part of the boundary 8. E plus the
extra term ¢z (7w — a;). This lower value of the energy can be reached, ideally, by joining
properly the angles with a “hidden” line.

Acknowledgements. We want to thank Professor Gianni Dal Maso for some useful
discussions. ‘

2. Notations and preliminary definitions.

" denotes the h-dimensional Hausdorff measure in R? for h = 0,1 [15]; £? denotes
the Lebesgue measure in R2. For any z; € R? and p > 0, B,(29) = {z € R? : |z — 2| < p}
is the ball centered at zy with radius p.

M denotes the class of all Lebesgue measurable subets of R2. We shall identify M
with a closed subset of L'(R?) by means of the map E — X, where xp denotes the
characteristic function of E, i.e., xg(z) = 1if z € E, xg(z) = 0if z ¢ E. The L'(R?)-
topology on M is, therefore, the topology on M induced by the distance d(E;, E;) =
L?(E,AE,), where E;, E; € M and A is the symmetric difference of sets.

For any subset C of R?, we denote by int(C) the interior of C, by C the closure of C,
and by dC the topological boundary of C. Let E C R?; we say that E is of class C? if E is
open, and, near each point z € OE, the set E is the subgraph of a function of class C? with
respect to a suitable orthogonal coordinate system. Note that, if 9F can be parametrized,
locally, by arcs of regular curves of class C?, and E lies locally on one side of its boundary,
then E is of class C2. We denote by CZ(R?) the class of all bounded sets of class C2.

2.1. Systems of curves. A plane curve v : [0,1] —» R? of class C! is said to be regular
if éjd—(tﬂ # 0 for every t € [0,1]. Each closed regular curve 7 : [0,1] — R? will be identified,
in the usual way, with a map v : S — R?, where S* denotes the oriented unit circle. By
(7) =~([0,1]) = {~(¢) : t € [0,1]} we denote the trace of v and by {~) its length; s denotes
the arc length parameter.

If z € R?\ (v), I(7, 2) is the index of z with respect to v (see, for instance, [5], and |8,
I11.8)).



DEFINITION 2.1. A system of curves is a finite family ' = {¥',...,¥™} of closed curves
of class W' such that ]‘%I is constant almost everywhere on [0,1] for any i = 1,...,m.
The trace (T') of I is defined as |JI~,(7"), and its lenght (T') as Y ;- (v*). If z € R?\(T),
we define the index I(T,z) of z with respect to T as Y v, I(7,2).

We say that a system of curves I' = {¥%,...,7™} is disjoint if (v*) N (y7) = 0 for any
,7j=1,...,m,1# 7.

Let E € C}(R?); we say that a disjoint system I of curves is an oriented parametrization
of OF if any curve of the system is simple, (I') = 0F, and

E={zeR?:I(T,z) =1}, R*\E ={zeR?:I(T,z) = 0}.

It is not difficult to prove that each E € CZ(R?) admits an oriented parametrization of
class C2. '

2.2. The space BV . If ) is a scalar or vector-valued Radon measure, its total variation
will be denoted by |A|. Let I be a real interval, B C I be a Borel set and f : B — R be
a Borel function; the integral of f on B with respect to A will be indicated by fB fA. By
Al B we mean the measure defined by AL B(F) = A(B N F') for any Borel set F.

If p is a scalar Radon measure on I, we have a unique decomposition A = A% + A%,
where A* is absolutely continuous and A® is singular with respect to px. The density of A®
with respect to p, which is a function belonging to L}, will be indicated by %"—) or by —"},
and will be called the Radon-Nikodym derivative of A with respect to u. Then

dA . A(Bo(1)
2.1 —(t) = lim —=- forp— ae. tel
D A TR B |
and A(B) = [ %ﬁdu + A?(B) for every Borel set B C I.
The space BV (I) is defined as the space of the functions f € L .(I) whose distri-

loc
butional gradient f is a Radon measure with bounded total variation in I. We say that

f = (f1,f2) € BV(I;R?)if f; € BV(I) for any i = 1,2. We recall that any function in
BV (I) coincides with a function of bounded variation in the classical sense.

If f € BV(I) we indicate by Sy the jump set of f, and by f(t—), f(t+) the approximate
lower and upper limits of f at the point ¢t € I. It is well known that S is at most countable.
If f=(f1,f2) € BV(I;R?), by Sy we mean Sy, U Sy,. We shall write

=it o

Here f° denotes the density of the absolutely continuous part of f with respect to the
Lebesgue measure dt and coincides almost everywhere with the pointwise derivative of the
function f(t+); the singular part f° can be written on a Borel set B C I as

8= [ (f(t4) — F-Dar () + (CAIB),
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where Cf is the so-called Cantor part, and is a measure such that (Cf)({t}) = 0 for any
t€ B.

We say that a sequence {fr}; CB v ; R?) is weakly convergent in BV to a function
feBV(I;R?)if f — fin L! and f; — f weakly as measures as h — +oo0.

We recall the following result (see [28, Sec. 13.2]).

THEOREM 2.1. Let f € BV(I), and let ¢ € C*(R) be a Lipschitz continuous function.
Then the composite function ¢(f) is of class BV (I), and its distributional derivative ¢(f)
can be written as

(2.2) &(f) = d(F)FLI\ Sp) + D [d(f(t+)) — (F(t—))6e,

where §; is the Dirac mass at the point t € Sy C I.

For the definitions and the main properties of the functions of bounded variation we
refer to [28,9,18,15,20]. '

2.3. Systems of curves of class B.

DEFINITION 2.2. We say that a system of curves I' = {7%,...,7™} is of class B if
v € Wh([0,1]) and 4L € BV([0,1];R?) for any i = 1,.

DEFINITION 2.3. We say that a sequence {I's}» of systems of curves of class C? is
weakly convergent to a system of curves I' = {4%,...,9y™} if the number of curves of
each system T}, is the same as the number of curves of I' for h large enough, i.e., T’y =

{v#,...,71} for any h, and, in addition, vi — «* uniformly in C°, dy _,ody

8 5 weakly in
BV ash — 400, foranyi=1,...,m

DEFINITION 2.4. We say that I" is a limit system of curves if " is the weak limit of a
sequence of oriented parametrizations of bounded open sets of class C2.

It follows from the definitions that, if I is a limit system of curves, then I' € B, and
I(T,2) € {0,1} for any z € R2\ ().

Note that if the sequence of systems {I'3}s of class C? is weakly convergent to I' =
{7},...,7™} € B, then, for any i = 1,...,m we have

h)—/ L T j

Possibly passing to a subsequence, we have that [ﬁkl I | almost everywhere on [0 1]

= I(v) as h — +oo0.

as h — +o00. Hence |41 & { is constant almost everywhere on [0, 1], so that each curve 4* can
be parametrized by arc lenght.

2.4. Relaxation. Given a functional £ : M — [0,+0c0], we denote by L the lower
semicontinuous envelope (or relaxed functional) of £ with respect to the topology of L'(R?)
(see (1.4)). For the main properties of the relaxed functionals we refer to [7].
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3. The argument functions.

Let us prove the following Lemma.

LEMMA 3.1. Let [a,b] C R be a bounded interval, and let f € BV ([a,b]; R?) be such
that |f(t)| = R for almost every t € [a,b], for a suitable R > 0. Then there exists a function
O :[a,b] — R, that we shall call an argument of f, having the following properties:

(a) © € BV([a,b]) and f(t) = (R cos O(t), Rsin ©(t)) for almost every t € [a,b];
(b) Se = Sy;
(c) 1©(t+) — ©(t—)| < = for every t €]a, b[.

Moreover condition (c) can be replaced by one of the following stronger conditions:

(3.1) —rT<O@{+)—-06(-)<7  Vit€]a,b
(3.2) —r<O(+)-0(-)<m  Vi€la,b.

When (3.1) or (3.2) hold then © is unique up to a global translation of an integer multiple
of 2.

PROOF. Set O; = 8Br(0)N{z > 0}, 02 = 0Bg(0)N{y > 0}, O3 = 8Br(0)N{z < 0},
04 = 0BR(0) N {y < 0}. If the image of f = (f1, f2) is contained in one of the sets O;, for
instance in Oi, then the function @ is simply defined as ©(t) = arcsin(§ f2(t)).

Let us consider now the general case. Let us fix 0 < o < 45. We claim that there exists
a finite set {s1,...,3, } of points of ]a, b such that '

. R
(3.3) |f](J)<2o'<~é-,
where J is any open interval contained in [a,d] \ {s1,...,3m}.
The set S¢ = {t €a,b[: |f|({t}) > 0} is at most countable, and we denote it by {t:}:,

for1 € N,i > 1, and ¢; < t;1+1. Hence there exist a sequence {»;}; C R? and an R?-valued
Radon measure g on [a,b] such that

+ oo +oc
f=p+ Z'U:‘(Si, Z lvi] < 400, and }L({i}) =0 Vie [a) b]:
=1 i=1

where §; is the Dirac mass at the point ;.
Let k € N, k > 1, be such that

. oo
(3.4) Y il <o
i=k

8



Let g : [a,b] — R be defined by g(t) = |p|([e,t]) = |u|(Ja,t[). Since p({t}) = 0 for
any t € [a,b], g is continuous, and hence uniformly continuous on [a,b]. As a consequence,
there exists a finite number of points {71,...,7r} Cla,b[ such that, if I denotes any interval
contained in [a,b] \ {71,...,7r}, then

(35) julD) < o

Denote by {s1,..., 8} the ordered set of points of ]a, b[ given by the union of {¢i,...,}
and {7y,...,7+}, m < k+ 7. Set sp = a, sS;my1 = b. Then, for any j = 0,...,m and any
t €]sj,8;+1], by (3.5) and (3.4) we have

. R
(36)  1f(t-)— Fs I < 10D < Wlsn D+ Y il <20 <X,
i>k:t;€]s; 1
and this proves claim (3.3).
From (3.6) it follows that

Vj=0,...,m 3Ine{l,...,4} such that f(]s;,8j41[) CC On.

It is then sufficient to define the function O separately on each interval ]s;,s;+1[ by means
of functions ©;,0 < j < m, and then to glue together all these functions, possibly adding to
the values of ©; suitable integer multiples of 2, in order to fulfill condition (c). Assertion
(3.1) (respectively (3.2)) can be easily obtained by properly gluing the functions ©;. The
uniqueness of © (up to global translations of an integer multiple of 27) follows from the
previous contruction. [J

Let v be a curve of class B such that |¥(s)| = 1 for almost every s € [0,(vy)] = I. Let

© be an argument of 4. Using formula (2.2), (a) of Lemma 3.1, and the uniqueness of the
Lebesgue decomposition of a measure, it is not difficult to show that

(3.7) %* = (—sin ©, cos ©)0* a.e. in J
and, if B C I is a Borel set, then
(7*)(B) = / (— sin ©, cos ©)O*+
Z (cos ©(s+) — cos O(s—),sin O(s+) — sin O(s—))85.
8€BNSe

Therefore (3.7) yields .
¥ = |©° a.ein I.
Note also that
#1({s}) < 16°|({s}) Vs € Se.
Indeed, for any s € So, using (3.8) and the eﬁuality 2(1 — cos¢) = 4sin2(¥§)', we have
(5°({s1))? = |(cos O(s+) — c0s O(s—), sin O(s-+) — sin O(s—))* =

45in? (2R =007y < (0(s4) - 0(s-))? = (167I({s]))"

4. The space BV([a,b];R/27). .




DEFINITION 4.1. Let 6;,0, € BV ([a,b]). We say that 6, and 0, are equivalent, and
we write 6, ~ 0, if for almost every t € [a,b] there exists k(t) € Z such that 6,(t) =
02(2) + 2k(t)m.

Given § € BV([a,b]), we denote by [f] the equivalence class of 8, i.e., [6] = {8 €
BV ([a,b]) : § ~ 6}. We set

BV ([a, b} R/27) = {[6] : 6 € BV ([a,b))}.

Let f € BV([a,b]; R?) be such that |f(t)] = R > 0 for almost every ¢ € [a,b]. Note that, if
61,0, : [a,b] — R are two arguments of f, then 6; ~ 8,. Even more, the function 6; — 6,
is constant on each open interval contained in [a,b]\ {t € [a,b] : f(t+) = —f(t—)}, and its
values are integer multiples of 2.

DEFINITION 4.2. Let [0] € BV ([a,b];R/27), and let {[0s]}» C BV ([a,b];R/27) be a
sequence. We say that [0;] — (0] in L'([a,b];R/27) as h — +oo if, for any § € [8] and any
h € N, there exists 8, € [0;] such that 8, — § in L'([a,}]) as h — +oo.

Note that if § € BV ([a,b]), {0x}r € BV([a,}]), and 8, — 6 in L'([a,bd]) as h — +o0,
then [6;] — [6] in L'([a,b];R/27) as h — +oo.

THEOREM 4.1. Let [8] € BV ([a,b]; R/27). Then there exists a function © € (8], that
we shall call a minimal representative of (6], such that

(4.1) |©[([a, 8]) = inf{6]([a,3]) : 8 € [6]}.

PROOF. Let § € [6]; as § € BV ([a,b]), the set {t €]a,b[: |8(t+) — 8(t—)] > 7} has a
finite number of elements {{,...,in}, where a < t; < -+- < t§y < b. Starting from §, we
construct @ ~ g, with Se C Sy, by adding to @ separately on each connected component
of [a,b] \ {¢1,...,tN}, a suitable integer multiple of 27, in such a way that

(4.2) O(t+) - O(t-)| <~ Vt €]a, b[

(for instance, set © = § on [a,?1[, and © = § + 2n,7 on |t1,b], where ny € Z is such that
|O(t1+) — ©(t1—)| < 7, and continue).
Let us prove (4.1). Assume by contradiction that there exists 6; € [f] such that

(43) 1611([a,8]) < |8]([a,8)).
As © € BV([a,b]), there exists a finite set of points a < 79 < +++ < 7, < b such that
(4.4) 10|(J7io1, 7)) < —’23 Vi=1,...,n.
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As 8, ~ O, for any i = 1,...,n there exists k; € Z such that 6;(7;+) — 6:1(7i—) =
O(7i+) — O(7i—) + 2k;7; since |O(7i+) — O(mi—)| < 7 by (4.2), we get |6;(1i+) — b1 (7i—)| =
|©(7i4+) — ©(m:—)|. Therefore, by (4.3) we deduce that there exists j € {1,...,n} such
that, letting I =]7j_1, 7j],

(4.5) 16:1(I) < |O|(I).

Using (4.4), we have that ©(I) is contained, up to a set of zero Lebesgue measure, into a
real interval of lenght less than Z, and by (4.5) the same property holds for 6;(I). Let us
fix 7 € I a continuity point of © and 6y, let k € Z be such that 8;(7) = ©(7) + 2kn, and
let 8, = 6, — 2kx. Then 6, ~ 6; ~ ©, 6, = 6;, and 62(I) N ©(I) is non empty, since it
contains ©(7). Hence 6;(I)U®O(I) is contained, up to a set of zero Lebesgue measure, into
a real interval of lenght less than w. As 6§, ~ O, we necessarily have that 8;(I) coincides
with ©(I) up to a set of zero Lebesgue measure. It follows that |6;|(I) = |62|(I) = 1O|(I),
and this contradicts (4.5). [

We shall denote by M[6] the set of the minimal representatives O of [] € BV ([a, b]; R/2m)
such that ©(a+) € [0,27(. ’ v

Let § € BV ([a,b]; R/27), and let § € [f]. Observe that, if §(a+) € [0,2x[ and |G(¢+) —
8(t—)| < = for any t € [a,b], then § € M[6]. In addition, if ©;,0; € M|[6], then

(4.6) |©2|(B) = |03|(B) for any Borel set B C [a, b].

Note that, given [0] € BV([a,b]; R/27) and {[8r]}r» € BV([a,b];R/27), then [6;] — [4]
in L'([a,b]; R/27) as h — +4oo if and only if for any © € M[f] and any h € N there
exists 8, € [0] such that §, — © in L*([a,b]) as b — +oo. Note also that, in general, if
On € M[0;], the sequence {O}, does not converge to a minimal representative © of [6]
in L'([a,b]), unless all jumps of © are less than or equal to 7 and ©(a+) € [0, 27].

LEMMA 4.1. Let [6] € BV([a,b];R/27) and let 6,,6, € [6]. Then
(4.7) |65 | = |85 ] a.e. in [a,b].

PROOF. As 6, §; € BV ([a,b]) there exists a finite set of points a = 1) < 13 < +-+ <
Tn < Tn4+1 = b such that |6;|(]7j,7j41[) < § for any 4 = 1,2 and any j = 0,...,n. The
assertion then follows reasoning as at the end of the proof of Theorem 4.1 (see (4.5) and

below). []
We conclude this section with a result that will be useful in the proof of Theorem 6.1.

PRrROPOSITION 4.1. Let v € B, let {yx}» C B be a sequence of curves such that 4, — ¥
in L*([0,1];R?) as h — +o0o0. Assume that v and <, are parametrized with constant
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velocity on [0,1], for any h € N. Let 6,8, € BV([|0,1]) be arguments of 4,4, respectively,
for any h € N. Then 8 — 6 in L'([0,1];R/27) as h — +oo.

PRrOOF. Write 4(t) = (Rcosé(t), Rsin8(t)), and 4x(t) = (Rh cosb,(t), Ry sin 6,(2))
for almost every ¢t € [0,1] and any h € N (see Lemma 3.1). We have limp—.4 o Rr = R.

Using the notation of Lemma 3.1, there exists a finite set {s1,...,5m} of points of ]0,1[
such that, if J is any open interval contained in [a,b] \ {s1,...,8m}, then

(4.8) : ¥(J) cC A CC Oy,

for a suitable arc A C 0Bg(0) and a suitable n € {1,...,4}. Let 8 € []; we have to prove
that for any h € N there exists §, € [05] such that §, — 8 in L([0,1]) as b — +oo. It
will be sufficient to construct the sequence {,} on each interval J, and to prove that
8, — 8 in L'(J). Let us fix such an interval J; without loss of generality, we can assume
that 4(J) CC A CC 0;. Let B C 0Bg(0) be an arc such that A CC B CC 0, and, for
any h € N, let Ay CC By, CC O} = 8Bg,(0) N {z > 0} be the corresponding arcs on
0Bpr, (0) omothetic to 4, B, and 01, respectively. Let 7 € I be a continuity point of 8.
For any h € N, define §, : J — R, 8, € [01], as follows:

6, (1) { 6,(t) for a.e. t € J such that 4,4(t) € By,
R ap(t)- for a.e. t € J such that 4,(¢) ¢ By,

where a, € BV([0,1]) is an arbitrary function belonging to [6] such that
(4.9) ' lap(t) —6(T)| < = fora.e. t € J.

To prove that 8, — 8 in L*(J) as h — +o0, we show that there exists a constant M > 0
such that

(4.10) 16,,(t) — 8(2)| < M|7r(t) — 4(2)] for a.e. t € J, Vh € N.

Let h € N and t € J; if 44(t) € By, then (4.10) follows from the lipschitzianity of arcsin
(see the definition of the argument in the proof of Lemma 3.1), since B is relatively
compact in OF, and R, — R as b — +oo. If 44(t) ¢ By, then, as ¥(J) CC 4 and

Ry, — R as h — +o00, there exists a constant ¢ > 0 depending only on B \ A such that
|91 (t) —¥(t)| > c. From (4.8) we have that |§(7) — 8(¢)| < =; hence, using (4.9), we obtain

84(2) = (8] < lea(t) — 8(r)| + 18(7) — 6(8)] < 7+ 7 < 2T pin(8) — 4()],

and this concludes the proof of (4.10). [
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5. The energy functionals.
Let ¥ : R x R — [0, +oo] be a Borel function satisfying properties (i)-(vi) listed in
Section 1. Denote by 1o, the recession function of 3 with respect to ¢, i.e.,

Yoolm,) = lim w(n, %) V(nE) eRxR.
Let § € BV ([a,b];R/27), 8 € [6] and © € M|6]; for any open interval I C [a,b] define
K(6,1) = K&(6,1) + K(6,1),

where

K&(6,1) = jI ¥(8,8") dt

and

@(s+) . 0°
K¢(0 I) /f (s—.) dl@ |) dT d{@si

Observe that by condition (v) and by (4.7) the term K (6,I) does not depend on the choice
of § € [6], and by (4.6) the term K (8, I) does not depend on the choice of @ € M[§]. In
addition

(5.1) K3(6,1) /fmﬂ = )dT dg’]  veelo.

8(s—) 9|

Note that, using condition (vi),

O(s+)
(5.2) K¢(0 I)= / Poo(O(3+),1) dl@’l + E / Poo(T,1) dr,

selInSe

and, if § € C?([a,d]), then

K,/,(Q,I) = K:;,(G,I) = /¢(979) dt.

5.1. Semicontinuity and relaxation of K(0,[a,b]).

THEOREM 5.1. Let ¢ : R Xx R — [0,+00]| be a Borel function satisfying properties
(i)-(vi), and let I C [a,b] be an open interval. Let [0] € BV(I;R/2r), and let {[61]}s C
BV (I;R/2r) be such that [8;] — [0] in L*(I;R/27) as h — +oo. Then
(5.3) Ky(6,1) < lgm}_nf Ky (6g,I).
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PROOF. We can suppose that the right hand side of (5.3) is finite, otherwise the result
is trivial. Let {[6x]}+ be a subsequence of {[fx]}x such that

K.,(8 iminf K. .
Jm Ky(6r, I) = liminf Ky(6,,T) < +o0

Let © € M([6] and 8, € [6«] be such that §, — © in L!(I) as k — +oo. By (1.1) we have

sup |04 (1) < sup |6 [(I) < +oo.
k k

Hence [18] there exist a subsequence (still denoted by {@}x) and a function o € BV (I)
such that @y — a in L}(I) as k — +oo. It follows that [@x] — [e] in L}(I;R/27) as
k — +oo, so that a € [f]. Note that a does not necessarily belong to M][f]. Using (5.1)
and [11] we then have

O(s+)
K¢(0,I):L¢(a,a )dt+/f(s )1/100(7‘, dl@ !) dr dl@ | <

as+)
‘/Ma@ﬂdbﬁ/f Yoolr 22y dr dja?| <
I (s—) dl I

[ T 290y 4 iy
lim inf f¢m,)a+/f boo(r, 2%y 47 a1602)) =
k—+00 Ox(s—) dIGI

khrf Ky(0k,I) = hmmf Ky(61,1)

THEOREM 5.2. Let ¥ : R x R — [0,+00] be a Borel function satisfying properties
(i)-(vi). Let I C [a,b] be an open interval. For any (6] € BV (I;R/2n) we have

Ky(6,I) = inf{l}éminf Ky(0n,1) : {[8:]}r € BV(I;R/27),[64] — [8] in L' (I;R/2)}.
—+o00
PROOF. Let [0] € BV(I;R/2r); by Theorem 5.1 we deduce
Ky(8,I) < inf{lgm_li_nf Ky(0n,1I): {[01]}r € BV(I; R/27),[0:] — [6] in L*(I; R/2m)}.
—+ oo

Let us prove the opposite inequality. Let G : BV(I) — [0, +o00] be the map defined by

9,6) dt if 6 € Wii(I),
c.1) - /Iw( ydt i (1)
+o00. elsewhere on BV (I).
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In view of properties (i)-(iv), by [11] we have, for any 8 € BV (I),
K4(6,I)=G(0,I) =
inf{liminf G(6, 1) : {0 }» € W**(I),6s — O in L'} =
inf{l}ixilirg Ky(8n,1) : {8x31 C WHY(I),0;, — O in L'(1)} >
inf{liminf Ky(6s, 1) : {83 € BV(I),60 — © in L{(D)} 2
mf{%x_x}irg Ky(0n,I): {8}n € BV(I),[61] — [8] in L'(I;R/27)},

and this concludes the proof. ]

Let T = {7*,...,7™} be a system of curves of class B parametrized by arc lenght, and,
for any i = 1,...,m let ©®; be an argument of 4* on [0, I(v*)]. We define

Ky(T) = K3(T) + K3(T),  Fy(T) = (T') + Ky(I'),

where

K3(T) = K3(0,[0,47)]),  Ky(T) = Ky(0:[0,4)).

Fix i € {1,...,m}, and let for simplicity v = v, ©; = ©, A = Iv') > 0. Let T :
[0,1] — [0,A] be the map defined by T*(¢) = At for any ¢ € [0,1], and denote by g the
reparametrization of v on [0,1], i.e., g(¢) = v(T?(¢)). Let w be an argument of § on
[0,1]. It is not difficult to prove that w(B) = O(T*(B)) for any Borel set B C [0,1].
From the uniqueness of the Lebesgue decomposition of a measure, it follows that w?*(B) =
(':)’(T‘\(B)). Hence, by (2.1), for almost every ¢t € [0,1], we have

w*(t) = lim (]t — o)t + of) =) im é(])‘t — Ao, At + Ag[)
e—0+ 29 Q"’0+ ZAQ

= A0%(T*(t)),
and, for |w’|-almost every t € [0,1], we have

st) (t) = lim w (]t_97t+9[) = Hm @ (])‘t "AQ:At+AQ[) = d® (T’\(t)).
dlw*| e—0t |[@f|(Jt — o,t +0[) om0+ |O2|(]At — Ao, Mt + Xg[)  d|©?]

We then have

Ity . 1
(5.4) Ky = [ #(0,6) ds = 1) j b, (7)1 dt,
and
(v po(a+) o . 1 pu(t+) dir®
5.5 Ka = oo y T dd@s-——‘ oo s T e T dd's.
(65 Kyn = [ f@(s_)zb s gg) 449 / ][w(t_;b (s ) 4l
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6. Definition and semicontinuity of F,(FE).

Let E € C}(R?), and let T' = {4!,...,7™} be an oriented parametrization of E. The
normal vector n(z) at z € OF will point towards the inside of E. For any z € OF let a(z)
be the angle that the tangent unit vector at z € F forms with the positive direction of
the z-axis, and let x(z) be the curvature of GE. If 9 is a function satisfying properties
(i)-(vi), we define the map Fy : M — [0,+00] as

H1(8E) + / ¥(a,r) dH(z) if E € C2(R?),
(6.1) Fy(E) = °F

400 elsewhere on M.

We set Fyy(0) = 0. Note that if E € C3(R?) and I' = {7!,...,7™} is an oriented
parametrization of 8E of class C? such that each 4* is parametrized by arc lenght, i.e.,
vi(s) = (cos ©;(s),sin ©;(s)) for any s € [0, (")), then

m - Wl(y) .
/ P(o, k)dH (2) = ) / ¥(04,0;) ds = Ky(T),
8E =1 Jo
Fy(E) = IT) + Ky(T') = Fy(T).
Note that if p > 1 and 9(n,£) = [£|P for any (7,€) € R x R, then
FuB) = [ [+ Iel?) d73(2)
8E
which reduces to the case studied in [3].

LEMMA 6.1. Let I' = {#%,...,7¥™} be a system of curves of class C*>. Then

< max(1,b)
- 2ma

(6.2) Fy(T),

where a and b are defined in (1.1).

ProoF. For any 7 € {1,...,m}, if ©; is an argument of 4, we have ([14, Th. 5.7.3])
Iy
or < / 104(s)| ds.
0
Using (1.1) it follows
Ity ) . :
2ma < / $(0:,0:) dL(s) + (7)< max(L, b)Fy (7).
0
Summing over 1 = 1,...,m we get

2ram < max(1,b)Fy(T),

which is the assertion. []

16



PROPOSITION 6.1. Let 7 : R x R — [0,+00] be a Borel function satisfying conditions
(i)-(vi). Let {Tr}r be a sequence of systems of curves of class C* such that

(6.3) sup {T'3) < +oo, sup K (I's) < +o0,
h h

and such that
(*) the traces (I'y) are contained in a bounded subset of R? independent of k;
**) there exists a positive constant ¢ such that each curve 4 of the system T} satisfies
P Yh
[(v}) > ¢, for any h.

Then {T'x}1 has'a subsequence weakly convergent to a system of curves I' of class B.

PrOOF. From (6.2), using (6.3) it follows that the number m; of the curves of the
system I'j, is uniformly bounded with respect to h. Hence, for a subsequence {I'y}, there
exists an integer m such that I’y = {v},...,7*} for any h. Let us fix ¢ € {1,...,m};
using condition (**) and (6.3) we have ¢ < I(vi) < C for any h, where C is an absolute
positive constant. Hence the curve v} can be parametrized with constant velocity on [0,1],

and from (1.1) and (6.3), we get sup, fol ]‘-i;%;] dt < 4+oco. Therefore, using (*), the family
{7} }4 is uniformly bounded in H?! with respect to k. It follows that ([18, Th. 1.19]), for a

subsequence, there exist m curves v1,...,4™ of class B such that 4} — +* uniformly in C°,
dg; — % weakly in BV for h — +o0,forany i =1,...,m. The system I' = {4%,...,4™}

verifies the assertion. []

The following result gives some properties of those sets E such that Fy(E) < +co.

LEMMA 6.2. Let E C R? be a measurable set, let {E}, C CZ(R?) be a sequence
satisfying

(6.4) supH!(8E4) < +o0, sup Y(an, kr) dH'(2),
h v JoE,

and suppose that E, — E in L*(R?) as h — +oo. Let us define
E*={zeR?*:3r>0L*B,(2)\E)=0}, F*={z2€R?:3r >0 L*B.(2)NE)=0}.

Then E* and F* are open, E* is bounded, L2(EAE*) = 0, E* = int(R? \ F*), F* =
int(R? \ E*), and

OE* = 0F* = {2 € R?* : 0 < L*(B,(2) N E) < L?(B(2)) Vr > 0}.

Moreover there exists a limit system of curves I' of class B with the following properties:
E* =int(Ar U (T)) D Ar, where Ar ={z € R? \(D): I(T',2) =1};
F* =int(Br U(T')) 2 Br, where Br = {z ¢ R?\ (T") : I(T, z) = 0};
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8E* = 8F* = 8Ar N 9Br C (I).

PrOOF. We shall prove the existence of the limit system of curves I' € B such that
L2(EAAr) = 0, since all the remaining assertions can be proven as in [3, Lemma 3.3].

For any h, from (6.3) and from Lemma 6.1 we have that 8E}, has an oriented parametri-
zation Ay of class C?, and the number m;, of curves of the system A}, is uniformly bounded
with respect to h. Hence, for a subsequence (still denoted by {A}1), there exists an integer
m such that A, = {v},...,7*} for any h.

For any h, we want to replace the system Aj with a suitable disjoint system of curves
I’y satisfying all hypotheses of Proposition 6.1.

Following [3, Lemma 3.3], we can replace A, with a disjoint system of curves A =
{7;;‘, e ,7,';" of class C?, with 1 < 4; < --- < 7 < m, having the following properties:

(6.5) there exists R > 0 such that (Ax) € Br(0) for any h;

for any M > 0 there exists ﬁM € N such that
(6.6) I(Ap,z) = I(A, 2)

for any h > har and any z € Bpr(0) \ (Ar). Note that from (6.5) and (6.6) it follows that,
if h is large enough, I(Ap,2) € {0,1} for any z € R?\ (As).

For simplicity, write Ay = {¥},...,75}. We need a further substitution, in order to
fulfill hypothesis (**) of Proposition 6.1.

Let us consider the sequence {vi},. If hﬁl-];-l [~};) = 0, replace A; by the sys'
- OO

A} = {¥2,...,7F}. Observe that (6.5) yields (i) € Bg(0) for any A, so that, po-
passing to a subsequence {y}}x, we can find r; > 0 e z; € Bg(0) such that, for any
0 < r < 7y, there exists h, € N with (y3) C B.(21) for any h > h,. Thus I(y},2) = 0 for
any h > h, and any z € R?\ B.(z).

If {{{v} )} does not converge to zero as A — +oo, there exist a subsequence {v}}» and a
constant ¢; > 0 such that I(v}) > ¢; for any k. In this case, let us define A} = Aj. Starting
from {A}}r, we repeat the same procedure for {72}, and we obtain a new sequence of
systems of curves {A2},. After k steps, we end up with a sequence of systems of curves

{Aﬁ}h, which we shall denote by {T's}s.

By construction, for any h, 'y is a disjoint system of curves of class C2, with T’y =
{7,’;‘,...,7,';"}, 1<i4 <--<ip <k,and (I'y) € Br(0). Let us suppose that I =k —n
eliminations have been made to replace the system A, with the system I'y, and let r1,...,7;
be the corresponding numbers (respectively zi,...,2; be the corresponding points) defined
above. Then, for any 0 < » < min r;, there exists h, € N sufficiently large such that

j=1,..,1

(6.7) I(Th,z) = I(An,z) € {0,1}
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for any h > h, and any z € (R?\ U;=1 B.(z;)) \ (Ar). Using (6.6), for any M > 0 and
any 0 <r < min [T there exists hrar € N such that
i=1,...,

(6.8) I(Tp,2) = I(A4, 2)

for any h > h,pr and any z € (BI\I([))\U;___1 Br(2;)) \(Ar). Define A = {z € R?\(T4):
I(Th,z) = 1}. Then A, € CZ(R?), and A4, = (T'n). Since sup, Fy(T's) < supy, Fy(Ep) <
+o00 by (6.4), by Proposition 6.1 there exists a subsequence {I'y}, weakly convergent to
a limit system of curves I' € B; moreover (I') C Bg(0) and, using (6.7), we have that, if
z € R?\ (T'), then I(T,z2) € {0,1}. Let Ar = {z € R? \ (T') : I(T, z) = 1}. It is clear that
Ar C Bg(0). Since x4, (2) = I(T's,2) for any z € R?\ (T'y), and x.4.(z) = I(T, 2) for any
z € R?\(T'), by the continuity properties of the index and by the Dominated Convergence
Theorem, we have 4, — Ar in L'(R?) as h — +oo0.

Let us prove that L%2(EAAr) = 0. By (6.8), for any M > 0 and any 0 < r <
minj:ll.__’lrj’ we have (A}, n BA[(U)) \ U;=1 B,-(Zj) = (Eh N B]\](O)) \ U_Ij=1 B,.(z]-) for
h > h, s large enough. Passing to the limit as r — 0, we get £2((EAAr) N Bar(0))) = 0.
As M is arbitrary, we deduce L2 (EAAr) =0. [

The next comparison result is crucial for the proof of the semicontinuity Theorem 6.1.

LEMMA 6.3. Lety : RxR — [0,+o0] be a Borel function satisfying conditions (i)-(vi).
Let E € C3(R?), let T € B be a system of curves such that (I') D E. Then

(6.9) ‘/;E P(a, k) dH (2) < K3(T).

PROOF. Let I' = {4%,...,7™}, and, for any i = 1,...,m let ©; be an argument of 4*.
For any measurable set ' C 0F and any 1 =1,...,m let

Vi={s €0, l('?'i)] :7i(5) €T}, T: = ’7‘(Vt)

Since 8E C (T'), we have T = |JI_, Ti. To prove the thesis it will be enough to show that
(6.10) f P(a, k) dH(2) < Ky(0:,V;) foranyi=1,...,m,
T;

where T varies over a suitable finite measurable partition P of OF. In fact, from (6.10) it
follows that

[ amy @) <3 [ wam) arie) <3 K3(0:,)

i=1
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hence

/a lem) dri(a) = Y jT | leum) aH(z) < 30 K@ 0,10)) = K3(D),

TeP i=1

that proves the assertion. We choose the finite partition P of OF as follows. Any element
of P must be contained in a rectangle in which OF is a cartesian graph. This means that
for any T' € P we can choose a suitable orthogonal coordinate system, two bounded open
intervals I, J, and a function f : I — J of class C? such that

(IxJ)NE ={(z,y) €I xJ:y < f(=)},

(IxJ)NOE = {(z,f(z)) :z €I}, TC(IxJ)ndE.

Let us fix i € {1,...,m} and let v(s) = (vi(s),7i(s)). For any s € V; we have ~i(s) =
f(7i(s)). Hence %i(s) = £ f(7i(s)) for almost every s € V;, and, since |¥(s)| = 1, we have
y £1 . i) = EL(()
cos ©;(s) = F1(s) = , sin ©;(s) = J3(s) = , ,
BRI CICHONE ARV CICHON:
for almost every s € V.
Set

+1 +_ iy
- ’ T& = Vit)
Ve o) T
Note that, from 43(s) = & f(vi(s)), we have

VE={se€V;:4i(s) =

y £ (ri(s)
6. 2(s8) = _
(611) ) = A ey

for a.e. s € Vii.

As 4% € BV, and —ﬂ% € W1 and these two functions coincide almost everywhere
T

on Vi, it follows (see [15, Th. 4.5.9]) that their approximate derivatives (i.e., the absolutely
continuous part of these derivatives with respect to the Lebesgue measure) must coincide
almost everywhere on Vii. We then have

NI 2 il 0)) ¢ {0)HO B2 il A 0): 10
1 R CCHO) D LN (R CCHON DL

Similarly, by (6.11),

for a.e. s € Vii.

(i ()i ()
1+ (F ()7}
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It follows that

+£"(7i(s))
1+ (F(vi(s)))?)?

;;,ia(s) — (_ sin @,‘(s),COS 91(3)) for a.e. s € "’iﬂ:-

On the other hand, from (3.7) we have
51%(s) = (—sin ©y(s), cos ©;(s))Oi(s)  for ae. s € VE,

so we conclude

. 5" (vi(s)) i +
. O(s) = ; - = +k(7'(s)) forae. sc V.
o) = W ey~ )
Since
(6.13) 0:(s) = a(7'(s)) (mod 27) for a.e. s € V‘.i,

by (6.13), (6.12) and properties (v) and (vi) (see Section 1) we find
(6.14) K304 ¥) = [ 904,62 ds = [ wlalr?)ur?) ds.

But [15, Th. 3.2.6] ensures

[ watrmtr) dsz [ pam) dri(a)
Vi T;

This, together with (6.14), gives (6.10) and concludes the proof of the Lemma. []

THEOREM 6.1. Let ¥ : R Xx R — [0,+00] be a Borel function satisfying properties
(i)-(vi). Let E € C3(R?), and let {Ex}r C C?(R?) be a sequence converging to E in
L'(R?). Then

(6.15) Fy,(E) < lgminf Fy(Ey).

PROOF. We can suppose that the right hand side of (6.15) is finite, otherwise the
result is trivial. Let {E}} be a subsequence of {E},}, with the property that

k-]—l»I-lr-loo F,p(Ehk) = ]}_}I.E.;l.rg F,p(Eh) < +o0.

For simplicity, this subsequence (and any further subsequence) will be denoted by {E}.
Using Lemma 6.1, we have that, for any k, 8E) has a finite number of connected com-
ponents. Let A; be an oriented parametrization of 0E. Since {Ey} satisfies (6.4), the
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sequence {A;} satisfies (6.3). Reasoring as in the proof of Proposition 6.1, we can sup-
pose that Ay = {41,...,7*} with m independent of k. Let {Tx}x = {7;',...,7;" } be the
sequence and let I' € B be the limit system of curves constructed in the proof of Lemma 6.2.
Thenn <m,I' = {~*,...,7"}, and, for any j = 1,...,n we have &' — 4% uniformly
in C° and gﬁ(ﬁl — d—;l’;; weakly in BV as k — +oo. Denote by @ (respectively ©;;) an

argument of 4,’ (respectively of 4% ). From Proposition 4.1 we have that @] — ©;; in L!
as k — +o0o0. We have

liminf Fy(Es) = Lm Fy (Bi) > lim Zz

k) g )
i) [ 9l08.61) do = D i)+

hmianl(7 /¢ Py )0 dt >
i=1

k—4oc0
iz
n 1 g 2 i. — . i.
)+ 3 ¥ mint [ 900, 104)761) .
J:
Using (5.3), (5.4), and (5.5), we then get

liminf Fy(Ex) > IT) + > Ky(03;,[0,(77)]) = (T) + Ky(T) = Fy(T).

i=1

Recalling that Lemma 6.2 ensures that (I') C OF, from Lemma 6.3 we obtain Fy(T') >
Fy,(FE), and this concludes the proof. []

THEOREM 6.2. Let E C R? be a measurable set such that Fy(E) < +oco. Then E*
satisfies the following properties:

E* is bounded, open, and L2(EAE*) = 0;

H(OE*) < +oo;

there exists a limit system of curves I' of class B such that (I') O OE* and E* =

int(Ar U (T)), where Ar = {z € R? \ (I") : I(T,2) = 1};

Fy(E) > inf{Fy(T) : T € A(E)}, where A(E) is the collection of all limit systems of

curves I' of class B satisfying (iii).

ProoF. The first three assertions follow from Lemma 6.2. Let us prove the last
assertion. Since Fy(E) < +oo, there exists a sequence {Ex}, C C?(R?) satisfying (6.4)
and converging to E in L}(R?). Using the same notation as in the proof of Theorem 6.1,
for a subsequence {F;}, we have

liminf Fy(Bx) = Lm _Fy(Ex) > (T) +liminf Ky(Tx) > (T) + Ky(T) = Fy(T).
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Taking the infimum first with respect to the system I' € A(E) and then with respect to
the approximating sequence { E}; }1, the last assertion follows. []

6.1. Localization. Let @ C R? be an open set. We say that a measurable set E C R?
is of class C%(Q) if E is bounded, open, and 2 N 8E is of class C2. We define

Fy(E, Q) = fg @ +dan) a(2)

COROLLARY 6.1. Let E be a set of class C*(f2), and let {E,}r be a sequence of sets
of class C?(Q) converging to E in L'(Q). Then

(6.16) F¢(E,Q) < lhlm-ll-nf F¢(Eh,ﬂ).

PRrOOF. We can assume that the right hand side of (6.16) is finite, otherw1se the result
is trivial. It will be enough to show that

(6.17) F¢(E,A) S limian¢(Eh,A)
h—+oo

for any open set A which is relatively compact in Q. Let {Ep; }« be subsequence of {E; }
such that

k]—{T F,p(Ehk,A) ]}%I—I}-}-Ig F¢(Eh,A) < +oo.

For simplicity, this subsequence (and any further subsequence) will be denoted by {Ej}«.
Since

supH! (2N OE}) < +o0, sup/ Y(en,xp) dH(2) < +o0,
h h JQNBE,

it follows that, for any k,
ANBE, C U 1)U U(Bk
i=1 i=1
where
{7:,-- ,'r;""} is a disjoint system of curves of class C? such that AN (vi) # 0 for any
1=1,...,m;
{Bi,...,B;*} is a finite family of simple regular curves of class C? such that |%| is
constant, 87(0),51(1) € 8Q and (Bi)NOA#Qforany j =1,...,7;
the sets (73),---, (&%), (Bi)s---,(Br*) are mutually disjoint;

lpi)
(6.18) Fylri) + Z (B]) + Z / (61,81 ds < +oo.
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Using Lemma 6.1 it follows that {m}x is uniformly bounded with respect to k. As
l(,B,Jc) > 2dist(0A4,09) > 0 for any j = 1,...,7%, using (6.18) we have that {r}, is also
uniformly bounded with respect to k. Possibly passing to a suitable subsequence, we
can suppose that mj; and r; are independent of k. Denote these numbers by m and r,
respectively. As all curves of the family {v3,...,v",B%,...,8L} meet A, from (6.18) it
follows that their traces are contained in a bounded subset of R? independent of k. Let
us consider only the subfamily {7,';‘ yeoo ,7;;"} of {7;,...,7} of those curves which do not
have infinitesimal lenght; repeating the arguments of Proposition 6.1, by compactness there
exists a family T' = {y%,...,9"*,B%,...,B"} of curves of class B such that ;' — 7% and

B} — B! uniformly in C°, d"(’i"tij — d;’:j and dftl — %ﬂti weakly in BV as k — +o0, for any
j=1,...,nand any ! =1,...,r. Therefore, as E € C%(f2), it follows that AN(T) D ANOE
(see [3, Th. 7.1]). Repeating the last part of the proof of Theorem 6.1 relatively to A, we

get (6.17).

7. Energy of an ordered partition.

In this section, following the approach of [22], we study the lower semicontinuous
envelope of the functional Py defined in Section 1.

Let n € N, n > 1, let g € L>°(R?) be a function with compact support, and let us
define the map Py : (L'(R?))" — [0, +o0] by

n+1

Fy(E;) + / ui —g) dz if Ey,...,E, € (C3(R?))",
P¢(E1)"',En) = ; d)( ) ; E:( g) 1 ( b( ))
oo elsewhere on M™,

where, for any : = 1,...,n + 1, the sets E! and the numbers u; are defined in (1.2).

THEOREM 7.1. If Py denotes the lower semicontinuous envelope of Py, with respect
to the product topology induced on M™ by (L*(R?))", we have

Py(Er,...,Ey) = ZF_¢(E,) + ELI(u; —g)? dz.
i=1 i=1 i

PrROOF. By the definition of the product topology and the continuity of the term
Jgi(ui — g)* dz with respect to the L'(R?)-topology, one easily obtains

n+1

;/Es(u; —g)? d=.

ﬂ(EIa“ . ,En) > ZF_¢(E1) +
i=1

Let us prove the opposite inequality. Let (Ey,..., E,) € M™; we can assume that Fy,(E;) <
+oo for any ¢ = 1,...,n, otherwise the result is trivial. For any i = 1,...,n let {E}}, C
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C2(R?) be a sequence converging to E; in L'(R?) and such that limp_.tc0 Fy(E}) =
Fy(E;) < oo. Then, as (EL,...,E}) — (E1,...,Ey) in (L*(R?))" as b — +o00, we have

n n+1
Z (E)+f (ui—g)* dz = lim [ZFw(E"HZf (ui — g)° JZ}
> Pw(El, n)-

This concludes the proof. 0

This result shows that, to compute Py, one needs to compute Fy,. This will be the
goal of the next sections.

8. An upper bound for Fy.

LEMMA 8.1. Let v be a closed regular curve of class C*> parametrized by arc lenght,
and set 4(s) = (cos O(s),sin O(s)) for any s € [0,{~)]. Let 81,32 € [0,4~)], 81 < s2, be
such that y(s;) = v(s2). Then there exist 01,02 € [s1,32] such that |0(c;) — O(o2)| 2> .
In particular, f: |©|ds > .

PROOF. Since v(s) = [ (cos ©(r),sin O(7))dr + v(0) for any s € [0, (7)), and 7(s;) =

7(s2), we have :
82 82
/ cos O(7)dr = / sin O(7)dr = 0.

Therefore f:’ sin(O(7) — a)dr = 0 for any a € [0,2x]. It follows that, for any o € [0, 2n],
there exists oo € [31, 82] such that sin(@(c,) — &) = 0, hence ©(g,) = a + k, for some
k € Z. Since this equality holds for any « € [0,27], we have that, given p € S, then either
p € O([s1,82]), or p+ 7 € O([s1,52]). This easily implies that there exist 01,02 € [s1,32]
such that |©(o;) — O(o2)| > 7. [ |

LEMMA 8.2. Let v € B and let © be an argument of y on [0, l('y)] Let 51,5, € [0,1(7)],
81 < 83, be such that y(s;) = v(s2). Then fs"’ 0] > =. «

PROOF. We can suppose that there exists k € Z such that |©O(0+) — O((y)-) — 2k~n| <

7. Let us extend © on R as follows: O(s + I(v)) = ©(s) + 2kn. Let {on}s be a sequence

of symmetric mollifiers, and define a® = © x g5. Then a® — © weakly in BVi,.(R) as

O(s+) — O(s-)
2

h — 400, hliI-I}-l ap(s) = for any s € R, and a*(s + (7)) = a"(s) + 2kn.
Set

fr(s) = /s(cos o, sin a®) dr + 4(0) Vs € R

We have that fj, is parametrized by arc lenght imp—too fr = 4 uniformly on [0, [(v)],

limp—too fo = ¥ in L([0, (7)), imp—sto0 fa(s) = l(’i"("—) for any s € [0,1(v)], and fi
is, in general, neither closed nor simple. For any A deﬁne

= / (cos a®,sin a®) d‘r,» gn(t) = fu(t) — .

4
dp Vvt € R.
— 8
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By definition it follows that imp— oo |da| = 0, ima—too g = 7 uniformly on [0, I(v)],
lim 400 ga = ¥ in L}([0,1())], limp st oo gn(s) = B for any s € [0, ()], and
9n(s1) = gn(s2), so that gy, ,,; is a regular closed curve of class C2. Let us reparametrize
Ih|[s1,80] by arc lenght, that is, write

1r(8) = gn(tr(s)),

where t5(s) is the inverse of the map s5 = s3(t) = f:l |gn| d7 for any t € [s1,82]. Set
Y1(8) = (cos ¢n(s),sin ¢(s)) for any s € [0,1(y4)]. Let {s2}s, {s2}s be two sequences of
points of [0, {(y,)] converging to s; and s;, respectively. By Lemma 8.1 we have

w <, lim [gn(s) = a(sh)] = 510(s1+) — O(e1) — O(sa+) + O(ea-)| < [ 10

81

0

In the sequel of this section E C R? will be a bounded open set that can be written,
locally, as the subgraph of a Lipschitz function having derivative of class BV, with respect
to a suitable orthogonal coordinate system. As OF is locally Lipschitz continuous, OF
can have corners but can not have cusp points. One can prove that there exists a disjoint
system of Lipschitz curves I' = {4!,...,7™} such that 4 € BV for any i = 1,...,m,
(T') = 8E, and

E={zeR*\(D):I(T,z) =1 (mod 2)}.
Forany: =1,...,mlet O; be an argument of 4;. Note that, as 8F is locally Lipschitz, we
have that |@;(s+) — ©;(s—)| < 7 for any s €]0,1(7')[ and any i = 1,...,m. Moreover we
can suppose that for any i = 1,...,m there exists k; € Z such that |©;(0+) — O;({(v*)-) -
2k;w| < w. The aim of this section is to prove ‘

(8.1) Fy(E) <Y Fy(04,[0,1")),
i=1
which in particular gives Fy(E) < +oo.
As ©; € BV([0,1(v%)]), we can find § > 0 such that
(8.2) 1©:(s+) —0i(s=)| <7 -6 Vse[0,(7")], Vi=1,...,m.

We shall use the same notation and some arguments of Lemma 8.2, with « replaced by 7%,
and O replaced by ©;. Let us extend ©; by periodicity (mod 27) on R. Inequality (8.2)
holds then for any s € R.

Fix i € {1,...,m}; define a? = ©; x gs. Then a? — O; weakly in BW,.(R) as
h — 400,
(8:3) lim_[at(4) = 0(4)
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for any bounded open set A C R such that |@;|(8A) = 0. Following [11, Section 3] one
can check that {a!}} is a minimizing sequence for Ky(O;, [0, (+%)]), i.e.,

Jim Ky (ol 0,00)) = Ko(03, [0, (7)) Vi=

Set
fi(s) = / (cos a?,sinal) dr +~(0) Vs €
0

. CD)
d;’:‘/o- (cosaf,sina}) dr,  gi(t) = fi(t) — l( (%)

By definition it follows that limp 0 |d}| = 0, that gj is closed, i.e.

ly...,m.
R,
di VieR.

> 94(0) = g,({(7")), and

that imp 400 9 = 7° and ima— 4 oo [7i| = 1 uniformly on [0, {v*)]. Let us reparametrize

g;'l by arc lengh, that is, write
7h(s) = gn(ta(s)),

where t4(s) is the inverse of the map s, = si(t) = fo lgi| dr. Then, using the fact that

fh fh = 0 we have

fi

) L RN A0 ACTO)
b =gy MO PO

et

Hence

Th(s) = () Fa(ta(s)) + Ta(5)35 (a(5)) =

i (s))2 9, ® 4y Fily (s
S O FOTO) s

—I)lgh(a(s))*

Since hhr-? ¢r = 1 uniformly and hhm |di| = 0, setting ¥} (s) = (cos ¢i(s),sin ¢i (s)) for

any s € [0, K~} )], then {¢}}4 is also a minimizing sequence for Ky(0;, [0, (7)), i.e.,

Jm Ky (84, (0, 070)) = Ky (05,0, ")) Vi

In addition, by (8.3), we have also

(84) | Jm1611(4) = [641(4)

for any bounded open set A C R such that |0;](84) = 0.

1,...,m.

Let us prove that the curves v} are simple for & large enough. Assume by contradiction
that there exist two sequences {55}, {cn }» of points of [0, [(7})] such that v} (sx) = 7i(on)
for any h, and such that 4} is simple between s, and o}, for any h. Since v* is simple by
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assumption, it follows that limp_ 100 |85 — 0n] = 0. Let p € (7%), p = limp—t oo vi(oh),
and sy = 'yi—l(p). Possibly passing to a subsequence, we can assume that there exist ¢; =
lmp st oo 45};(3;,), ¢2 = limp—, 4o ¢} (or). By Lemma 8.1 we have |¢§;(3h) — ¢i(on)| = 7 for
any h, so that |¢; — ¢2| > 7. Hence |@;(so—) — Oi(so+)| 2> 7, a contradiction with (8.2).

We conclude that {7;;};, is a sequence of closed simple curves of class C*°; moreover,
since 4} — 7' uniformly for any i = 1,...,m we have that (y;) N (y]) = 0 for any i # j,
provided h is sufficiently large. Consider the disjoint system of curves I'y = {7},...,77},

- and define

Ep={z€R?*\(T4): I(Th,z2) =1 (mod 2)}.

By the continuity property of the index and by the Dominated Convergence Theorem (see
also [8, I11.8.8 (v)]), it follows that E, — {z € R\ (T') : I(I',2) =1 (mod 2)} in L*(R?)
as h — +oo.

In addition Fy(ER) = Fy(T'), so that

Fy(E) < lim Fy(Ea)= lim Fy(T) = T) + Ky(T),

which proves (8.1).
Note that

I+
/ 0] = 2r
0

provided that 4¢(0) is not a corner. Indeed, it sufficient to observe that, in this case, ©;(0)
in not a jump point for ©; (extended on R), and to apply (8.4) with A =]0, {(~)].

9. Computation of F, in some model examples.

Let T > 0; in what follows we shall consider the convex function ¢ : R x R — [0, +o0]
defined by

€’ if [¢] < T,

9.1 S) =
( ) ¢(77 6) { C2|€l —ec3 if |£l > T,

where ¢; > 0, 172 = ¢3T — c3, co > 2¢;T.

This function has been recently suggested in [22] to study some problems in image
segmentation (see Section 1). Obviously ¥oo(7,£&) = c2|€|, and ¥ is of class C! if and only
if ¢ = 2¢;T. As 1 depend only on |¢|, we shall write ¥ = ¥(|¢]).

Let ' = {4},...,7™} € B, and for any i = 1,...,m let ©; be an argument of ¥*; for
any p € (I') we set

BN =Y S [0s+) - 0:s-),

=1 sey =~ 1(p)
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and

To@ =) U (40 ().

i=1 e~ (p)

THEOREM 9.1. Let 1 be defined as in (9.1), and let E be the set of Figure 1.1, with
0 <a<2nr. Then

H'(OE) +/(; E¢(]n|) dH(z) + c2 min(a, 27 — a, |t — af) < Fy(E) <
H(8E) + j _(lsl) 41 (2) + ol = o,

where 0. E = 0F \ {p}.

PROOF. It is not difficult (see Figure 1.2) to find a sequence {Ex};, C CZ(R?) converg-
ing to E in L!(R?) and such that

T —al.

Jim Py(E) =108+ [ (e () +

Consequently

I
L

Fy(E) < H'(8E) + /8 E¢(1nb dH' (2) + el -

It remains to show

(9.2) Fy(E) > H'(8E) + /é; E¢(|n|) dH'(z) + comin(a, 27 — a,|T — al).

Let {Ep}r C C?(R?) be a sequence converging to E in LI(RZ) such that .F;;(E) =
limp— oo Fy(Er) < 4o00. For any h let Ty be an oriented par%metrization of 8F} of
class C2, let ' = {7%,...,7™} be the limit system of curves of c]la.ss B given by Lemma
6.2. For any i = 1,...,m let ©; be an argument of 4. We recall (Fee Lemma 6.2) that

(9.3) E={zeR*\([): I(T,z) =1}
Theorem 5.1 gives
(94)  Fy(E)= lim Fy(Bi)= lim Fy(Ta) > Fy(T) = (L) + K§(T) + K(T).

Using the inclusion §E C (T') proven in Lemma 6.2 and reasoning as in Lemma 6.3 we
deduce

(9.5) )+ K3(T) 2 HO) + [ (i) drt'(2)
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Moreover, the definition of K yields

(9.6) K (T) 2 Fy(T, {p})-

From (9.4), (9.5) and (9.6) it follows

(0.7 FB) 2 H(0B) + [ 4(Isl) d1(2) + FolT, {p)).
In view of (9.7), to conclude the proof of (9.2) it remains to show
(9.8) Fy(T',{p}) 2 cz min(e, 27 — a, |7 — al).

We shall restrict ourselves to the case m = 1, i.e., when the system I' reduces to one closed
curve v of class B (the case m > 1 is similar). We denote by © an argument of 4.

Observe that there exists a positive constant w such that

(9.9) 1+4([€l) 2wll] VEER,

hence, if sg,81 € [0,47)], o < 31, we have

81 .
Fotiann) 20 [ 1612 610(s1-) = Osa ).
80
Using the previous inequality and Lemma 8.2, one can show that the set v7!(p) is finite.
If j € {£1}, as a notation we set

J(s+) ii=1,
Y(s=) ifj=—1.

(s signi) = {
For any v € S?, let

Av ={(s,7) : s€77(p), 5 € {£1}, v = j4(s sign(s))}-

In the sequel we shall consider only those unit vectors v such that A, # @ (which exist by
the inclusion 0F C (v)).

Then A, is a finite set, it is composed by distinct elements, and vy # vy = 4, N4,, =
0. If sp € v71(p) and 7 is of class C! in a neighbourhood of s, then, if v = 4(s¢), and if
F(s+),4(s—) # v for any s € y~1(p), s # s¢, we have 4, = (s0,+).

If v stops at p and goes back along the same direction Ru, i.e., v = ¥(s+) = —%(s—)
for some s € 7y7!(p), the corresponding elements of 4, are (s,+1) and (s,—1), which are
obviously distinct. Geometrically, given v € S?, each element of A, is in correspondence
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with a small arc of () containing p lying on the same part of v and
unit vector at p, considered with its orientation. Define N(v) as
of 4,. '

Let 71,72 be the two tangent unit vectors of F at p chosen as

that for any v € S! such that v # 71,72, then N(v) is even, whil
odd, unless 7, = 7, (i.e., p is a cusp point of §E, and a = 0). Let

assume that v points towards the complement of E (the case in
E is similar). Suppose by contradiction that N(v) is odd. Since v
since there exist ¥(s+), ¥(s—) at each s € y7*(p), we can find a

vertex at p, in the direction of v, with C C R?\ E, in such a way th

having v as the tangent

the number of elements

in Figure 1.1. We claim
e N(m1) and N(7;) are
v € S, v # 1,72, and

which v points towards

~1(p) is a finite set and
small half-cone C with

at CN(v) contains only

the small arcs of (7) having Rv as the tangent line at p (which are in an odd number by

assumption). Choose two points 21,22 in C \ (), one on each side

to v. Then (see [5, Lemma 9.2.5])

|I(7,21) - I(V3z2)| =1 (mOd 2)1

and this contradicts (9.3). Similarly, one can prove that N(7;) and

the claim is proven.

Set v~ !(p) = {s1,-..,8k}, k > 1, and define the unit vectors v

(9.10) Vi =

v; = Y(si+), Veti = —F(si—), =

Observe that, for any v € S? there is a one to one correspondence
{1€{1,...,2k} :v; = v}.

We want to construct a finite subfamily {va,,... V0,78, -
with 1 < h < k, such that

a1y...,ap,P1,...,0r are distinct indices between 1

Vo, = T1, Vg, = T2,

Yn=1,...,h, if a, <k then B, =a, +k,
Vn=1,...,h, if @, >k then B, = a, — k;
Vn=2,...,h.

van = vﬂnml

We shall suppose 11 # T2, since the case 7 T2 can be treat
reason inductively. As N(7;) is odd, there exists | € {1,...,2
set oy = 1. Ifay < k,set By = a1y +k. If oy > k, set B
then, as the set {Il € {1,...,2k} : v,

71} has an odd number o

ay € {l € {1,...,2k} : vi = 71}, with a; # ai1,01, such that v,,

delete the indices a;,8,, and we restart the algorithm by defining
shall assume that vg, # 7. If vg, = 72 then the algorithm stops.
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of v, and close enough

| N(72) are odd. Hence

19+, V2k by

between A, and the set

1”»31.} of {vla”'av?k})

and 2k;

ed similarly. We shall
k} such that v
o) — k. If N

T1;

Ti,

f

elements, there exists
= 711. In this case we
s = ;. Therefore we

Otherwise, if vg, # 2,




as the set {I € {1,...,2k} : v = vp,} has an even number of elements, there exists
ay € {l € {1,...,2k} : v; = vg, }, with az # 3,01, such that vy, = vg,. Assume that
the sequence ay,...,aq,B1,...,84—1 of indices has been constructed, with the required
properties. Set B, = a; +kif oy < k,and By = ag — kif oy > k. If vg, = 7 then the
algorithm stops, thus verifying all required properties. If vg, # 72, since N(vg,) is even if
vg, # T1, and is odd if vg, = 71, there exists an index ag4; # ai,...,04,81,...,8, such
that ve,,, = vg,. The procedure stops after h steps, for some integer h.

Note that the indices a;,...,a4,81,...,B are not necessarily ordered.

Let 61,0, € R/2n; we set d(6,,602) = min(|6; — 02|, 27— |61 —02]). Then 0 < d(61,62) <
m, and by (c) of Lemma 3.1 we get

(9.11) d(0(s—),0(s+)) = [0(s+) — O(s—)| for any s € Se.

Furthermore, set §(8;,62) = min{d(6:,62),d(8;,62 + 7)}. Then

(9.12) 5(01,02) = 5(91 +TK‘,02) = 6(91,92 + 7!‘) = 6(91 +7r,02 +7l'),
and
(9.13) 5(61,82) < d(6:,62).

It is readily verified that § is a distance on R/27. If ny,n; are unit vectors, by identifying
n; with the corresponding angle 6; (hence —n; corresponds to 8; + m), we shall use the
notation d(n;,n2) and §(n1,n2) in place of d(61,6;) and §(6;,6;). In particular

(9.14) §(n1,n2) = 6(—n1,m2) = 8(n1, —n2).
Observe that
(9.15) 8(m1,72) = min(e, 27 — a,|T — al).

Then, using the fact that {va,,...,%a,,v8,,--.,%8, } € T()(p), recalling (9.10) we deduce

' Fy(r{pl) = D 1O(s+) — O(s-)| =

s€v~Y(p)

(9.16) k I3
Z 1©(si+) — O(si—)| > D d(va,,—vg,)-

Consequently, using (9.13), (9.14), the triangular property of §, and (9.15), we have

h : h
(9.17) ¢ Fy(1:4p}) 2D 6(vay, —vp,) = D 6(va,,v8,) = §(m1,72).

g=1 . g=1
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* This, in view of (9.15), shows (9.8) (recall that m = 1), and concludes the proof of the

theorem. ]

Note that, if in the proof of Theorem 9.1 one has T(,)(p) C {m

(9.18)
s€v~1(p)

COROLLARY 9.1. Let ¢ be defined as in (9.1), let E be the

assume that 3
T

<a< —,

- 2

N3

Then

Fy(E) = H\(OE) + jg () dP () + el -

COROLLARY 9.2. Let 9 be defined as in (9.1), let E be the di

number of curvilinear polygons Pi,...,P;. Foranyi=1,...

angles of the polygon P;. Then

g k(i)

1(OE) + / P(|k]) dH? z)+c222mm i27—al,|r

i=1 j=1i

g h(d)

< HY( 8E)+/ Bl () + 23 Y fr =

i=1 j=t

where 0, FE denotes OF without the vertices, and x denotes the c
h(z
b} H

particular % Saf < 3?" for anyi=1,...,qand any j =1,...

g h(i)

2.2

i=1 j=i

(919) F5(E) = H\(9E) + / B(Ix]) dH(z) + ez

Reasoning as in Theorem 9.1 one can prove the following result.

ProproOSITION 9.1. Let E C R? be a bounded open set of clas

set of points {p;}32,. Assume that each p; is a corner point of OF
0 <c<a; <2m—c<2m for any i. Then Fy(E) = +o0

Let us prove now the following result, which shows that equali

in general if a] < I or o]

,q den

,T2} then

Fy(r,{pY) =ca D 0(s+) — O(s—)| > c2d(m1, —72) = e2|m — 1]

set of Figure 1.1, and

al.

isjoint union of a finite

ote by o},..., a:‘(i) the

—af]) S Fy(B) <
ofl,

urvature of 8, E. If in
then

m— adl.

ss C2 up to a countable
with angle a; such that

ty (9.19) does not hold

> 2% for some 1,7, and shows also that the functional Fy(E,-),

if considered as a set function, is not a measure and, in particular, cannot be represented

as an integral of the form (6.1) (see [3]).
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Fig. ¢
THEOREM 9.2. Let E = E; \J E; be , - : - that
Then if the distance D betweeen p; and as

Fy(E) = HI(BE')~*¥"- [ JAKl) dii (2, <« + 2e2¢,
V6. E ,

where 0. FE = OF \ {p1,p2}-
In particular, if D is sufficiently gmall,

Fy(E) < Hl(aE)"#— 'a E'«b(lnl) dH(z) + 2¢2(7 — a).

ProOF. It is not difficult to shoiw that the sequence {Ex}r € CZ(R?) of Figure 9.2
converges to E in L'(R?) and

Jim  Fy(Ey) = H(0F) 4 /8 _(Ix]) 1 (2) +2D + 2cze

Consequently
(9.20) F,(E)<H (BE){;_/ ¥(|s]) dH'(2) + 2D + 2czc.
v8,.E

Let us prove the opposite inequality. },et { Eh} » € CZ(R?) be a sequence which converges
to E in L'(R?) and such that Impy o Fy(Ey) = F,(E) < +oo. Let T' = {7,...,7™}
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Fig. 9.2: An approximation of E.

be the limit system of curves of class B given by Theorem 6.2. Re
(9.5) we deduce

(9.21)

where I'g = {z € R®*: 2z ¢ OE,z € (I')}. It will be enough to show
small, then
(9.22) (Tg)+ K&(Tg) + K4(T) > 2D + 2c;0.

Let 7 (p;), 72(p;) be the two tangent unit vectors of OF at p;, 1 =

9.1. We claim that there is no loss of generality if we suppose that 7
{r1(pi), 2(pi)}, for ¢ = 1,2. Assume by contradiction that {7 (;

Then by (9.18) we have

Fy(T,{p1}) 2 e2lm — af = cz(m — a).

Moreover (9.17) yields Fy(T',{p2}) > c2a, so that K;}’)(I‘) > com.
deduce

F(E) 2 H0E) + [ g(Ixl) ar0(2) + Ky(0) > 1 (2E) + |

r

Then (9.20) yields 2D + 2cza > cow, which is a contradiction, pr

small (recall that 0 < a < 7). Obviously, the same argument c

changing p; with p,, and the claim is proven, Therefore, using the j
T(r)(p:) (see the proof of Theorem 9.1) there are at least two vecto

which do not belong to {1(p;), 72(pi)} fori =1,2.
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FUE) 2 HOB) + [ w(lel) dr'() + () + K.

rasoning as in (9.4) and

o(Te) + Ky(T),

that, if D is sufficiently

1,2, chosen as in Figure

[0y (pi) strictly contains
p1),T2(p1)} 2 T(r)(;pl).

Hence, from (9.21) we

P(|&]) d'Hl(z) + cor.
E

ovided D is sufficiently
an be applied by inter-
parity of the elements of
rs belonging to T(r)(p:)




Let us show that at least two of the elements of T(r)(p:) are contained in a cone C
having direction p; — p; with vertex at p; and of amplitude a + o(D), for 1 = 1,2. Indeed
by (9.17) we have Fy(T',{p2}) > c2a (respectively Fy(T',{p1}) > c2¢), so that (9.20) forces
Fy(T,{p1}) < c2(a + 2D) (respectively Fy(T',{p2}) < cz(a + 2D)). The assertion follows
from (9.16) with v replaced by I'.

Let v € T(ry(p1), v # 71(p1),72(p1), be one element of T(ry(p1) which is contained in
the cone C. Without loss of generality, we can assume that v points towards E,. Let
i€ {1,...,m} and sq € [0,1(~)] be such that v = 4¥(sp+). There are two possibilities,
either (') NOE; = 0, or (v') N OE; # 0. Suppose that (v') N 8E; = 0, and denote by 7}
the z-component of the curve 7°. Let o € [0,(+")] be such that vi(¢) = max{~i(s) : s €
[0, (v9)], ¥!(]%0,0)) N OE; = 0}. If 4i(0+) = 4i(c—), then §'(c) is vertical. Therefore

I(PE) + Kz/)(TE) > 1(71'}]30,0'[) + Kﬂb(‘riﬂso,o’{)

> wf 16:] > w|@i(s0+) — Oi()| > 2D,

0

where w is defined in (9.9), and D is sufficiently small (recall that v is contained in the
cone C).

If 4i(c+) # 4i(c—), then using the same arguments we have
(Tg)+ Ky(Tg) 2 w|Oi(so+) — ©i(c+)| > 2D.

Assertion (9.22) then follows by recalling that K}(T') > Fy(T,{p1}) + Fy(T, {p2}) 2> 2czc.

On the other hand, if (') N 8E; # 0, then Fy(Tg) > 2D, and this concludes the
proof. [
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