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1 Introduction

Let = and X be, correspondently, metric separable and Ban ach spaces, K :
Z — X be a multifunction admiting the continuous selection|z®(¢). Consider
the family of Lipschitzean differential inclusions

z€ I‘(t,fc,f); (1‘1)'
z(t) € K(£); (1.2)
z(0) = z°(¢), (1.3)

where the right-hand side T' is defined for all z € K(§), { € E, and has closed,
bounded, not necessary compact or convex values. The purpgse of this paper
is to study the solutions of the problem (1.1)-(1.3) which age continuous in
¢ as the mappings from = to the space of absolutely continupus functions.
The first results on existence of such solutions without viable constraint
(1.2) were obtained in [1-4] when X = R" and the right-hand side T' does
not depend on €. In [5] they were generalized to the casel of a separable
Banach space X and the multifunction I' being lower semiqontinuous in £.
Recently [6] Cellina and Staicu proved the existence of solution to differential
inclusion z € F(t,z) viable in a compact subset of finite-dimensional space
and continuously depending on initial point from this subset}
Now by combining Fillippov’s technique of the successive approxima-
tions [7] and some modification of Lyapunov’s theorem on donvexity of the
range of vector measure, we investigate the existence of solutipn continuously
depending on a parameter for the more general problem (1/1)-(1.3). More-
over, we give here the inequality of Filippov-Gronwall type which allows us
to obtain the relaxation result for continuous selections from the solution set
of the viability problem (1.1)-(1.3) uniformed by the paramgter £. Remark
that for the problem without phase constraints the inequalities of such kind
are contained in [4,5] and the continuous version of the relaxation theorem
was proved by Fryszkowski and RzeZuchowski in [8].

2 Preliminaries

Denote by T' the segment [0,a], a > 0, of the number line with the Lebesgue
measure po(dt) and the o-algebra £ of measurable subsets, Let X be an
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arbitrary Banach space with the norm || - |.

For the main notions and facts of multivalued analysis, differential in-
clusions and viability theory we refer to [9]. Remind that a multifunction F :
T — X is said to be measurable if the set F_,(C)={t € T : F(t)NnC # @}
belongs to L for any closed C C X. IfY is a metric space then a multivalued
map F : Y — X is called lower semicontinuous (by Vietoris) in the case when
the set F_1(U) is open for any open U C X. Also we say that F : Y — X
is Hausdorff upper semicontinuous (Hausdorff lower semicontinuous) if fixed
any point yo € Y and € > 0 one can find a neibourhood U of y such that
F(y) C F(yo)+¢€B (correspondently, F(yo) C F(y)+eB) for all y € U. Here
B means the unique closed ball with the centre in zero from X. Notice that
for compact-valued maps the notions of lower semicontinuity by Vietoris and

Hausdorff coincide. We denote by D(-,-) the Hausdorff metnc on the space

of all closed bounded subsets of X.
Define the contingent cone Tx(z) and Clarke’s tangent cone C K(:c) to
a closed set K C X in a point ¢ € K (see [9])

Te(2)= (] U (K —2)+eB);

e>06>00<A<8

Cx@=U (1 [1 O7(K-y)+eB).

€>06>00<A<S Hy-—x||<5

Consider two simple properties of these cones.

Proposition 2.1 If K is a compact subset of X then there ezists a separable
Banach subspace Z C X with K C Z and Tk(z) C Z for all z € K.

Obviously the separable Banach space Z generated by the set K satisfies
this Proposition.

Proposition 2.2 Let K C X be closed and a multifunction F : K — X be
lower semicontinuous. Then the following statements are equivalent:

(1) F(z) C Tk(z) for all z € K

(ii) F(z) C Ck(z) for all z € K.



Proof. Since Ck(z) C Tk(z), z € K, it is enough to show

that () implies

(32). Fix ¢ € K and u € F(z). By lower semicontinuity for any € > 0 there

exists such § > 0 that F(y) N (u+eB) # O for each y € I
Henceu € F(y)+eB C TK(y)—{—eB Consequently, u € limiy
where by definition

liminf Tk(y) =

y—z,yeK

(Tk(y) + el

nu N

€>06>0|jy—z||<,yeK

Therefore it follows [10] that u € Ck(z) and the proposition

Denote by L;(T,X) (Lw(T,X)) the Banach space of t
Bochner integrable functions v : T — X with the norm |u|
(correspondently, ||u|lw = sup,er || Jy u()d7||) and by B, t
ball with the centre in zero from L, (T, X). -

Remind that a subset A C L;(T, X) is called decompos
any u,v € A and E € £ the cut-function uxg + vxr\£ bel
XE stands for the characteristic function of E.

Further we shall use also the space AC(T', X) of all absolv
functions ¢ : T — X, having almost everywhere derivative &

with the norm ||z||s¢c = ||z(0)]| + Jr H“’(t)“dt

3 Hypotheses and formulatlon of t

Consider multivalued maps K : & — X , = 1s a separable ma
I' ' TxgrK — X, grK = {(a: €) : z € K(¢)}. Assum
hypotheses:

(H,) K is compact-valued and lower semicontinuous.
(Hz) T has closed, bounded values.
(H3) The mapping t — I'(¢,z,§) is measurable for any (z, ¢)

(Hy) (z,€) — T(t,z,£) is lower semicontinuous on grK for 4

3).

K, |lz —yll <6
0fy—~epex Tx(y)

is proved.
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| (Hs) There is a continuous function k : = — L;(T,R) such that

D (T(t,2,€),I(¢,9,€)) < K(E)()lle - yll
forall { € E,z,y € K(£),a.a. t€T.
(He) T(t,2,€) C Tkig(z), (z,€) € grK, a.a. t € T.

We say that a function y : T X = — X satisfies the hypothesis (Hr) if
¢ — y(-,£) is the continuous mapping from = to AC(T, X) and there exist
continuous functions w : = — R and p: 2 — Ly(T,R) with

die(e) (¥(0,€)) <w(§); N C2Y

dr(ee(e.),6)(9(t,€)) < p(E)(2), ' (3-2)
£ € E,a.a.t €T, where dg(-) means the distance from a point to the set K
in the space X and for any £ € Z the measurable function b(:,§) is such that

b(t,€) € K(£), lly(2,€) — b(t, )l = dx(e)(¥(2,€)) ae.in T.
The main result of this paper is the following

Theorem 3.1 Suppose the hypotheses (H;)—(Hs) are valid andy : T X = —
X, y(0,¢) = y°(€), s an arbitrary function satisfying (Hr). Then for any
continuous function z° : E — X, z°(¢) € K(¢), ¢ € E, and continuous
v :Z — (0,400), there exists a continuous mapping £ — z(-,§) from E
to AC(T, X) such that z(-,€) is the (Carathéodory) solution of the problem

(1.1)-(1.8) for every £ € = and
[ 10,6 = 9(n,8)lldr < [ p(6)()® (m(e)t) -~ m{€)(r) drt

(I12°(6) = °(E)l] + w(&) + v(&)) B(m(€)(2)) (3.3)

for all ¢ € E,t € T, where m(€)(t) = J; k(€)(r)dr and & : RT — R+, Rt =
[0,+00), is some continuous, nondecreasing function does not depending on
the conditions of the problem.

The following section contains the main tool of the proving of this the-
orem.



4 Some properties of measures

The results of this section continue investigations [8,11-15
true also when T is an arbitrary space with a finite nonneg
measure yo and the o-algebra £ of po-measurable subsets.
For s = 1,2,... denote by M, the Banach space of 1
g : L — R? of bounded variation, absolutely continuous rel
with the norm |u|, = |g|(T), where |p| : L — R is the
|£|(E) = supy Yaen [£(R2)], E € L, and supremum is taken oy
Il of E into a finite number of pairwise disjoint measural
B, = {g € M, : |p|, £ 1}. We shall consider the o— alge
pseudometric po( E'AE"), E', E" € L, where A stands for
difference. - S
The following statement is some modification of Lemmal

Lemma 4.1 For any sequence of measures p, € M, , n 3
8p > 1 are arbitrary integer numbers, there exists a mapping A
L, possessing the properties:

A(z,0) C A(2,8), 220, a <B;

o (A(z, ) AA(y, B)) < la — B] + 4]z ~ 3], 2,y

o (A(z,0)) = apo(T), z20;
bn (A(2,@)) = apa(T), z > ns,, n=1,2,...

Proof. By Radon-Nikodym theorem [16] every measure p,

sented as g, = (fg, ..., #5"), where pi,(A) = [, fa(t)dpo, A €
for some po-integrable functions f, : T — R. Denote by s} =

and consider the sequence go(t), g1(¢), ... of po-integrable fung

. They will be

tive nonatomic

rector measures
ative to po [16],

variation of g,

rer all partitions
le subsets. Let
bra £ with the

the symmetric

1[12].

= 1,2,..., where

L RYx[0,1] —

(4.1)

(4.2)
(4.3)
(4.4)
may be repre-
L,i=1,...,8,,

* n .
0) Sp = Zi:::l 8

rtions:

90(t) =1, gaar_ 42i-1(t) = fi¥(t), g2s:_ +2i(t) = f{;_(t);

t€T;1=1,.,8,;n = 1,2,..., where Af,';+(t) = max{fi(¢

)0}, fu(t) =

—min{fi(t),0}. In accordance with Lemma 1 [12] there exists a mapping

¥:RtT x [0,1] — L with:
¥(z,a) C ¥(z2,8), 220, a<B;
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po (¥(z,0)A¥(y,B)) < |a— B + 2|z —y|, z,y>0; (4.6)
A(Z‘n)ga(t)dﬂo o[ adpo, 225 (47)

Put A(z,a) = ¥(2z,a),z > 0, € [0,1]. Then (4.1), (4.2), (4.3) follow
from (4.5), (4.6) and (4.7), correspondently. Moreover, if z > s} then 2z >
2s;_, + 2s, and for i = 1,..., 8, we have

/A(m) Fi¥(t)dpo = aLfi+(t)dﬂo; fA(m) i (t)dpo = a/Tf,i”(t)d#o-

Hence p,(A(z,a)) = ap.(T),a € [0,1]. Since without loss of generality one
may assume S, > 8,1 then z > ns, implies z > s, and lemma is proved.
Further we shall study numerical measures depending on a parameter
¢ € Z. For a pair of sets C and U, C C U C Z, C is closed and U is open in E
denote by k[C, U] the continuous function from Z to R, 0 < [C,U](¢) < 1,
equaltolforé € Cand Ofor é ¢ U.

Lemma 4.2 Let P : = — M; be a Hausdorff upper semicontinuous mult:-
function with nonempty relatively compact values. Then for any € > 0 there
exists a continuous mapping A : E x [0,1] — L such that

A(¢, ) CA((,B), E€EE, a<p; - (48)
po(A(é ) = apo(T), €€E, a€l0,1]; (4.9)
|(A(¢, @) —en(T)| <€, €€, peP(§), a€l0,1] (4.10)

Proof. Fix ¢ € = and choose a neibourhood U(§) of the point ¢ so that
PC) Cc P(¢) + §I§1 for all ¢ € U(¢). Since E is the metric separable space
there exists ([17], p.537) a countable locally finite covering {U,}32, of = by
open sets with the further property that for any n = 1,2,... one can find
én € B, U, C U(&n). Let {pi}i2, be some finite £ -net of the relatively
compact set P(£,), » = 1,2,.... Denote p, = (pl,...,p2r) € M,, and by
using Lemma 4.1 construct the continuous mapping A : Rt x [0,1] — £
satisfying (4.1)-(4.4). _

It follows from ([17], p.540), that there exists an open covering {V,,}=,
of the space E, V,, C Up,n = 1,2,.... Then the number function

o(6) = 3 nsah[Vo, Un(E), € €5,
n=1
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has the finite values and is continuous. Put A(¢,a) = A(e(€),), € € &,
a € [0,1]. In accordance with (4.1)-(4.3) the map 4 : Ex [0,1] —» L is
continuous and the properties (4.8), (4.9) are valid.

Let £ € Z and p € P(¢). Find n = 1,2, ... so that £ € V; C U, C U(¢n),
P(€) C P(én) + B and choose v € P(ér), |p—v|1 < &. Then |v —pi]i < &
for some i = 1,..., 8, and by (4.4) we have

I(A(¢, @) — ap(T)| < | — vh + v — ppli+

|t (A(o(€), @) — apn(T)| + alun(T) — w(T)| L &
because h[V;,,U,](¢) = 1 and o(¢) > ns,. Lemma is proved.
Theorem 4.1 Let {U,,};x";'1 be an open locally finite covering of the space =
and {e,(€)}2, be a continuous partition of unity, subordinated to this cover-
ing. Assume also that P, : U, — M, n = 1,2, ..., is a sequence of Hausdorff
upper semicontinuous multifunctions with nonempty relatively compact val-

ues. Then for any € > 0 there exists a sequence of continuous mappings
E,:Z— L,n > 1, satisfying '

(1) {En(€)}32, ts the measurable partition of T for evergj € € Z, i.e the sets
En(€), n =1,2,..., are pairwise disjoint and po (U, B.(€)) = po(T);

T

(i) (€)= © if and only i en(d) = 0;

(iii) |p(En(é)) — en(é)p(T)| < € for anyn > 1, € € U, and measure p €
Pn(£)-

Proof. Consider for each n = 1,2,... the map h.(¢) = h[supp en, U,](€),

0 < ho(€) <1, € € Z, supp hy, C U,, where supp means support set of the
function. Since I(¢) = {n > 1 : hn(€) > 0} is finite, the set

‘P(f) = U {hn(f)l-" pe 'P,,(f)}

nel(§)

is relatively compact for any £ € Z. Prove the Hausdorff upper semicontinuity
of the multifunction P : Z —» M;.




Let £ € Z and § > 0. Choose a neibourhood V({) of the point ¢ for
which the set J(§) = {n > 1: V(§) N U, # O} is finite. Take M > 0 from
the condition |p|; < M, p € P,(€), n € J(£). By the propeftles of h and
'P there is a nelbourhood W(£) of ¢ such that |h,(¢) — kn(¢)] < 537 and

Pa() C Pa(é) + 3B1, whenever ( € W(€), n € J(€). If ¢ € W(E) N V(€)
and v € P(() then v = hn({)p for some n € I(f) and g € P,(¢). Since in
this case n € J(¢) we have |ha(¢) — hn(€)| < 557 and there exists p' € Pn(é),
lp — 1|1 < £. Hence

v = hn(O1' 11 < [hn(C) = Bn(E)] - I8l + An(Qlp — #'l < 6.

Therefore P({) C P(€) + 6By, ¢ € W(¢) NV (¢).

By using Lemma 4.2 find a continuous mapping 4 : E x [0,1] — L
- satisfying (4.8)-(4.10) where § stands instead of €. Put z(¢) = 0, z,,(ﬁ)
zn-1(€) + en(€),n > 1, and

En(£) = A(éazn(f))\A(Es zn—l(é))y n=1,2, e £ €E.

It is easy to verify that the mapping E, : £ — L is continuous. Also the sets
E.(¢),n = 1,2,..., are pairwise disjoint and

n-—o0
n=1 n=1

o (0 5u(6)) = o (U 4 e,zn@))) =l oA 22(6) = ().

The property (i7) follows from (4.9).
Taken > 1, ¢ € E and p € P,(€). Then h,(€)p € 'P(ﬁ) and from (4.10)

[hn(€)1(A(€ 20 (€))) — 2n(E)Rn(E)n(T)] < 2,

[hn(€)u(A(€) 2n-1(£))) — 2n-1()Ra(Or(T)] < 5-

Therefore |hn(€)p(En(€))—en(€E)hn(é)u(T)| < € and (i17) follows since always
either e,(¢) = 0 or h,(¢) = 1. Theorem is proved.

5 Proof of the main theorem

At the beginning we prove one statement generalizing the Proposition 2.1

8.
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Proposition 5.1 Let X be separable, T' : T x grK — X sati

ses (Hy) — (Hy4) and continuous functions v : £ — Ly(T, X)
[:Z— Ly(T,R) be such that ‘ B

It 1(€)(2), HOUOBB#D

for allf € E, a.a. t € T. Then the mapping G,
{u(-) € Li(T, X)

closed, decomposable values and is lower semicontinuous.

Proof. We show that for each £ € Z the map ¢t — I'(¢,~(
surable. To this purpose take a sequence 7,
step-functions, converging to 4(¢)(¢) almost everywhere in

mappings t — I'(¢,7a(t),€), n > 1, are measurable. Then (see

tions 2.3, 2.6 and Theorem 3.5) so is the multifunction

P 4 Ll(
u0) € T (OO e i T € €

. T — K(€)

sfy the hypothe-

[ 1(€)(8) € K (£),

(5.1)
T,X), G,(§) =

has nonempty,

£)(t),€) is mea-
of measurable
T. By (H3) the
[18], Proposi-

t— LsI‘(t,*y,,(t),E), LsI'(t, yn(t

h0=11]

where bar over means the closure in X, but from (Hs) an

it follows that LsI'(¢,vn(t),€) = T(¢,7v(£)(¢),€). Now by

Ryll-Nardzewski theorem on measurable selections (see [1

decomposability are obvious.

In order to prove the lower semicontinuity of G, take a s

converging to ¢ and u(-) € G,(¢). By using Theorem 6.4 [18]
able selections u,(t) of t — I'(¢,v(é.)(t),&,) with

1
llun(t) = w()l] < drceienio.en(u(t)) + —

I'(t,~

H
8l

using (Hg) and Proposition 2.1 we obtain G,(¢) # @. Th

m () €),

d ([19], p.342),
uratowski and
theorem 5.1)
closeness and

equence {, € =
choose measur-

(5.2)

a.e. in T. This inequality together with (H,) implies that some subsequence

of {un(-)} converges to u(:) a.e. in T'. Without loss of gene
assume un(t) — u(t) for a.at € T. By (5.1) and (5.2) we hav

un(t) — w(E)]| < HENE) + ()] +

ae.inT,n =1,2,....
6 > 0 such that

[ (M@ + Il + ) de < £

9

Since I({,) — I(€) in L1(T,R) for any

rality one may

[4]

€ > 0 there is




whenever £ € £ with po(E) < §, n > 1. Choosing a set Ts C T, po(T\T5) <
6, and N so that ||u,(t) — u(t)|| < 55 for all t € T5, n > N, we shall write

[l )l < [ fua(t) ()l

Lo, ()0 + ol + ) dt <, n2 N,

It means that u,(-) converges to u(-) in L,(T, X). Hence the mapping G, is
lower semicontinuous. Proposition is proved.

Put xO(tag) = y(taf)a bO(tvf) = b(t,é);
w()(E) = (@) + [ Or)r, wol6)E) = p()),

¢ € E,t €T, and denote by “
Ok(e)={y € K : |ly — z|| = dx(=)}

the projection of a point = to the set K. For fixed ¢ € Z the function
fo(+,€), fo(t,€) = dke)(zo(t,€)), is absolutely continuous and its derivative
by Lemma 1 [20], Proposition 2.2 and (3.2) almost everywhere in T satisfies

d .
S fo(t,€) = Jim b7 [dcqgy(@o(t,€) + hdo(t, €)) — dxe)(wolt, €))] <

< i I < ; < g ' .
- beHK(tl))ti;:o(t,E))dcx(e)(b)(xo(t,g)) = dF(i,bo(t,f)vf)(zO(t:e)) < wo(é)(t)

Hence (see (3.1)) dice)(@o(t:€)) < m(€)(t), € € 5, t € T.
By considering the continuous functions g, 71 : £ — AC(T,R); ¢ :

= - Liy(T,R),
Wo(6)0) = [ [po€)(r) + 2K ()P dr + w(EWm(E)D) + v(6); (53)

m(©®) = [ [o(€)r) +$o(€)(r) + l9°() — 2*(€)]| + 3v(¢)] X
xk(g)(.,-)em(f)(t)—m(f)(f)d,,-; (5.4)

10



P1(6)(8) = k(€)(#)[mo(€)(2) + 7 (€)(2) + Po(€)(t
13°(§) = =°(&)l + 3v(€));
¢ — zy(-,¢) from

)

—
Tt
ot

construct the continuous mapping

z1(0,¢) = 2°(¢), such that

+
| (5.5)
to AC(T, X),

[ los(r, ) = aolm,€)ldr < pol€)(e) (56)

dxe)(z1(t,€)) < m(E)(E); (5.7)

dr(fubl(f,f)»f)(él(t1£)) < ‘Pl(e)(t)v (5.8)

where b;(+,¢) is some measurable selection of the map ¢ — k) (z1(t,€)) for
each £ € Z.

Fixed any ¢ € E we find its neibourhood V? such that

lzo(-, &) — zo(+, {)|lac < v(¢); (5.9)

x(©) c k() + "85, (5.10)

sup 1 (E)E) ~ 1o O0) < #(0) (5.11)

for all ¢ € VEO. Since the space = is metric and separable tl
p.537, 540) an open locally finite covering {U?}-, of E an
of points ¢ € E with UP C ‘/e?), i > 1. Let {9(¢)}i2, be
continuous partition of unity subordinated to {UP}i,.

Denote by K(¢) = {u(-) € Ly(T, X) : u(t) € K(£) a.e.in
K3(8) = {ul(-) € K(€) « [lu(t) — bo(t, )| < v(€) a-e.

€€E,i2> 1.1 ¢ € UP then dyg(bo(t, £0)) < “§) and K
it follows from (H,), Proposition 4 and Theorem 3 [12] that t
£ K2(¢), € € U? (KP(€) means the closure of K{(¢) in L (

continuous selection &9(¢),

(e _Tj,a, a.a. t € T. Furthermore,
drep0(6)(0,.6)(E0(t:€)) < dreso(ee).e)(@olt, €)) + k(E)(2)IIB2(€)(t

11

here exist ([17],

d the sequence
a locally finite

T} and
in T},

¢) # @. Therefore

T

BE)(t) € K(€), NI6)(6)(t) — bo(t, & < w(¢);

multifunction

X)), admits a

(5.12)

) - bO(fﬂE)” <




< wo(€)(2) + R(E)@)IBT(€)(2) — bolt, €| + llbo(t, &) — zo(t, &)+
ot &) — 2ot )l + oot 6) ~ bot O <
< wo(€)(2) + R(€)(2)[3v(&) + 2m0(€)(2)], - (5.13)
¢ e UD. By combining Propositions 2.1 and 5.1 we obtain that the multifunc-
tion G : TP — Ly(T, X), GY(€) = {u(") € Lo(T, X) : u(t) € T(t, B(E)(t),€)

a.e. in T}, £ € U?, has nonempty, closed, decomposable values and is lower
semicontinuous. Consider the multivalued map G? : U? — L(T, X),

€)= {0 € GO+ u(®) = 4u(t, | < (OO @ in T},

¢ € U?. By (5.13), (5.3) and Proposition 4 [12] G? is also lower semicontinuous
with nonempty values. Then (see theorem 3 [12]) there exists a continuous

selection v} (¢) € G(£), v} (€) € T'(¢,b2(€)(2),€);

d .
Z(e)(e), (5.14)

[ (€)() — 2o(t, €] <
¢ e€UY, aa. teT. )
For ¢ € U? let P?(£) be the family of all measures

E— /;3 l|vi (€)(r) — éO(_T’.E)HXk[O't](T)df, te T’

which is relatively compact in M;. It is clear the multifunction P? : U? —
M, is Hausdorff upper semicontinuous (even continuous). Since the function
ro(€) = X2, h[supp €?,UP](¢) is finite, positive and continuous on = applying
Theorem 4.1 one can find continuous mappings E? : = — £, 1 > 1, such that
{E?(€)}2, is the measurable partition of T for each ¢ € Z; EP(¢) = @ if and
only if €}(¢) = 0 and

(B2(£)) — eA€)u(T)| < ((?) (5.15)
foralli> 1, € U2, pc P?P(¢). Finally put
b =20+ [ T OOk (516)

i€l (§)

12


http:PropositioI.l4

teT, e, where Iy(¢) = {z>1 ¢ € U%}.
From (5.16), (5.15), (5.14) and (5.3)

[ ) = so(mollar < [ oo PO = ()

i€l (&)

v(E)+ 3 e(¢) f [02(6)(r) = do(r, €)]ldr <

i€lo(€)

W)+ [ () )dr = holE)(D), E€E, te

Fixed § € = take an arbitrary measurable selection b,
Ok e)(21(t,€)), and consider the function fi(-,¢), f1(¢,¢€)
t € T. By Lemma 1 [20] and Proposition 2.2

d
7718 < dreswo.o(#1(:€))

a.e. in T. Furthermore for a.a. t € T and 7 € Iy({) such tha
have 2:1(t,€) = v}(€)(t) € T'(¢,b2(€)(t),€). Then in accorda
(5.9), (5.11), (5.12) and (5.6)

dr(e b, ,6).0(£1(¢,€)) < K(E)(E)IBT(E)(E) — ba(t, €]

< K(E)OIIB2(E)(E) — bolt, €I + 1bo(£, &)
Hlzo(t, &) — 2o(t, Il + llzo(t, €) — 21(£, Il + |2, €)

< K(E)(®) [A1(2,€) + [15°(€) = 2°(&)l| + Fo(€)(B) + mo(€)(t) +
From (5.17), (5.18) applying the Gronwall inequality and (5.

ately obtain (5.7). Finally (5.8) is the consequence of (5.7), (‘

Deﬁne the sequences of continuous functions ¥,,7, :
¢n : = — Li(T,R) by the following recoursive relations:

(6) (

B0 =3 [ pn(@)r)ar + 25 m(e)(e) +

10 = [ 1) + 9alE)r) + 3”(5)

13

""-'EO(t)éD V
- bl(t7£)“] <

M

k(£)(r)em®

Ixo.q(7)dr <

T.

\';6)7 bl(tv{') €
= dig)(=1(t,€)),

(5.17)

tt € E)(&) we
nce with (Hs),

<

i+

3u(¢)]. (5.18)
4) one immedi-
).18) and (5.5).
— AC(T, R);

]\../
.

(5.19)

b

(5.20)




rsa(E)E) = KO [1a(O00) + 1s 00 + 4000 + 28], 520

teT,(e=,n=1,2,... 7

We claim that there exist sequences z, : T x E — X, z,(0,¢) = 2°(¢),
‘and b, : T X E — X such that £ — z,(-,{) is the continuous mapping from
= into AC(T, X);

[ on(5:€) = 6l Olldr < palE)0); (5.22)
b.(-,€) is measurable for each ¢ € E, bn(t,ﬁ) € K(¢); |
[2a(t:€) = ba(t, )l = di(e)(a(t, €)) < 7 (£)(2) (5.23)

and ) : ' : -
drieen(t).)(@n(t,€)) S @a()(®),  (5.24)

teT,ée=,n=1,2,...
Suppose that the functions z,(t,¢), ba(t,€) are found for some n > 1. In

order to construct z,4; : T X = — X choose for each ¢ € = its neibourhood
V¢ such that

loa-+6) — 2 Ollac < 25 (5.25)
K(E)CK(CH;,EQB; S (526)

sup [1n(6)(t) ~ m(Q)(®) < 22
teT

whenever { € V;". By the same argument as above we find an open locally
finite covering {UI'}2, of Z; a locally finite continuous partition of unity
{e?(¢)}2, subordinated to this covering and points (" € = with U C Vi,
i > 1. The multivalued map X7 : U? — Ly(T, X),

(5.27)

K20 = {u0) € K00+ (0 8u(t ) < 2 e in 7.

£ € E,% > 1, has nonempty values by (5.26) and is lower semicontinuous (see
Proposition 4 [12]). For the continuous selection b7?(¢) € K»(¢), € € U?, we
have

B0 € K©, OO0 b0l <52 (s28)

14



a.e. in 7. Then by (H;), (5.24), (5.28), (5.25), (5.23) é.nd (5
dr(epp©)(0).6)(En(t:€)) < drpaieee(@a(ts ) + R(E)(B)|6] (€

< @al€)(t) + R(EIIBF(E)(E) — balts €8] + [1Ba(t, &) —
l2a(t, &) — za(t, )| + [lzn(2,€)

KE)(H) [3”(0 ; msxt)] < 30,000 + 2

T} and

G7(6) = {() € G20+ 1u(t) - 6,01 < SO0 2

¢ € UP. In accordance with (5.29), (5.19), Proposition 4 [13

2.2 and 5.1 the multifunctions G? : UF — LI(T,X)'a,nd gr
continuous selection v?t!(¢) € Gr(¢), v (€)(¢) € T'(¢,

07 (E)() ~ a(ts )] < U(E)O)

ﬂ

f E )
set PP*(€) of all measures

B [ () — bl Ollxoa(r)dr, te

It is relatively compact in M; and the multivalued map PP
is Hausdorfl upper semicontinuous. Therefore using Theore
1= — L,1 > 1, with the
erties that for any ¢ € Z the sets EP(£), ¢ > 1, are pai
@ if and only if e?(¢) = 0 a

construct continuous mappings E}

ro(UZ, EF(E)) = po(T); EF(E) =

v(£)

B () — S OMD < 5 o

15

—b (t' E)H] < ‘Pn(é
k(£)(

¢ € UP. The last inequality follows from (5.5) for n = 1 and
n > 2. Denote by G?(¢) = {u(-) € Li(T, X) : u(t) € T'(¢,b}

B

a.a. t € T, existing by Theorem 3 [12]. Fixed ¢ € T

27)
)(t) — ba(t, €)l

za(t, )1+
)()+

)
'7

from (5.21) for
(£)(2),€) a.e. in

e. in T},

], Propositions

(5.29)

K :-‘W*—’ Ll(T,X)

have nonempty values and are lower semicontinuous. Take f¢

or each 7 > 1 a

)75)?
(5f30)

T_{‘- consider the

: U - M,
m 4.1 we may
further prop-
rwise disjoint,

nd

(5.31)




whenever i > 1, £ € UF, p € P}(€). Here r(€) = T, hlsupp €}, UF(£),
¢ € Z. Define the function '

punn(6) = 2O + [ S O xerodn (532

i€ln(8)

teT,¢€E, I,(¢) = {i >1:¢ € Ur}. Continuity of € > Tnyy(-,&) follows
from continuity of the mappings z° : = — X, v : E —» Ly(T,X) and
ErM:E—L,i>1 |

By (5.32), (5.31), (5.30) and (5.19) we have

[ (0 = dalrllar < & [ ) — éalr,Olixpalr)dr

i€ln(§)

<04 o [ RO -l Ol < (O

'Eln(f)

Let bn41(-,€) be a measurable selection of the map ¢ — I g(g)(en41(t,€)) for
any fixed ¢ € E and fo41(¢,€) = dr(e)(@nt1(t,€)), t € T. By using Lemma 1
[20] and Proposition 2.2 one can write

4 b < drnoolEnt8)  (533)
a.e. in T. Take 1 € I,(¢) such that t € E"(¢). In this case &n41(t,€) =
vPH(E)(t) € T(¢, b2(€)(t), €) and recalling (5.28), (5.25), (5.23), (5.27), (5.22)

we obtain

Ar(t b (166 (Ensa (8, €)) < RE)B)BF (E)(2) = bnsa(t, O] <

k(E)@)IIBF(€)(E) — balt, € + l1Ba(t, &) — za(t, €)1+
l2n(ts &) = 2n(t, )l + l12n(t,€) = Tns1 (GO + @41 () — Bara (8, O] <

KOO [fora(t,8) + 900 +mal©)) + 2] (530

From (5.33), (5.34), (5.20) and (5.21) it follows now that
fas1(t:€) S a1 ()(t); dr(ebngie)0)(Ens1(8:€)) < enra(€)(2),

16



t €T, ¢ € EZ. Since n > 11is arbitrary and the function z,(¢,¢) is given by

(5.16) the claim is proved.
The equalities (5.7), (5.5) imply

m(&)(¢) = /0 0r(E)(7) = R(E)()m (£)(r)] emOO-mE) gy

Hence ¢,(£)(t) = f,%m(f)(t) a.e.in T, ¢ € Z. By the similar :]ray from (5.20),

(5.21) we obtain @n(£)(t) = Z7a(€)(t) ae.in T, ¢ € E, fo

quently,
$nl©)(0) = 31,000 + X m(g)(0) + 1)

and

nt1(§)(2) = 4 /O t nn(e)(f)k(g)(;)em(e)m—m(s}(r)d

248 [o(em00) 1) — m(e)(e)]
teT,é€=,n>1. )

n > 2. Conse-
(5.35)
r-+
(5.36)

From (5.3), (5.4) it is easy to see that there exists a continuous function
c:E-R,m(€)(t) <c(f) forallt € T, £ € E. Then by induction we find

w(f) S, (5.37)

n>1,¢ € E,t € T. The estimation (5.37) and (5.35) imply the conver-
gence of the serieses 3322, 7,(€) and Y02, ¥a(€) in the space C(T,R) of all

continuous functions with the sup-norm uniformly in each

compact subset

from E. Recalling (5.22) we conclude that the sequence {z,(},£)}32, is fun-
damental in the Banach space AC(T, X) and therefore it converges to some
function z(-,¢) € AC(T, X), z(0,¢) = z°(¢), £ € . Moreover the mapping

£ — z(-,&) is continuous from = into AC(T, X).

In accordance with (5.23) z(t,£) € K(&) and b,(¢,€) — z(t,€) asn — oo

for any ¢ € E uniformly by ¢t € T. Using (5.24) we have

t t
fo dr(rz(re).6)(2(T, €))dr < /0 (A ba(re).e)(En(T, €))+

2(7,€) — (7, Il + B(€)(7)l|z(7,€) — ba(r, E)ll]ldr <

17

=y




1(€)(E) + ll2n() = 2 O)llac + [ MENDla(r,€) = balr,)ldr. (5.38)

Hence &(t,¢) € T(t,z(t,¢),¢) for a.a. t € T, € € Z, because the right-hand
side of the inequality (5.38) tends to zero. S
Finally from (5.22) and (5.35) we obtain

/Ot |2(7, &) — 9(r, &)||dr < Po(€)(t)+

133" m(E)(t) + 4EmLE)(E) + v(6). (5.39)

n=1

By (5.36) the function S(€)(t) = 22, 7.(€)(t) satisfies
SEE) = mE)®) +4 [ SEHE) )OO0 ¢
40(8) [2(em @0 — 1) - m(€)(1)] -
Find the solution of this integral equation

m(£)(t)-m(£)(r)

S(€)(t) = 2 ]; t p(€)(7) [es(m<f)(f>-'"(0(f)> /0 (1+ e)e“de] dr

+ (2w(€) + 8u(¢)) £mOM / O =549

1
5 (@O + 12°(9) = (Ol + 84(9)) (W ~ 1), (5.40)
teT, ¢ € = Thus from (5.39), (5.40) and (5.3) the inequality (3.3) follows
with some continuous nondecreasing function ¢ : Rt — R™*. Theorem is
completely proved.

6 Uniform relaxation property

Assumed the existence of a continuous function z°(¢) € K(¢), & € Z, we
consider now the convexified problem

z € col'(t,z,¢); (6.1)

18



z(t) € K(¢);
2(0) = 2°(¢),

where To stands for the closed convex hull of the set. Applying
shall prove that any solution z(,{) of the problem (6.1)-(6.3

(6.2)
(6.3)

Theorem 3.1 we
) contionuously

depending on { may be approximated by the similar solutions of the original

problem (1.1)-(1.3) uniformly by the parameter.
In the following Hr(¢) (Her(€)) denotes the family of all
solutions to the problem (1.1)-(1.3) (correspondently, (6.1)-(

—
s
-

Theorem 6.1 Suppose that K : 2 — X and ' : T X grl
the hypotheses (H,) — (Hg) and there ezists a continuous f
Li(T,R) with

T(t,2°(¢), ) N UE)(E)B # O
whenever £ € Z, a.a. t € T. Then for any continuous sel
the mapping € — Hgr(€) from E to AC(T,X) and any cont

£:Z — R*, g(€) > 0, there exists a continuous mapping £

to AC(T,X) such that z(-,€) € Hr(¢), € € E, and

Hm(t’f) - z(t,f)ﬂ < E(E)
forallteT, ¢ €=,

Proof. Since z(t,£{) € K(¢),t € T, ¢ € E, the multifung

Ll(T!X)7

G(¢) = {u() € Ly(T,X) u(t) € I'(¢,2(¢,€),€) a.e.

¢ € Z, is well defined, lower semicontinuous and has nonem

composable values by (6.4) and Proposition 5.1. Put

v(€) = E%—E—) min { [@(m(f)(a)) + 2/:}m(€)(a) @(Q)dg} -

(Carathéodory)
6.3)), € € E.

{ — X satisfy
inction l : = —

(6.4)

ection z(+,€) of
inuous function

if .'c(,E) from E

tion G : = —

n T},

1pty closed de-

1
1}

where & : Rt — R* is taken as in Theorem 3.1. Notice th
1.1 [21] the set G(¢)N(2(-, &) +v(£€)B,,) is not empty for eac
2(t,€) € col'(t,2(t,€),€) ae. in T. Therefore it follows fro

19
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£ € Z, because

Theorem 3.1




[22] that there exists a continuous function v : & — Ly(T,X), v(é)(t) €
(¢, 2(¢,€),£),

I [ (r,8) — m()(arl < v(e), (69)

t € T, ¢ € . Denote y(t,&) = «°(¢) + ffv(é)(r)dr, t € T, ¢ € =, and choose
for each ¢ € E a measurable function (-, ), b(¢,€) € Ik (y(t,€)), t € T.
By using (6.5) and (Hs) write the inequality

g8 €)) < BE®)I|2(2, ) — bt I <

< kE)@)y(2,€) — 2, Ol + llv(t, €) — (2, ) < 2v(£)k(£)(2),

t € T, £ € E. It means that the function y(¢,£) satisfies the hypothesis (Hr).
Applying Theorem 3.1 we find the continuous mappmg & z(e f ) from =
~ to AC(T, X) such that z(-,¢) € Hp(¢) and

[ 16(r,) = d(r, )ldr < 2008) [ BEOMBml)(E) — m(E)(r)ar+

AOHm(EE) < o [Bm(e)a) +2 [ 2(0)a8] < %,

t € T, ¢ € Z. Finally, recalling (6.5) we obtain ||z(t,¢) — z(¢, &)|| < ||=(¢,€) —
y(t Ol + 19(t,€) — (2, )| < e(€) for all ¢ € T, ¢ € E. Theorem is proved.
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