
FOR ADVANCED STUDIES 

Ads/eFT correspondence for n-point 
functions 

Marco Bertolaa , Jacques Brose, Ugo Moschellab,c, Richard Schaefferc 


a SISSA, v. Beirut 2-4, 34014 Trieste 


b Dipartimento di Scienze Matematiche Fisiche e Chimiche, 


Universita. delPlnsubria, 22100 Como and INFN sez. di Milano, Italy 


C Service de Physique Theorique, C.E. Saclay, 91191 Gif-sur-Yvette, France 


August 23, 1999 

Abstract 

We provide a general setting for scalar interacting fields on the covering of AdS 
spacetime. We then give a limiting procedure which directly produces Liischer
Mack field theories on the corresponding covering of the asymptotic cone of the 
AdS quadric; the conformal covariance of the associated Minkowskian (interacting) 
field theories on the boundary of AdS is thereby clearly exhibited. Our procedure is 
illustrated by a complete treatment of the structure of general two-point functions, 
the case of Klein-Gordon fields appearing as particularly simple in this presentation. 
Moreover, we show how the Minkowskian representation of these boundary CFT's is 
also generated by a limiting procedure involving Minkowskian theories in horocyclic 
sections of the AdS spacetime itself, these theories being restrictions of the ambient 
AdS field theory considered. The case of two-point functions is studied in detail 
from this viewpoint. 
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1 Introduction 
Shortly after the appearance of Maldacena's AdS/eFT conjecture [1], a proposal to 
make it effective has been formulated independently in [2] and [3], and then discussed 
in a large number of papers (for a review see [4]). The proposal prescribes a way 
to compute the Green's functions of the boundary eFT in terms of the Euclidean 
classical supergravity action of an AdS field configuration which obeys to precise 
boundary conditions. Most of these works are thus making use of classical field 
theory methods (mainly in a Euclidean formulation allowing the use of Dirichlet's 
problem but also in a Lorentzian formulation in terms of modes of the Klein-Gordon 
equation [5]). 

However, since the ideas of the AdS / eFT conjecture suggest the existence of a 
rich and still uninvestigated conceptual content at the level of quantum fields, it is 
natural that more recent works in this domain have made use of the already existing 
(and more than two decades old) results about quantum field theory (QFT) on the 
AdS spacetime. In this connection, one must quote the pioneering approach of [6], 
whose main concern was to specify boundary conditions such that the difficulties 
arising by the lack of global hyperbolicity of the underlying AdS manifold could be 
circumvented and the resulting QFT be well defined. Another, earlier, approach 
was also given on the basis of group-theoretical methods [7] following ideas that can 
be traced back to Dirac [8]. Both of these approaches have influenced very much 
the recent research on the AdS/eFT subject. However, their applicability is more 
or less limited to free AdS QFT's (even if they can produce useful ingredients for 
perturbative calculations) and one feels the need of setting the AdS/eFT debate 
on a more general basis! in which both AdS quantum fields and boundary eFT's 
would be treated from the viewpoint of the structural properties of their n-point 
correlation functions. 

In a basic work by Luscher and Mack [11], the concept of global conformal in
variance in Minkowskian QFT has been associated in a deep and fruitful way with 
the general framework of QFT on the covering of a quadratic cone with signature 
(+, +, -,'" ,-) (in one dimension more). Since such a cone is precisely the asymp
totic cone of the AdS quadric, it seems quite appropriate to try to formulate the 
AdS/eFT correspondence in a way which exhibits as clearly as possible the connec
tion between the previous conceptual QFT framework on the cone with a similar 
QFT framework on the AdS quadric. This is the first purpose of the present work. 

In this paper, we shall be concerned as well with interacting fields as with (gen
eralized) free fields on anti-de Sitter spacetime and we propose to give a general 
non-perturbative foundation to the AdS/eFT conjecture in terms of the n-point 
correlation functions of such fields, treated from a model-independent point of view. 

For this purpose, we introduce a general framework in the spirit of [12] for the 
study of QFT on a (d + I)-dimensional AdS spacetime AdSd+l, or more appro
priately on a suitable covering of the corresponding quadric, and we then present 
a direct and simple method for obtaining correlation functions of corresponding 

1In this spirit such a setting has been recently proposed [9] in the general framework of algebras of 
local observables (or "local quantum physics" in the sense of R. Haag [10]). 
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"QFT's on the boundary" , which does not rely on the use of any field equation. 
In such an approach, general interacting QFT's on the (covering of the) AdS 

spacetime are assumed to satisfy a set of basic properties such as locality, AdS 
covariance and a certain energy spectrum condition formulated in terms of appro
priate analyticity properties of the n-point functions. Together with these general 
properties, it is also crucial to require a certain type of asymptotic behavior for the 
n-point functions in terms of an "asymptotic dimensionality,,2. 

We then introduce a limiting procedure which directly produces eFT's on the 
corresponding covering of the asymptotic cone of AdS spacetime in the sense of 
Luscher and Mack [11]; the conformal invariance of the corresponding Minkowskian 
(interacting) field theories on the boundary of AdS then follows without making use 
of any field equation. 

A second purpose of our paper concerns a more complete treatment of the two
point functions. By applying the previous approach to general two-point functions 
on the AdS spacetime, we are able to exhibit strong analyticity properties of the 
latter [14], which are closely similar to those enjoyed by two-point functions in flat 
spacetime or in de Sitter spacetime [15, 16]. 

In the case of Klein-Gordon fields, this analytic treatment fixes the· form of 
the two-point correlation function as being necessarily (up to a constant factor) an 
appropriate second-kind Legendre function, as obtained (for the four-dimensional 
case) in the group-theoretical approach of [7]; the eFT limits of such two-point 
functions are then directly computable in full consistency with the previous general 
formulation of the AdS/eFT correspondence. 

Moreover, we establish a spectral representation for these AdS two-point func
tions which is naturally associated to the Poincare (or "horocyclic") foliation of the 
AdS quadric. In this scheme the well-known ambiguity for low mass theories [20] is 
seen to be linked to the lack of essential self-adjointness of the Bessel's differential 
operator [21] which naturally arises in the Poincare coordinates. 

In the last part of our paper, we introduce a more general possible use of the 
Poincare foliation by showing how Minkowskian interacting QFT's can be produced 
by taking the restrictions of general AdS QFT's to the leaves of this foliation. 
Moreover, by sending these leaves to infinity we exhibit a limiting procedure for 
the Minkowskian QFT's in the leaves which provides an alternative presentation 
of the previously defined AdS/eFT correspondence. The interest of this presenta
tion is that it is entirely expressed in terms of Minkowskian theories satisfying the 
Wightman axioms. 

2Such type of asymptotic behavior has also been considered in a perturbative context in [13], where it 
is also suggested the possibility to use it to give a non-perturbative basis to the AdS/eFT correspondence. 

3 




2 General QFT in AdS spacetime' 

2.1 Notations and geometry 
We consider the vector space ]Rd+2 equipped with the following pseudo-scalar prod
uct: 

x ' X' = XO X,o - XlX,l ... _ X dX,d + X d+l X,d+l . (1) 

The (d + 1 )-dimensional AdS universe can then be identified with the quadric 

(2) 

where X2 = X ,X, endowed with the induced metric 

(3) 

The AdS relativity group is G SOo(2, d), that is the component connected to the 
identity of the pseudo-orthogonal group 0(2, d). Two events X, X, of AdSd+l are 
space-like separated if (X - X')2 < 0, i.e. if X . X' > R2. 

We will also consider the complexification of AdSd+l: 

(4) 

In other terms, Z = X + iY belongs to AdS~~l if and only if X 2 - y2 = R2 and 
X . Y = O. In the following we will put for notational simplicity R = 1. 

We shall make use of two parametrizations for the AdS manifold. 

The "covering parametrization" X = X[r, T, e]: it is obtained by intersecting AdSd+l 
12with the cylinders with equation {X02 + X d+ = r2 + I}, and is given by 

Jr2 + 1 sinT 
rei i = 1, ... , d (5) 

= Jr2 + lcosT 

wl'th e2 e12 + .. ,+ ed
2 

1 and r ~ 0, For each fixed value of r, the corresponding 
"slice" 

02 d+1 2Cr = AdSd+l n { X + X = r 2 + 1} (6) 

of AdSd+l is a manifold §l x §d-l' The complexified space AdS~~l is obtained by 
giving arbitrary complex values to r, T and to the coordinates e = (ei ) on the unit 
(d - I)-sphere. 

The parametrization (5) allows one to introduce relevant coverings of AdSd+l 

and AdS~~l by unfolding the 27r-periodic coordinate T (resp.Re T), interpreted as a 

time-parameter: these coverings are denoted respectively by AdSd+l and AdS~~l' 
A privileged "fundamental sheet" is defined on these coverings by imposing the 
condition -7r < T < 7r (resp. -7r < ReT < 7r). This procedure also associates with 
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each manifold Or its covering Or which is a cylinder ~ X §d-1e. We will use the 
symbols X, Z, ... , also to denote points of the coverings. 

Similarly one introduces a covering Gof the group G by taking in G the universal 
covering of the rotation subgroup in the (0, d + I)-plane. By transitivity, AdSd+1 
and AdSd+1 are respectively generated by the action of G and Gon the base point 
B = (0, ... ,0, 1) . 

The physical reason which motivates the introduction of the covering AdSd+1 , 

that is the requirement of nonexistence of closed time-loops, also leads us to specify 
the notion of space-like separation in AdSd+1 as follows: let X, X' E AdSd+1 and 
let 9 an element of G such that X' = gB; define Xg = g-1 X. 
X and X' are space like separated if Xg is in the fundamental sheet of AdSd+1 

and (X - X')2 = (g-1 X - g-1 X')2 < 0. This implies that Xg = Xg[r, T, e] with 
-7r < T < 7r and Vr2 + 1 cos T > l. 
It is also interesting to note that on each manifold Or the condition of space-like 
separation between two points X = X[r, T, e] and X' = X'[r, r', e'] reads (in view of 
(5) : 

(X - X')2 = 2(r2 + 1)(1 - COS(T - r')) - r4(e - e')2 < 0, (7) 

and that the corresponding covering manifold Or therefore admits a global causal 
ordering which is specified as follows: 

(e - e')2 r2 )"21 

( T, e) > (r', e') iff r - r' > 2Arcsin 4 r2 + 1 (8)( 

The "horocyciicparametrization" X = X(v,x): it only covers the part II of the AdS 
manifold which belongs to the half-space {Xd+Xd+1 > o} of the ambient space and 
is obtained by intersecting AdSd+1 with the hyperplanes {Xd + X d+1 = eV = ~}3, 
each slice IIv (or "horosphere") being an hyperbolic paraboloid: 

= eVxJ..L J.l = 0, 1, ... , d - 1 
x2 = x02 _ x12 _ ... _ xd-12sinh v + lev x 2 

2 

2 
2 =cosh v - lev x 

(9) 
In each slice IIv , xO, ... , x d- 1 can be seen as coordinates of an event of ad-dimensional 

dx02Minkowski spacetime Md with metric d8L- = - dx12 - ... - dxd- 12 (here and in 
the following where it appears, an index Mstands for Minkowski). This explains why 
the horocyclic coordinates (v, x) of the parametrization (9) are also called Poincare 
coordinates. The scalar product (1) and the AdS metric can then be rewritten as 
follows: 

1 + I ( 2X . X' = cosh(v - v') - '2ev v x - x') , (10) 

2Vd 2 d 2 1 (d 2 d 2)d 2 (11)8AdS = e 8M - v = 2 8M - u . 
u 

3The coordinate u = e-v is frequently called z in the recent literature. We are forced to change this 
notation because we reserve the letter z to complex quantities. By allowing also negative values for u the 
coordinate system (9) covers almost all the real manifold AdSd+l. 
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From Eq, (10), it follows that 

(X (v, x) - X (v, x') )2 = e2v (x - x')2 
, (12) 

This implies that space-like separation in any slice IIv can be understood equiva
lently in the Minkowskian sense of the slice itself or in the sense of the ambient AdS 
universe, 

Eq, (11) exhibits the region II of AdSd+1 as a warped product [22] with warping 
function w(v) = eV and fibers conformal to Md , 

Finally, the representation of II by the parametrization (5) is specified by consid
ering II as embedded in the fundamental sheet of AdSd+l ; it is therefore described 
by the following conditions on the coordinates r, T, e: 

-7r < T < 7r; red + ~ cos T > 0 (13) 

The "Euclidean" submanifold Ed+l of AdS~~1 is the set of all points Z = X + iY 

in AdS~~1 such that X = (0, Xl, .. " X d+l ), Y = (yO, 0, .. ,,0) and X d+l > 0, It is 
therefore represented by the upper sheet (characterized by the condition X d+l > 0) 

X l2 X d2of the two-sheeted hyperboloid with equation X d+12 
- y02 - - ,,' - = 1. 

Ed+l is equally well represented in both parametrizations (5) and (9) as follows: 

Z = Z[r,T = ia,e]; (r,a,e) E IR x IR X §d-l (14) 

or 
( . 0 d-l)) TTl'l (0 I d-l)) TIJ)dZ = Z(v, ~y ,xI , .. " x ; v E.IN.., y, X , .. " x E .IN.. , (15) 

In view of (14), Ed+l is contained in the fundamental sheet of AdS~~I' 
For each v, the complexification II~c) of the horosphere IIv is parametrized by 

formulae (6) in which x is replaced by the complex Minkowskian vector z = x+iy = 
(zO, .. " zd); the Euclidean submanifold of this complex Minkowskian manifold is 

obtained as the intersection II~c) n Ed+l' 

2.2 Quantum Field Theory 

Let us consider now a general QFT on AdSd+l ; for simplicity we limit the present 
discussion to one scalar field <p(X), According to the general reconstruction pro
cedure [12], a theory is completely determined by the set of all n-point vacuum 
expectation values (or "Wightman functions") of the field <P, given as distributions 

on the corresponding product manifolds (AdSd+l)n: 

(16) 

These distributions are supposed to be tempered when represented in the variables 
of the covering parametrization Xj = Xj [rj , Tj, ej] and to satisfy a set of general 
requirements which we will specify below, 
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Before doing it, we remark that a QFT on Msd+1 can be projected to a 
theory on AdSd+l itself if it is 27r-periodic in the time-parameter T, namely if 
each W n(X1 , ... Xn) is invariant under all individual substitutions Xj [rj , Tj, ej] --+ 
Xj[rj, Tj + 27r, ej]. 

An important class of fields, which can be explicitly constructed in a Fock space, 
is the class of "generalized free fields"; these fields are completely determined by 
their two-point function W2(X1 , X2). In particular, the Klein-Gordon fields are 
those for which W2(X1 , X2) satisfies the corresponding field equation w.r.t. both 
points. Of course there are in general infinitely many inequivalent solutions to this 
problem (encoded in the choice of W2) and one has to select the meaningful ones 
on the basis of some physical principle; the existence of many possible theories even 
for a free field of a given mass is no surprise. 

We shall assume that the distributions Wn satisfy the following properties: AdS 
invariance, positive-definiteness, hermiticity, local commutativity, analyticity cor
responding to an appropriate spectral condition and "dimensional boundary condi
tions" at infinity. 

The requirement of AdS invariance (corresponding to the scalar character of the 
field) can be written as follows: 

for any g E G. (17) 

The usual positivity and hermiticity properties [12] are valid for scalar QFT's on 
any spacetime and we do not spell them out. 

a) Local commutativity. q,(X) commutes (as an operator-valued distribution) with 
q,(X') for X, X' space-like separated in the sense of the covering space Msd+1 , as 
defined above (for theories in AdSd+1 itself, it implies commutativity under the only 
condition (X - X'? < 0, which then includes a certain condition of commutativity 
at periodic time-like separations). As in the Minkowskian case, this postulate is 
equivalent to the coincidence of permuted Wightman functions at space-like sepa
ration of consecutive arguments Xj, Xj+l [12]. 

b) A nalyticity corresponding to energy spectrum condition. Since the parameter of 
the covering group of the rotations in the (0, d + I)-plane is interpreted as a gen
uine time-translation for the observers in all the corresponding Killing trajectories, 
and since the complexifications of these trajectories do not exhibit any geometrical 

periodicity4 in Ms~~I' it is legitimate to consider QFT's for which the correspond
ing infinitesimal generator JO,d+l is represented by a self-adjoint operator whose 
spectrum is bounded from below: the latter postulate is in fact interpretable as 
a reasonable spectral condition on the energy, valid for all these observers. By 
using the standard Laplace transform argument [12, 31] in the corresponding time
variables Tl, ... , Tn, one is led to formulate this spectral condition by the following 

4Such geometrical periodicity in purely imaginary times gives rise to thermal effects for the corre
sponding observers, as it has already been checked in various examples of QFT on curved spacetimes 
[23, 24, 25, 16]. 

7 



analyticity property of the Wightman functions: 

Each tempered distribution Wn(Xl [rl, Tl, el], ... , Xn[rn, Tn, en]) is the boundary value 
of a holomorphic function Wn(Zl, ... , Zn) which is defined in a complex neighbor

. -(c)
hood of the set {Z = (Zl, ... , Zn); Zj = Xj + ~1j E AdSd+l ; Zj = Zj [rj , Tj, ej]; 
ImTl < ImT2 < ... < ImTn }. 

As a by-product, the Schwinger function Sn, that is the restriction of each Wn 
to the Euclidean submanifold {(Zl' .,', Zn) E (Ed+l)n; al < a2 < .,. < an}, is 
well-defined. 

c) Dimensional boundary conditions at infinity. In order to obtain relevant QFT's on 
the boundary of AdS spacetime (see section 3), we are led to postulate a certain type 

- of power-decrease at infinity for the Wightman functions which we call "dimensional 
boundary conditions at infinity"; such conditions can be shown to be valid in the 
case of Klein-Gordon fields (see section 4). 

By making use of the coordinates (5) we say that a QFT on Msd+l is of 
asymptotic dimension f:l. if the following limits exist in the sense of distributions: 

liIDmin(rll... ,rn)-++oo 	 (rl'" rn)~Wn(Xl[rl' Tl, ell, .." Xn[rn ,Tn, en]) 
= W~([T1, ell, ... , [Tn, enD (18) 

We have to show that the above condition is meaningful, since it is not true 
in general that a distribution Wn(Xl ,.,. Xn) can be restricted to the submani
fold I1j=lOrj of (Msd+l)n (Cr was defined in Eq. (6)), Our spectral condi
tion b) implies that this can be done in the present framework, In fact, for each 
fixed r1, .. " rn and el, ... , en, the existence of an analytic continuation Wn of Wn 
in the variables T1, .." Tn of the covering parametrization (5) in the tube domain 
Tn {(Tl, .. " Tn); 1m Tl < 1m T2 < ' .. < 1mTn} implies that the boundary value of 
Wn on the reals from this tube is a distribution in the variables Tl, .. " Tn on each leaf 
obtained by fixing all the parameters rj and ej and that it is even a regular (namely 
COO) function of all these leaf parameters, The limit in Eq. (18) is therefore also 
defined as a distribution in the variables T1, ... , Tn with Coo dependence with respect 
to the variables ej. Moreover, it is then natural to assume that the limit in Eq.(18} 
can be extrapolated to the holomorphic functions Wn in their tube domains Tn so 
that the corresponding limits W~ are themselves holomorphic in Tn and admit the 
corresponding distributions W:i" as their boundary values on the reals. By restrict
ing all these holomorphic functions to the Euclidean manifolds Tj = iaj, j = 1, ... , n, 
one then obtains a similar condition for the Schwinger functions Sn and the corre
sponding limits S:i". 

If one wishes to select QFT's satisfying the property of uniqueness of the vacuum, 
one should supplement the previous requirements by an appropriate cluster prop
erty on the n-point functions. In order to obtain a relevant cluster property for 
the corresponding Luscher-Mack CFT on the cone C2,d obtained by the procedure 
described in our next section (namely the "conformal cluster property" described 
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in [11]), one should formulate here a similar cluster property on the Schwinger 
-(c)

functions on AdSd+l' namely: 

lim Wm+n(X1[r1,ia1,e1], ... ,Xm[rm,iam,em],
u-++oo 

X m+1[rm+1, i(am+1 + a), em+1],'" , Xm+n[rm+n, i(am+n + a), em+n]) = 

= Wm(X1[r1,ia1,e1], ... , Xm[rm, iam, em]) x 
xWn (Xm+1 [rm+1, iam+1, em+ 1]' ... , X m+n [rm+n, iam+n, em+n]). (19) 

Local Quantum Field Theories on the manifolds Or. 

As a special application of the previous framework, it is meaningful to consider the 

restrictions of the distributions Wn to the submanifolds (Or) n of (AdSd+1 ) n (i.e. 

to the case when all variables rj are equal to r). One then notices that the positiv
ity conditions satisfied by assumption by the distributions Wn on AdSd+1 can be 
extended to test-functions of the variables Tj and ej localized in these submanifolds 
r1 = ... = rn = r. In view of the standard reconstruction procedure [12], this allows 
one to say that in each slice Or the given field on AdSd+1 yields by restriction a 
well-defined quantum field <Pr(T, e). This field is obviously invariant under the prod
uct of the translation group with time-parameter T by the orthogonal group SO(d) 
of space transformations acting on the sphere §d-1 of the variables e. Moreover, 
it follows from the locality postulate a) together with Eqs. (7) and (8) that the 
field <Pr also satisfies local commutativity in the sense of the spacetime manifold Or. 
Finally, in view of b), the n-point functions of <Pr are (for each r) boundary values 
of holomorphic functions of the complex variables T1, ... , Tn in the tube Tn, which 
shows that these theories satisfy a spectral condition with respect to the generator 
of time-translations. 

3 Correspondence with conformal field theo
-... 

ries on C2,d d ia Luscher-Mack 

We shall now introduce the asymptotic cone C2,d (resp. ct~) of AdSd+1 (resp. 

AdS~11) and wish to identify the limit (in the sense ofEq. (18)) of a QFT on AdSd+1 
satisfying the previous properties with a QFT on the corresponding covering C2 ,d of 
C2,d. To do this, we first notice that by adapting the covering parametrization (5) of 

02 12AdSd+1 to the case of its asymptotic cone, C2,d = {n = (no, ... ,n(d+l)); n _n _ 
d2 + nd+12 ... _n = OJ, one readily obtains the following parametrization (with the 

same notations as [11], but in dimension d + 2): ' 

0 rsinT{ 'f/ 
'f/i - rei i = 1, ... ,d (20) 
'f/d+1 - rCOST 
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d2with e12 + ... + e = 1 and r ~ 0, or in brief: 1] = 1][r, T, e]. 
The parametrization (20) allows one to introduce the coverings C;,d and q~~ 

of C2,d and C~~~. by again unfolding the 211"-periodic coordinate T (resp. ReT). 
A privileged "fundamental sheet" is defined on these coverings by imposing the 
condition -11" < T < 11" (resp. -11" < Re T < 11"). 

We also note that the standard condition of space-like separation on C2,d is 
similar to the condition chosen on the AdS spacetime, namely 

and yields the corresponding global causal ordering on C;,d 

(e - e')2)!
(T, e) > (T', e') iff T - T' > 2Arcsin 4 ' (22)( 

equivalently written e.g. in [11] as T T' > Arccos(e· e'). Note that in the space 
of variables (T,T',e,e'), the region described by Eq.(22) is exactly the limit of the 
region given by Eq.(8) when r tends to infinity. 

By taking the intersection of C2,d with the family of hyperplanes with equation 
V1]d + 1]d+l = e , one obtains the analogue of the horocyclic parametrization (9), 

namely: 

= eVx'" It = 0,1, ... , d - 1 
2 x2 = x02 _ x12 _ ... _ x d- 12leV (1 + x ) (23) 

= ~ev(1- x2 ) 

which implies the following identity (similar to (10)) between quadratic forms: 

(24) 

By taking Eqs. (20) into account, one then sees that these formulae correspond 
(in dimension d) to the embedding of Minkowski space into the covering of the cone 
C2,d (see [26] and references therein), namely one has (in view of the identification 

eV1]d + 1]d+l = r(ed + cos T)): 

i o sin T xi e (25)
x = cos T + ed' cos T + ed ' 

with 
cos T + e d > 0, -11" < T < 11". (26) 

Let us now consider a general QFT on AdSd+1 whose Wightman functions Wn 
satisfy AdS invariance together with the properties a),b) and c) described in the 
previous section. In view of c), we can associate with the latter the following set of 
n-point distributions W n (1]l , ... , 1]n) on C;,d: 
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(27) 

At first, one can check that the set of distributions Wn satisfy the required positivity 
conditions for defining a QFT on C2,d' This is because, in view of postulate c) 
(applied with all rj equal to the same r), the distributions W~ appear as the limits 
of the n-point functions of the QFT's on the spacetimes Or when r tends to infinity. 
The positivity conditions satisfied by the latter are then preserved in the limit, in 
terms of test-functions of the variables Tj and ej, and then extended in a trivial way 
into the radial variables rj as positivity conditions for the distributions on the cone 
C2,d (by using the appropriate test-functions homogeneous in the variables rj [11]). 

It follows from the reconstruction procedure [12] that the set of distributions 
.. Wn define a quantum field 0("1) on c;,d. 0("1) enjoys the following properties: 

Local commutativity: Since the region (22) is the limit of (8) for r tending to infinity, 
it results from the boundary condition c) and from the local commutativity of 
all fields cI>r in the corresponding spacetimes Or that the field 0("1) satisfies local 
commutativity on C2,d' 

Spectral condition: In view of our postulate c) extended to the complex domain Tn 
in the variables T, we see that the n-point distributions Wn("1b ... , "1n) are bound

ary values of holomorphic functions in the same analyticity domains of (q~~) n 

as those of the Luscher-Mack field theories [11]. In particular, the restrictions of 
these holomorphic functions to the Euclidean space domains {"1 ("11, ... , "1n); "1J = 
. . h i i ' 1 d d+1 h } . ld'trsln aj, "1j = rej' 't = ,... , , "1j = rcos aj; al < a2 < .. , < an Yle 
the Schwinger functions of the theory, It is also clear that, if the original Schwinger 
functions on the complexified AdS space satisfy the cluster property (19), the cor

responding Schwinger functions on q~~ satisfy the Luscher-Mack conformal cluster 
property (formula (5.1) of [11]) ensuring the uniqueness of the vacuum, 

We are now going to establish that the O-invariance (17) of the AdS n-point 
functions, together with the properties a), b), c), imply the conformal invariance of 
the field 0("1); more precisely, we wish to show that the Wightman functions Wn of 
this field are invariant under the action on C2,d of the group 0, now interpreted as 
in [11] as the "quantum mechanical conformal group", namely that one has: 

(28) 

for all 9 in C. 
A part of this invariance is trivial in view of the limiting procedure of c): it is 

the invariance under the rotations in the (0, d + I)-plane (Le. the translations in 
the time variables T) and the invariance under the spatial orthogonal group of the 
subspace of variables ("11, .. " "1d) (acting on the sphere §d-l). 

In order to show that the invariance condition (28) holds for all 9 in 0, it 
remains to show that it holds for all one-parameter subgroups of pseudo-rotations 
in the (0, i)-planes and in the (i, d + I)-planes of coordinates, with i 1, .'" d, 

11 




Let us consider the first case with e.g. i = 1 and associate with the corresponding 
subgroup GO,l of pseudo-rotations the following parametrizations X = X {p, 1/;, u} 

dand 17 = 'fJ{p,1/;,u} (with u = (u2, ... ,u + l )) of Msd+l and of C2,d: 

XO = psinh1/; 

{Xl = pcosh 1/; 
i (29)Xi = Vp2 + 1 u ~ 2, ... ,d 

Xd+l = Vp2 + 1 u d+ l ud+ 12 _ u 22 _ ... _ u d2 = 1 

{ 
17

0 = Psinh 1/; 

171 = Pcosh 1/; 


i (30)"Ii P u i = 2, ... ,d 
'fJd+1 P ud+ l 

U d+1 2 
U 

22 ... -ud2 = 1 

For 9 E GO,I, the invariance condition (28) to be proven can be written as follows 
(with the simplified notation W n('fJl, ... , "In) Wn('fJj)): 

(31) 

for all real a. Now in view of the definition (27) of Wn('fJj) and of the relations 
between the sets of parameters (r, T, e) and (p, 1/;, u) obtained by identification of 
the expressions (20) and (30) of 17, the invariance condition (31) to be proven is 
equivalent to the following condition for the asymptotic forms of the AdS n-point 
functions W~ (for all a): 

(32) 

In this equation the symbol arctg(·) denotes the angle Tj of the parametrization (20), 
which can take all real values; however, one notices that under the transformation 
1/;j ~ 1/;j + a, the angle Tj varies in such a way that the point 17 remains in the same 
sheet of the covering C2,d of the cone C2,d (e.g. - ~ < Tj < ~ for the choice of Arctg). 

Comparing the parametrizations (5) and (29) of Msd+l we obtain the following 
relations: 

(33) 
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1 ) - ~ sinh"p]
T = arctg 1 + p2 ~ (34)[ ( 

1 i (35)e = hp~::~!l)' e = hp(.p~:d+1) (1 + ~) ~ 
Note that the function hp introduced in (33) is such that 

1 

lim h ("p,ud+1) = [(sinh"p)2 + (ud+1)2] 2 (36)
p-+oo p 

This implies that it is equivalent to take the limits in Eq. (18) for Pj (instead of rj) 
tending to infinity and at fixed value of"pj and Uj, after plugging the expressions 
(33), (34), (35) of rj, Tj, ej into both sides of Eq. (18): 

= O. (37) 

If we now also consider the vanishing limit of the same difference after the trans
formation "pj --+ "pj + a has been applied, and take into account the fact that, by 
assumption, the first term of this difference has remained unchanged, we obtain the 
following relation: 

=0. 


(38) 
Now it is easily seen that in the latter, the limit can be taken separately in each 
term and that the resulting equality yields precisely the required covariance relation 
(32) for W~. 

13 



Although the previous formulae have been written in terms of the distributions 
Wn and of their asymptotic forms, one could reproduce the argument in a com
pletely rigorous way [14] in terms of the functions Wn in the tube domains Tn of 
the variables Tj, all the functions involved being then of class Coo with respect to 
all the variables (Pj, 'lj;j, Uj) and all the limits being taken in the sense of regular 
functions; the covariance relations on the reals will then be obtained as relations for 
the corresponding boundary values (in the sense of distributions). The treatment 
of the covariance with respect to the pseudo-rotation groups G i ,d+l is completely 
similar. 

We can then summarize the results of this section by the following statement: 

the procedure we have described (expressed by Eqs. (18) and (27)) displays a general 
. AdS/CFT correspondence for QFT's: 

(39) 

between a scalar (AdS invariant) quantum field ~(X) on the covering Msd+1 of 
AdSd+1 whose Wightman functions satisfy the properties a),b),c), and a conformally 
invariant local field 6(1}) on the covering &,d of the cone C2,d, enjoying the Luscher
Mack spectral condition; the degree of homogeneity (dimension) Do of 6(1}) is equal 
to the asymptotic dimension of the AdS field ~(X). 

Of course, from this general point of view, the correspondence may a priori 
be many-to-one. Finally, according to the formalism described in [11, 26], the 
correspondence (39) can be completed by saying that there exists a unique conformal 
(Minkowskian) local field O(x) of dimension Do whose n-point functions W~ are 
expressed in terms of those of 6 (1}) by the following formulae: 

WnM(Xl, ... , Xn ) -- e (VI +··+Vn ).6. W ( 1}1, ... , 1}n ) - II l$:J$:n. (d1}j + d+l).6. W ( n 1}b ... , 1}n )n - 1}j . 

(40) 
In the latter, the Minkowskian variables X j are expressed in terms of the cone 
variables 1}j by inverting (23), which yields: 

1}1-!'
xl-!' = J 

J 1}j + 1}1+1 . 
(41) 

4 Two-point functions 

4.1 TIle allalytic structure of two-point functions on the 
AdS spacetime 

It turns out that in all field theories on Msd+1 satisfying the general requirements 
described in subsection 2.2, the two-point function enjoys maximal analyticity prop
erties in all the coordinates, as it is the case for the Minkowski [12] and de Sitter 
cases [16]. A full proof of these results will be found in [14]. We shall only give here 
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a descriptive account of them, needed for further applications. Since, in particular, 
AdS covariance and the "energy spectrum condition" b) of Sec 2.2 are responsible 
for this maximal analytic structure and since (as seen below) the latter determines 
completely satisfactory solutions for the case of Klein-Gordon AdS fields, we shall 
consider this general class of two-point functions as "preferred". 

There are two distinguished complex domains [14] of AdS~~l' invariant under 
real AdS transformations, which are of crucial importance for a full understanding 
of the structures associated with two-point functions. They are given by: 

T+ {Z = X + iY E AdS~~l; y2 > 0, feZ) = +1}, 

T- {Z = X + iY E AdS~~l; y2 > 0, feZ) = -I}, (42) 

where 
(43) 

T+ and T- are the AdS version of the usual forward and backward tubes Tt 
and Ti:1 of complex Minkowski spacetime, obtained in correspondence with the 
energy-momentum spectrum condition [12]; let us recall their definition (in arbitrary 
spacetime dimension p): 

Tjj = {z = x + iy E J\1IP(c); y2 > 0, yO > O}, 

Ti:1 = {z = x + iy E J\1IP(c); y2 > 0, yO < O}. (44) 


In the same way as these Minkowskian tubes are generated by the action of real 
Lorentz transformations on the "flat" (one complex time-variable) domains {z = 
x +iy; y = (yO, 0); yO > 0 (resp. yO < O)}, the domains (42) of AdS~~l are 
generated by the action of the group G on the flat domains obtained by letting T 

vary in the half-planes 1m T > 0 or 1m T < 0 and keeping rand e real in the covering 
parametrization (5) of the AdS quadric. In fact, by using the complex extension of 
this parametrization and putting r = sinh('lj; + i4», T = Re T + ia one can represent 
the domains (42) by the following semi-tubes (invariant under translations in the 
variable Re T) : 

1 

. [(Sin4>? + ((cosh'lj;)2 - (cos 4»2) (Ime)2]"2 
(45)± SInh a > (cosh 'lj; )2 _ (sin 4»2 

This representation (which clearly contains the previously mentioned flat domains) 
can be thought of, either as representing the domains (42) of AdS(c) if T is identified 

-(c) A 

to T + 21(", or coverings of the latter embedded in AdSd+1 , which we denote by T+ 
and j-, if one does not make this identification. 

One typical property of Wightman'S QFT [12] is that any two-point distribution 
WM(X, x') satisfying the spectral condition is the boundary value of a function 
WM(Z, Zl) holomorphic for z E Ti:1 and Zl E Tjj. An analogous property also holds 
for n-point functions. 

It is a consequence of AdS invariance together with the spectrum assumption 
b) [14] that, also in the AdS spacetime, general two-point functions can be char
acterized by the following global analyticity property which plays the role of a 
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G - invariant spectral condition: 

b(inv)) Normal analyticity condition for two-point functions: the two-point function 
W (X, X') is the boundary value of a function W (Z, Z') which is holomorphic in 

" " - (c) - (c)
the domain T- x T+ of AdSd+l x AdSd+l . 

A further use of AdS invariance implies that W(Z, Z') is actually a function w(() of 
a single complex variable (; this variable ( can be identified with Z . Z' when Z and 

Z' are both in the fundamental sheet of Ms~~1; AdS invariance and the normal 
analyticity condition together imply the following 

Maximal analyticity property: w(() is analytic in the covering e of the cut
plane e = {C \ [-1, In. 

For special theories which are periodic in the time coordinate T, w(() is in fact 
analytic in E> itself. One can now introduce all the usual Green functions. The 
"permuted Wightman function" W(X', X) = (0, q.(X')q.(X)O) is the boundary 
value of W(Z, Z') from the domain {(Z, ZI) : Z E t+, Z' E t-}. The commuta
tor function is then C(X,X') = W(X,X') - W(X',X). The retarded propagator 
n(X, X') is introdu~ed by splitting the support of the commutator C(X, X') as 
follows 

n(x, X') = iB(T - T')C(X, X'), (46) 

The other Green functions are then defined in terms of n by the usual formulae: 
the advanced propagator is given by A =n - iC while the chronological propagator 
is given by F = -iA + W. 

Note finally that, as a function of the single variable ( X . X', the jump i8w(() 
of iw(() across its cut (-00, +1] coincides with the retarded propagator R(X, X') 
(or the advanced one); in the periodic (Le. "true AdS") case, the support of 8w 
reduces to the compact interval [-1, +1]. 

4.2 The simplest example revisited: Klein-Gordon fields 
in the AdS/eFT correspondence 

The Wightman functions of fields satisfying the Klein-Gordon equation AdSd+l 

(47) 

display the simplest example of the previous analytic structure: 

d-l 

Qv~l ((). (48) 
2 
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Here Q is a second-kind Legendre's function5 [27]; the parameter v is linked to the 
field's mass by the relation 

. d? 
v2 = _ +m2 • (49)

4 
and the normalization of Wv is chosen by imposing the short-distance Hadamard 
behavior. 

Since Wv( Z, Z') and W-v (Z, Z') are solutions of the same Klein-Gordon equation 
(and share the same analyticity properties), the question arises if these Wightman 
function both define acceptable QFT's on AdSd+l' The answer [20] is that only 
theories with v 2:: -1 are acceptable and there are therefore two regimes: for v > 1 
there is only one field theory corresponding to a given mass while for Ivl < 1 there 
are two theories. The case v = 1 is a limit case. Eq. (48) shows clearly that the 
only difference between the theories parametrized by opposite values of v is in their 
large distance behavior. More precisely, in view of Eq. (3.3.1.4) of [27], we can 
write: 

(50) 

Now we notice that in this relation (where all terms are solutions of the same 
Klein-Gordon equation) the last term is regular on the cut ( E [-1,1]. This entails 
(reintroducing the AdS radius R) that, in the two theories, the c-number commuta
tor [cI>(X) , cI>(X')] takes the same value for all (time-like separated) vectors (X, X') 
such that IX .X'I < R2. Therefore we can say that the two theories represent the 
same algebra of local observables at short distances (with respect to the radius R). 
But since the last term in the latter relation grows the faster the larger is Ivl (see 
[27] Eqs. (3.9.2)), we see that the two theories drastically differ by their long range 
behaviors. 

The existence of the two regimes above has given rise to two distinct treatments 
of the AdS/eFT correspondence in the two cases [28] and symmetry breaking had 
been advocated to explain the difference. 

In the present context, by applying the correspondence as given in Eq. (39), the 
two regimes can be treated in one stroke. Indeed, Eq. (3.9.2.21) of [27] reports the 
following large ( behavior of the Legendre's function Q (valid for any complex v): 

a-I . a-I 1 r (v + 4) 1 1 

Q 2 (I') 1""<..1 ~7r-2-1)-- 2 -1'---1)
1 \:, - e 2 2 7r2\:, 2 • (51)

1)-2' r (v + 1) 

It follows that the two-point function (48) and thereby all the n-point functions of 
the corresponding Klein-Gordon field satisfy the dimensional boundary conditions 
at infinity with dimension !l. = ~ + v. Indeed, let rand r' be complex and such 

5This is the way these Wightman functions were first written in [7] for the four dimensional case d 3. 
Their identification with second-kind Legendre functions is worth being emphasized, in place of their less 
specific (although exact) introduction under the general label of hypergeometric functions, used in recent 
papers. In fact Legendre functions are basically linked to the geometry of the dS and AdS quadrics from 
both group-theoretical and complex analysis viewpoints [17, 16, 18, 19] 
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that 1m T < 1m T'. It follows that 

d 

W~([T,e], [T',e']) = lim (rr'p·+/.IW/.I(Z[T,r,e], Z'[T',r',e']) = 
r,r'-+oo 

2-/.1-1 f(v + ~) 1 
d ( ) d • 

(52) 
(27r) 2 f v + 1 [COS(T - T') - e. e']2+/.I 

(see also [29]). This equation expresses nothing more than the behavior of the 
previous Legendre's function at infinity. Not only all the v's are treated this way in 
one stroke but, also, one can study the boundary limit for theories corresponding to 
v < -1, even if the corresponding QFT may have no direct physical interpretation. 

The two-point function of the conformal field 0("1) on the cone C;,d corresponding 
to (52) is then constructed by following the prescription of Eq.(27), which yields 

~ (' , _4_/.1 00 [ ] [' ']) 1 f(v + ~) 1W/.I "1, "1 ) = (rr) 2 W/.I (T, e , T ,e = -d f ( 1) d • (53) 
27r 2 v + [-("1 - "1')2]2·+/.1 

Correspondingly, we can deduce from (53) the expression of the two-point function 
of the associated Minkowskian field on Md , given by formula (40); by taking Eq. (24) 
into account, we obtain: 

wtt(z,z') = e(v+v')(~+/.I)W/.I ("1 (v,z) ,"1' (v',z')) = 1d f(v+~) 1 •d 

27r2 f(v + 1) [-(z - Z')2] 2+/.1 
(54) 

In the latter, the Poincare coordinates z and z' must be taken with the usual 
iE-prescription (1m zO < 1m z,O), which can be checked to be implied by the spectral 
condition b) of section 2 through the previous limiting procedure. 

We note that this natural way of producing the boundary field theory gives rise 
to the normalization advocated in [28], Eq. (2.21) (apart from a trivial factor 4, 
which does not depend on the anomalous dimension !:::,. = ~ + v). 

Let us now describe how the previous limiting procedure looks in the Poincare 
coordinates (9). These coordinates offer the possibility of studying directly the 
boundary behavior of the AdS Wightman functions in a larger domain of the com
plex AdS spacetime. This fact is based on the following simple observation: consider 
the parametrization (9) for two points with complex parameters specified by 

Z = Z(v, z), vE~,zETM 
, 1lJ> ' T+Z' = Z'(v', z'), v E lJ.~ Z E M' (55) 

It is easy to check that this choice of parameters implies that Z E T- and Z' E T+. 
It follows that, given an AdS invariant two-point function satisfying locality and the 
normal analyticity condition b(inv)) , the following restriction automatically generates 
a local and (Poincare) covariant two-point function on the slice IIv , which satisfies 
the spectral condition [12] (in short: the two-point function of a general Wightman 
QFT): 

Wt;} (z, z') = W (Z (v, z), Z' (v, z')) . (56) 
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On the basis of the dimensional boundary condition (18), and of the fact (obtained 
dby comparing (5) and (9)) that e; = Jl + r\- cos T + e tends to the finite limit 

cos T + ed when r tends to infinity, one sees that the following limit exists and that 
it yields (in view of (27) and (40)): 

· 2v~WM ( ') WM( ')11m e {v} z, z = z, z . (57)
v--++oo 

The limiting two-point function WM (z, z') then automatically exhibits locality, 
Poincare invariance and the spectral condition. (The invariance under special con
formal transformations and scaling property would necessitate a special check, but 
they result from the general statement of conformal invariance of the limiting field 
0(",) proved in section 3 completed by the analysis of [11]). 

When applied to the Wightman functions of Klein-Gordon fields (Le. with D.. = 
~ + v), the latter presentation of the limiting procedure gives immediately the result 
obtained in Eq.(54) but in a larger complex domain: 

lim e2V( ~+1I)WlI(Z(v, z), Z' (v, z')) = 1 r(v + ~) 1 (58) 
v--+oo 27r~ r(v + 1) [_ (z _ z')2] ~+11 

In a completely similar way one can compute the bulk-to-boundary correlation 
function by considering a two-slice restriction WlI(Z(v, z), Z'(v', z')) of WlI . The 
bulk-to-boundary correlation functionis obtained by sending v' --+ 00 while keeping 
v fixed, by the following limit: 

1 f (v + ~) 1
lim ev'(~+lI)WlI(Z(v,z),Z'(v',z'))

v'--+oo = 27r~ f(v + 1) (e-V _ eV(z _ Z')2) ~+11 = 

1 r (v +~) ( u ) ~+11 
= 27r~ r(v + 1) u2 - (z _ z')2 (59) 

5 Kallen-Lehmann representation of Klein-
Gordon fields in Poincare coordinates 
We will discuss in this section a decomposition of Klein-Gordon fields associated with 
the Poincare coordinate system (9). This will produce some interesting formulae 
and give also a new insight about the two different regimes depending on the values 
of v. We follow here a method already used in [30]. 

According to Eq. (56), we can obtain by restriction Poincare invariant QFT's 
on the Minkowskian slices TIv of AdSd+l. Of course the restricted theories are not 
conformal and can become conformal only in the limit v --+ 00. 

Let us study the case of Klein-Gordon fields. By using the coordinates (9) the 
Klein-Gordon equation (47) is separated into the following pair of equations: 

OM¢>+ A¢> = 0, (60) 

e2v [8"(v) + d8'(v) - m28(v)] = -A8(v). (61) 
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The first equation is another Klein-Gordon equation, now considered on a d-dimen
sional Minkowski spacetime. The second equation is an eigenvalue equation for a 
second order operator. The separation constant A is for the moment unrestricted. 
To get information on the allowed values for A we have to consider Eq. (61) as 
a spectral problem in a suitable Hilbert space. To this end let us introduce the 
Hilbert space L2(lR,e{d-2)vdv), where the differential operator defined in Eq. (61) 
is symmetric. It is useful to pass to the variable u = e-v already introduced in Eq. 

d-l
(9) and define f(u) = O(v)e-v.2 Eq. (61) is then turned into 

_ fl/(u) + m 
2 \¥ f(u) = _f"(u) + (v + 1/2)~ - 1/2) f(u) = )..j(u) , (62) 

u u 

a well-known Schrodinger spectral problem on the half-line (the Hilbert space is 
now L2(JR-t;du)). 

Following [21], pag. 88 ff, we learn that there are two distinct regimes corre
sponding as before to v 2:: 1 and Iv I < 1. 

When v 2:: 1 the previous operator is essentially self-adjoint and there is only 
one possible choice for the generalized eigenfunctions, namely 

(63) 

where Jv are Bessel's functions. The completeness of these eigenfunctions gives 
Hankel's formula, which expresses the resolution of the identity in L2(JR+, du) as 
follows: 

g(u) = ['0 dAf>.(u) 1'''' f>.(u')g(u')du', IrIg E L2(IR+ ,dull. (64) 

When 0 :5 v < 1 both solutions u1/ 2 Jv (...;1u) and u1/ 2 J_v (...;1u) are square inte
grable in the neighborhood of u = 0 and must be taken into consideration: we are 
in the so-called limit circle case at zero [21, 31], which implies that the operator 
is not essentially self-adjoint and there exists a 8 1 ambiguity in the self-adjoint 
extensions we can perform. The freedom is exactly in the choice of the boundary 
conditions at u = 0 (corresponding to the boundary of AdS). 
Now we have a one-parameter family of eigenfunctions: 

ft) (u) == - 2XAV COS (11"v) + A2Vr! [x Jv ( J>: u) - AV Lv(J>:u)] , (65)/¥.(x2 

to which we must add one bound state when :x> 0: 

1 sin 7rV 1 1
j (x) ()_ 2xi7 --u"2Kv (:X 2v u)bound U = . (66)

7rV 

The possible choices of the parameter :x do correspond to different self-adjoint ex
tensions of the differential operator (62). To each such extension there is associated 
a domain 1)("') also depending on the parameter :x [31]. To construct 1)("') consider 
the one dimensional subspaces H± spanned by the eigenfunctions solving Eq. (62) 
with eigenvalues ±i: 

(67) 

20 




both these functions are square-integrable when 0 ::; v < 1. Each extension is in 
one-to-one correspondence with partial isometries U : H+ t-+ H_, namely -in this 
case- with elements of U(1) ::: Sl, The domain of the extension is obtained by 
adjoining to the original domain of symmetry the subspace (idH+ + U) H+: here it 
means that we have to add the span of the L2 element 

fa(u) == f+(u) + eia f-{u) . 

which has in our case the asymptotics 

7r [2V (e- i~1I + eia+ i~lI) -v 


fa{u) ::: 2sin{7rv) r{1- v) u 


The generalized eigenfunctions of the operator (62) corresponding to a specific ex
tension have the following asymptotics 

v v v v 
flx){u) ::: 2-iu i (x2 - 2XAv cos(7rv) + A2v) A~ [x 2- u 2 u- 1 

r{1 + v) - r(1 - v) . 
(69) 

As usual these functions do not belong to L2 (~+ , du) but any wave-packet does; 
moreover any such wave packet has this asymptotics. This allows us to find which 
parameter x corresponds to which unitary operator eia : H+ t-+ H_, i.e. to a specific 
self-adjoint extension. Indeed, by matching the asymptotics in eqs. (68) with that 
in Eq. (69) we obtain 

cos (f! _ 1I"V) 
x- 2 4 

- cos (~+ 11":) 
We can now show that the ("bulk-to-bulk") two-point function (48) in AdSd+1 in 
the whole range v E (-1, 00) can be decomposed as follows: 

wi+! (Z(v, z), Z'(v', z'» = fo''''' dAll). (v)ll). (v')W:,d(z, z'), v E [1,00) 

10
wi+!(Z(v, z), z'(v', z'» = fod)..(JiOO) (v)Oioo ) (v')W:,d(z, z'), v E [0,1) 

00 

wi+! (Z(v, z), z' (v', z')) = d)..(JiO) (v wiD) (v')W:,d(z, z'), v E (-1,0), 

(70) 

where W:,d{z, z') is the usual two-point function for a Klein-Gordon field on Md 
of square mass A in the Wightman vacuum: 

WM,d{z z') = J ddp O(p2 - A)8(po)e-ip .(z-z') = 
A , - (27r)d-1 

2-d 

(27r)-~ (:x) -2 K d;,2 (v'Ao); 0 = -(z z')2. (71) 

In Eqs. (70) the functions Bioo
) and the BiO) belong to the domains of sel£-adjointness 

corresponding to the values x = 00 and x 0 respectively. They explicitly read 

oioo)(v) = ~e+Jv(v'>:e-V 
) (72) 
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1 d ' e(O)( ) _ --vJ (. f\ -V)-\ v - ..j2e 2 -Ivl V Ae . (73) 

The reason why we must use different self-adjoint extensions is that Wi+l(Z(v, z), 
Z(v', z')), as a function of v (or v') belongs to ~(oo) when v E [0,1) while it belongs 
to ~(O) when v E (-1,0): this can be proved directly by studying the asymptotics. 

The three Eqs. (70) are thus summarized into the following formula valid for 
the whole range of parameter v: 

wi+1 (z(v,z), Z'(v',z')) = 
00 

d d 1 dA d-2 . " ." ,= (27f)-2"(UU')2 -A-4Jv (VAU)Jv (VAU)Kd-2(m8) , (74) 
o 2 2 

with, again, u = e-v . The full details of the proof include analytical continuation 
to the Euclidean section where 8 = -(z - z')2 > 0, and take into account formula 
(12) pag. 64 in [32]. 

Eq. (70) can also been inverted and we obtain the Minkowski Klein-Gordon two

point function on the slice IIv by integrating Wv against the eigenfunctions e-\. For 

instance, when v > 1 this corresponds to the introduction of the fields ¢-\(x) on the 

Minkowskian slice IIv obtained by smearing the AdS Klein-Gordon field ~ with the 

complete set of modes (72): 


(75) 

It can be shown that the field ¢-\(x) is a canonical Minkowskian Klein-Gordon field 
in the Wightman vacuum state. In precise terms, we have that the AdS vacuum 
expectation value of ¢-\(x) is given by 

In particular, the fields ¢-\ have zero correlation (and hence commute) for different 
values of the square mass A. 

The results of this section can be used to construct other two-point functions 
wi+1

,(x) ( Z (v, z), Z (v' , z')) for a Klein-Gordon field on AdS by using the other 

self-adjoint extensions: however it is not guaranteed that such wi+1
,(x) can be 

extended to the other half of AdS since the definition uses the set of coordinates 
defined only on one half. Moreover one should prove (or disprove) the AdS invariance 
and analyticity properties of such states. We will not go any further in this direction 
in this paper. 

General QFT's in the Poincare coordinates 

The results of section 4 and section 5 suggest the following alternative approach to 
the AdS/eFT correspondence. Starting from a given set of AdS invariant n-point 
functions satisfying general requirements of the form described in section 2, it is 
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(at least formally) possible to obtain a set of Poincare invariant (see below) n-point 
functions in one-dimension less by taking the following restrictions: 

(77) 

On the basis of the requirement of asymptotic dimensionality c) supplemented by 
an argument similar to the one given in section 4.2 (based on Eqs. (27) and (40)) for 
justifying the limit (57) of two-point functions in the slices IIv, n-point correlation 
functions on the boundary will be obtained by taking the following limits: 

(78) 

One can also consider a many-leaf restriction as follows: 

W n {vm+l, ... ,vn }(XI, ... ,Xm,Xm+I,'" ,xn ) 


=Wn (Xl, ... X m , Xm+l (Vm+l, Xm+1), ... ,Xn(Vn , x n )), (79) 


and get various bulk-to boundary correlation functions by taking the limit as before: 

W n (X1, ... ,Xm ,xm+l, ... ,xn ) 
- (Vm+l +,,+vn)Aw. (X X ) (80)11m e n{vm+l, ... ,Vn} 1,···, m,Xm +l,---,Xn .

Vm+l , ... ,Vn~oo 

Restricting ourselves here to the limiting procedure described by Eq. (78), we then 
see that the general AdS/eFT correspondence for QFT's described in section 3 can 
alternatively be presented purely in terms of a limit of Minkowskian fields, denoted 
as follows: 

4>(X) -+ {<tJv(x)} -+ O(x), (81) 

where each field <tJv(x) is the scalar Minkowskian field whose n-point correlation 
functions are those given by (77)_ 

Here we must point out that there is a substantial difference between two-point 
and n-point functions. In fact, in view of their maximal analyticity property (see 
section 4.2) the two-point functions admit restrictions to the slices IIv which are 
themselves boundary values of holomorphic functions in relevant Minkowskian com
plex domains of the corresponding complexified slices II~c): in this case there is 
therefore no problem of restriction of the distribution W2 to IIv x IIv. 

As regards the n-point correlation functions, the existence of the restrictions 
(77) as distributions on (IIv) n is not an obvious consequence of the requirements a), 
b), c) of section 2. Only the existence of the corresponding restrictions at Euclidean 
points of (II~C))n (namely the Schwinger functions of these Minkowskian theories) 
are direct consequences of the spectral condition b) we have assumed: this is because 
changing T into ia in (5) or changing xO into iyo in (9), all other parameters being 

kept real, yield two equivalent representations of the Euclidean points of Ms~~ l' 

As a matter of fact, in order to be able to define the restrictions (77) as dis
tributions enjoying the full structure of Minkowskian n-point functions, namely 
as distribution boundary values of holomorphic functions in relevant domains of 
(II~c) )n, one is led to use instead of b) an alternative spectral condition in which the 
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positivity of the spectrum refers to the representation of a d-dimensional Abelian 
subgroup of G playing the role of the Minkowskian translation group with respect 
to the slices IIv. 

Let us briefly sketch the construction. U sing the horocyclic parametrization 
of Eq. (9), we can lift the action of the Poincare group as follows. Consider the 
standard action of the Poincare group on the Minkowski spacetime coordinates: 
x'fJ. = A~XII + afJ., J.1. = 0,1, ... ,d - 1. By plugging this relation into Eq. (9) we 
promptly obtain the following relation: 

X'fJ. = A~XII + (Xd + X d+l )afJ. 
2 2 

X'd = (1 + a ) X d + a AfJ. XII + X d+l a2 fJ. II 2, (82) 
2 2 

X,d+l = (1 _ a ) X d+l _ a AfJ. XII _ X d a
2 fJ. II 2 

where Greek indices are raised and lowered with the standard Minkowski metric. 
In matrix form we get 

A~T (83)g(A, a) = 
( -Aa T 

Among such transformations there is the Abelian subgroup of Poincare translations 
g(ll, a). The corresponding generators 

_ d d+l {) ( {) {)) (84)PfJ. = (X +X ) {)XfJ. +XfJ. {)Xd - {)Xd+l 

of these transformations form an Abelian algebra. The AdS spectral condition b) 
of section 2 should then be supplemented by the following one: 

b') Spectral condition: the infinitesimal generators pfJ. are represented by (commut
ing) self-adjoint operators whose joint spectrum is contained in the forward light
cone V+ = {pfJ.pfJ. ~ O,po ~ O} of ad-dimensional Minkowski momentum space. 

By using a Laplace transform argument [12, 31j, in the corresponding vector vari
ables XI, ... , Xn one can see that this spectral condition implies the following analyt
icity property of the Wightman functions: 

Analyticity corresponding to the spectrum of Poincare translations: each AdS distri
bution Wn (Xl (VI, xt), ... ,Xn(vn,xn)) is the boundary value of a holomorphic function 
TtVn(ZI (VI, zt), ... , Zn (Vn, zn)) which is defined in the tube 

Tn = {Z = (ZI' ... , Zn) E AdS~11; Zj = Zj (Vj , Zj); VI,"" Vn E ~ 
1m (Zj+l - Zj) E V+, j = 1, ... ,n -I}. (85) 

Property b') implies in particular that it is meaningful to consider the restricted 
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distributions W~v} given in Eq. (77). The Poincare invariance of W~v} follows 
immediately by Eq. (82). Furthermore, the positive-definiteness of this family 
of distributions is induced as before by the analogous property satisfied by the 
distributions Wn on AdSd+1 . We also note that the validity of the Euclidean cluster 
property for W: } is equivalent to the condition introduced earlier in Eq. (19).v 
Under these conJitions the reconstruction procedure is now justified and the given 
field on AdSd+1 yields by restriction a well-defined quantum field CPv (x) . 

Moreover, it follows from the locality postulate a) together with Eqs. (12) that 
the field CPv also satisfies standard local commutativity in IIv. Finally, in view of 
b/), the n-point functions of CPv are (for each v) boundary values of holomorphic 
functions in the tube domains T!! of Wightman's QFT. This shows that these the
ories satisfy a standard energy-momentum spectrum condition (with respect to the 
generators of spacetime translations). The conformal covariance of the boundary 
field O(x) results from the general analysis of section 3. 

The interesting question whether the spectral condition b/) might be derived 
from condition b) together with AdS invariance will be left for future work. 
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