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Canonical and Perturbative Quantum Gravity
Abstract. After a review of Dirac’s theory of constrained Hamiltonian systems and their
quantization, canonical quantum gravity is studied relying on the Arnowitt-Deser-Misner
formalism. First-class constraints of the theory are studied in some detail following De
Witt’s work, and geometrical and topological properties of Wheeler’s superspace are dis-
cussed following the mathematical work of Fisher.

Perturbative quantur;l gravity is then formulated in terms of amplitudes of going from
a three-metric and a matter-field configuration on a spacelike surface T to a three-metric
and a field configuration on a spacelike surface ¥'. The Wick-rotated quantum amplitudes
are here studied under the assumption that the analytic continuation to the real Rieman-

)

nian section of the complexified space-time is possible, but this is not a generic property.
Within the background-field method, one then expands both the four-metric g and mat-
ter fields ¢ about a configuration (go,¢o) which is a solution of the classical equations
of motion. If the one-loop approximation holds, the part of the action quadratic in the
fluctuations about (go, o) gives the dominant contribution to the quantum amplitudes.
This leads to Gaussian integrals and to formally divergent amplitudes, since the one-loop
result involves the determinant of second-order elliptic operators.

The corresponding divergences are regularized using the zeta-function method. For
this purpose, following Hawking, one first defines a generalized zeta-function ((s) obtained
from the eigenvalues of the elliptic operator B appearing in the calculation. Such ((s) can
be analytically extended to a meromorphic function which only has poles at some finite
values of s. The values of { and its first derivative at the origin enable one to express the

one-loop quantum amplitudes, whose scaling properties only depend on ((0) under suitable

s
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assumptions on the measure in the path integral. Although it frequently happens that the
eigenvalues of B cannot be computed exactly, the regularized {(0) value can be obtained
by studying the heat equation for the elliptic operator B. The corresponding integrated
heat kernel G(7) has an asymptotic expansion as + — 0% for those boundary conditions
which ensure self-adjointness of B. The ¢(0) value is then given by the constant term in
the asymptotic form of G(7), and it also determines the one-loop divergences of physical
theoﬁes. The zeta-function technique has been recently applied to the study of one-loop
properties of supersymmetric field theories in the presence of boundaries.

Some relevant examples of gravitational background fields are then studied. These
gravitational instantons are complete, four-dimensional Riemannian manifolds whose met-
ric solves the Einstein equations with cosmological constant: R(X,Y) — Ag(X,Y) = 0.
The possible boundary conditions are asymptotically Euclidean, asymptotically locally

Euclidean, asymptotically flat, asymptotically locally flat, compact without boundary.
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1. Introduction

Despite the lack of a mathematically consistent theory of quantum gravity, the quantiza-
tion of general relativity or of alternative theories of gravitation is still receiving careful
consideratioﬁ in the current literature. The two main motivations for this analysis are
the singularity problem in cosmology, and various attempts to understand perturbative
or non-perturbative renormalization of quantum field theories [1]. The aim of this review
paper is therefore to present, in a way accessible to a large number of physicists and math-
ematicians, the minimal set of well-established mathematical techniques that should be
familiar to all those working on quantum gravity.

For this purpose, in sections 2, 3 and 4 Dirac’s theory of constrained Hamiltonian
systems is described, discussing in detail primary and secondary constraints, first-class
and second-class constraints, Dirac brackets, effective Hamiltonian, total Hamiltonian and
extended Hamiltonian. Dirac’s prescription for quantizing first-class and second-class sys-
tems is then given, jointly with examples and discussion. The gravitational field, which
is a first-class constrained system, is then studied in section 5, using the Arnowitt-Deser-
Misner 3 4+ 1 decomposition of space-time geometry, and applying Dirac’s theory to derive
constraints and write down the quantum version of these constraints. These can be re-
garded as functional differential equations on Wheeler’s superspace, i.e. a quotient space
whose points are equivalence classes of metrics related by the action of the diffeomorphism
group of a compact spacelike three-surface. More precisely, the superspace S(M) is de-

fined as S(M) = Riem(M)/Dif f(M). With this notation, M is a compact, connected,
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orientable, Hausdorff, C*° three-manifold without boundary. Riem(M) is the space of
C °° Riemannian metrics on M, and Dif f(M) is the group of C* orientation-preserving
diffeomorphisms of M. Geometrical and topological properties of Wheeler’s superspace
are thus studied in section 6.

In section 7, the problems of the path-integral approach to quantum grav{ty are ﬁrst
presented. Although the full theory via path integrals does not exist, and although quan-
tized general relativity is perturbatively non-renormalizable [which has led to the study
of n;)n-perturbative renormalization via canonical quantum gravity], the one-loop approx-
imation can be studied in detail in some cases. The corresponding Gaussian integrals are
regularized using the generalized-zeta-function technique in curved backgrounds (section
8). This involves the fascinating study of the eigenvalues of self-adjoint elliptic operators.
The background gravitational fields are studied in section 9 in the asymptotically locally
Euclidean, asymptotically flat, énd compact cases. Concluding remarks ahd open research

problems are presented in section 10.

2. Hamiltonian Methods in Physics

It is quite often the case that theories of interest in modern physics are formulated as
constrained systems. This happens whenever the Lagrangian L is singular (we begin by
studying the case of a finite number of degrees of freedom for simplicity), so that there is

no unique solution of Hamilton’s equations of motion expressing the velocities in terms of
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the canonical coordinates ¢' and conjugate momenta p; (i.e. det s%E+ 6q’ 8 + = 0). One then

finds that certain functions gam)(q,p) exist such that

S (g,p) =0 . (2.1)

Following [2] and [3], we say that the primary constraint o) is weakly zero; in other words,

in working out Poisson brackets on the phase space with other canonical variables, <p$n) can
be set to zero only after these brackets have been computed, and some of these brackets do
not vanish. Note that, on the constraint manifold ¥ defined by (2.1), no Poisson bracket
can be defined, since if some F(g,p) =~ 0 on X, its gradient does not necessarily vanish
weakly on ¥. The problem thus arises to eztend out of ¥ the Legendre transform H, of
L by adding a linear combination of constraints. One is then' led to define an effective

Hamiltonian H given by the sum

H H + um(Q)p)Sa(l)(q7p) * (22)

Note also that the coefficients u,, of linear combination are not constants, but depend on

the canonical variables g, p. In light of (2.1), the new equations of motion generated by H

are
i i #) . OH. ')
g ={q,H}~ op; +um(q,p) o (2.3)
. - BHC a S’Y]l',)
pi E{Pi,H} A — qu -—um(q,P)—g‘q‘r ’ (2.4)
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where curly brackets denote Poisson brackets. We now have to make sure that the primary

(1)

constraints ¢,  are preserved in time. This implies that

oD ={o®, B} ~{o®, 8.} +ui(a,n){eP,0} ~0 . (2.5)

Essentially three possibilities occur:
(1) Eq. (2.5) already holds by virtue of (2.1);

(2) Eq. (2.5) can be solved for u; = u;(q,p);

(3) Eq. (2.5) leads to secondary constraints cpgz)(q,p) independent of ux(g,p).
The outlined procedure is then repeated until all secondary constraints, and finally all
uj = uj(gq,p) have been found, so that H= fI(q,p). The set S, of all constraints is then

given by (we define secondary all constraints which are not primary)

ilI

S {‘Pgrlp,)?m 1"""L; <P.(1 )! ,1?"'$M} . (2.6)

In geometrical language, one can compute the secondary constraints ¢; )(q, p) by defining

the vector field (cf. (2.3-4))

_(8H. a<,a“>) 8 (OH, acp(l) 8
=G +enan 5 o= (i + oo 5 )

and then taking the Lie derivative ch,a&},).

A more convenient (and fundamental) division of the set S. can be, however, obtained.
For this purpose, we note that the Poisson bracket of any two elements of S, may or may

not be a linear combination of constraints. This property can be made precise by giving

the following definitions [2,3]:
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Definition 2.1. The function F(q,p) is a first-class quantity if

{F,xp}::ﬁﬁ , VYoeS. . (2.7)

Definition 2.2. The function F(q,p) is a second-class quantity if

dp € S, :{F,(p}a:':O . (2.8)

Note that a number (;f second-class constraints might be brought into the first class by
means of independent vlinea,r combinations. We call irreducible those second-class con-
straints which cannot be brought into the first class. In what follows, we always assume
the second-class constraints we deal with are irreducible. First-class constraints are here
denoted by tps,f) (g,p), énd second-class constraints by <p§-”)(q,p). An equivalent definition

of the set S, of all constraints is then given by
\ In .
Se E{gog),m =0,1,...,L'; ng ),] = 0,1,...,M’} , (2.9)

where L' + M' = L + M. Moreover, with our notation, gag,ll'n(q,p) and gasylz’n)(q,p) de-

note primary first-class and primary second-class constraints, whereas (pg'n(q, p) and
505,3’”) (g,p) denote secondary first-class and secondary second-class constraints respec-
tively.

Relevant examplesA of first-class Hamiltonian systems are electromagnetism and general
relativity, whereas second-class constraints occur for example in relativistic theories of

gravitation with nonvanishing torsion, or after imposing gauge constraints on a first-class

system.
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The definition of second-class constraints enables one to understand which quantities

can be set to zero also before computing any bracket. For this purpose, one first proves

[2] that the matrix Ciy, ={S"§H)7 ‘Pg{n} of Poisson brackets of second-class constraints is

non-singular. The second step [3] is to define, for any given G(g,p), a new variable G(g,p)
given by

G=6-{G,e{"}cileliD - (2.10)
so that {5,%5”)} ~ 0, Vr 6{0,1,...,M’}. In other words, G has vanishing Poisson

brackets with all second-class constraints, whereas {é,ng)} may be %0 .. m €

{0,1, ...,L'}. Thus, defining the Dirac bracket of Fi{g,p) and F3(q,p) as

{Fl,Fz}*_=.{F1,F,}-{F1,¢§”)}c;;{go<n{1>,Fz} , (2.11)

one finds the fundamental results

{Fl,Fz}* z{ﬁ,f’g} ~ BB ~{R,E) (2.12)
{G,gog”) ) x{G,cpg’f)}—{G,go§”’}c;;,jcmn =0 . (2.13)

In other words, second-class constraints are now strongly vanishing, and Dirac brackets
are the tool needed to achieve this and deal only with first-class constraints in the classical

theory (see also section 4).

The Hamiltonians we are interested in are essentially of four kinds:
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(1) The canonical Hamiltonian H,, i.e. the Legendre transform of L. This is the
relevant Hamiltonian if L is non-singular;

(2) The effective Hamiltonian H,ji.e.

H=H:+um(g,p)el(g,p) = Hc—{Hc,cpgl)}C;,fsoﬁi) : (2.14)

This is the relevant Hamiltonian for theories with second-class constraints (section 4).

(3) The total Hamiltonian Hr, i.e.

Hr = H +r0(g,0)0 7 (g,0) - (2.15)

(4) The extended Hamiltonian Hg, i.e.

o : B g
Hg = H +59(¢, )00 (a,p) + {7 (4, 2)05"" (4, )

B ,
= Hr + 2 (¢,0)¢5(a,p) . (2.16)

Thus Hy is given by the effective Hamiltonian H plus a linear combination of primary
first-class constraints, whereas Hg is given by Hr plus a linear combination of secondary
first-class constraints. This means that it is possible to include secondary constraints in
the Hamiltonian, provided they are first-class.

In fact, as explained in [2] (see below), there are certain changes in the ¢'s and p's that
do not correspond to a change of state, and which have as generators secondary first-class
constraints. One is then led to generalize the equations of motion in order to allow as
variation of a dynamical variable also any variation which does not correspond to a change
of state. This is obtained using the extended Hamiltonian Hg. The Hamiltonians H , Hp
and Hg are sharply distinguished ways of defining a Hamiltonian function on the whole

10
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phase space, and they all reduce to H. on the constrajntA manifold defined by (2.1) (and by
(2.6) in the case of Hg). In particular, the Hg-formalism is reasonable from the physical
point of view (see below), although it does not correspond to the original one deduced
from a Lagrangian [2,4].

Note that, in the case of first-class constrained systems, (2.15) becomes

Hr = H + sn(g,p)9%D(q,p) . (2.17)

For example, this is what happens for electromagnetism. An intermediate step is also
possible for U(1) gauge theory (and general relativity), following [2]. Namely, one only

includes secondary first-class constraints in the Hamiltonian H defined as

Hr=He+ 7" (q,0)9 D (a,p) - (2.18)

Whenever the extended Hamiltonian Hg is used, the equations of motion take the

form

i ={d 1) ~{o, )

+r0 (@) {0,000} +rP (g, {d e} (2.19)
Pi E{pi,HE} %{Pi,ff}
+ (g p) {30} + 7P (@, 0){pi 0P} (2:20)

The physical state of the system is not affected by the infinitesimal contact transformations
generated by the first-class constraints of the theory [2,3]. This is a crucial point, and
Dirac’s original argument is as follows [2].

11
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Given at time ¢ any function g:(g,p), we study its time evolution. At time ¢ + €, gs4¢

is found by definition as
Gt+e = gt + 6{9,HT} . (2.21)

Setting 7, = 0 in (2.15), this yields

Jite = gt + e{g,ﬁ} . (2.22)

However, we may also take r,, = ¢, # 0. This leads to

Gtre =gt + c{g,ﬁ} +e€ cm{g&ﬁé”’} : (2.23)

Both choices must correspond to the same physical state at time ¢ + ¢, since the physical

state at t+€is the one arising from the given initial physical state at time ¢. From (2.22-23)

we find

Gt+e— Jite = € Cm{ga ‘ngll’I)} . (2.24)

Thus all primary first-class constraints (pg,ll’l), regarded as generators of a contact trans-

formation, give rise to a transformation which does not change the physical state.

(1,1)

Dirac’s next step is to consider two of these transformations. Denoting by x.

and ¢£1’I) two primary first-class constraints, the first transformation changes g into g +

e{!], Xgl,l)}, and the second changes g + f{g,xff’”} into

n=g+ e{gaxfﬁ’”} + 6’{9 + e{g,xﬁl’”},fbﬁl’”} : (2:25)

12
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He then neglects € and ¢, but retains e¢' in the calculation. Even though €2, ¢? and
€€’ are of the same order, this approximation is valid, since otherwise, by retaining terms
involving €? and ¢ 2 one would obtain an equation holding for all values of € and ¢€'; one
has thus to set to zero the coefficients of €2, of ¢ ? and of ee’. This would lead to three
equations, but the first two are trivial so that one is not interested in them. Now, by

applying the two transformations in the reverse order, one obtains

g2 =g+ E{g,xﬁl’”} + 6'{9,1#,(,1’”} + ee'{{gnﬁff’”},xﬁl’”} - (2.26)

In light of (2.25), this leads to

g1—9g2 = ee’{g, {x&"”&ﬁ“”}} : (2.27)

Thus, using the group property of all transformations which leave the physical state un-
changed, Dirac finds there must be further transformations of this type which do not affect
the physical state. He then points out that the only generalization of the argument is that

the primary first-class constraints xf,"” and 1/),(,1’1) might be replaced by secondary first-

class constraints pf{"’” and o527 also leading to an equation formally identical to (2.27)
and thus generating transformations which do not change the physical state.

However, Dirac made it clear he had not been able to obtain a rigorous mathematical
proof that all first-class constraints, whether primary or secondary, do not change the

physical state. This has been proved only much later in [5]. As discussed in detail in [5,6],

if a function f(g,p) is first-class, it must be gauge-invariant, and

fa,p) ~{ £, Hr} ~{f, H5} . (2.28)

13
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In other words, the total Hamiltonian Hr and the extended Hamiltonian Hg generate
the same time evolution for the gauge-invariant functions f(g,p), and are thus physically
equivalent. By contrast, if f(g,p) is gauge-dependent, Hy and Hg generate different equa-
tions of motion, and the two formalisms cannot be compared. The detailed calculations in

[6] add evidence in favour of Dirac’s interpretation of first-class constraints being correct.

3. Dirac’s Quantization of First-Class Constrained Hamiltonian Systems

Suppose we deal with a theory where all constraints are first-class. The canonical coordi-
nates ¢‘, with conjugate momenta p;, are made into operators satisfying canonical com-
mutation relations (hereafter referred to as CCR) corresponding to the Poisson brackets of
the classical theory. The mathematically rigorous form of these CCR is the exponentiated

Weyl form [7,8]

U(a1 )U(az) = U(a.1 + az) N (31)
V(b:)V(ba) = V(b +b3) (3.2)
U(a)V(b) = ™V (5)U(a) (3.3)

where U(a) = e”*? and V(b) = e~ 4. By virtue of the Stone-von Neumann theorem, the

unique (up to unitary equivalence) unitary representation of (3.1-3) is
(Vo)) (g) = e ™(q) (3.4)
(U(a)¢)(q) = ¥(q — ha) . (3.5)

14
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The generators of U(a) and V(b) are p and § respectively, and satisfy the familiar relations

(g¥)(9) = q¥(q) (3.6)
(9)(a) = ~ih3e(a) (3.7)

together with the CCR
la,8] =in (3.8)

This holds on the dense domain of infinitely differentiable functions of compact support.

Of course, the more general form of (3.8) we are interested in is

[g*‘, ;3,-] = ih6i . (3.9)
We then study a Schrédinger equation

., O -
zha—'f = Hry (3.10)

where 3 is the wave function, and Hz the suitably defined operator corresponding to
the first-class Hamiltonian (2.17), also denoted by H' in the literature [2,3]. The next

step in the quantization program is to impose all first-class constraints as supplementary

conditions on the wave function, so that

e Dp=0 . (3.11)

The naturally-occurring question is whether the equations (3.11) are consistent with one

another. Indeed, for I'#[, we know that

e PDyp=0 . (3.12)

15
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We now multiply (3.12) by gégn and (3.11) by <_5§,I ). The subtraction of the resulting

equations leads to
() (I
[305 ', ¢4 )]¢ =0 . (3.13)

Note that, in the classical theory, (3.13) would be obviously satisfied, since by definition the
Poisson bracket of any two first-class constraints is again a linear combination of first-class

constraints. In the quantum theory, however, it is not e priori obvious that

I} (I ”
[905 )66, )] = cwm(g, )8 (a,p) - (3.14)

In other words, for (3.13) to be a consequence of (3.11-12), the additional condition (3.14)
should hold. Since ¢/, depends on all ¢'s and p's, it does not commute with the c,ég,{) in
the quantum theory. The problem is thus to make sure that ¢;;,,, appears on the left in
(3.14), and no extra terms occur.

If (3.14) holds, the first-class constraints are consistgntly imposed as supplementary
conditions on 3. By contrast, if it is not possible to obtain (3.14) with the help of suitable
factor-ordering prescriptions, the quantum theory we are looking for is ill-defined. In
the favourable case, one should go on, and check whether the conditions (3.11) are also
consistent with the Schrodinger equation (3.10). Since Hr is a first-class Hamiltonian, this
means one should find

[‘ﬁgI)vI:IT] = ’ (3.15)

which holds provided

[¢§I) J?T] = bim(9,P)8% (0,7) - (3.16)

16
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Again, we find a condition which is certainly satisfied in the classical theory, whereas in the

quantum theory there may be serious problems, since b;,, depends on the ¢’s and p's, and

thus does not necessarily appear on the left when we compute the commutator [(,55”, H T] .

4. Dirac’s Quantization of Second-Class Constrained Hamiltonian Systems

In section 2 we remarked that irreducible second-class constraints can be eliminated in
the classical theory, after they are set strongly to zero by using the Dirac brackets (2.11).

Following [2], it can be instructive to see what happens in the simplest case, i.e. when two

second-class constraints exist of the form

g =0 , p=0 . (4.1)

Of course, the corresponding quantum operators cannot be used to impose supplementary

conditions on the wave function of the form
=0, pw=0 , =[|dnlv=0 ,
since these would be inconsistent with the CCR (3.9)
&', 51% = iny

Now, by virtue of (4.1), one might point out that ¢! and p; are not of interest. One is thus

led to define a new bracket { , } in the classical theory, where the degree of freedom

17
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corresponding to the index [ has been discarded, so that

« ~(0A BB 0A 8B ‘
) = 2 (530~ omeowe) - (42)

One then tries to set up the quantum theory in terms of all degrees of freedom but for the
value n = I. We are then looking for an operator representation of Dirac brackets, such
that second-class constraints are realized strongly, i.e. as equations between operators. In

the above example, since Dirac brackets are
{ql’Pl} =0 , (43)

{q‘,pj}*=6§ . ViAo, (4.4)

an irreducible representation of Dirac brackets is given by

Ql =p=0 |, (45)

Qv=4gv , Vi , (4.6)
N 4 .

| pip = ———zﬁaqi , Vi#l (4.7)

i.e. the usual Schrédinger representation for ¢* and p;, Vi, described in section 3, and the

zero operator for Q! and p;. Dirac’s quantization program when second-class constraints

exist can be thus described as follows.
(1) One picks out irreducible second-class constraints;

(2) Using Dirac brackets (2.11), these constraints are set strongly to zero;

18
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(3) Since, for any g(q,p), {g, HT}* z{g,HT}, the classical equations of motion take

the form
g ~ {97HT} 3

(4) On quantization, commutation relations are taken to correspond to Dirac-bracket
relations, and second-class constraints are realized as equations between operators;

(5) With the exception of some (simple) examples, one has to bear in mind that it
may be not possible to find an irreducible representation of the Dirac-brackets algebra.
This remains an open problem;

(6) Remaining first-class constraints are imposed as supplementary conditions on the
wave function;

(7) For these first-class constraints, one has to check that (3.14) and (3.16) hold.

In light of points (5) and (7) as above, Dirac’s quantization in the preseriée of second-
class constraints is far from being straightforward. It may be thus very helpful to study a
nontrivial example of second-class constrained systems. For this purpose, we here describe,
following in part [9], a second-class system with no secondary constraints. The four primary
second-class constraints may be reduced by one. In the corresponding theory there are
three primary second-class constraints and one secondary second-class constraint [10]. The
theory is then quantized using Dirac’s method.

In other words, as done in [9], one begins by studying a theory described by the

Lagrangian

L ={(g2+q3)g1 +4qs4s +V(g2,03,q4) , (4.8)

19
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where V(g2,43,q4) = 3 (qi —2q2q3 —qg) . The study of (4.8) is motivated by a generalization
of the work by Feynman recently described in [11], and we here use, for simplicity of

notation, a convention for the indices of ¢’s and p’s different from what we have done so

far. In light of (4.8) and of the definitions p; = g—’f:_, one finds the four primary constraints

P1 5(1’1 —q2 — Q3) ~0 , (4.9)
p2=p2=0 , (4.10)

ps E(p;; _ q*) ~0 (4.11)
Cps=ps =0 . A (4.12)

As usual, the weak-equality symbol means that the constraints only vanish identically
on the constraint manifold ¥, but may have nonvanishing Poisson brackets with some
canonical variables. The canonical Hamiltonian H,, i.e. the Legendre transform of L, is

then given by

4
H,. = Zpaqa - L
a=1

= (Pl - q2— q:;)él + p2g2+ (Pa - q-z) g3
+piGs — V(g2 93,94) - (4.13)
However, as we said in section 2, we want to extend H. out of ¥. For this purpose we

define the effective Hamiltonian H (cf. (2.2)) on the whole phase space, which coincides

with H, on X. In our case, H becomes

H=H,+ Ap1 + Asps + Asps + Aypy

= A1p1 + A2p2 + Azps + Asps — V(g2,493,91) (4.14)

20
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where X; = Ai(q,p) E(A,’ + q,) Interestingly, the preservation in time of the primary

constraints (4.9-12) leads to no secondary constraints in the theory, since

{Pl,ﬁ} =-—(,\2+)\3) , {pz,ff} =M-q , (4.15a)
{pg,ﬁ} M —M—g—q {p4,§} S VP (4.15b)

which implies
=g , A=-q@ , Ad3=gqg , Ay =—q2 . (4°16)

Moreover, the reader can easily check that the determinant of the 4 x 4 matrix of Poisson
brackets is nonvanishing, so that this matrix is invertible and the constraints are second-

~ class. Using the definition (2.11) of Dirac brackets, the nonvanishing Dirac brackets of the

. theory are found to be

{91142}* 2{93,94}*=“{92,<14}*=1 ) (4.17)

{P3:Q2}*—_"“‘{Pkqu}*=2 , V=13 . (4.18)

The calculation expressed by (4.17-18) is very important, since nonvanishing Dirac brackets
play the key role on quantization (cf. (4.4) and (4.6-7)). It may be now instructive to reduce
the theory described by (4.8) to a three-dimensional one setting g; = constant = k. One

thus deals with a model described by the Lagrangian

L —‘"-(92 + 93)41 + kg3 + W(qz2,q3) (4.19)

21
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where W(q2,¢3) = V(q2,93,k) = 3 (k2 ~2q2q3 ~—q§> . Using again the definition of canonical

momenta p;, one now finds three primary constraints

(! E(Pl —q2 — CI3) ~0 , (4.20)
Y2=p2=0 , (4.21)
s z(m . k) ~0 . (4.22)

This leads to a secondary constraint, i.e. g2 = 0, and all constraints are second-class [10].

One thus finds that the only nonvanishing Dirac brackets are

{pI)QI} =2 ) (4‘23)

{q1,qg}*=1 i - (4.24)

The passage to quantum theory is then made replacing Dirac brackets by the commutators
of the corresponding quantum operators, as described in the first part of this section.

However, we should say that progress has been recently made in developing new meth-
ods to study similar problems. As pointed out in [12], physicists have become interested
in theories where the splitting into first- and second-class constraints is not so desirable.
The main motivations for taking this point of view seem to be [12]:

(1) In the case of the Green-Schwartz formulation of the super-string, one finds that
the requirement of a manifestly supersymmetric description of the system is incompatible

with the classical elimination of second-class constraints.
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(2) It may happen that the first-class constraint algebra develops an anomaly upon
quantization. In the quantum theory one is then dealing with what is essentially a second-
class system, but there is no obvious way to classically remove these constraints, since
they were originally first-class. Relevant examples are given by the quantization of the
bosonic string, and by the anomaly in Gauss’s law when gauge theories are coupled to
chiral fermions.

In [12], second-class constraints are not eliminated at the classical level. The author
is instead able to show that one can deal with second-class constraints in the quantum
theory, and he shows what are the additional conditions to impose on a state so as to call

it a physical state. Attention is there restricted to the case where second-class constraints

&({’I) can be decomposed into two first-class subsets (gaf,”,xﬁ”), where the ‘PSI.I) are linear

in momentum and the xf,I) are gauge-fixing terms with no momentum dependence. Inter-

estingly, the example here studied in Egs. (4.1-7) is there studied in a completely different
way, finding the two physical states of the second-class system. The details can be found
in section 4 of [12], but cannot be given here, since this would force us to become very
technical.

From the point of view of gravitational physics, it appears both desirable and possible
to apply the ideas in [12] to the quantization of theories of gravity with torsion, which

are relativistic theories of gravitation with second-class constraints ([13] and references

therein).
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5. ADM Formalism and Constraints in Canonical Gravity

In section 3 we have studied Dirac’s general method to quantize first-class constrained
systems, and we are now aiming to apply this technique to general relativity. For this pur-
pose, it may be useful to describe the main ideas of the Arnowitt-Deser-Misner (hereafter
referred to as ADM) formalism. This is a canonical formalism for general relativity that en-
ables one to re-write Einstein’s field equations in first-order form and explicitly solved with
respect to a time variable. For this purpose, one assumes that four-dimensional Lorentzian
space-time (M, g) is topologically ¥ x R and can be foliated by a family of t = constant
spacelike surfaces S; all diffeomorphic to X, giving rise to a 3 + 1 decomposition of the
original four-geometry. The basic geometric data of this decomposition are as follows [14].

(1) The induced three-metric h of the three-dimensional spacelike surfaces S;. This
yields the intrinsic geometry of the three-space. h is also called the first fundamental form
of Si, and is positive-definite with our conventions.

(2) The way each S; is embedded in (M,g). This is known once we are able to
compute the spatial part of the covariant derivative of the normal n to S;. Denoting by V

the four-connection of (M, g), one is thus led to define the tensor
K,‘j = ——an; . (5.1)

Note that K;; is symmetric if and only if V is symmetric [1]. The tensor K is called
extrinsic-curvature tensor, or second fundamental form of S;.

(3) How the coordinates are propagated off the surface S;. For this purpose one
defines the vector (N, N', N2, N3)dt connecting the point (,z') with the point (¢ +dt,z").
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Thus, given the surface z° = ¢t and the surface z° = ¢ 4 dt, Ndt = dr specifies a proper
displacement normal to the surface z° = t. Moreover, N'dt yields the ;lisplacement from
the point (¢,z%) to the foot of the normal to z° = ¢ through (t+dt, z?). In other words, Ndt
specifies the proper-time separation of the ¢ = constant surfaces, and the N arise since
the o' = constant lines do not coincide in general with the normals to the ¢t = constant
surfaces (cf. Fig. 4.2 in [14]). According to a well-established terminology, N is the lapse
function, and the N® are the shift functions. They are the tool needed to achieve the
desired space-time foliation.

In light of points (1-3) as above, the four-metric g can be locally cast in the form

gz = hi; (da,-" + N*‘dt)@ (d:.cj + NI dt) ~ N?dt @ dt
=( _ N4 N,-N*') dt ® di + N; (dt Q@ dei + do' @ dt) +hyde' @ de? . (52)

This implies that

goo = —(N2 - NiNi) y (5.3)
gio = goi = N; (5.4)
gij = hi; (55)

1
* = Nz (5.6)
. . Nt
9 =9"=57 (5.7)

25



Canonical and Perturbative Quantum Gravity

NiNi

Qij = h¥ N2

(5.8)

Interestingly, the covariant g;; and h;; coincide, whereas the contravariant g/ and R
differ as shown in (5.8). In terms of N, N* and h, the extrinsic-curvature tensor defined in

(5.1) takes the form

il

1 Oh;;
K;; ﬁ(— 3t1 +N,'U+Nj|;> , (5.9)

where the stroke | denotes three-dimensional covariant differentiation on the spacelike

three-surface Sy, and indices of K;; are raised using h*. Eq. (5.9) can be also written as

6h,-,v
ot

= N;; + N;j; —2NK;; . (5.10)

Eq. (5.10) should be supplemepted by another first-order equation expressing the time
derivative of the momenta p*/ conjugate to the three-metric, or equivalently the time
evolution of kij (since p'/ is related to K*/). The details can be found for example in
[14,15].

Using the ADM variables described so far, the form of the Lorentzian action integral I

for pure gravity that is stationary under variations of the metric vanishing on the boundary

is (in ¢ = 1 units)

1 . ; 1 VEPTN
I = <) — * o K ?
167G /o, R +/—detgd m+81rG aMK' det hd’z
.;- 1 GR+ Ki; K9 — (K".)Z NVdet h d’z dt . (5.11)
167G Ja, i ‘ '
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The boundary term appearing in (5.11) is necessary since () R contains second derivatives

of the metric, and integration by parts in the Einstein-Hilbert part

1
= DR /—det g d*
Iy 162G ., R et gdiz

of the action also leads to a boundary term equal to —5-;%—5 /. onr K i v/det h d*z. Denoting

by Gap the Einstein tensor Gqp = Y Rgp — %gab (YR, and defining

6Te, = %gd' [Va (5gzb) + Vs (591a) - V:(@.;b)] ) (5.12)

one then finds [16]

167Gy = — f V/—det g G 8gap d*z
Al
+ f v/—det g (9765 - 9“53) §Td, (d%) , (5.13)
8AI c

which clearly shows that Iy is stationary if the Einstein equations hold, and the normal
derivatives of the variations of the metric vanish on the boundary 8M. In other words, I'y
is not stationary under arbitrary variations of the metric, and stationarity is only achieved
after adding to Iy the boundary term appearing in (5.11), if §gqp is fixed on 8M. Other
useful forms of the boundary term can be found in [16,17]. Note also that, strictly, in

writing down (5.11) one should also take into account a term arising from Iy and given

by [18]

I = g;la /dt /m &z 8 [Vaet h(KY N' — b Nj;) |
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However, we have not explicitly included I; since it does not modify the results derived or

described hereafter. With our conventions, and defining
V2N = hYNi; (5.14)

the Lorentzian ADM formulae for the curvature are found to be [1]

) Roij = -}Vagtij + KKy
- %(NmK,-ﬂm + N7 Kjm + NT; im) + E]'Vl , (5.15)
DR =~ (Kuy — Kiju) (5.16)
WRY = _ H/: ag:z - KiK' - ITVV_'(K’;;) . V;N] , (5.18)
DR = @R+ [Kinl, — %agjj —2KimK; m}
+ %(N’nmj,m + N Kjm + NT;-Ksm) —-]% , (5.19)
WR = R4 K K + (Kt,)z - %%K;_I' - %[VZN — NP (K’,)IJ : (5.20)

Indeed, in quantum gravity one is often interested in the real Riemannian section of a

complex space-time, where the metric is positive-definite (see section 7). In that case, the

ADM form of the four-metric is

gn =(N? + N,-N") dr @ dr + N; (dr @ da’ + da' ® dT) thidei @dzd ,  (5.21)
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where 7 is the so-called Euclidean time. The Euclidean formula for the extrinsic-curvature

tensor is obtained multiplying by i Eq. (5.9) when its right-hand side is evaluated at

t = —i7. This leads to
1 hi;
KB _ (é.._?. ~ Nyj; — Nju) ) ; (5.22)

Thus, by virtue of Eqs. (5.21-22) one finds [1]

1 0K;j

® Row; = - Ba-u + KU
L/om Nyi;
+ —N-(N Kijim + NT:Kjm + NTK; ) + (5.23)
| 1 8K}, N VN
wpo _ 10K, i N (gm 24
3 M) T e
- 10K;; m
(4)R — (3)Rz_] l:KUKl + —ﬁ ‘BTJ 2K1,mKJ }
+ 5 (N Kijim + NTiKjm + NhK,,,,) L (5.25)
y 2 208KY% 2
Dp _Gp _ .. Kt __ 1\ _ £ 1, % |g2 P 1 . .
R=®R-K;K' - (K ot +N[v N+N (K,)‘p] (5.26)

We are now ready to apply Dirac’s technique to general relativity, so as to derive the
constraint equations. Since the action functional (5.11) is independent of the time deriva-
tives of N and N?, the corresponding conjugate momenta, denoted by p(z) and p(z)

respectively, give rise to the primary constraints

p(z) =0 (5.27)
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pi(z)~0 . (5.28)

Requiring the preservation in time of (5.27-28) one finds the secondary constraints

.. 2
H = (167G) ™ Vdet h[K,-,-K” - (K',) - G”R} ~0 (5.29)
Ho=-2"7,~0 . (5.30)

Dirac’s extended Hamiltonian Hg for the gravitational field is thus given by
Hg = / [NH + NH +dp+ Aip'| &2 (5.31)

where lapse and shift, originally defined in a geometrical way, play the role of Lagrange
multipliers that can be freely spetified, and additional arbitrary multipliers A and A; have

been introduced for the Iz;fimary constraints. Eq. (5.31) can be used since we aré aealing '
with a first-class constrained Hamiltonian system; This result is proved as follows. As we
know, consistency of the constraints is shown if one finds that their commutators lead to

no new constraints. For this purpose, it may be useful to recall the commutation relations

of the canonical variables

[N(a:), p(m’)] = ib(z,2') (5.32)
[Ni(:c),pj(:c')] =isi | (5.33)
[h,’j,pk'l'] =5 KT (5.34)
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Note that, following [18], primes have been uéed, either on indices or on the variables

themselves, to distinguish different points of three-space. In other words, we define

§ =68 b(z,2') (5.35)

6ijk'll = Sijkl 6(2}, 23’) ) (5-36)
ko Ll ckel | cigk

5 = 5 (ks +alst) (5.37)

The reader can easily check that

[(2),7(=")] =[p(2), #:(=")] =[p(), H(=")] =[p'(2), 1 (2")] =[p'(2), H1(2")] =0
| (5.38)
It now remains to compute the threg COmmutaf:élf§ [‘Hg,’H jf]; [7{;',7{'] , [’H,'H’] . ‘The first
tworcémmui;ators é,re “’obtained using’ Eq. (530) énd &eﬁning"Hi = h;HI. Interestingly,
H; is homogéneous bilinear in the h;; and p'l, with the momenta always to the right. Since

the correct version of the Hamiltonian and momentum constraints (5.29-30) is

/Hg dzp=0 V¢ (5.39)
/ Hit dPap=0 VE (5.40)

we begin by computing [18]
[hij,i/’}'{k'5£k‘ dsm'] = —hij6¢% — hkjéfk’i - hikb-ﬁk,j , (5.41)
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[pij,i/Hk’6£k' dswl] — ~(pij5£k)

This calculation shows that the H; are indeed generators of three-dimensional coordinate

Lt priset L +p™ee . (5.42)

¥

transformations #* = z' + 5£i. Thus, using the definition of structure constants of the

general coordinate-transformation group [18]
Ck ij! = k i,lllb‘;'l - 6k 3,0 6‘! ’ ) (5.43)

the results (5.41-42) may be used to show that
[’H,(m),'H,(m')] = —i/?‘{k:cck’;j. dafl}” N (5.44)

[ﬂ;(xj,ﬂ(m')] = iH §(z,2') . (5.45)

' Note that the only term of H which might lead to difficulties is the one quadratic in the
momenta. However, all factors appearing in this terth have homogeneous linear trans-
formation laws under the three-dimensional coordinate-transformation group. They thus

remain undisturbed in position when commuted with H; [18].
Finally, we have to study the commutator [‘H(z),'}{(m’ )] . The following remarks are
now in order:

(i) Terms quadratic in momenta contain no derivatives of h;; or p'/ with respect to

three-space coordinates. Hence they commute;

(ii) The terms 4/det h(z) ((3)R(:c)) and 4/det h(w')((3)R(m')) contain no momenta,

so that they also commute;
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(i) The only commutators we are left with are the cross commutators, and they can

be evaluated using the variational formula [18]

6(\/det h (3)R) = Vdet h hijh“(6hik,jl - 5hsj,kz)
— +/det h {(3)Rij _ _;_hij ((a)R)] §hij (5.46)

which leads to

[ f HE, P, / He, dsm] =i / H (5152,,- -51,,-52) $r . (5.47)

The commutators (5.44-45) and (5.47) clearly show that the constraint quations of canon-
ical quantum gravity are first-class. As we said in section 1, the Wheeler-De Witt equa-
tion (5.39) is an equation on the superspace S(M) = Riem(M)/Dif f(M). In Wheeler’s
superspace-based hybrid sc;heme the séatial diffeomorphisms are facf;ored; but thé oper'a‘tor’
constraint (5.39) is retained 8]. | N

Two very useful classical formulae frequently used in Lorentzian canonical gravity are

okl vdet h((:")R) ,

H = (167G)Gijrip P e (5.48)
H = (167G) " GV KK - Vaet h(R)| (5.49)
where Gijii, called De Witt supermetric [19,20], is such that
Gijrl = 5—\/;——— (hikhjl + hithjr — hijhkl) | ) (5.50)
et h
GiM = —‘/d—zT-—h (R h' + RRI* — 208RYT) (5.51)
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and p/ is here defined as —¥dsth (K i —hUK ',). Note that the factor —2 multiplying

hiiR*! in (5.51) is needed so as to obtain the identity

GijmnGmnH

(%61 + ! l6¥) . (5.52)

wlr-‘

Interestingly, since on the real Riemannian section of a complex space-time we can think
of K;; as being replaced by —K;; in the sense specified by Egs. (5.9) and (5.22), whereas
the coefficient of N? in the four-metric changes sign and the three-metric is unaffected by

the Wick rotation, the Hamiltonian constraint takes the Euclidean-time form

H = (167G) ™! [ - GUH Ki;Ku — Vet h(®R)| 0 . (5.53)

5

| Eq. (5.48) ’cylea.rly showé thdg 'H contains a part éuadratic in the momenta and a part
pr(:;portidnal to (®) R. On quantization, it is theﬁ hard to give a well-defined meaning to the
second functi(;nal» derivative m, whereas the occurrence of () R makes it even more
difficult to solve exactly the Wheeler~De Witt equation. Nevertheless, since our paper deals
with canonical quantum gravity within the geometrodynamical approach, our next aim is

to describe the relevant geometrical and topological features of Wheeler’s superspace.
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6. Mathematical Theory of Wheeler’s Superspace

Let M be a compact, connected, orientable, Hausdorfl, C* three-manifold without bound-
ary. Following [21], we say M is a superspatial. If g is a Riemannian (i.e. positive-definite)
C* metric on a superspatial M, the pair (M,g) is also called a superspatial. For a
given superspatial M, one denotes by Riem(M) the space‘ of Riemannian C'* metrics
on M, and by Dif f(M) the group of C*° orientation-preserving diffeomorphisms of M.
Dif f(M) acts as a transformation group on Riem(M); its action maps (f,g) to f*g,

where f € Dif f(M) and g € Riem(M). The space of all orbits of Dif f(M)
S(M) = Riem(M)/Dif f(M) (6.1)

is called superspace. In other words, Vg € Riem (M), we consider all metrics obtained from
g by the action of elements f € Dif f(M). If two metrics g and g are on the same orbit,

a diffeomorphism f of M onto itself exists such that
ffg=39 , (6.2)

which implies that g and g are isometric. Two metrics are isometric if and only if they lie
on the same orbit. S(M) is thus the set of geometries of M, which are equivalence classes
of isometric Riemannian metrics.

An important topological property of superspace, which is necessary to prove theorems

on its structure, is the following result [21]:

Theorem 6.1. Metrization Theorem for Superspace: The superspace S(M) is a
connected, second-countable, metrizeable space (i.e. a countable basis of open sets exists
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for its topology, and there also exists a metric on S(M) inducing on S(M) the given
topology).

Note that, since there are symmetric geometries on M, there are neighbourhoods of
S(M) not homeomorphic to neighbourhoods of non-symmetric geometries. This implies
the superspace defined in (6.1) cannot be a manifold. However, all geometries with the same
kind of symmetry have homeomorpﬁic neighbourhoods and they are thus a manifold. Two
theorems hold which enable one to understand how these manifolds can be put together to
give rise to superspace. For us to be able to state these theorems, some further definitions
are in order [21].

| (1) Let U be a compact subgroup of Dif f(M), and let us denote by (U) all compact

subgroups of Dif f(M) that are conjugate to U by an element in Dif f(M), i.e.
@ ={sust | FeDifsm) (63)

If some element of (H) is included in some element of (U), we say that (H) < (U). The

relation < is a partial ordering. The partially-ordered set of conjugacy classes of compact

subgroups of Diff(M) is used to index a partition of S(M).

(ii) A partition of a second-countable Hausdorff space X, is a set of non-empty sub-

spaces {Xa} such that:

X=JXa , a€c4d , (6.4)

[+

XoNXpto¢ =a=p . (6.5)
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The subspace X, is Hausdorfl, second-countable, and its components

({xi) 15cc.)

yield a partition of X, indexed by C,. If {Xa} is a partition for X, {X ;} is the complete
partition of X, indexed by

{(a,i) | aeA,ieca} =TI ¢

[ 4

A partition is said to be a manifold partition if each X, is a manifold.

(ili) A stratification (respectively, an inverted stratification) of a connected, second-
countable, Hausdorff topological épace X, is a countable, partially-ordered, manifold parti-
tion of X whose complete partition has the frontier property (respectively, inverted frontier
pfOperty)

XinXj#s o ot (e (0i)#(6,9))
= X! cXg, and a<p (@ (1) < (ﬂ,j))

(respectively : B < a (& (8,7) < (a,1))).

The manifolds X, are said the strata of the stratification, and the manifolds {X ;} are

the connected strata.

We are now in a position to state the following theorems [21]:

Theorem 6.2. Decomposition Theorem for Superspace: The decomposition of
S(M) by the subspaces {Sc;(M)} is a countable, partially-ordered, C°°-Fréchet manifold
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partition [A locally convex space which is metrizeable and complete is called a Fréchet
space, and manifolds can be modeled on any linear space in which one has a theory of

differential calculus. Fréchet manifolds are thus differentiable manifolds whose charts have

values in a Fréchet space].

Theorem 6.3. Stratification Theorem for Superspace: The manifold partition
{SG(M)} of §(M) is an inverted stratification indexed by the symmetry type.

This means that geometries with a given symmetry are completely contained within
- the boundary of less symmetric geometries. For example, the so-called minisuperspace
models studied in the literature only consider certain strata of superspace.

Since physicists are interested in writing down and studying differential equations,
it would be of inuch help if superspace could be exfgnded to a suitable manifold. This
extended superspace is robta.ine‘d from Riem(‘M)Aby fhe actién ofa suv‘bg’roup of Dz f f(M)
>With‘ the help of a suitable choice of such subgroup, the resulting orbit space is a manifold.

One can then prove what follows [21].

Theorem 6.4. Extension Theorem for Superspace: For every n-dimensional

superspatial M, the superspace S(M) can be extended to a suitable manifold §¢**(M),

such that

dim (sm(M)/S(M)) —n(n+1) . (6.6)
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7. The One-Loop Approximation in Perturbative Quantum Gravity

In the path-integral approach to quantum gravity, the space-time topology is no longer
bound to be ¥ x R as in canonical gravity, but one deals with a (fna.thematically ill-defined)
fc;rﬁlaiism which should enable one to consider, in principle, all possible topologies. The
basic postulate is that the amplitude A of going from a three-metric h and a matter-field
configuration ¢ on a spacelike surface T to a three-metric A’ and a field configuration ¢’

on a spacelike surface ¥’ is formally given by [1]

A1, |1,9) = [ Dlalp(@le 1510 . (7.0)

where Ig is the action integral for gravitation and matter fields in the Euclidean-time
- regime, the four-metrics g ind-ucing ther three-metrics on ¥ and 3’ and belonging to the
clésé C are required to be pdsiti?é—dgﬁnite (i.e.‘ we aéal with Riemannian four?geomefﬁes),
and the fields ® match ¢ on T and ¢' on ’. More precisely, we assume that real Lorentzian
space-time (M, g) with contravariant metric g%° is embedded as a real four-dimensional
submanifold in a complex four-manifold M., called the complexification of M. We also
assume that in M, a complex contravariant tensor field gf‘cb) is given of rank 2, such that
the restriction of gE‘f) to the cotangent space of the submanifold is real. M is then said
to be a real section of M,. Local coordinates for M, are (z,z*), and M is defined by the
condition ¢ = z* [1].

Unfortunately, the measure D[g]D[®] in (7.1) has not yet been given a rigorous math-

ematical meaning, we do not know how to evaluate path integrals over all four-geometries
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and all possible topologies, and the Euclidean action is not positive-definite, so that the
integrand in (7.1) may blow up exponentially after suitable conformal rescalings of the
four-metric. Moreover, there are topological obstructions to a Wick rotation, and in gen-
eral a real Lorentzi;n metric has not a section of the complexified space-time where the
metric is real and positive-definite (and viceversa). We thus restrict our analysis to the
semiclassical approximation of the (as yet lacking) full theory, since this approximation
has shed new light on thermodynamical properties of black holes, gravitational instantons
(section 9) and one-loop quantum gravity (section 10).

For this purpose, we study perturbative quantum gravity within the background-field
method. In the one-loop approximation (also called stationary-phase or WKB method)
one first expands both the metric ¢ and matter fields ¢ about a metric g, and a field ¢,

“which are solutions of the classical field equations

9=90+9 , o (12)

b=do+5 . (7.3)

One then assumes that the fluctuations g and ¢ are so small that the dominant contribution
to the path integral comes from the quadratic order in the Taylor-series expansion of the

action about the background fields gy and ¢ [22]
Iglg,d] = Ie[go, o] + I2[g, #] + higher — order terms (7.4)

so that the logarithm of the quantum-gravity amplitude A can be expressed as

log (4) ~ —Iz[go, ¢o] + log / Dlg, fleBEA (7.5)
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Various properties of background fields will be studied in section 9. For our present pur-
poses we are instead interested in the second term appearing on the right-hand side of
(7.5). An useful factorization is obtained if ¢y can be set to zero. One then finds that

L,[g,¢] = L[g] + I:[¢], which implies [22]

log (Z) ~ —I);';[go] + log ‘/‘D[d)]e"b[‘ﬁ] +1og/D[§]e_I’[§] . (7.6)

We here recall some basic results, following again [22].

A familiar form of I5[¢] is

L8 = [ ¢Bsvaiam dts (1.7)

where the elliptic diﬁ'er;:nt‘ial ‘"oper:aftpxj B depends on the background metric go. Note that B
is a second-order op‘er‘aﬁdrﬂfor b‘dsc"jnié“ﬁe‘ld‘s, Wher¢a.s it is first-order for fermidnic ‘ﬁélds.‘ In
tht of (7.7) it is cleé!r ‘wevz'a,vrre Aint‘.cwe;:'erysli;ed in thé eigeﬁvaluéé ’{An} of B, with cofresponding
eigenfunctions {qﬁn}. If boundaries are absent, it is sometimes possible to know explicitly
the eigenvalues with their degeneracies. This is what happens for example in de Sitter
space [23]. If boundaries are present, however, very little is known about the detailed form
of the eigenvalues, once boundary conditions have been imposed.

We here assume for simplicity to deal with bosonic fields subject to (homogeﬁeous)

Dirichlet conditions on the boundary surface: ¢ = 0 on M, and ¢, = 0 on OM, Vn.

It is in fact well-known that the Laplace operator subject to Dirichlet conditions has a
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positive-definite spectrum (page 9 of [24]). The field ¢ can then be expanded in terms of

the eigenfunctions ¢, of B as

¢ = Z Ynbn (7‘8)

n=ng

where the eigenfunctions ¢, are normalized so that

/¢n¢m‘\/ det go diz = bnm - (7.9)

Another formula we need is the one expressing the measure on the space of all fields ¢ as

=[0I rdv. (7.10)

n=ng

where the normalization parameter ¢ has dimensions of mass or (length)~!. Note that, if
‘gauge ﬁelds a,ppea.r in the ca.lculatlon, the chcnce of g,auge—averagmg a,nd the form of the

mea.sure in the path mtegral are not a tnwal problem The reader should a.lways bear in

AS'

. mind this remark, and he will find a detailed (although incomplete) study of these issues

7/

in [1]. Using well-known results about Gaussia,n integrals, the one-loop matter amplitudes

EE;) can be now obtained as

AP = [ Digle=r9

H[ﬂdyn 2"

n=ng

o0

= H (prz)x,jl)

n=ng

Wi

- ! . (7.11)

\/det( m=1u~2B)
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In the particular (and relevant) case of a complex scalar field in a complex or real Rieman-
nian space-time, the complex conjugate ¢* of ¢ can be replaced by its analytic continuation

5, where ; is now completely independent of ¢. The formula (7.7) for the one-loop term

is then replaced by
N N D “
Li6,3) =5 [Be/Eimds . (712)

The adjoint operator B has now eigenfunctions g;n, and the field ;S' can be expanded in

terms of these an as
$= > Unbn , (7.13)

whereas the measure D[qb,g] takes the form
oo

BT | A (A0

‘M=ng
Since one has to integrate over y, and ¥, independently, one now finds (cf. (7.11))

1
det(%a’r“lu’zB)

A = (7.15)

When fermionic fields appear in the path integral, one deals with a first-order elliptic

operator, the Dirac operator, acting on independent spinor fields ¢ and 12; These are

anticommuting Grassmann variables obeying Berezin integration rules

/dwz() , jwdw:l . (7.16)
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The formulae (7.16) are all what we need, since powers of w greater than or equal to 2
vanish in light of the anticommuting property. The reader can then check that the one-loop

amplitude for fermionic fields is

A = det (%p-"’s) : (7.17)

The main difference with respect to bosonic fields is the direct proportionality to the
determinant. The following comments can be useful in understanding the meaning of
(7.17). ~
Let us denote by y* the gamma matrices, and by A; the eigenvalues of the Dirac
operator y#D,, and suppose that no zero-modes exist. More precisely, the eigenvalues
of 7"1); occur in equg.l and opppsite pairs : *A;,3As, .., whereas the eigenvalues of
the Lapla.ce operator onspmors occuras (/\1)2 fwicel,v ()\2)2 f.vx;ice, a;ld ’As,o §n. f‘or Dirac

fermlons(D) one thus finds

detp (7“1),‘) - (1‘[ | M 1) (H | A 1) =TI~ (7.18)

whereas in the case of Majorana spinors (M), for which the number of degrees of freedom

is halved, one finds

detps (’y“D,,) = H | A; |= \/detp (’y"D,‘) . (7.19)
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8. Zeta-Function Regularization of Path Integrals

The formal expression (7.11) for the one-loop quantum amplitude clearly diverges since
the eigenvalues A, increase without bound, and a regularization is thus necessary. For this
purpose, the following technique has been described and applied by many authors [22,25].

Bearing in mind that Riemann’s zeta-function (g(s) is defined as

Cr(s)=) n7" (81)

one first defines a generalized zeta-function ((s) obtained from the (positive) eigenvalues

of the second-order, self-adjoint operator B. Such ((s) can be defined as
@= Y Y dnln - (82)

This means that all the eigenvalues are completely characterized by two integer labels n
and m, while their degeneracy d,, only depends on n. This is the case studied in [1]. Note

that formal differentiation of (8.2) at the origin yields

det (B) =e ¢ | (8.3)

This result can be given a sensible meaning since, in four dimensions, {(s) converges for

Re(s) > 2, and one can perform its analytic extension to a meromorphic function of s
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which only has poles at s = %,1, %,2. Since det (pB) = pf®) det (B), one finds the useful

formula
tog (&) = 3¢'(0) + 5 log (22 ) (0) - (8.4)

As we said following (7.7), it may happen quite often that the eigenvalues appearing in (8.2)
are unknown, since the eigenvalue condition, i.e. the equation leading to the eigenvalues
by virtue of the boundary conditions, is a complicated equation which cannot be solved
exactly for the eigenvalues. However, since the scaling properties of the one-loop amplitude

are still given by ¢(0) (and (’(0)) as shown in (8.4), efforts have been made to compute
the regularized ((0) also in this case. The various steps of this program are as follows [25].

(1) One first studies the heat equation for the operator B
EF(‘c:y;T) +BF(?ava) =0, (8.5)

‘where the Green’s function F satisfies the initial condition F(z,y,0) = §(z,y).

(2) Assuming completeness of the set {¢n} of eigenfunctions of B, the field ¢ can be

expanded as

¢= Z anén

n=n;

(3) The Green’s function F(z,y,7) is then given by
L

F(z,y,r): Z Z e_A"‘mrd’n,m(“’) ®¢n,m(y) . (8'6)

n=ng m=mg
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(4) The corresponding (integrated) heat kernel is then

o0 o0
G(r =/ Tr F(z,z,7)/det g d*z = e AnmT | 8.7
()= | TrF(o,z7)/det g >y (8.7)

n=ngo mM=mg

“(5) In light of (8.2) and (8.7), the generalized zeta-function can be also obtained as

an integral transform of the integrated heat kernel

<(s)=f(1_85 /0 T rtiG(r) dr (8.8)

(6) The hard part of the analysis is now to prove that G(7) has an asymptotic expan-
sion as T — 0% [26]. This property has been proved for all boundary conditions such that
~ the Laplace operator is self—adjoint. The corresponding asymptotic expansion of G(T) can

’ be.vwritteh as
G(r)~ b bR b b 4 b+ O(VE) (8.9)

which implies
¢(0)=0b5 . (8.10)
The result (8.10) is proved splitting the integral in (8.8) into an integral from 0 to 1 and

an integral from 1 to co. The asymptotic expansion of ful 7°~1G(7) dr is then obtained
using (8.9).

In other V\-rords, for a given second-order self-adjoint elliptic operator, we study the
corresponding heat equation, and the integrated heat kernel G(7). The regularized {(0)

value is then given by the constant term appearing in the asymptotic expansion of G(1)
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as T — 0T, and it yields the one-loop divergences of the theory for bosonic and fermionic

fields (section 10).
9. Gravitational Instantons

This section is devoted to the study of the background gravitational fields appearing in Egs.
(7.2-6). These gravitational instantons are complete four-geometries solving the Einstein
equations R(X,Y) — Ag(X,Y) = 0 when the four-metric g has signature +4 (i.e. it is
positive-definite, and thus called Riemannian). Following [27], essentially three cases can
be studied.
9.1. Asymptotically locally Euclidean instantons
Even though it might seem natural to deﬁnke»ﬁrst the asyn;lpytotically Euclidean instantons,
it turns out theré is not mﬁch chbicé in this case, since the only asymptotically Euclidean
instanton is flat space. | It is in fact well-known that the action of an asymptotically
Euclidean metric with vanishing séalar curvature is > 0, and it vanishes if and only if
the metric is flat. Suppose now such a metric is a solution of the Einstein equations
R(X,Y) = 0. Its action should be thus stationary also under constant conformal rescalings
g — k%g of the metric. However, the whole action rescales then as Iz — k?Ig, so that it
can only be stationary and finite if Ip = 0. By virtue of the theorem previously mentioned,
the metric ¢ must then be flat.

In the asymptotically locally Euclidean case, hov;ever, the boundary at infinity has

topology S*/T rather than S, where I is a discrete subgroup of the local tetrad rotation
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group SO(4). Many examples can then be found. The simplest was discovered by Eguchi

and Hanson, and corresponds to I' = Z, and M = RP3. This instanton is conveniently

described using three left-invariant one-forms {w,-} on the three-sphere, satisfying the

SU(Z) algebra: dw; = —%eijk wj A wg, and parametrized by Euler angles as follows:

wy = (cos®)dd + (siny)(sin )d¢p ‘ (9.1)
wy = —(sin®)d + (cos¥)(sinf)d¢ ' (9.2)
w3 = dip + (cosB)d¢p (9.3)

where § € [0,7], ¢ € [0,2x]. The metric of the Eguchi-Hanson instanton may be thus

written in the Bianchi-IX form [27]

| :a4 r2 2 ; "2” gt '2
gy = 1—;;— d‘r‘®d7‘+z (w1) +(w2) -I- 1_1'_4 (W3) B ‘ (94)
where 7 € [a,00[. The singularity of g; at r = a is only a coordinate singularity. We may

get rid of it defining 4%; =1- %}, so that, as » — a, the metric g; is approximated by the

metric

2
g2 = dp ® dp + p* [dp + (cos 6)dg ] g T (46 © d6 + (sin0)?dp ® dg] . (9.5)

- Regularity of g, at p = 0 is then guaranteed provided one identifies ¥ with period 2=. This
implies in turn the local surfaces r = constant have topology RP?® rather than S°, as we
claimed. Note that at » = @ = p = 0 the metric becomes that of a two-sphere of radius

2. Following [28], we say that r = a is a bolt (i.e. a fixed point of the action which is a
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two-surface), where the action of the Killing vector % has a two-dimensional fixed-point
set [27].
A whole family of multi-instanton solutions is obtained taking the group I' = Z;.

They all have a self-dual Riemann-curvature tensor [22], and their metric takes the form

2
g:V—l(dr+1.d_m) +Vde-de . (9.6)

Following [27], V = V(z) and v = () on an auxiliary flat three-space with metric dz-dz.
This metric g solves the Einstein vacuum equations provided grad V = roty, which implies

V2V = 0. If we take

. n 1 '
V:ém , | (9.7)

we obtain the desired asymptotically locally Euclidean multi-instantons. In particular, if

n= 1in (9.7), g describes flat space, whereas n = 2 leads to the Eguchi-Hanson instanton.

Ifn> 2, there are 3n — 6 arbitrary parameters, related to the freedom to choose the

positions z; of the singularities in V. These singularities correspond actually to coordinate

singularities in (9.5), and can be removed using suitable coordinate transformations [27].

9.2. Asymptotically flat instantons

This name is chosen since the underlying idea is to deal with metrics in the path integral

which tend to the flat metric in three directions but are periodic in the Euclidean-time

dimension. The basic example is provided by the Riemannian version gg) (also called

Euclidean) of the Schwarzschild solution

-1
gg) = (1 — 2%) dr @ dr + (1 - 224—) dr @ dr +r2Q (9.8)
r
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where @ = df @ df + (sin§)?d¢ ® d¢ is the metric on a unit two-sphere. It is indeed
well-known that, in the Lorentzian case, the metric gy is more conveniently written using

Kruskal-Szekeres coordinates
gL :32M3r"le"?1r‘—l(~dz®dz+dy®dy) +r2Q (9.9)

where z and y obey the relations

r =
_2? z(m_ - 1)321\1 , | (9.10)

Ezfg:e—n . | (9.11)

L ]

In the Lorentzian case, the coordinate singularity at 7 = 2M can be thus avoided, whereas

the curvature singularity at » = 0 remains and is described by the surface 22 —y? = 1.

" However, if we set ¢ = zz,the “aria,l‘j}ti’c continuation to the section of the ‘complé;dﬁed

space-time where ( is real yields the positive-definite (i.e. Riemannian) metric

o) =32Mr e W (d @ d( +dy @ dy) +770 (9.12)
where
2,.2_(_T _ 5
¢“+y _(2M 1)8W . (9.13)

It is now clear that also the curvature singularity at » = 0 has disappeared, since the

left-hand side of (9.13) is > 0, whereas the right-hand side of (9.13) would be equal to —1
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at » = 0. Note also that, setting z = —i¢ and t = —i7 in (9.11), and writing (* + 3 as

(v +1¢)(y —3¢) in (9.13), one finds

r

y+il = eint —2%——1 eT (9.14)

T T _r_
=cos(m)1/2—]‘z —1 e | (9.15)

which imply that the Euclidean time 7 is periodic with period 8w M. This periodicity on
the Euclidean section leads to the interpretation of the Riemannian Schwarzschild solution
as describing a black hole in thermal equilibrium with gravitons at a temperature (87 M)™!
[27]. Moreover, the fact that any matter-field Green’s function on this Schwarzschild back-
gréund is also periodic in imaginary time leads to some of the thermal-emission properties
~.of blaék holes; This is 6ne of the greatést conceptua.l revolutions in modern\gré,vitational
physics.

| There is also a local version of the asymptotically flat boundary condition in which
OM has the topology of a nontrivial S!-bundle over 52, i.e. S3/T, where I is a discrete
subgroup of SO(4). However, unlike the asymptotically Euclidean boundary condition,
the S? is distorted and exﬁands with increasing radius in only two directions rather than
three [27]. The simplest example of an asymptotically locally flat instanton is the self-

dual Taub-NUT solution, which can be regarded as a special case of the two-parameter

Taub-NUT metrics

_(r+ M) 2 (r — M) 2 2 2 2
9= Gt @ dr AN () +(r? = M) [@) + @), (916)

52



Canonical and Perturbative Quantum Gravity
where the {w;} have been defined in (9.1-3). The main properties of the metric (9.16) are:
(I) r € [M,0[, and r = M is a removable coordinate singularity provided v appearing
in (9.1-3) is identified modulo 4;
(II) the r = constant surfaces have S® topology;
(III) » = M is a point a,t""whic}} the isometry generated by the Kil]ing vector 2 has

oy

a zero-dimensional fixed-point set.

In other words, r = M is a nut, i.e. a fixed point éf the action which is an isolated point
[28].

B Thgre is also a family of asymptotically locally flat multi-Taub-NUT instantons. Their
metric takes the form (9.6), but one should bear in mind that the formula (9.7) is replaced
; by_ e , L ;
i) e
- Again, the singularities at £ = z; can be removed, and the instantons are all self-dual.
9.3. Corﬁpact instantons
Compact gravitational instantons occur in the course of studying the topological structure
of the gravitational vacuum. This can be done by first of all normalizing all metrics in
the functional integral to have a given four-volume V', and then evaluating the instanton
contributions to the partition function as a function of théir topological complexity. One
then sends the volume V to infinity at the end of the calculation. If one wants to constrain

the metrics in the path integral to have a volume V, this can be obtained by adding a
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term EA;V to the action. The stationary points of the modified action are solutions of the

Einstein equations with cosmological constant A: R(X,Y) — Ag(X,Y) =0.

The few compact instantons that are known can be described as follows [27].
(1) The four-sphere S*, i.e. the Riemannian version of de Sitter space obtained by
analytic continuation to positive-definite metrics. Setting to 3 for convenience the cosmo-

logical constant, the metric on §* takes the conformally-flat form [27]

g1 =48 ® df + 7 (sin B (@) + (@) + ()] (918)

where 8 € [0,n]. The apparent singularities at # = 0,7 can be made into regular nuts,
provided thg Euler angle 3 appearing in (9.1-3) is identified modulo 47. The 8 = constant
| : rsurfa.ces are topologically S 3 rand‘ the isometry group of the metric (9.18) is SO(5).

(2) If in 03 We 1dent1fy (z1,22,Z3) and (Azl,.\zg,)\zg), VA e C - {0}, we obtain,
by deﬁmtlon, CP2 For this two-dimensional complex space one can find a real four-‘
dimensional metric, which solves the Einstein equations with cosmological constant A. If

we set A to 6 for convenience, the metric of C P? takes the form [27]
1, .
911 = dB ® df + (sin B)? [(w;)z + (w2)? + (cos ﬁ)Z(wa)z] , (9.19)

where 8 6[0, -’25} A bolt exists at § = 7, where ”&% has a two-dimensional fixed-point

set. The isometry group of gy is locally SU(3), which has a U(2) subgroup acting on the

three-spheres 8 = constant.
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(3) The Einstein metric on the product manifold $2 x $? is obtained as the direct

sum of the metrics on 2 two-spheres

2
9= (6: ® a8 + (sin 8:)2dg; @ dd) . (9.20)
i=1

| -

The metric (9.20) is invariant under the SO(3) x SO(3) isometry group of §% x §2, but is

not of Bianchi-IX type as (9.18-19). This can be achieved by a coordinate transformation

leading to [27]
grir = dB ® df + (cos B)*(w1)? + (sin B)? (w2)? + (w3)® (9.21)

where A =2and g8 € [0, —’25] . Regularity at 3 = 0, 7 is obtained provided that 1 is identified

modulo 27 (cf. (918)) Rémarkably, this is a regular Bianchi-IX Einstein metric in which

. the coefﬁgients of wy ,’wg and w, are all different. .

(4) The nontrivial S2-bundle over S? has a metric Which, setting A = 3, may be cast
in the form [27]

L 2 (1 B Vzmz) dz @ dz | (1 B Vzmz) 2 2
gn —(1 +v ) (3 e (1 N uz):c‘-’) (1 - :c?) + (3 Py u*‘) ((un) + (w2) )

(302 =02 (1442)%)

(3 —~ VZ) (1 ~ Vzmz) (1 B ”2)(“’3)2 ’ (9.22)

+

where z € [0,1], and v is the positive root of
w? 44w — 6w’ +12w—-3=0 . (9.23)
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The isometry group corresponding to (9.22) may be shown to be U(2).
(5) Another compact instanton of fund_a.méntal importance is the K3 surface, whose
explicit metric has not yet been found. K3 is defined as the compact complex surface
whose first Betti number and first Chern class are vanishing. The mathematically-oriented

reader might now like to recall the following basic concepts.

C1. The p-th Betti number B, can be seen as the number of independent closed p-surfaces

that are not boundaries of some (p + 1)-surface [22].

C2. A complex structure on a real manifold M is a tensor field J#, such that J* J¥, =
—&*#,, and satisfying an integrability condition that enables one to introduce local complex

coordinates z/ on M so that transition functions between different coordinate patches are

holomorphic.

- C38. Given a complex structure J*,, a Hermitian metric is a Riemannian metric g such

that J*J%, guv = gpo-

C4. Let g i¥ be a Hermitian metric, and consider the real (1,1) form J = igﬁ dz3 A dz*.
A Kaihler metric is by definition a Hermitian metric with dJ = 0. If 9% is Kahler, the
corresponding closed form J = w is called the Kahler form. A Hermitian metric is Kahler
if and only if J#, is covariantly constant with respect to the connection defined by g. This

means that, for Kdhler metrics, the Riemannian structure is compatible with the complex

structure.
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C5. The Ricci tensor of a Kahler metric [29] is a (real, symmetric) bilinear form of type

(1,1), and the associated two-form is the Ricci form p.
C6. The first real Chern class c; is represented by the two-form .

C7. A Kahler metric on a complex manifold is said to be Kahler-Einstein if the Ricci form

p is proportional to the Kahler form w: p = Aw.

C8. According to Calabi’s conjecture, given a compact Kahler manifold M, its K&hler
form w, its real first Chern class ¢;(M), then any closed (real) two-form of type (1,1)
belonging to 2me;(M) is the Ricci form of one and only one Kahler metric in the Kéhler
class of w.

So far twistor theory has given important contributions to the K3-metric problem,
since it provides a method so as to obtain explicit apprqximations to the K3 metric [30],
- and it leads té a pro'bf of the : ,e:tistén?:e o"f’ KéihieIQEinéfein ;met;:ics on-K 3 [31,32] We
| now focus on the léxtter de’velopﬁlent,»tryinrg to’exbplajn its'imp;)rtance, its lirl;lits and what
remains to be done.

Indeed, Yau’s proof [33] of Calabi’s conjecture [34] already leads to an existence the-
orem for Kahler-Einstein metrics on K3, but it does not lead to explicit calculations.
Topiwala obtained the same result using the following idea [31,32]: if a Kahler-Einstein
metric on K3 exists, then it gives rise to a canonical one-parameter deformation of the
complex structure. Before going on, it is worth saying that a one-parameter deformation is

a set of deformations indexed by ¢, where ¢ can either be real or complex. The deformation

is said to be canonical if it depends only on the Kahler-Einstein metric, and not on any
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choice of coordinate used to express structures (e.g. a coordinate description of metrics).
The advantage of Topiwala’s method is that it shows under which conditions the twistor
space for K3 is biholomorphic to the one for the Eguchi-Hanson m;atric (9.4). One thus
gets an explicit result, proving Page’s conjecture [35]. However, it should be emphasized
that this method is a substitute for the existence theorem obtained using partial differen-
tial equations, and does not lead to the knowledge of the metric. Thus, it seems we are
left with two main possibilities:

(a) To go on with twistor theory. Remarkably, in order to know a priori the twistor
space, one should know all complex strﬁctures on K3. A number of them has already been
studied [30], but the task seems to be very hard;

(b) To use deformation theory [36,37].

Two topological invariants exist which may be used to characterize the various gravitational
 instantons studied so far. These invariants are the Euler number x and the Hirzebruch

signature 7. The Euler number can be defined as an alternating sum of Betti numbers
XEBQ~B1+B2~B3+B4 . (924)
The Hirzebruch signature can be defined as

T = B;‘ -B; (9.25)

where B is the number of self-dual harmonic two-forms [38], and B, is the number of
anti-self-dual harmonic two-forms [in terms of the Hodge-star operator *Fy, = %eubchc‘i ,

self-duality of a two-form F is expressed as *F = F, and anti-self-duality as *F = —F].
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In the case of compact four-dimensional manifolds without boundary, x and 7 can be

expressed as integrals of the curvature [22]

1 : .
X = 19872 f RopcaReggn gabef cdgh Vdet g diz , (9.26)
T JAM
1 ab cdef 4
= 96:3 /;w RapcaR™; €77 y/det g d*z . (9.27)

For the instantons previously listed one finds [27]

Eguchi-Hanson: x =2, 7 = 1.

Asymptotically locally Euclidean multi-instantons: x = n,T=mn- 1.
Schwarzschild: X=2,T= 0

S

Asymptotically locally flat multi-Taub-NUT instantons: x = n,T=n-—1.

CP?*: x=3,7=1.
52x 8% x=4,7=0.
S2_bundle over $?: x =4, T = 0.

K3: x =24, T =16.
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10. Concluding Remarks

Recent work on canonical quantum gravity has emphasized the role of connections [15],
rather than Wheeler’s geometrodynamics. In Ashtekar’s formalism, the space-time metric
is a secondary object, while the new configuration variable is the restriction to a three-
manifold of a SL(2,C) spin-connection. The momentum conjugate to this variable is a
- SU(2) soldering form which turns internal SU(2) indices into SU(2) spinor indices. Re-
markably, in terms of these new variables, the scalar curvature (®) R of the three-manifolds
no longer appears, and the constraints are polynomial. Further progress has been made
using the Rovelli-Smolin loop-variables approach. However, the Rovelli-Smolin transform
remains a formal tool because it has not been given a rigorous mathematical meaning in
| 3+1 ‘§p§ce-§ime dimensions [39]

By contrast, since the author’s research in quantum gravity has only used the ADM
formalism and the corre"(sponding f(v)irm of the Wheeler-De Witt equation, we have described
in this review paper those properties of Dirac’s theory and of quantum geometrodynamics
which are also relevant to perturbative quantum gravity via (Euclidean-time) path integrals
[1,40]. A naturally-occurring application of the techniques described in sections 7 and 8 has
emerged in the last few years, i.e. the study of perturbative properties of physical theories
in the presence of boundaries within the framework of one-loop quantum cosmology [1].
The corresponding problems are as follows.

(i) Choice of locally supersymmetric boundary conditions [1]: they involve the normal

to the boundary and the field for spin %, the normal to the boundary and the spin--fzi
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potential for gravitinos, Dirichlet conditions for real scalar fields, magnetic or electric field
for electromagnetism, mixed boundary conditions for the four-metric of the gravitational
field (and in particular Dirichlet conditions on the perturbed three-metric).

(ii) Quantization techniques: one-loop amplitudes can be evaluated by first reducing
’ 1he classical theory to ihf: physical degrees of freedom (hereafter referred to as PDF) by
choice of gauge and then qﬁantizing, or by using the gauge-averaging method of Faddeev
and Popov, or by applying the extended-phase-space Hamiltonian path integral of Batalin,
Fradkin and Vilkovisky [1].

(iii) Regularization techniques: the generalized Riemann zeta-function and its rggular—
ized ¢(0) value (which yields both the scaling of the one-loop prefactor and the one-loop
divergences of physical theoﬁes) can be obta.iped by studying the eigenyalue equations
obéyed by perturbative ‘modes, once the ,cqr;'esppnding degenera_cies"and bounda,r& cohdii
L ";ti‘c.ms are i{nbwn, 'of by usin‘ugﬂ geometncal form_uiae for o-ne-loovp c;unte;téfxﬁs which‘ gen-
erzﬂize well-known results for §calé;r fields, but make no use of xvnod;a-b/y-‘mode eigehvalﬁé
cqndjtions and degeneracies.

It turns out that one-loop quantum cosmology may add further evidence in favour
of different approaches to quantizing gauge theories being inequivalent. Studying flat
Euclidean backgrounds bounded by a three-sphere, for electromagnetism the ?DF method
yields {(0) = —7%5 and ¢(0) = &% in the magnetic and electric cases respectively [1],
whereas the indirect Faddeev-Popov method (i.e. when one-loop amplitudes are expressed
using the boundary-counterterms technique and evaluating the various coefficients as in

[41]) is found to yield {(0) = —32 in both cases [1,42]. For N = 1 supergravity, the PDF
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method yields partial cancellations between spin 2 and spin % [1], whereas the indirect
Faddeev-Popov method yields a one-loop amplitude which is even more divergent than in
the pure-gravity case [41]. Finally, for pure gravity, the PDF method yields {(0) = -—ﬂs- in
the Dirichlet case, whereas the indirect Faddeev-Popov method yields ((0) = —2 [1,41].
Moreover, within the PDF approach, it is possible to set to zero on S* the linearized
magnetic curvature. This yields a well-defined one-loop calculation, and the corresponding
¢(0) value is 112 [1]. By contrast, using the Faddeev-Popov formula, magnetic boundary
conditions for pure gravity are ruled out [41].

It is therefore necessary to get a better understanding of the manifestly gauge-invariant

formulae for one-loop amplitudes used so far in the literature, by performing a mode-by-

mode analysis of the eigenvalue equations, rather than relying on general formulae which

- conta.in no explicit information about degeneracies and leigenva.lue conditions.' As shown

in [ ] t}ns deta.ﬂed ana.ly31s ca.n be attempted for vacuum Ma,xwell theory studled at one—'

loop about flat Euchdean backgrounds bounded by a three sphere, recently conSJdered

in perturbative quantum cosmology. Working within the Faddeev-Popov formalism and
making a 3 + 1 split of the vector potential, the full {(0) value takes into account the
contribution of the physical degrees of freedom, i.e. the transverse part A(T) of the vector
potential, the gauge modes, i.e. the 4y component and the longitudinal part A(X) of ttxe
vector potential, and the ghost action. Interestingly, a gauge-averaging term can be found
such that the contributions to {(0) of physical degrees of freedom and of decoupled mode

for Ap add up to -—— both in the electric and in the magnetic case. However, remaining

modes for A, and A(L) are always found to obey a coupled system of second-order ordinary
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differential equations. This system has been solved exactly [1], but unfortunately the
power series appearing in its solution are not (obviously) related to well-known special
functions. The corresponding asymptotic analysis (i.e. at large values of the eigenvalues)
is therefore much harder, and remains a stimulating challenge for applied mathematicians
and theoretical physicists. It also turns out that, in the presence of boundaries, gauge
modes should remain coupled, for us to be able to find a linear, elliptic second-order
operator corresponding to theA ghost action. Since the difficulties concerning gauge modes
and ghost fields are technical in nature and not completely unfamiliar (i.e. systems of
ordinary differential equations, fourth-order algebraic equations, finite parts of diverging
series), there is hope that the research initiated in [1] Will shed new light on oxie-loop

properties of physical theories in the presence of boundaries.
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