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Canonical and Perturbative Quantum Gravity 

Abstract. After a review of Dirac's theory of iconstrained Hamiltonian systems and their 

quantization, canonical quantum gravity is studied relying on the Arnowitt-Deser-Misner 

formalism. First-class constraints of the theory are studied in some detail following De 

Witt's work, and geometrical and topological properties of Wheeler's superspace are dis­

cussed following the mathematical work of Fisher. 

Perturbative quantum gravity is then formulated in terms of amplitudes of going from 

a three-metric and a matter-field configuration on a spacelike surface ~ to a three-metric 

and a field configuration on a spacelike surface ~'. The Wick-rotated quantum amplitudes 

are here studied under the assumption that the analytic continuation to the real Rieman-
I 

nian section of the complexified space-time is possible, but this is not a generic property. 

Within the background-field method, one then expands both the four-metric g and mat­

ter fields <P about a configuration (go, <Po) which is a solution of the classical equations 

of motion. If the one-loop approximation holds, the part of the action quadratic in the 

fluctuations about (go, <Po) gives the dominant contribution to the quantum amplitudes. 

This leads to Gaussian integrals and to formally divergent amplitudes, since the one-loop 

result involves the determinant of second-order elliptic operators. 

The corresponding divergences are regularized using the zeta-function method. For 

this purpose, following Hawking, one first defines a generalized zeta-function ((s) obtained 

from the eigenvalues of the elliptic operator B appearing in the calculation. Such ( s) can 

be analytically extended to a meromorphic function which only has poles at some finite 

values of s. The values of ( and its first derivative at the origin enable one to express the 

one-loop quantum amplitudes, whose scaling properties only depend on (0) under suitable 
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assumptions on the measure in the path integral. Although it frequently happens that the 

eigenvalues of B cannot be computed exactly, the regularized (0) value can be obtained 

by studying the heat equation for the elliptic operator B. The corresponding integrated 

heat kernel G(T) has an asymptotic expansion as T ~ 0+ for those boundary conditions 

which ensure self-adjointness of B. The (0) value is then given by the constant term in 

the asymptotic form of G(T), and it also determines the one-loop divergences of physical 

theories. The zeta-function technique has been recently applied to the study of one-loop 

properties of supersymmetric field theories in the presence of boundaries. 

Some relevant examples of gravitational background fields are then studied. These 

gravitational instantons are complete, four-dimensional Riemannian manifolds whose met­

ric solves the Einstein equations with cosmological constant: R(X, Y) - Ag(X, Y) = o. 

The possible boundary conditions are asymptotically Euclidean, asymptotically locally 

Euclidean, asymptotically flat, asymptotically locally flat, compact without boundary. 
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1. Introduction 

Despite the lack of a mathematically consistent theory of quantum gravity, the quantiza­

tion of general relativity or of alternative theories of gravitation is still receiving careful 

consideration in the current literature. The two main motivations for this analysis are 

the singularity problem in cosmology, and various attempts to understand perturbative 

or non-perturbative renormalization of quantum field theories [1]. The aim of this review 

paper is therefore to present, in a way accessible to a large number of physicists and math­

ematicians, the minimal set of well-established mathematical techniques that should be 

familiar to all those working on quantum gravity. 

For this purpose, in sections 2, 3 and 4 Dirac's theory of constrained Hamiltonian 

systems is described, discussing in detail primary and secondary constraints, first-class 

and second-class constraints, Dirac brackets, effective Hamiltonian, total Hamiltonian and 

extended Hamiltonian. Dirac's prescription for quantizing first-class and second-class sys­

tems is then given, jointly with examples and discussion. The gravitational field, which 

is a first-class constrained system, is then studied in section 5, using the Arnowitt-Deser­

Misner 3 +1 decomposition of space-time geometry, and applying Dirac's theory to derive 

constraints and write down the quantum version of these constraints. These can be re­

garded as functional differential equations on Wheeler's superspace, i.e. a quotient space 

whose points are equivalence classes of metrics related by the action of the diffeomorphism 

group of a compact spacelike three-surface. More precisely, the superspace S(M) is de­

fined as S(M) = Riem(M)/Diff(M). With this notation, M is a compact, connected, 
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orientable , Hausdorff, Coo three-manifold without boundary. Riem(M) is the space of 

Coo Riemannian metrics on M, and Dill(M) is the group of Coo orientation-preserving 

diffeomorphisms of M. Geometrical and topological properties of Wheeler's superspace 

are thus studied in section 6. 

In section 7, the problems of the path-integral approach to quantum gravity are first 

presented. Although the full theory via path integrals does not exist, and although quan­

tized general relativity is perturbatively non-renormalizable [which has led to the study 

of non-perturbative renormalization via canonical quantum gravity], the one-loop approx­

imation can be studied in detail in some cases. The corresponding Gaussian integrals are 

regularized using the generalized-zeta-function technique in curved backgrounds (section 

8). This involves the fascinating study of the eigenvalues of self-adjoint elliptic operators. 

The background gravitational fields are studied in section 9 in the asymptotically locally 

Euclidean, asymptotically fiat, and compact cases. Concluding remarks ahd open research 

problems are presented in section 10. 

2. Hamiltonian Methods in Physics 

-,.. 

It is quite often the case that theories of interest in modern physics are formulated as 
( 

.­constrained systems. This happens whenever the Lagrangian L is singular (we begin by 

studying the case of a finite number of degrees of freedom for simplicity), so that there is 

no unique solution of Hamilton's equations of motion expressing the velocities in terms of 
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the canonical coordinates qi and conjugate momenta Pi (i.e. det 8:12~J = 0). One then 

finds that certain functions <p~)(q,p) exist such that 

(2.1) 

Following [2] and [3], -we say that the primary constraint <p~) is weakly zero; in other words, 

in working out Poisson brackets on the phase space with other canonical variables, <p~) can 

be set to zero only after these brackets have been computed, and some of these brackets do 

not vanish. Note that, on the constraint manifold :E defined by (2.1), no Poisson bracket 

can be defined, since if some F{ q, p) ~ 0 on :E, its gradient does not necessarily vanish 

weakly on :E. The problem thus arises to eztend out of :E the Legendre transform He of 

L by adding a linear combination of constraints. One is then led to define an effective 

Hamiltonian H given by the sum 

(2.2) 

Note also that the coefficients 'U m of linear combination are not constants, but depend on 

the canonical variables q,p. In light of (2.1), the new equations of motion generated by ii 

are 

(1)8. i _ { i H-} He () 8<p m (2.3)q = q, ~ 8Pi + 'U m q,p 8Pi 

(1)8 8• { -} He () <pmPi = Pi,H ~ - 8qi -'Um q,p 8qi (2.4) 
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where curly brackets denote Poisson brackets. We now have to make sure that the primary 

constraints <p~) are preserved in time. This implies that 

(2.5) 

Essentially three possibilities occur: 

(1) Eq. (2.5) already holds by virtue of (2.1); 

(2) Eq. (2.5) can be solved for Uj == Uj(q,p); 

(3) Eq. (2.5) leads to secondary constraints <p}2)(q,p) independent of Uh(q,P). 

The outlined procedure is then repeated until all secondary constraints, and finally all 

Uj == Uj(q,p) have been found, so that ii == ii(q,p). The set Se of all constraints is then 

given by (we define secondary all constraints which are not primary) 

(2.6) 

In geometrical language, one can compute the secondary constraints <p}2) (q, p) by defining 

the vector field (cf. (2.3-4)) 

( 
8He 8<P~») 8 (8Hc 8<P~») 8r = ~ +um(q,p)-.o­ ~- ~ +um(q,p)~ ~ 
UPi UPi uq~ uq? uq? UPi 

and then taking the Lie derivative Lr<p~). 

A more convenient (and fundamental) division of the set Se can be, however, obtained. 

For this purpose, we note that the Poisson bracket of any two elements of Se mayor may 

not be a linear combination of constraints. This property can be made precise by giving 

the following definitions [2,3]: 
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Definition 2.1. The function F(q,p) is a first-class quantity if 

(2.7) 

Definition 2.2. The function F(q,p) is a second-class quantity if 

(2.8) 

Note that a number of second-class constraints might be brought into the first class by 

means of independent linear combinations. We call irreducible those second-class con­

straints which cannot be brought into the first class. In what follows, we always assume 

the second-class constraints we deal with are irreducible. First-class constraints are here 

denoted by <p~\q,p), ~nd second-class constraints by <p)II)(q,p). An equivalent definition 

of the set Sc of all constraints is then given by 

Se ={I"~l, m = 0,1,'... , L' j 1";11), j = 0, 1, ... , M' } (2.9) 

where L' + M' = L + M. Moreover, with our notation, <p~,I)(q,p) and <p~,II)(q,p) de­

note primary first-class and primary second-class constraints, whereas <p~II)(q,p) and 

<p~III) (q, p) denote secondary first-class and secondary second-class constraints respec­

tively. 

Relevant examples of first-class Hamiltonian systems are electromagnetism and general 

relativity, whereas second-class constraints occur for example in relativistic theories of 

gravitation with nonvanishing torsion, or after imposing gauge constraints on a first-class 

system. 
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The definition of second-class constraints enables one to understand which quantities 

can be set to zero also before computing any bracket. For this purpose, one first proves 

[2] that the matrix aim ={ <p~II), <p~I)} of Poisson brackets of second-class constraints is 

non-singular. The second step [3] is to define, for any given G(q,p), a new variable G(q,p) 

given by 

G=G-{G In(II)}a- 1rn(II) . (2.10)- ,rl 1m rm 

so that {G, <p~II)} ~ 0, Vr E { 0,1, ... , M'}. In other words, Ghas vanishing Poisson 

brackets with all second-class constraints, whereas {O, <p~)} may be ¢O mE 

{O,1, ... ,L'}. Thus, defining the Dirac bracket of F1(q,p) and F2 (q,p) as 

(2.11 ) 

one finds the fundamental results 

(2.12) 

(2.13) 
... 

In other words, second-class constraints are now strongly vanishing, and Dirac brackets .. 
are the tool needed to achieve this and deal only with first-class constraints in the classical 

theory (see also section 4). 

The Hamiltonians we are interested in are essentially of four kinds: 

9 



Canonical and Perturbative Quantum Gravity 

(1) The canonical Hamiltonian He, i.e. the Legendre transform of L. This is the 

relevant Hamiltonian if L is non-singular; 

(2) The effective Hamiltonian ii, i.e. 

- - H . ( ) (1)( ) - H {H (1)}C- 1 (1)H = e+Um q,p 'I'm q,p - e- e,cp, 1m 'I'm (2.14) 

This is the relevant Hamiltonian for theories with second-class constraints (section 4). 

(3) The total Hamiltonian HT, i.e. 

(2.15) 

(4) The extended Hamiltonian HE, i.e. 

(B)( ) (2)1)( )= HT + Tj q,pcpj q,p (2.16) 

Thus H T is given by the effective Hamiltonian H plus a linear combination of primary 

first-class constraints, whereas HE is given by HT plus a linear combination of secondary 

first-class constraints. This means that it is possible to include secondary constraints in 

the Hamiltonian, provided they are first-class. 

In fact, as explained in [2] (see below), there are certain changes in the q's and p's that 

do not correspond to a change of state, and which have as generators secondary first-class 

constraints. One is then led to generalize the equations of motion in order to allow as 

variation of a dynamical variable also any variation which does not correspond to a change 

of state. This is obtained using the extended Hamiltonian HE. The Hamiltonians ii, HT 

and HE are sharply distinguished ways of defining a Hamiltonian function on the whole 
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phase space, and they all reduce to He on the constraint manifold defined by (2.1) (and by 

(2.6) in the case of HE). In particular, the HE-formalism is reasonable from the physical 

point of view (see below), although it does not correspond to the original one deduced 

from a Lagrangian [2,4]. 

Note that, in the case of first-class constrained systems, (2.15) becomes 

(2.17) 

For example, this is what happens for electromagnetism. An intermediate step is also 

possible for U(l) gauge theory (and general relativity), following [2]. Namely, one only 

includes secondary first-class constraints in the Hamiltonian HI defined as 

(B) ( ) (2,1)( )HI =He + T j q,p <Pj q,p (2.18) 

Whenever the extended Hamiltonian HE is used, the equations ~f motion take the 

form 

(2.19) 

Pi ={Pi' HE } ~{Pi' jj} .... 

(2.20) ... 

The physical state of the system is not affected by the infinitesimal contact transformations 

generated by the first-class constraints of the theory [2,3]. This is a crucial point, and 

Dirac's original argument is as follows [2]. 
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Given at time t any function gt( q, p), we study its time evolution. At time t + €, gt+f. 

is found by definition as 

gt+€ = gt + €{g,HT} (2.21) 

Setting rm 0 in (2.15), this yields 

gt+E = gt + €{g,ii} (2.22) 

However, we may also take Tm = Cm =/:. O. This leads to 

flt+E = gt + €{g, ii} + €Cm{g, c,o~,I)} (2.23) 

Both choices must correspond to the same physical state at time t + 6t, since the physical 

state at t+€ is the one arising from the given initial physical state at time t. From (2.22-23) 

we find 

A _ { (I,I)}gt+E - gt+€ - € Cm g, c,om (2.24) 

Thus all primary first-class constraints c,o~ ,I), regarded as generators of a contact trans­

formation, give rise to a transformation which does not change the physical state. 

Dirac's next step is· to consider two of these transformations. Denoting by X~I,I) 

and .,p~l,I) two primary first-class constraints, the first transformation changes 9 into 9 + 

(2.25) 
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He then neglects e2 and e,2, but retains ee' in the calculation. Even though e2, e,2 and 

ee' are of the same order, this approximation is valid, since otherwise, by retaining terms 

involving e2 and e,2, one would obtain an equation holding for all values of e and e'; one 

2has thus to set to zero the coefficients of e , of e,2 and of ee'. This would lead to three 

equations, but the first two are trivial so that one is not interested in them. Now, by 

applying the two transformations in the reverse order, one obtains 

92 9 + e{ 9, X~lII)} + e' {9' 1/J~lII)} + ee' { {9' 1/J~1II)}, X~1II)} (2.26) 

In light of (2.25), this leads to 

91 - 92 = ee' {9' { X~l!I), 1/J~l!I) } } (2.27) 

Thus, using the group property of all transformations which leave the physical state un­

changed, Dirac finds there must be further transformations of this type which do not affect 

the physical state. He then points out that the only generalization of the argument is that 

the primary first-class constraints X~l!I) and 1/J~lII) might be replaced by secondary first­

class constraints p~2II) and u~2II) also leading to an equation formally identical to (2.27) 

and thus generating transformations which do not change the physical state. 

However, Dirac made it clear he had not been able to obtain a rigorous mathematical 

proof that all first-class constraints, whether primary or secondary, do not change the 

physical state. This has been proved only much later in [5]. As discussed in detail in [5,6], 

if a function f( q, p) is first-class, it must be gauge-invariant, and 

j(q,p) ~{f,HT} ~{f,HE} (2.28) 
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In other words, the total Hamiltonian HT and the extended Hamiltonian HE generate 

the same time evolution for the gauge-invariant functions f( q, p), and are thus physically 

equivalent. By contrast, if f(q,p) is gauge-dependent, HT and HE generate different equa­

tions of motion, and the two formalisms cannot be compared. The detailed calculations in 

[6] add evidence in favour of Dirac's interpretation of first-class constraints being correct. 

3. Dirac's Quantization of First-Class Constrained Hamiltonian Systems 

Suppose we deal with a theory where all constraints are first-class. The canonical coordi­

nates qi, with conjugate momenta Pi, are made into operators satisfying canonical com­

mutation relations (hereafter referred to as CCR) corresponding to the Poisson brackets of 

the classical theory. The mathematically rigorous form of these CCR is the exponentiated 

Weyl form [7,8] 

U(al )U(a2) = U(al + a2) (3.1 ) 

V(b1 )V(b2) = V(b1 b2) (3.2) 

U(a)V(b) eihabV(b)U(a) (3.3) 

where U(a) = e- iap and V(b) = e-ibri. By virtue of the Stone-von Neumann theorem, the 

unique (up to unitary equivalence) unitary representation of (3.1-3) is 

(V(b).,p)(q) = e-ibq.,p(q) (3.4) 

(U (a).,p)( q) = .,p(q ita) (3.5) 
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The generators of U(a) and V(b) are pand q respectively, and satisfy the familiar relations 

(q"p ) ( q) q"p (q ) (3.6) 

(3.7) 

together with the CCR 

(3.8) 

This holds on the dense domain of infinitely differentiable functions of compact support. 

Of course, the more general form of (3.8) we are interested in is 

"'i ",] 'f: d 
[q ,Pj = 1,11,0 j (3.9) 

We then study a Schrodinger equation 

i 11, a"p = fIT"p (3.10)at 

where "p is the wave function, and fIT the suitably defined operator corresponding to 

the first-class Hamiltonian (2.17), also denoted by iI' in the literature [2,3]. The next 

step in the quantization program is to impose all fir8t-cla88 con8traint8 as supplementary 

conditions on the wave function, so that 

",(1),,1. - 0
CP, 'f"- (3.11) .. 

The naturally-occurring question is whether the equations (3.11) are consistent with one 


another. Indeed, for 1'=1=1, we know that 


'" (1),.1. - 0
cP" 'f"- (3.12) 
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We now multiply (3.12) by <pi1
) and (3.11) by <pi!). The subtraction of the resulting 

equations leads to 

'" (1) '" (1)] ,,/. - 0 
[ <P I , <P I' 'f'- (3.13) 

Note that, in the classical theory, (3.13) would be obviously satisfied, since by definition the 

Poisson bracket of any two first-class constraints is again a linear combination of first-class 

constraints. In the quantum theory, however, it is not a priori obvious that 

A A A(1) (1)] () (1) ( ) 
[ <P, ,<P" = Cll'm q,p <Pm q, P (3.14) 

In other words, for (3.13) to be a consequence of (3.11-12), the additional condition (3.14) 

should hold. Since Cll'm depends on all q's and p's, it does not commute with the <p~!) in 

the quantum theory. The problem is thus to make sure that Cll'm appears on the left in 

(3.14), and no extra terms occur. 

If (3.14) holds, the first-class constraints are consistently imposed as supplementary 

conditions on"p. By contrast, if it is not possible to obtain (3.14) with the help of suitable 

factor-ordering prescriptions, the quantum theory we are looking for is ill-defined. In 

the favourable case, one should go on, and check whether the conditions (3.11) are also 

consistent with the Schrodinger equation (3.10). Since fIT is a first-class Hamiltonian, this 

means one should find 

(3.15) 

which holds provided 

A ( (1) H"'] b ( ) A 1) ( ) 
[ 
<P, , T = 1m q,p <Pm q,p (3.16) 
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Again, we find a condition which is certainly satisfied in the classical theory, whereas in the 

quantum theory there may be serious problems, since b'm depends on the q's and p's, and 

thus does not necessarily appear on the left when we compute the commutator [<pi 1) ,fiT]' 

4. Dirac's Quantization of Second-Class Constrained Hamiltonian Systems 

In section 2 we remarked that irreducible second-class constraints can be eliminated in 

the classical theory, after they are set strongly to zero by using the Dirac brackets (2.11). 

Following [2], it can be instructive to see what happens in the simplest case, i.e. when two 

second-class constraints exist of the form 

PI ~ 0 (4.1) 

Of course, the corresponding quantum operators cannot be used to impose supplementary 

conditions on the wave function of the form 

q'"p = 0 Pl"p = 0 

since these would be inconsistent with the CCR (3.9) 

..[ql ,PI]"p = i1i"p 

Now, by virtue of (4.1), one might point out that q' and PI are not of interest. One is thus 

* led to define a new bracket { , } in the classical theory, where the degree of freedom 
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corresponding to the index 1 has been discarded, so that 

(4.2) 

One then tries to set up the quantum theory in terms of all degrees of freedom but for the 

value n = 1. We are then looking for an operator representation of Dirac brackets, such 

that second-class constraints are realized strongly, i.e. as equations between operators. In 

the above example, since Dirac brackets are 

{q',PI}*-- 0 (4.3) 

Vi,ji=l (4.4) 

an irreducible representation of Dirac brackets is given by 

I
Q

A =pz 0 (4.5) 

Qi-r/J = qi-r/J Vii=l (4.6) 

Pi"" = -in r;:.
q' 

Vii=l (4.7) 

I.e. the usual Schrodinger representation for qi. and Pi, Vii=l, described in section 3, and the 

zero operator for QZ and Pl. Dirac's quantization program when second-class constraints 

exist can be thus described as follows. 

(1) One picks out irreducible second-class constraints; 

(2) Using Dirac brackets (2.11), these constraints are set strongly to zero; 
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(3) Since, for any g(q,p), {g, HT } * ~{g, HT}' the classical equations of motion take 

the form 

(4) On quantization, commutation relations are taken to correspond to Dirac-bracket 

relations, and second-class constraints are realized as equations between operators; 

(5) With the exception of some (simple) examples, one has to bear in mind that it 

may be not possible to find an irreducible representation of the Dirac-brackets algebra. 

This remains an open problem; 

(6) Remaining first-class constraints are imposed as supplementary conditions on the 

wave function; 

(7) For these first-class constraints, one has to check that (3.14) and (3.16) hold. 

In light of points (5) and (7) as above, Dirac's quantization in the presence of second­

class constraints is far from being straightforward. It may be thus very helpful to study a 

nontrivial example of second-class constrained systems. For this purpose, we here describe, 

following in part [9], a second-class system with no secondary constraints. The four primary 

second-class constraints may be reduced by one. In the corresponding theory there are 

three primary second-class constraints and one secondary second-class constraint [10]. The ... 
theory is then quantized using Dirac's method. 

In other words, as done in [9], one begins by studying a theory described by the 

Lagrangian 

(4.8) 
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where V(q2, q3, q4) = ~ (q~ -2q2q3 -qi). The study of (4.8) is motivated by a generalization 

of the work by Feynman recently described in [11], and we here use, for simplicity of 

notation, a convention for the indices of q's and p's different from what we have done so 

far. In light of (4.8) and of the definitions Pi == gt, one finds the four primary constraints 

(4.9) 

P2 =P2 :::::: 0 ( 4.10) 

(4.11) 

(4.12) 

As usual, the weak-equality symbol means that the constraints only vanish identically 

on the constraint manifold :E, but may have nonvanishing Poisson brackets with some 

canonical variables. The canonical Hamiltonian He, i.e. the Legendre transform of L, is 

then given by 

4 

He - LPo/Jo: - L 
0:=1 

(4.13) 

However, as we said in section 2, we want to extend He out of :E. For this purpose we 

define the effective Hamiltonia~ ii (cf. (2.2)) on the whole phase space, which coincides 

with He on :E. In our case, ii becomes 

H - He + Al P1 + A2P2 + A3P3 + A4P4 

(4.14) 
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Ai (q, p) =(Ai + qi). Interestingly, the preservation in time of the primary 

constraints (4.9-12) leads to no secondary constraints in the theory, since 

{PI, if} - (A2 + A3) { P2 , if} = Al q3 (4.15a) 

(4.15b){P3,ii} Al - A4 - q2 - q3 {P4' if} -A3 + q4 

which implies 

Al = q3 A2 = -q4 A3 = q4 A4 = -q2 ( 4.16) 

Moreover, the reader can easily check that the determinant of the 4 x 4 matrix of Poisson 

brackets is nonvanishing, so that this matrix is invertible and the constraints are second­

class. Using the definition (2.11) of Dirac brackets, the nonvanishing Dirac brackets of the 

theory are found to be 

(4.17) 


Vk = 1,3 ( 4.18) 

The calculation expressed by (4.17-18) is very important, since nonvanishing Dirac brackets , . 
play the key role on quantization (cf. (4.4) and (4.6-7». It may be now instructive to reduce 

the theory described by (4.8) to a three-dimensional one setting q4 = constant = k. One 

, . 

thus deals with a model described by the Lagrangian 

(4.19) 
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where W( q2, q3) = V(q2, q3, k) = ~ (k2 -2q2q3 -Qi). Using again the definition of canonical 

momenta Pi, one now finds three primary constraints 

(4.20) 

(4.21) 

(4.22) 

This leads to a secondary constraint, i.e. Q2 ~ 0, and all constraints are second-class [10]. 

One thus finds that the only nonvanishing Dirac brackets are 

(4.23) 

(4.24) 

The passage to quantum theory is then made replacing Dirac brackets by the commutators 

of the corresponding quantum operators, as described in the first part of this section. 

However, we should say that progress has been recently made in developing new meth­

ods to study similar problems. As pointed out in [12], physicists have become interested 

in theories where the splitting into first- and second-class constraints is not so desirable. 

The main motivations for taking this point of view seem to be [12]: 

(1) In the case of the Green-Schwartz formulation of the super-string, one finds that 

the requirement of a manifestly supersymmetric description of the system is incompatible 

with the classical elimination of second-class constraints. 
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(2) It may happen that the first-class constraint algebra develops an anomaly upon 

quantization. In the quantum theory one is then dealing with what is essentially a second­

class system, but there is no obvious way to classically remove these constraints, since 

they were originally first-class. Relevant examples are given by the quantization of the 

bosonic string, and by the anomaly in Gauss's law when gauge theories are coupled to 

chiral fermions. 

In [12], second-class constraints are not eliminated at the classical level. The author 

is instead able to show that one can deal with second-class constraints in the quantum 

theory, and he shows what are the additional conditions to impose on a state so as to call 

it a physical state. Attention is there restricted to the case where second-class constraints 

eiII)can be decomposed into two first-class subsets (<piI),X~I»), where the <p~.I) are linear 

in momentum and the X~I) are gauge-fixing terms with no momentum dependence. Inter­

estingly, the example here studied in Eqs. (4.1-7) is there studied in a completely different 

way, finding the two physical states of the second-class system. The details can be found 

in section 4 of [12], but cannot be given here, since this would force us to become very 

technical. 

From the point of view of gravitational physics, it appears both desirable and possible 

to apply the ideas in [12] to the quantization of theories of gravity with torsion, which 

are relativistic theories of gravitation with second-class constraints ([13] and references 

therein). 
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5. ADM Formalism and Constraints in Canonical Gravity 

In section 3 we have studied Dirac's general method to quantize first-class constrained 

systems, and we are now aiming to apply this technique to general relativity. For this pur­

pose, it may be useful to describe the main ideas of the Arnowitt-Deser-Misner (hereafter 

referred to as ADM) formalism. This is a canonical formalism for general relativity that en­

ables one to re-write Einstein's field equations in first-order form and explicitly solved with 

respect to a time variable. For this purpose, one assumes that four-dimensional Lorentzian 

space-time (M,g) is topologically :E x R and can be foliated by a family of t = constant 

spacelike surfaces St all diffeomorphic to :E, giving rise to a 3 + 1 decomposition of the 

original four-geometry. The ba'sic geometric data of this decomposition are as follows [14]. 

(1) The induced three-metric h of the three-dimensional spacelike surfaces St. This 

yields the intrinsic geometry of the three-space. h is also called the first fundamental form 

of St, and is positive":definite with our conventions. 

(2) The way each St is embedded in (M,g). This is known once we are able to 

compute the spatial part of the covariant derivative of the normal n to St. Denoting by V 

the four-connection of (M, g), one is thus led to define the tensor 

(5.1) 

Note that Kij is symmetric if and only if V is symmetric [1]. The tensor K is called 

extrinsic-curvature tensor, or second fundamental form of St­

(3) How the coordinates are propagated off the surface St. For this purpose one 

defines the vector (N,Nl,N2 ,N3 )dt connecting the point (t,xi) with the point (t+dt,x i ). 
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O OThus, given the surface x = t and the surface x = t + dt, N dt =dr specifies a proper 

displacement normal to the surface x O = t. Moreover, Ni dt yields the displacement from 

the point (t, xi) to the foot of the normal to xO = t through (t+dt, xi). In other words, N dt 

specifies the proper-time separation of the t = constant surfaces, and the N i arise since 

the :c i = constant lines do not coincide in general with the normals to the t = constant 

surfaces (cf. Fig. 4.2 in [14]). According to a well-established terminology, N is the lapse 

function, and the N i are the shift functions. They are the tool needed to achieve the 

desired space-time foliation. 

In light of points (1-3) as above, the four-metric 9 can be locally cast in the form 

This implies that 

goo = - ( N 2 - NiNi) (5.3) 

giO = gOi = Ni (5.4) 

(5.5) 

whereas, using the property gAV gvp. = 6A
p.' one finds 

00 1 (5.6)9 = - N2 

N i 
·0 o· 

g" = 9 '= N2 (5.7) 
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(5.8) 

ijInterestingly, the covariant gij and h ij coincide, whereas the contravariant gij and h 

differ as shown in (5.8). In terms of N, N i and h, the extrinsic-curvature tensor defined in 

(5.1) takes the form 

(5.9) 

where the stroke I denotes three-dimensional covariant differentiation on the spacelike 

three-surface St, and indices of Kij are raised using hil. Eq. (5.9) can be also written as 

ah" . 
--.!!.. == N'I' +N·I, - 2NK·· (5.10)at "1 1 " '1 

Eq. (5.10) should be supplemented by another first-order equation expressing the time 

derivative of the momenta pij conjugate to the three-metric, or equivalently the time 

evolution of Kij (since pij is related to Kij). The details can be found for example in 

[14,15]. 

Using the ADM variables described so far, the form of the Lorentzian action integral I 

for pure gravity that is stationary under variations of the metric vanishing on the boundary 

is (in c == 1 units) 

(5.11) 
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The boundary term appearing in (5.11) is necessary since (4) R contains second derivatives 

of the metric, and integration by parts in the Einstein-Hilbert part 

of the action also leads to a boundary term equal to - S;G f81\1 Kii .Jdet h d3 a;. Denoting 

by Gab the Einstein tensor Gab _ (4) Rab - ~gab (4) R, and defining 

(5.12) 

one then finds [16] 

(5.13) 

which clearly shows that IH is stationary if the Einstein equations hold, and the normal 

derivatives of the variations of the metric vanish on the boundary 8M. In other words, IH 

is not stationary under arbitrary variations of the metric, and stationarity is only achieved 

after adding to IH the boundary term appearing in (5.11), if Sgab is fixed on 8M. Other 

useful forms of the boundary term can be found in [16,17]. Note also that, strictly, in 

writing down (5.11) one should also take into account a term arising from IH and given 

by [18] 
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However, we have not explicitly included It since it does not modify the results derived or 

described hereafter. With our conventions, and defining 

\7
2 

N =h 
ij 

Nlij (5.14) 

the Lorentzian ADM formulae for the curvature are found to be [1] 

(4) 1 i7~ij IRo'o' = --- +~. ~, . 
." J N i7t & J 

(5.15) 


(5.16) 

(5.17) 

(5.18) 

(4)R .. - (3)R"+ [v .. vi ~i7~ij_2~' ~.m]
'J - 'J fitJfi I N i7t J1m 

1 (N m v Nm v N m v ) . N\ij+ N fiijlm + lifijm + Ijfiim - N (5.19) 

(3)R +~ ..~ij + (~,,)2 _~ i7~I, _~ [\72 N _ NP (~I,) ] (5.20)
lJ N i7t N Ip . 

Indeed, in quantum gravity one is often interested in the real Riemannian section of a 

complex space-time, where the metric is positive-definite (see section 7). In that case, the 

AD M form of the four-metric is 

(5.21 ) 
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where T is the so-called Euclidean time. The Euclidean formula for the extrinsic-curvature 

tensor is obtained multiplying by i Eq. (5.9) when its right-hand side is evaluated at 

t = -iT. This leads to 

(5.22) 

Thus, by virtue of Eqs. (5.21-22) one finds [1] 

(4) 1 8Kii ,
Ro'o ' = - -- + K· K" , 1 N 8T ,1 

(5.23) 

(5.24) 

(4) . (3) [ , 1 8Kij m]R ·· - R··- K"K, + --- - 2K· K·') - '1 a) N 8T lm 1 

(5.25) 

~ 8K', + ~ [\72 N + NP (K',) ] . (5.26)
N8T N Ip 

We are now ready to apply Dirac's technique to general relativity, so as to derive the 

constraint equations. Since the action functional (5.11) is independent of the time deriva­

tives of Nand N i , the corresponding conjugate momenta, denoted by p(z) and pi (z) 

respectively, give rise to the primary constraints 

p(z) ~ 0 (5.27) 
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(5.28) 


Requiring the preservation in time of (5.27-28) one finds the secondary constraints 

(5.29) 

(5.30) 

Dirac's extended Hamiltonian HE for the gravitational field is thus given by 

(5.31) 

where lapse and shift, originally defined in a geometrical way, play the role of Lagrange 

multipliers that can be freely specified, and additional arbitrary multipliers A and Ai have 

been introduced for the primary constraints. Eq. (5.31) can be used since we are dealing 

with a £'rst~class constrained Hamiltonian system. This result is proved as follows. As we 

know, consistency of the constraints is shown if one finds that their commutators lead to 

no new constraints. For this purpose, it may be useful to recall the commutation relations 

of the canonical variables 

(5.32) 

(5.33) 

(5.34) 
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Note that, following [18], primes have been used, either on indices or on the variables 

themselves, to distinguish different points of three-space. In other words, we define 

., . 
5f =5f 5(x, x') (5.35) 

5.. k'l' = 5 .
'} 
.kl 5(x x') (5.36)I} - , 

(5.37) 

The reader can easily check that 

[p(X),pi(XI)] = [p(x), 1ti(X')] = [p(x), 1t(XI)] = [pi(x), 1ti(Xl)] = [pi(x), 1t(XI)] = 0 

(5.38) 

It now remains to compute the three commutators [1ii, 1ti'], [1ti' 1t' ], [1t, 1tl]. The first 

two commutators are obtained using Eq. (5.30) and defining"1ti = hii1ti . Interestingly, 

1ti is homogeneous bilinear in the hii and pii, with the momenta always to the right. Since 

the correct version of the Hamiltonian and momentum constraints (5.29-30) is 

(5.39) 

(5.40) 

we begin by computing [18] 

(5.41) 
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(5.42) 

This calculation shows that the 1£i are indeed generators of three-dimensional coordinate 

transformations -Zi = :vi + Se i • Thus, using the definition of structure constants of the 

general coordinate-transformation group [18] 

k" k" I" k" I" 
C 1.J""' =S I,"I" S"'J - S J,"' I" s·I (5.43) 

the results (5.41-42) may be used to show that 

(5.44) 

(5.45) 

Note that the only term of 1£ which might lead to difficulties is the one quadratic in the 

momenta. However, all factors app.earing in this term have homogeneous linear trans­

formation laws under the three-dimensional coordinate-transformation group. They thus 

remain undisturbed in position when commuted with 1£i [18]. 

Finally, we have to study the commutator [1£(:v) ,1£(:v')]. The following remarks are 

now in order: 

(i) Terms quadratic in momenta contain no derivatives of hi; or pi; with respect to 

three-space coordinates. Hence they commute; 

(ii) The terms y'det h(:v) (3)R(:v)) and y'det h(:v') (3)R(:v I 
)) contain no momenta, 

so that they also commute; 
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(iii) The only commutators we are left with are the cross commutators, and they can 

be evaluated using the variational formula [18] 

which leads to 

( 5.46) 

(5.47) 

The commutators (5.44-45) and (5.47) clearly show that the constraint equations of canon­

ical quantum gravity are first-class. As we sind in section 1, the Wheeler-De Witt equa­

tion (5.39) is an equation on the superspace S(M) =Riem(M)/Diff(M). In Wheeler's 

superspace-based hybrid scheme the spatial diffeomorphisms are factored, but the operator 

constraint (5.39) is retained [8]. 

Two very useful classical formulae frequently used in Lorentzian canonical gravity are 

i" kl Jdet h (3) )
1-£ =(167rG)GijklP ] P - 167rG R (5.48) 

(5.49) 


where Gijkl, called De Witt supermetric [19,20], is such that 

G""kl= 1 (h"khol+h"h"k-h ..hkl) (5.50)
1.] 2Jdet h 1.] 1.] '] 

(5.51) 
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and pij is here defined as - ~~:~h (Kij - hij K'l)' Note that the factor -2 multiplying 

hij hkl in (5.51) is needed so as to obtain the identity 

(5.52) 

Interestingly, since on the real Riemannian section of a complex space-time we can think 

of Kij as being replaced by -Kij in the sense specified by Eqs. (5.9) and (5.22), whereas 

the coefficient of N 2 in the four-metric changes sign and the three-metric is unaffected by 

the Wick rotation, the Hamiltonian constraint takes the Euclidean-time form 

-1 [ i -kl . r;-;-;- (3) )]11. =(167rG) - G J KijKkl - vdet h R R: 0 (5.53) 

Eq. (5.48) clearly shows that 11. contains a part quadratic in the momenta and a part 

proportional to (3) R; On quantization, it is then hard to give a well-defined meaning to the 

second functional derivative 6hi:~hJc" whereas the occurrence of (3) R makes it even more 

difficult to solve exactly the Wheeler-De Witt equation. Nevertheless, since our paper deals 

with canonical quantum gravity within the geometrodynamical approach, our next aim is 

to describe the relevant geometrical and topological features of Wheeler's superspace. 
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6. Mathematical Theory of Wheeler's Superspace 

Let M be a compact, connected, orientable, Hausdorff, Coo three-manifold without bound­

ary. Following [21], we say M is a auperapatial. If 9 is a Riemannian (i.e. positive-definite) 

Coo metric on a superspatial M, the pair (M,g) is also called a superspatial. For a 

given superspatial M, one denotes by Riem(M) the space of Riemannian Coo metrics 

on M, and by Diff(M) the group of Coo orientation-preserving diffeomorphisms of M. 

Diff(M) acts as a transformation group on Riem(M); its action maps (f,g) to f*g, 

where f E Diff(M) and 9 E Riem(M). The space of all orbits of Diff(M) 

S(M) =Riem(M)/Diff(M) (6.1) 

is called auperapace. In other words, \/g E Riem(M), we consider all metrics obtained from 

9 by the action of elements f E Diff(M). If two metrics 9 and 9 are on the same orbit, 

a diffeomorphism f of M onto itself exists such that 

f*g =9 (6.2) 

which implies that 9 and 9 are isometric. Two metrics are isometric if and only if they lie 

on the same orbit. S(M) is thus the set of geometries of M, which are equivalence classes 

of isometric Riemannian metrics. 

An important topological property of superspace, which is necessary to prove theorems 

on its structure, is the following result [21]: 

Theorem 6.1. Metrization Theorem for Superspace: The superspace S(M) is a 

connected, second-countable, metrizeable space (i.e. a countable basis of open sets exists 
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for its topology, and there also exists a metric on S(M) inducing on S(M) the given 

topology). 

Note that, since there are symmetric geometries on M, there are neighbourhoods of 

S(M) not homeomorphic to neighbourhoods of non-symmetric geometries. This implies 

the superspace defined in (6.1) cannot be a manifold. However, all geometries with the same 

kind of symmetry have homeomorphic neighbourhoods and they are thus a manifold. Two 

theorems hold which enable one to understand how these manifolds can be put together to 

give rise to superspace. For us to be able to state these theorems, some further definitions 

are in order [21]. 

(i) Let U be a compact subgroup of Diff(M), and let us denote by (U) all compact 

subgroups of Dilf(M) that are conjugate to U by an element inDiff(M), i.e . 

. ­

(U) ={ fU[-I I f E Diff(M)} (6.3)< 

If some element of (H) is included in some element of (U), we say that (H) ~ (U). The 

relation ~ is a partial ordering. The partially-ordered set of conjugacy classes of compact 

subgroups of Diff(M) is used to index a partition of S(M). 

(ii) A partition of a second-countable Hausdorff space X, is a set of non-empty sub-

spaces {Xa}such that: 

aEA (6.4) 

(6.5) 
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The subspace Xa is Hausdorff, second-countable, and its components 

yield a partition of X a indexed by Ca. If { X a } is a partition for X, {X~}is the complete 

partition of X, indexed by 

{ (a, i) I a E A, i E Ca } = II Ca 

a 

A partition is said to be a manifold partition if each Xa is a manifold. 

(iii) A 8tratification (respectively, an inverted 8tratification) of a connected, second-

countable, Hausdorff topological space X, is a countable, partially-ordered, manifold parti­

tion of X whose complete partition has the frontier property (respectiv~ly, inverted frontier 

property) 

a=lf3 ( ¢} (a, i)=I(f3,j)) 

=> X~ c X~ and a < f3 ( ¢} (a,i) < (f3,j)) 

(respectively: f3 < a (¢} (f3,j) < (a,i))). 

The manifolds Xa are said the 8trata of the stratification, and the manifolds {X~} are 

the connected strata. 

We are now in a position to state the following theorems [21]: 

Theorem 6.2. Decomposition Theorem for Superspace: The decomposition of 

S(M) by the subspaces { SG(M)} is a countable, partially-ordered, Goo-Frechet manifold 
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partition [A locally convex space which is metrizeable and complete is called a Frechet 

space, and manifolds can be modeled on any linear space in which one has a theory of 

differential calculus. Frechet manifolds are thus differentiable manifolds whose charts have 

values in a Frechet space]. 

Theorem 6.3. Stratification Theorem for Superspace: The manifold partition 

{ SG( M)} of S( M) is an inverted stratification indexed by the symmetry type. 

This means that geometries with a given symmetry are completely contained within 

the boundary of less symmetric geometries. For example, the so-called minisuperspace 

models studied in the literature only consider certain strata of superspace. 

Since physicists are interested in writing down and studying differential equations, 

it would be of much help if superspace could. be extended to a suitable manifold. This 

extended superspace is obtained from Riem(M) by the action of a subgroup of Dif f(M). 

'With the help of a suitable choice of such subgroup, the resulting orbit space is a manifold. 

One can then prove what follows [21]. 

Theorem 6.4. Extension Theorem for Superspace: For every n-dimensional 

superspatial M, the superspace S(M) can be extended to a suitable manifold se:d(M), 

such that 

dim (sezt(M)/S(M)) = n(n + 1) (6.6) 
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7. The One-Loop Approximation in Perturbative Quantum Gravity 

In the path-integral approach to quantum gravity, the space-time topology is no longer 

bound to be Ex R as in canonical gravity, but one deals with a (mathematically ill-defined) 

formalism which should enable one to consider, in principle, all possible topologies. The 

basic postulate is that the amplitude A of going from a three-metric h and a matter-field 

configuration </> on a spacelike surface E to a three-metric h' and a field configuration </>' 

on a spacelike surface E' is formally given by [1] 

(7.1) 

where IE is the action integral for gravitation and matter fields in the Euclidean-time 

regime, the four-metrics 9 inducing the three-metrics on E and E' and belonging to the 

class C are required to be positive-definite (i.e. we deal with Riemannian four-geometries), 

and the fields q} match </> on E and </>' on E'. More precisely, we assume that real Lorentzian 

space-time (M,g) with contravariant metric gab is embedded as a real four-dimensional 

submanifold in a complex four-manifold Me, called the complexification of M. We also 

assume that in Me a complex contravariant tensor field gr}) is given of rank 2, such that 

the restriction of gr:) to the cotangent space of the submanifold is real. M is then said 

to be a real section of Me. Local coordinates for Me are (x, x*), and M is defined by the 

condition x = x* [1]. 

Unfortunately, the measure D[g]D[<p] in (7.1) has not yet been given a rigorous math­

ematical meaning, we do not know how to evaluate path integrals over all four-geometries 
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and all possible topologies, and the Euclidean action is not positive-definite, so that the 

integrand in (7.1) may blow up exponentially after suitable conformal rescalings of the 

four-metric. Moreover, there are topological obstructions to a Wick rotation, and in gen­

eral a real Lorentzian metric has not a section of the complexified space-time where the 

metric is real and positive-definite (and viceversa). We thus restrict our analysis to the 

semiclassical approximation of the (as yet lacking) full theory, since this approximation 

has shed new light on thermodynamical properties of black holes, gravitational instantons 

(section 9) and one-loop quantum gravity (section 10). 

For this purpose, we study perturbative quantum gravity within 'the background-field 

method. In the one-loop approximation (also called stationary-phase or WKB method) 

one first expands both the metric 9 and matter fields <p about a metric 9u and a field <Pu 

which are solutions of the classical field equations 

9 == 90 +9 (7.2) 

(7.3) 

One then assumes that the fluctuations 9 and ¢ are so small that the dominant contribution 

to the path integral comes from the quadratic order in the Taylor-series expansion of the 

action about the background fields 90 and <Po [22] 

(7.4) 

so that the logarithm of the quantum-gravity amplitude A can be expressed as 

log (l) ~ -h[go, <Pol + log JD[g, ~le-I>ro,~J (7.5) 
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Various properties of background fields will be studied in section 9. For our present pur­

poses we are instead interested in the second term appearing on the right-hand side of 

(7.5). An useful factorization is obtained if 4>0 can be set to zero. One then finds that 

, . 

log (1) ~ -lE[goj + log JD[q,je-12 [4>] + log JD[gje-12lo] (7.6) 

We here recall some basic results, following again [22]. 

A familiar form of 12 [4>] is 

(7.7) 

where the elliptic differential operator B depends on the background metric 9u. Note that B 

is a second-order operator'for bos~nic Helds, whereas it is first-order for fermionic fields. In 

light of (7.7) it is clear we are interested in the eigenvalues { An } of B, with corresponding 

eigenfunctions {tPn}. If boundaries are absent, it is sometimes possible to know explicitly 

the eigenvalues with their degeneracies. This is what happens for example in de Sitter 

space [23] ~ If boundaries are present, however, very little is known about the detailed form 

of the eigenvalues, once boundary conditions have been imposed. 

We here assume for simplicity to deal with bosonic fields subject to (homogeneous) 

Dirichlet conditions on the boundary surface: tP = 0 on 8M, and tPn = 0 on 8M, \In. 

It is in fact well-known that the Laplace operator subject to Dirichlet conditions has a 
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positive-definite spectrum (page 9 of [24]). The field <p can then be expanded in terms of 

the eigenfunctions <Pn of B as 

00 

n=no 

(7.8) 


where the eigenfunctions <Pn are normalized so that 

(7.9) 


Another formula we need is the one expressing the measure on the space of all fields <p as 

(7.10) 

n=no 

where the normalization parameter J.L has dimensions of mass or (length)-l. Note that, if 

""gauge fields appear in the calculation, the choice of gauge-averaging and the form of the 

measure in the path integral are not a trivial problem. The reader should always bear in 
!r 

mind this remark, and he will find a detailed (although incomplete) study of these issues 

in [1]. Using well-known results about Gaussian integrals, the one-loop matter amplitudes 

A~l) can be now obtained as 

= II
00 

(21rJ.L2 A~l) "2 

1 

n=no 

1 
(7.11) 
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In the particular (and relevant) case of a complex scalar field in a complex or real Rieman­

nian space-time, the complex conjugate </>* of </> can be replaced by its analytic continuati,?n 

</>, where </> is now completely independent of </>. The formula (7.7) for the one-loop term 

is then replaced by 

(7.12) 

The adjoint operator Bt has now eigenfunctions ;jn, and the field ;j can be expanded in 

terms of these </>n as 

(7.13) 
n=no 

whereas the measure D [</>,;j] takes the form 

00 

D[</>, </>] = 	 II p2 dYn dfin (7.14) 
n=no 

Since one has to integrate over Yn and fin independently, one now finds (cf. (7.11)) 

(7.15) 

When fermionic fields appear in the path integral, one deals with a first-order elliptic 

operator, the Dirac operator, acting on independent spinor fields "p and "p. These are 

anticommuting Grassmann variables obeying Berezin integration rules 

Jdw=O Jwdw=l 	 (7.16) 
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The formulae (7.16) are all what we need, since powers of w greater than or equal to 2 

vanish in light of the anticommuting property. The reader can then check that the one-loop 

amplitude for fermionic fields is 

(7.17) 

The main difference with respect to bosonic fields is the direct proportionality to the 

determinant. The following comments can be useful in understanding the meaning of 

(7.17). ' 

Let us denote by ,IJ the gamma matrices, and by Ai the eigenvalues of the Dirac 

.operator ,IJD 1" and suppose that no zero-modes exist. More precisely, the eigenvalues 

of ,I'DI' occur in equal and opposite pairs: ±At, ±A2, ... , whereas the eigenvalues of 
, , 

the Laplace operator on .spinors .occur as (Al)2 twice, (A2)2 twice, and s.o on. For Dirac 

fermi.ons(D) one thus fin'ds 

(7.18) 

whereas in the case of Majorana spinors (M), for which the number of degrees of freedom 

is halved, one finds 

(7.19) 
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8. Zeta-Function Regularization of Path Integrals 

The formal expression (7.11) for the one-loop quantum amplitude clearly diverges since 

the eigenvalues .An increase without bound, and a regularization is thus necessary. For this. 

purpose, the following technique has been described and applied by many authors [22,25]. 

Bearing in mind that Riemann's zeta-function (R(S) is defined as 

00 

(R(S) = Ln-s (8.1) 
n::::::l 

one first defines a generalized zeta-function ((8) obtained from the (positive) eigenv8.lues 

of the second-order, self-adjoint operator B. Such ((8) can be defined as 

00 00 

(8.2) 
n=no m::::::mo 

This means that all the eigenvalues are completely characterized by two integer labels n 

and m, while their degeneracy dm only depends on n. This is the case studied in [1]. Note 

that formal differentiation of (8.2) at the origin yields 

(8.3) 

This result can be given a sensible meaning since, in four dimensions, ((8) converges for 

Re(8) > 2, and one can perform its analytic extension to a meromorphic function of 8 
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which only has poles at 8 = ~,1,~,2. Since det(JLB) = JL(O)det(B) , one finds the useful 

formula 

(8.4) 

As we said following (7.7), it may happen quite often th~t the eigenvalues appearing in (8.2) 

are unknown, since the eigenvalue condition, i.e. the equation leading to the eigenvalues 

by virtue of the boundary conditions, is a complicated equation which cannot be solved 

exactly for the eigenvalues. However, since the scaling properties of the one-loop amplitude 

are still given by ,(0) (and "(0)) as shown in (8.4), efforts have been made to compute 

the regularized ,(0) also in this case. The various steps of this program are as follows [25]. 

(1) One first studies the heat equation for the operator B 

a .. . 
aT F(x, y,T) +BF(x, y, T) = ° 	 (8.5) 

'where the Green's function F satisfies the initial condition F(x,y,O) = 6(x,y). 

(2) Assuming completeness of the set {4>n} of eigenfunctions of B, the field 4> can be 

expanded as 

00 

(3) The Green's function F(X,y,T) is then given by 

l 

00 00 

F(X,y,T) = 	 L L e-An,rn 
T 4>n,m(x) ®4>n,m(Y) (8.6) 

n=no m=mo 
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(4) The corresponding (integrated) heat kernel is then 

G(r) = r Tr F(z,z,r)Jdet 9 d4. z (8.7)
J1\1 n=nom=mo 

(5) In light of (8.2) and (8.7), the gerieralized zeta-function can be also obtained as 

an integral transform of the integrated heat kernel 

(8.8) 

(6) The hard part of the analysis is now to prove that G(r) has an asymptotic expan­

sion as r -+ 0+ [26]. This property has been proved for all boundary conditions such that 

the Laplace operator is self-adjoint. The corresponding asymptotic expansion of G(r) can 

be written as 

(8.9) 

which implies 

((0) = bs (8.10) 

The result (8.10) is proved splitting the integral in (8.8) into an integral from 0 to 1 and 

1 
an integral from 1 to 00. The asymptotic expansion of J0 rB-1 G(r) dr is then obtained 

using (8.9). 

In other words, for a given second-order self-adjoint elliptic operator, we study the 

corresponding heat equation, and the integrated heat kernel G( r). The regularized ((0) 

value is then given by the constant term appearing in the asymptotic expansion of G(r) 
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as T ~ 0+, and it yields the one-loop divergences of the theory for bosonic and fermionic 

fields (section 10). 

9. Gravitational Instantons 

This section is devoted to the study of the background gravitational fields appearing in Eqs. 

(7.2-6). These gravitational instantons are complete four-geometries solving the Einstein 

equations R(X, Y) - Ag(X, Y) = 0 when the four-metric 9 has signature +4 (i.e. it is 

positive-definite, and thus called Riemannian). Following [27], essentially three cases can 

be studied. 

9.1. Asymptotically locally E:uclideaI.l instantons 

Even though it might seem natural to define first the asymptotically Euclidean instantons, 

it turns out there is not much choice in this case, since the only asymptotically Euclidean 

instanton is flat space. It is in fact well-known that the action of an asymptotically 

Euclidean metric with vanishing scalar curvature is > 0, and it vanishes if and only if 

the metric is flat. Suppose now such a metric is a solution of the Einstein equations 

R(X,Y) = O. Its action should be thus stationary also under constant conformal rescalings 

9 ~ k 2 g of the metric. However, the whole action rescales then as IE ~ k 2 IE, so that it 

can only be stationary and finite if IE = O. By virtue of the theorem previously mentioned, 

the metric 9 must then be flat. 

In the asymptotically locally Euclidean case, however, the boundary at infinity has 

topology S3 jr rather than S3, where r is a discrete subgroup of the local tetrad rotation 
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group SO(4). Many examples can then be found. The simplest was discovered by Eguchi 

and Hanson, and corresponds to r = Z2 and 8M = Rp3 • This instanton is conveniently 

described using three left-invariant one-forms {Wi} on the three-sphere, satisfying the 

Ok
SU(2) algebra: dw i = -~€i1 Wj /\Wk, and parametrized by Euler angles as follows: 

WI = (cos"p )d8 + (sin"p )(sin 8)dcfJ (9.1) 

W2 = -(sin"p )d8 + (cos"p )(sin 8)dcfJ (9.2) 

W3 = d"p + (cos 8)dcfJ (9.3) 

where-8 E [0,1T'], cfJ E [0, 21T']. The metric of the Eguchi-Hanson instanton may"be thus 

written in the Bianchi-IX form [2~r] 

(9A) 

where r E [a,oo[. The singularity of 91 at r = a is only a coordinate singularity. We may 

get rid of it defining 4;;' 1 - ~, so that, as r ~ a, the metric 91 is approximated by the 

metric 

(9.5) 

Regularity of 92 at p = 0 is then guaranteed provided one identifies "p with period 271". This 

implies in turn the local surfaces r = constant have topology Rp3 rather than S3, as we 

claimed. Note that at r = a => p = °the metric becomes that of a two-sphere of radius 

~. Following [28], we say that r = a is a bolt (i.e. a fixed point of the action which is a 
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two-surface), where the action of the Killing vector 88lj; has a two-dimensional fixed-point 

set [27]. 

A whole family of multi-instanton solutions is obtained taking the group r = Zk. 

They all have a self-dual Riemann-curvature tensor [22], and their metric takes the form 

(9.6) 


Following [27], V = VC~J and 1. = 1.(~J on an auxiliary flat three-space with metric dx· dx. 

This metric g solves the Einstein vacuum equations provided grad V = rot2, which implies 

v 2 V O. If we take 

n

V-I: 1 (9.7) 
- i=l I~ - ~i I 

we obtain the desired asymptotically locally,E\1clidean multi-instantons. In particular,if 

n 1 in (9.7), 9 describes flat space, whereas n = 2 leads to the Eguchi-Hanson instanton. 

"If n > 2, there are 3n - 6 arbitrary parameters, related to the freedom to choose the 

positions ~i of the singularities in V. These singularities correspond actually to coordinate 

singularities in (9.5), and can be removed using suitable coordinate transformations [27]. 

9.2. Asymptotically flat instantons 

This name is chosen since the underlying idea is to deal with metrics in the path integral 

which tend to the flat metric in three directions but are periodic in the Euclidean-time 

dimension. The basic example is provided by the Riemannian version g~) (also called 

Euclidean) of the Schwarzschild solution 

(9.8) 
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where n = d8 ® d8 + (sin 8)2 d¢ ® d¢ is the metric on a unit two-sphere. It is indeed 

well-known that, in the Lorentzian case, the metric 9L is more conveniently written using 

Kruskal-Szekeres coordinates 

9L == 32M3r-1 e- 2iI ( - dz ® dz + dy ® dy) + r 2 n (9.9) 

where z and y obey the relations 

(9.10) 

(y + z) t....:.--....:.... = e 21J (9.11)
(y - z) 

' .. 
In the Lorentzian case, the coordinate singularity at r =2M can be thus avoided, whereas 


the curvature singularity at r = 0 remains and is'described by the surface z2 - y2 = 1. 


, However, if we set, _ iz, the analytic continuation to the section of the complexified 


space-time where' is real yields the positive-definite (Le. Riemannian) metric 

(9.12) 

where 

(9.13) 

It is now clear that also the curvature singularity at r = 0 has disappeared, since the 

left-hand side of (9.13) is ~ 0, whereas the right-hand side of (9.13) would be equal to -1 
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at r = O. Note also that, setting z = -i( and t = -iT in (9.11), and writing (2 + y2 as 

(y + i()(y - i() in (9.13), one finds 

e 4MiT~Y + i( = --1 (9.14)
2M 

(9.15)y = cos (4~ ) V2~ - 1 

which imply that the Euclidean time T is periodic with period 87rM. This periodicity on 

the Euclidean section leads to the interpretation of the Riemannian Schwarzschild solution 

as describing a black hole in thermal equilibrium with gravitons at a temperature (811"M)-l 

[27]. Moreover, the fact that any matter-field Green's function on this Schwarzschild back­

ground is also periodic in imaginary time leads to some of the thermal-emission properties 

of black holes. This is one of the greatest conceptual revolutions in modern gravitational 

physics. 

There is also a local version of the asymptotically flat boundary condition in which 

8M has the topology of a nontrivial Sl-bundle over S2, i.e. s3 /r, where r is a discrete 

subgroup of SO(4). However, unlike the asymptotically Euclidean boundary condition, 

the S3 is distorted and expands with increasing radius in only two directions rather than 

three [27]. The simplest example of an asymptotically locally flat instanton is the self-

dual Taub-NUT solution, which can be regarded as a special case of the two-parameter ~ · 

Taub-NUT metrics 

(r + M) d 2(r - M) ( )2 (2 2) [2 2]
g= (r-M) r®dr+4M (r+M) W3 + r -M (WI) +(W2) (9.16) 
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where the {Wi} have been defined in (9.1-3). The main properties of the metric (9.16) are: 

(I) r E [M,oo[, and r = M is a removable coordinate singularity provided"" appearing 

in (9.1-3) is identified modulo 47r; 

(II) the r = constant surfaces have S3 topology; 

(III) r = M is a point at~whic~ the isometry generated by the Killing vector D81/; has 

a zero-dimensional fixed-point set. 

In other words, r = M is a nut, i.e. a fixed point of the action which is an isolated point 

[28]. 

There is also a family of asymptotically locally flat multi-Taub-NUT instantons. Their 

metric takes the form (9.6), but one should bear in mind that the formula (9.7) is replaced 

by 

n 2M 
V= 1 (9.17)81~-~i I 

Again, the singularities at ~ = ~i can be removed, and the instantons are all self-dual. 

9.3. Compact instantons 

Compact gravitational instantons occur in the course of studying the topological structure 

of the gravitational vacuum. This can be done by first of all normalizing all metrics in 

the functional integral to have a given four-volume V, and then evaluating the instanton 

contributions to the partition function as a function of their topological complexity. One 

then sends the volume V to infinity at the end of the calculation. If one wants to constrain 

the metrics in the path integral to have a volume V, this can be obtained by adding a 
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term :1r V to the action. The stationary points of the modified action are solutions of the 

Einstein equations with cosmological constant A: R(X, Y) - Ag(X, Y) == 0. 

The few compact instantons that are known can be described as follows [27]. 

(1) The four-sphere S4, i.e. the Riemannian version of de Sitter space obtained by 

analytic continuation to positive-definite m~trics. Setting to 3 for convenience the cosmo­

logical constant, the metric on S4 takes the conformally-flat form [27] 

(9.18) 

where f3 E [0,7r]. The apparent singularities at f3 == 0,7r can be made into regular nuts, 

provided the Euler angle 1/.1 appearing in (9.1-3) is identified modulo 47r. The f3 == constant 

surfaces are topologically S3, and the isometry group of the metric (9.18) is SO(5). 

(2) If in 0 3 we identify (ZI,Z2,Z3) and ('\Zl,'\Z2,'\Z3), V'\ E '0 -{O}, we obtain, 

by definition, 0 p2 . For this. two-dimensional complex space one can find a real four­

dimensional metric, which solves the Einstein equations with cosmological constant A. If 

we set A to 6 for convenience, the metric of 0 p2 takes the form [27] 

(9.19) 

where {3 E [0, ~]. A bolt exists at (3 == ~, where 8~ has a two-dimensional fixed-point 

set. The isometry group of gIl is locally SU(3), which has a U(2) subgroup acting on the 

three-spheres f3 == constant. 
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(3) The Einstein metric on the product manifold 8 2 x 8 2 is obtained as the direct 

sum of the metrics on 2 two-spheres 

(9.20) 

The metric (9.20) is invariant under the 80(3) x 80(3) isometry group of 8 2 x 8 2 , but is 

not of Bianchi-IX type as (9.18-19). This can be achieved by a coordinate transformation 

leading to [27] 

(9.21 ) 

where A == 2 and f3 E [0, f]. Regularity at f3 . 0, f is obtained provided that 'r/J is identified 

modulo 27r (cf. (9.18)). Remarkably, this is a regular Bianchi-IX Einst'ein metric in which 

the coefficients orWI, "'2 and Wa are all different. . 

(4) The nontrivial 8 2-bundle over 8 2 has a metric which, setting A == 3, may be cast 

in the form [27] 

(9.22) 

where ~ E [0,1], and II is the positive root of 

(9.23) 
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The isometry group corresponding to (9.22) may be shown to be U(2). 

(5) Another compact instanton of fund.amental importance is the K3 surface, whose 

explicit metric has not yet been found. K3 is defined as the compact complex surface 

whose first Betti number and first Chern class are vanishing. The mathematically-oriented 

reader might now like to recall the following basic concepts. 

Ct. The p-th Betti number Bp can be seen as the number of independent closed p-surfaces 

that are not boundaries of some (p + 1 )-surface [22]. 

C2. A complex structure on a real manifold M is a tensor field JP" such that J1t"J"O' == 

-DP0" and satisfying an integrability condition that enables one to introduce local complex 

coordinates zi on M so that transition functions between different coordinate patches are 

holomorphic. 

cs. 'Givet:J. a complex struct~re J P", a Hermitian "metric is a Riemannian metric 9 such 

that JPpJ"O' gp" = gpO'. 

C4. Let gik be a Hermitian metric, and consider the real {I, 1) form J = igjk dzi A a:zk . 

A Kahler metric is by definition a Hermitian metric with dJ = o. If 9ik is Kahler, the 

corresponding closed form J = w is called the Kahler form. A Hermitian metric is Kahler 

if and only if J P" is covariantly constant with respect to the connection defined by g. This 

, . 
means that, for Kahler metrics, the Riemannian structure is compatible with the complex 


structure. 
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C5. The Ricci tensor of a Kahler metric [29] is a (real, symmetric) bilinear form of type 

(1,1), and the associated two-form is the Ricci form p. 

C6. The first real Chern class Cl is represented by the two-form .f'tr. 

C7. A Kahler metric on a complex manifold is said to be Kahler-Einstein if the Ricci form 

p is proportional to the Kahler form w: p = AW. 

CS. According to Calahi's conjecture, given a compact Kahler manifold M, its Kahler 

form w, its real first Chern class cl(M), then any closed (real) two-form of type (1,1) 

belonging to 211"Cl (M) is the Ricci form of one and only one Kahler metric in the Kahler 

class of w. 

So far twistor theory has given important contributions to the K3-metric problem, 

since it provides a method so as to .obtain explicit approximations to the K3 metric [30], 

and it leads to .a proof of the existence of Kahler~Einstein metrics on K3 [31,32]. We 

now focus on the latter development, trying to explain its importance, its limits and what 

remains to be done. 

Indeed, Yau's proof [33] of Calabi's conjecture [34] already leads to an existence the­

orem for Kahler-Einstein metrics on K3, but it does not lead to explicit calculations. 

Topiwala obtained the same result using the following idea [31,32]: if a Kahler-Einstein 

.. 	 metric on K3 exists, then it gives rise to a canonical one-parameter deformation of the 

complex structure. Before going on, it is worth saying that a one-parameter deformation is 

a set of deformations indexed by t, where t can either be real or complex. The deformation 

is said to be canonical if it depends only on the Kahler-Einstein metric, and not on any 
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choice of coordinate used to express structures (e.g. a coordinate description of metrics). 

The advantage of Topiwala's method is that it shows under which conditions the twistor 

space for K3 is biholomorphic to the one for the Eguchi-Hanson metric (9.4). One thus 

gets an explicit result, proving Page's conjecture [35]. However, it should be emphasized 

that this method is a substitute for the existence theorem obtained using partial differen­

tial equations, and does not lead to the knowledge of the metric. Thus, it seems we are 

left with two main possibilities: 

(a) To go on with twistor theory. Remarkably, in order to know a priori the twistor 

space, one should know all complex structures on K3. A number of them has already been 

studied [30], but the task seems to be very hard; 

(b) To use deformation theory [36,37]. 

~wo topological invariants exist which may he used to characterize the various gravitational 

instantons studied so far. These invariants are the Euler' number X and the Hirzebruch 

signature T. The Euler number can be defined as an alternating sum of Betti numbers 

(9.24) 

The Hirzebruch signature can be defined as 

T -B+= 2 - B-2 (9.25) 
, " 

where Bt is the number of self-dual harmonic two-forms [38], and B2 is the number of 

anti-self-dual harmonic two-forms [in terms of the Hodge-star operator *Fab = j EabcdFcd , 

self-duality of a two-form F is expressed as *F = F, and anti-self-duality as *F = - F]. 
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In the case of compact four-dimensional manifolds without boundary, X and T can be 

expressed as integrals of the curvature [22] 

1 r R R abel cdgh ~t d4 (9.26)X == 128?T2 Jl\/ abed elgh e e V UeL 9 X 

(9.27) 

For the instantons previously listed one finds [27] 


Eguchi-Hanson: X == 2, T == 1. 


Asymptotically locally Euclidean multi-instantons: X == n, T == n 1. 


Schwarzschild: X == 2, T == O. 


Taub-NUT: X == 1, T == O. ­

Asymptotically locally flat multi-Taub-NUT instantons: X == n, T == n 1 . 


.. . 
S2-bundle over S2: X == 4, T == O. 


K3: X == 24, T == 16. 
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10. Concluding Remarks 

Recent work on canonical quantum gravity has emphasized the role of connections [15], 

rather than Wheeler's geometrodynamics. In Ashtekar's formalism, the space-time metric 

is a secondary object, while the new configuration variable is the restriction to a three­

manifold of a SL(2, C) spin-connection. The momentum conjugate to this variable is a 

SU(2) soldering form which turns internal SU(2) indices into SU(2) spinor indices. Re­

markably, in terms of these new variables, the scalar curvature (3) R of the three-manifolds 

no longer appears, and the constraints are polynomial. Further progress has been made 

using the Rovelli-Smolin loop-variables approach. However, the Rovelli-Smolin transform 

r~mains a formal tool because it has not been given a rigorous mathematical meaning in 

-3 + 1 space-time dimensions [39]. 

By contrast, since the author's research in quantum gravity has only used the ADM 

formalism and the corre~ponding form of the Wheeler-De Witt equation, we have described 

in this review paper those properties of Dirac's theory and of quantum geometrodynamics 

which are also relevant to perturbative quantum gravity via (Euclidean-time) path integrals 

[1,40]. A naturally-occurring application of the techniques described in sections 7 and 8 has 

emerged in the last few years, i.e. the study of perturbative properties of physical theories 

in the presence of boun~aries within the framework of one-loop quantum cosmology [1]. 

The corresponding problems are as follows. 

(i) Choice of locally 8upersymmetric boundary conditions [1]: they involve the normal 

to the boundary and the field for spin ~, the normal to the boundary and the spin- ~ 
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potential for gravitinos, Dirichlet conditions for real scalar fields, magnetic or electric field 
, 

for electromagnetism, mixed boundary conditions for the four-metric of the gravitational 

field (and in particular Dirichlet conditions on the perturbed three-metric). 

(ii) Quantization technique3: one-loop amplitudes can be evaluated by first reducing 

.• 11. 

the classical theory ;to th~ physical degrees of freedom (hereafter referred to as PDF) by 

choice of gauge and then quantizing, or by using the gauge-averaging method of Faddeev 

and Popov, or by applying the extended-phase-space Hamiltonian path integral of Batalin, 

Fradkin and Vilkovisky [1]. 

(iii) Regularization technique3: the generalized Riemann zeta-function and its regular­

ized (0) value (which yields both the scaling of the one-loop prefactor and the one-loop 

divergeIl:ces of physical theories) can be obtained by studying the eigenvalue equations 

obeyed by perturbative modes, once the corresponding degeneracies and boundary condi~ 

:tions are known, or by using geometrical formulae for one-loop counterterms which gen­

eralize well-known results for scalar fields, but make no use of mode-by-mode eigenvalue 

conditions and degeneracies. 

It turns out that one-loop quantum cosmology may add further evidence in favour 

of different approaches to quantizing gauge theories being inequivalent. Studying flat 

Euclidean backgrounds bounded by a three-sphere, for electromagnetism the rDF method 

77. ... 	 yields (0) = -180 and (0) = l83
0 in the magnetic and electric cases respectively [1], 

whereas the indirect Faddeev-Popov method (i.e. when one-loop amplitudes are expressed 

using the boundary-counterterms technique and evaluating the various coefficients as in 

[41]) is found to yield (0) = - :: in both cases [1,42]. For N = 1 supergravity, the PDF 
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method yields partial cancellations between spin 2 and spin ~ [1], whereas the indirect 

Faddeev-Popov method yields a one-loop amplitude which is even more divergent than in 

the pure-gravity case [41]. Finally, for pure gravity, the PDF method yields ((0) = - 24
7
5
8 in 

the Dirichlet case, whereas the indirect Faddeev-Popov method yields ((0) = - 8~~3 [1,41]. 

Moreover, within the PDF approach, it is possible to set to zero on S3 the linearized 

magnetic curvature. This yields a well-defined one-loop calculation, and the corresponding 

((0) value is 1152 [1]. By contrast, using the Faddeev-Popov formula, magnetic boundary 

conditions for pure gravity are ruled out [41]. 

It is therefore necessary to get a better understanding of the manifestly gauge-invariant 

formulae for one-loop amplitudes used so far in the literature, by performing a mode-by­

mode analysis of the eigenvalue equations, rather than relying on general formulae which 

cont~n no explicit information about degeneracies and .eigenvalue conditions. As shown 

in [1], this detailed analysis can be attempt~d -for vacuum Maxwell th~_orystudied at one­

loop about flat Euclidean backgro~nds bounded by a three-sphere, recently considered 

in perturbative quantum cosmology. Working within the Faddeev-Popov formalism and 

making a 3 + 1 split of the vector potential, the full ((0) value takes into account the 

contribution of the physical degrees of freedom, Le. the transverse part A(T) of the vector 

potential, the gauge modes, Le. the Ao component and the longitudinal part A(L) of the 

vector potential, and the ghost action. Interestingly, a gauge-averaging term can be found 

such that the contributions to ((0) of physical degrees of freedom and of decoupled mode 

for Ao add up to - :~ both in the electric and in the magnetic case. However, remaining 

modes for Au and A(L) are always found to obey a coupled system of second-order ordinary 
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differential equations. This system has been solved exactly [1], but unfortunately the 

power series appearing in its solution are not (obviously) related to well-known special 

functions. The corresponding asymptotic analysis (i.e. at large values of the eigenvalues) 

is therefore much harder, and remains a stimulating challenge for applied mathematicians 

and theoretical physicists. It also turns out that, in the presence of boundaries, gauge 

modes should remain coupled, for us to be able to find a linear, elliptic second-order 

operator corresponding to the ghost action. Since the difficulties concerning gauge modes 

and ghost fields are technical in nature and not completely unfamiliar ,(i.e. systems of 

ordinary differential equations, fourth-order algebraic equations, finite parts of diverging 

series), there is hope that the research initiated in [1] will shed new light on one-loop 

properties of physical theories in the presence of boundaries. 
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