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s
in Euclidean metric the usual description of a Dirac fermion needs two in-
dependent Dirac fields for *(z) and g{z). In the instanton sector this leads to
the first option for the fermion path integrél which vanishes in the chiral limit
duc to the zero cigenvalues of the Euclidean Dirac operator. We propose herc a
novel representation of the conjugate field 4(z) which depends on ¥(z). and Is
consistent with the Osterwalder-Schrader injunction ¥(z) # ¢1!(z) and the chiral
properties of the fermion Lagrangian. ‘This alternative scenario vields the second
option for FPI whose chiral limit coincides with the product of only the nonzero
eigenvalues of the singular Dirac operator. The strong CP problem and *t Hooft’s
L'(1)-dilemma in effective Lagrangian models, both are legacaes of the first option

for FPI. The second option is free from these blenushes,
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1. Introduction

In Euclidean metric Yang-Mills fields reveal interesting mathematical struc-
tures. The stricture which seems to have had profound effect on the developetment
of QCD over the years is the instanton configuration characterised by a non-trivial

winding number v # 0

1 - = 14
v = W/Tr(ﬁ',w w) d° 2. (1.1)

Effects of instanton configurations manifest directly in the QCD action

*‘ )
Sqcp = /115(#7-* im)y d*z + :11- / Tr(Fu Fu)diz + AS (1.2)

through the #-term
ifg°
1672

AS

/ Tr(F.E,,) d'z. (1.3)

If v = 0, i.e., in the absence of instantons, the #-term drops out. The f-term is
odd under CP and T transformations, and, therefore, a potential source of CP
viclation in strong interactions.

In the fermion sector the signature of a non-trivial winding number of Yang-
Mills fields is the emergence of normalisable zero modes of the Euclidean Dirac
operator. In the kernel space, i.e., in the space spanned by eigenfunctions cor-
responding to zero eigenvalues, the Dirac operator [ and the ys matrix can be
simultaneously diagonalised. This means that the normalisable zero modes are all
of definite chirality. The precise relation between the winding number v and the

zero modes is given by the Ativah-Singer index theorem
V=n4 —n_, (1.4)

where n.{n_) is the number of normalisable zero modes of positive (negative)

chirality.



The fermionic weight of instanton configuration of gluon fields is represented

by the fermion path integral (FPI)

1

Zs(m) = /'du ezp [— /’@(.{D—- im)y d“:z{ (1.5)
where di denotes the integration measure for Dirac fermions. The first and the
popular option is to identify the FPI in chiral limit m = 0 with the determinant

of the Dirac operator [1-3]

Z¢(m = 0} = det). (1.8)

In non-trivial sector the Euclidean Dirac operator is singular and non-invertible
and as a result the fermion propagator is undefined. What is puzzling is that in
relativistic Minkowski metric there is no identifiable signature of the zero modés
of the Euclidean Dirac operator. The second option proposed sometime ago by
Gamboa-Saravi et al [4] gets around this problem by prescribing the valne of the
FPl in chiral limit as the product of only the non-zero eigenvalues of the singular
Dirac operator

det(P+ el)

en

Zym=10)= lim = det’ . (1.7)

In v = Q sector the two options, (1.6) and (1.7) coincide.}Differences manifest
only when v # 0. A resolution of the ambivalence between the two options,
therefore, holds the key to the physics emanating from instanton ccnfigurations
of gluon fields, and in particular, to problems arising from strong CP violation
implied by the QCD #-term (1.3).

To resolve this ambivalence from first principles the natural starting point is
to I%ametrise the Dirac fields ¥(z) and ¢(z) in terms of Grassmann generators [5).
Precisely at tMis stage, one is confronted with the second ambivalence. Question is
whether the Grassmann generators needed to parametrise 49{z) should depend on

or be independent of those employed for #(z). Stated differently, must we employ
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two independent Dirac fields for ¥{z) and its conjugate ¥(z) to describe a single
Dirac fermion in Enclidean metric, or, as in relativistic field theory, the fields ¥(z)
and ¥(z) associated with the Dirac fermion must be related to and derivable from
each other? The only guideline, thanks to Osterwalder and Schrader [6] (OS), is
the injunction that in Euclidean metric
Ul(z) # (). (1.8)
This is dictated by the hermiticity properties of the Dirac propagatot in Euclidean
metric. To implement the injunction (1.8), one possible way, advccated by the
authors of ref.6, is to assume that 9(z) is a new Dirac field independent of ¥(z).
Though this was mooted originally as a suggestion, it propagated in the literature
{7] as the only available option. Deviation [8] fromwthis orthodox attitude is a recent
phenomenord, An extra Dirac field, in principle, suggests that in the passage from
relativistic theory 1o Euclidean metric the degrees of freedom of a Dirac fermion
has doubled [6,8]. This is not only unnatural but unnecessary.
A precise description of a Dirac fermion is fundamental to the study of FPL
A resolution of the first ambivalence, therefore, depends in a large measure on the
position one adopts vis-a-vis the second, viz., whether only one or two Dirac fields
are employed to describe a Dirac fermion. This, however, is not the whole story.
A crucial input in this resolution is how a ‘global’ chiral rotation is realised in

Euclidean metric. We shall see in sec.2 that if either ¢(z) is independent of ¥(z),

or if chiral rotation is realised as a non-unitary scale iransfromation [8]
w(z) = "y(z)  , dz) — ()6, (1.9)
the natural result for FPI is the first option (1.6). On the other hand, if we insist

that not only should the fields ¥(z) and +(z) depend on and be derivable from

each other but they must also transform unitarily under chiral rotation

U(z) = e mu(z)  , dlz) — d(z)e (1.10)



then. as demonstrated in sec. 3. the inescapable result for FPl is bl}e second option
{1.7).

An artifice to which recourse is taken almost universally to extract the CP

violating effects of AS. is the Baluni trick [9. 10] of implementing a Global chiral

U{1) rotation {1.10) of fermi fields in FPIL We show in sec.4 that the two options
respond differently to this innocuous procedure. In the first option the parameter
g in AS (1.3) can be changed at will and for the special cholce a = '%0 for the

parameter of chiral rotation. AS can be traded for the Baluni $erm (9, 10]
A'S = 8m /-ij«;,g& d*. (1.11)

In the second option, however, AS remains unaffected, with the Baluni term (1.11)

appearing in the fermion sector as an extra piece involving the §-parameter. The

"Vanomalous transformation of the §-term under chiral rotation is the genesis of the

U(1) dilemma [11. 12] in effective Lagrangian models. It is. therefore. argued in
sec.4 that the ['(1} dilemma is a legacy of the first op&on (1.6) for FPI. Lagrangian
models conforméng 1o the second option (1.7) are not afflicted with this dilemma.

The Baluni term is potentially unphysical in the framework of the second
option for FPl. What prevents it from being unphysical in the first option, is the
presence of the fermion zero modes. We show in sec.5 that neither perturbative
treatments nor current algebraic methods are capable of probing this essentially
non-perturbative feature {13]. Even the state of the art technology in lattice caleu-
lations may not prove equal to the task and unravel the CP violating effects of the
Baluni term {14]. Taking cue from this, several authors [15] have recently pointed
out ambiguities in the derivation of a large NEDM within the framework of ef-
fective Lagrangians [16].Irrespective of this controversy, one can at least conclude
that. like the U'(1) dilemma. the large NEDM obtained in effective Lagrangian

models is a legacy of the first option for FPIL
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2. The Euclidean Dirac Fermion and the First Option for FPI

In Euclidean metric the Dirac operator defined as
D= vu(iby — gAu), (2.1)

with vy-matrices obeying the algebra {v,, 7.} = 26,., is hermitian with real eigen-

-

values A, and orthonormal eigenfunctions ¢n(z).’
Dbn(z) = An(2)0n(z), [ B1(2)bm(z) d*Z = bran. (2.2)

Each non-zero eigenvalue A, has its chirally conjugate partner —A, with eigen-

function ¢..n

w—-ﬂ = -)\n¢»n y ¢-—n = 75¢n- (2.3)
In non-trivial sector there will be zero eigenvalues. The normaligable eigenfunc-
tions corresponding to these eigenvalucs are all of definite chirality. Assume, for

definiteness. v = 1 so that there is only one zcro eigenvalue with eigenfunction ¢

of positive chirality -
. 1.
' Poo=0 . o= 3{1+75)de. (2.4)

The set {¢n(z)} together with ¢o(z) constitute a complete basis in function

space. The Dirac field can be expanded in this basis as
v(z) = Z {@n T a=n7s)¢n(z) + a0do(z), (2.5)
Ap >0

where the sum is over only positive eigenvalues. The four degrees of freedom

corresponding to each mode of a Dirac field is accounted for if we split [2] a+n a8

din = (@in + 16sn) (2.6)
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with (t4n, 3+n real-valued Grassmann generators. The mode ¢g, which is essen-

tially a Weyl mode, has only two degrees of freedom
ag = ag + 103 ' (2.7)

The hermitian conjugates a}, = (@tn —1iB1n), a§ = (ao —i5p) are the involutions
(5] of atn and ag respectively. The generators, therefore, define a Grassmann

algebra with involution {3].

It is convenient 1o substitute x'(z) for ¥(z) in the fermion action
Setm) = [ X! (@)D - im)ve) d'a

X' (z) = ¥(z). (2.8)

The second ambivalence is about whether to make an ansatz of the form

x{(z) = O(z)¥(z), (2.9)

where the only constraint imposed by the OS injunction (1.8) is that the operator
O(z) should be non-trivial. SO(4) and gauge invariance are implemer:ted by an
O(z) invariant under these transformations. In ref.§, Osterwalder and Schrader
reccmmended the alternative scenario wherein y(z) is independetit of ¢/{z) and a
relation like (2.9) does not exist. In the OS scenario (6] the conjugate Dirac field

admits of an expansion exactly analogous to (2.5)

X(@) = D (ba+ bon¥s)¢n(z) + bogo(z), (2.10)

An>C
with a new set of complex-valued generators {4}, unrelated to the set {a} employed
for ¢(z). The hermitian conjugates b1, b} are, as before, the involutions in the

Grassmann algebra {3]. The formula (2.8) for the fermion action yields the result
-

Selmy = Z HAn —impbhan + {=An — imjbZa—n] — imbguc (2.11)
An >0 ‘
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where the subsets {b} and {o*} are absent. To integrate over the subsets of gen-
erators {a} and {b*} which appear in the action one introduces the corresponding
truncated measure
du = dbjdao [] dbjdandd da-n
An>0 (2.12)

= [ db*da

and obtains

/ dps ezpl=Sg(m)] = det(P — im). (2.13)

In chiral limit this agrees with the first option (1.6} for FPI.

In the OS scenario [6] the number of effective degrees of freedom is reduced
by a factor half by excluding essentially the operation of hermitian conjugation in
the fermion sector. This is done in two steps. First, only the component Sg(m)
instead of the full hermitian form [Sg(m) + SE(m)] iIs considered as the fermion
action. The second step consists in integrating with the truncated measure (2.12)
inétead of the full measure [[ db*dbda*da. In the absence of these prescriptions
of truncating both the action and the measure the result would be det(J# + m?)
instead of (2.13) as expected for the FPI for two independent Dirac fields with reg-
uisite number of dynamical degrees of freedom. An obvious fallout of the loss of
the operation of hermitian conjugation is that the two point function ( w;(y)x( )},
which is hermitian conjugate to the fermion propagator (x! (::):w(y)), is incalcula-
ble in the OS scenario. The degrees of freedom , i.e., the Grassmann generators,
associated with x{z} and 4'(y) are not dynamical. Recall that the injunction
{1.8), which is the genesis of the OS scenario [6], has its origin in the mismatch
of the hermiticity properties of the Green function {3f(z)1(y)}, and the pertur-
bative Dirac propagator in Euclidean metric. It is, therefore, rathe: strange that
precisely this hermitian conjugate, (x(z)¥'(y)}, of the fermion propagator should

be incalculable in the OS scenario.



The unnaturalness of having to describe a single Dirac fermion with two in-
dependent Dirac fields and the problem of hermiticity arising from this, prompted
Mehta [8] to seek a conjugate field x(z) of the form (2.9). He argues for O(z) = ivs,
which is the obvious choice if O(z) is space-time independent. This only means
that in the expansion (2.10), one should substitute iaf (ia*,) for b2, (b%) and
ta§ for b3. Once again one obtains the first option for FPI. The problem with
the choice O(z) = 475 is that under chiral rotation, x(z) transforms identically
as ¥(z). This means that with the unitary realisation ¥(z) — e'*7y(z) of chi-
ral rotation the mass term in the fermion action (2.8) will be invariant and the
‘kinetic energy’ term non-invariant. The scenario will, therefore, be exactly op-
posite to what physics demands. On the other hand, the non-unitary realisation
{1.9) of chiral rotation, recommended in ref.8, is inappropriate for the popular
U(3) X U(3) chiral symmetry in standared model: Another obvious fallout of this
unconventional realisation is that the Jacobian (see sec.4) for chiral rotation is
real and cannot cancel the imaginary f-term (1.3) in the fermion action. Thus
in 'estimaﬁng physical effects of the #-term, e.g.,, NEDM, the conventional route
via a chiral quark mass term, likc the Baluni term (1.11), is not available in this
approach.

3. The FEuclidean Dirac Fermion and the Sgcond Option for FPI
. :

Both in the OS scenario [6] and in the scenario presented in ref.8, the unsat-
isfactorv features arising from the definition of the conjugate Dirac field manifest
already in the trivial v = 0 sector. They have nothing to do with fermion zero
modes. Let us first assure ourselves that there exists a representation for y(z} free
from these blemishes.

First observe that an infinitesimal unitary chiral rotation
w(z) — (1 + i6y5)v(z) (3.1)
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induces among the generators for (z) a transformation
Gp — An +100_n , Gop — Gn + 0an,. (3.2)

Conversely, the transformation (3.2) of the generators implements a unitary chiral
rotation {3.1) for ¥(z). It is now easy to verify from (3.2) that the combination

(an — a—pnvs) transforms as
(an - a—n?ﬁ) - (an - a——anS)(l = 5975).

This means that the representation [17]

x(@) =Y (an — acnms)én(z) (3.3)
An >0

realises for the conjugate field the desired transformation x(z) — (1 — ifys)x(z)
for infinitesimal chiral rotation.

One can motivate the representation (3.3) also from an analogy with the for-
mula x(z) = yo%(z) valid in Minkowski metric. The opposite chiral transformation
property of x(z) is realised through the 4, matrix. In Euclidean metric, where
no distinction is to be made between time and space compc;nents;, the opposite
chiral property of the conjugate field is achieved by substituting for v a matrix of
the form P,v, with P, a suitably normalised four vector. .The twin requirements
of SO(4) and gauge invariance lead to the unique choice P, « D,, the covariant
derivative, and hence to the representation [17]

N 1
xiz) = im i Pl=)- (3.4)

for the conjugate field. The infinitesimal parameter ¢ ensures that the normali-
sation factor makes sense even in the kernel space of ). One easily verifies the
representation (3.3) from (3.4). Substituting (3.3} for x(z) in the formula (2.8)
for fermicnracticn one obrains
Se(m) = 3 {Anlahan +a%pa-n) - im(aten ~ alna-n)}  (3:5)
An >0
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Integration with the full fermion measure appropriate for the single Dirac field
¥(z) |

dy = H daldanda” ,da_n (3.6)
An>0

gives the desired result for FPI in the trivial v = © sector

Zy=o(m) = / du ezp(~Se(m)) = ] (4 +m?). (3.7a)

* -xn >0

In non-trivial v # 0 sector the central question is whether the zero modes
can appear in the representation for x(z). In the present framework, where x(z)
depends on and is derived from ¥(z}, as in eq.(2.9), and, further, has the opposite
chiral transformation property there is no way for zero modes to appear in x(z).
A priori, this should be evident from the formula (3.4). The Dirachoperator D
annihilates the zero modes, if any, present in ¥(z). To probe further, note that
each zero mode is really a Weyl mode endowed with just two degrees of freedom.
For the positive chirality Weyl mode L-.d>o(m), for example, these two degrees of
freedom are already accounted for by‘; ag, the complex-valued generator {2.7) in
the representation (2.5). Under chiral rotation ag acquires a phase o — ao(1+ia).

If ¢o(z) were to appear in x(z) then, according to eq. (2.9), we must have
(1 -ia)O(z) = O(z)(1 + ia). (3.8)

to implement the opposite chiral transformation property for x(z). This, obvi-
ously, is not possible. In the case of the contribution from a Dirac mode ¢n(z),
however, reversal of chiral property is not a problem. This is because each Dirac
mode comprises two Weyl modes of opposite chirality. The Grassmann generators
corresponding to the two Weyl modes can be swapped to realise the chiral prop-
erty appropriate for the contribution from the Dirac mode ¢.(z) to the conjugate

field x(z). In the OS scenario (6], this problem is a non-issue, simply because the
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conjugate field is independent of 9{z) and one is free to invent the generators for
x(z) without any prejudice for the generators employed for ¥(z).

The upshot of all this is that fermion zero modes cannot appear in thq conju-
gate field and the representation (3.3) for x(z) remains valid even in :;he nontrivial
v # 0 sector. The significance of this \remarkable result is fmmeciiately realised if
one substitutes the representation (3.3) for x(z) in the formula (2.8) for fermion
action. All the degrees of freedom associated with the zero modes in the rep-
resentation for the Dirac fleld 9(z), e.g., the Grassmann generators go in the
representation (2.5), drop out from the fermion action, and one recovers in the
nontrivial sector the same expression for Sg(m) as that given in (3.5). The inte-
gration measure appropriate for this action is therefore, the same as in eq. (3.6).
The Grassmann generators associated with the zero modes in the Dirac field, are
therefore, absent both in the action and the integration measure. One recognises
the similarity with the sets of generators {5} and {a*} in the OS scenario [6] dis-
cussed i: sec.2. The degrees of freedom associated with the zero modes in 4(z),
are, therefore, redundant, and in calculating the Green function of the theory the
effective Dirac field can be represented by the truncated expansion

UJE(:L‘) = Z (Gn + a-—r)'TS)QSn, (39)

An>0

without the zero modes. It is now a simple maztter to convince onesclf that the

zero eigenvalues of the Dirac operator do not contribute to FPI in an instanton

background

Zugo(m) = [[ (A2 +m?). (3.75)

Ap >0

In the chiral limit (3.7b) coincides with the second option (1.7) for FPI.
It may be verified that Euclidean Green functions in the present formulation
correspond to a unique relativistic field theory. For this, it is necessary that they

obey the physical positivity condition {17] which allows to define a positive metric
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Hilbert space of physical states. The positivity condition is defined in terms of the
antilinear mapping ©. In the fermion sector ® maps the Dirac field ¥(z) to its

conjugate x'(z) and vice-versa [18]
oulz) = ux'(@ » Ox'(e) = 1ve) (3.10)
with g = (—2q,21,Z2,23). The positivity condition
(OF, F) 2.0 ' (3.11)

was proved by Osterwalder and Seiler [18] for gauge invariant functions F(z) of the
Dirac field ¥(z) and its conjugate x'(z) at positive times zo > 0. This then allows
1o define {18] the physical Hilbert space with respect to the norm || 4 [|2= (©A4, 4).
For gauge field theory of Dirac fermions the proof of the positivity condition was
carried out by Osterwalder and Seiler [18] on the lattice in the framewark of OS
scenario [6] where ¢(z) and x7(z) are independent of each other. The same proof
seems to follow mutatis mutandis when the Dirac field ¥g(z) and ins conjugate
x'(z), as given in eqs. (3.9) and (3.3) respectively, are dependent on each other.
Recently, Kupsch [20] has given a construction of Euclidean Dirac fields as
transforms of white noise, which reproduces all Schwinger functions and has the
correct behaviour under Euclidean and gauge »transformations. It is remarkable
that this construction is in complete agreement with the representation (3.4) for
conjugate Dirac field which has been motivated [17] essentially by intuitive argu-
ments. In formulating Euclidean field theory for fermions, difficulty really stems
from short distance singularities which tend to become non-renormalisable when
one tries to e;;press Schwinger functions in an intzracting theory in terms of free
Euclidean fields [21]. It is, therefore, significant that gauge interactions of fermion
and gauge invariance enter in a fundamental way through the definitions of the

conjugate field (34) and of the fermion measure (3.6).
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4. Global Chiral Rotation and the U({1l) Dilemma

It is remarkable that all estimates in literature for NEDM and strong CP
violation have been obtained, not directly from the #-term (1.3), but either from
the Baluni term (1.11) or from its representation in effective Lagrangians. The

alibi for this is that the fermion measure du in the vacuum functional in QCD

Zqop = / duD A ezp(Sqco] (4.1)

would acquire under global chiral /(1) rotation a non-trivial jacobian J(c) related
to the Adler-Bell-Jackiw anomaly. For a suitable value of the parameter « of chiral
rotation (1.10), InJ(a) may cancel the §-term (1.3). The Baluni term (1.11) arising
from the chiral rotation of the quark mass term in Sqcp (1.2) will in that case
be the only surviving signature of the #-term in QCD action. The credibility of
this alibi, and, more important, whether any real simplification is achieved in this
apparently innocuous procedure deserve careful scrutiny. |

The Jacobians in the two options for FPI will naturally be différent and can

be calculated directly from Fujikawa's [22] resuls

inJ{a) = -—2~ia/Z¢L(z)75¢n(m)d4m | (4.2)

where the sum is over the dynamical modes dictated by the fermion measure dy.
In the second option, only Dirac modes with non-ero eigenvalues are dynamical.
From the crtMonormality of ¢n{z) and ¢_n{z) = vsdn{z}, it follows that In J{a)
vanishes {4] in the second option (1.7). In the first option (1,6}, however, the dy-
namical modes encompass the Weyl modes {2.4) correspording to zerc eigenvalues.
This makes all the difference, because, according to (4.2) In J(a} is in this case
given by —2ia(n, — n_) which coincides with —2iav by the index theorem (1.1},

The net result is that the Baluni trick leads to different actions in the two options
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v
g
for FPI:
ar ! J o
Shop = [ |$(P-im)e + {Tr(FF)| d'z+ NS (4.3)
v L <

in the first option, and

Siep = / iL ¢(P-im)v + %Tr(FF}J d'z + A'S + AS (4.4)

in the second, with A'S and A/S, as before, the §-term (1.3) and the Baluni term
{1.11) respectively.

Note that in their respective frameworks the actions (4.3) and (4.4) are equiv-
alent to the same old QCD action (1.2). From this, one thing is clear. In the second
option the Baluni term is unphysical and cannot be held responsible for any ob-
servable CP violation. This is not so for the Baluni term in the action (4.3) which
corresponds to the first option. There, the §-term AS has been traded for the
Baluni term A’S. The generators for fermion zero modes in the measure du (2.12)
constitute the link beween A’S and AS. If this link is snapped through inadequa-
cies in approximation schemes the interchangéablity of A’S and AS is lost and
A’S becomes unphysical. Thus, even in the first option (1.6) for FPI, estimates
of NEDM and strong CP violation derived from the Baluni term, if non-trivial,
should be regarded as spurious unless the theoretical probes satisiy the litmus
test of being sensitive to fermion zero modes. Alas, theoretical probes based on
perturbative treatments or on current algebraic methods in the soft meson ap-
proeximation do not qualify in this test. It is not erough, as is popularly believed
{14-16] for the prabe to be able to detect the triangle (ABJ) anomaly. Perturbative
calculations are quite capable of that, but fermion zero modes and a non-trivial
f-term are essentially non-perturbative, and, therefore, beyond the pale of pertur-
bation theory. Even with the state of the art technology in the lattice framework

it will be difficult [14] to unravel the CP violating effect of a non-trivial #-term.

-

13 L



An interesting feature of the #-term in the firsy option, revealed by the Baluni
trick, is that the §- parameter can be changed at will by a global chiral rotation. A
priori, the QCD #-term (1.3} is built out of glu‘gﬁ fields and therefore expected to
be chirail;inva:iant. The ginon fields can, however, acquire chirality in a certain
sense [11] from the hidden fermionic degrees of freedom when they are integrated
out. One may think in this connection of the ABJ anomaly equation in the first
option:

) _ 3
(Budus)™) = @ms) + 225 tr FuFo) (4.5)

This does not yet guarantee a non-trivial chirality for FF. For instance, the
axial current and its divergence, though built out of quark fields, are chirally
invariant. The non-trivial chirality of FF manifests only in the instanton sector

from Fujikawa’s [22] identity
. - _
s [ b e = [T dl@mtao) dts

=Ny —N-

(4.6)

Each Dirac mode (recall our discussions in Sec.3) corresponds to two Weyl modes
of opposite chirality and their contributions cancel in the sum. It is the unpaired
Weyl modes corresponding to zero eigenvalue that survive. This is the reason why
for global chiral rotation the fermionic Jacobian in the first option is non-trivial
and brings about a change in the §-parameter of the 8-term AS.

In an effective theory there is no fermion measure and hence no Jacobian.
The piece representing the 6-term in the effective Lagrangian should-incorporate
the effects of the missing Jacobian and therefore break chiral invariance explicitly
like the mass term in QCD. There is a price to pay for this procedure when one
considers the ‘anomaly equation’ which in the effective Lagrangian framework re-
ally means the normal Ward identity for the divergence of the U(1) axial current.

The divergence equation picks up contributions from all terms that break chiral
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invariance. The §-parameter therefore will appear explicitly in the ‘anomaly equna-
tion’, as indeed it does in 't Hoooft’s [11] model (see his eq. (4.19)). This is in
conflict with the anomalous Ward identity (4.5) in the underlying QCD and con-
stitutes the crux of what ’t Hooft calls the [/(1) dilemma [11,12]. In retrospect, it
is the mismatch between the intrinsic and the effective transformation properuies
lof the QCD 6-term under global chiral rotations which is at the heart, of the U(1)
dilemma. In this sense the U(1) dilemma is a legacy of the first option (1.6) for
FPL '

In the second option (1.7), the Weyl modes corresponding to zero eigenvalues
of the Dirac operator are not dynamical. Eq. (4.6) now dictates that even in the
instanton sector, [ FF d*z should behave as chirally neutral. The mismatch be-
tween the intrinsic and the effective chiral transformation properties of the §-term
therefore disappears in the second option. In an effective Lagrangian correspond-
ing to this option, the # parameter can appear as a coeﬂicieni of only a chirally

invariant term. To account for the ABJ anomaly in this option [4,23],
-

.
/ ; 7 1 N
(5}'[‘]“3),\2) = (2rmalys ) + 2(‘1:~r2 ir Fuw k., — Z Bl vsdboi) (4.7}

where ¢o;’s are zero modes, one has to introduce in the effective Lagrangian a
separate term which is invariant under global chiral rotations but not under local
ones. This is reminiscent of the ‘anomaly term’ suggested by Christos [12], viz.

Jo (==85) (8u Tr log (M/M 1)), where M stands for the meson matrix.

5. “CP violation” from the chiral mass term

The Baluni term [9] was used by him and by others [10] to estimate the
electric dipole moment of the neutron. The estimate came out to be & times a
rather large number. Since a dipole moment has not been observed in practice, the

conclusion seems to be that 4 is very small. This is generally regarded as unnatural,
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and referred%to as the “Strong CP Problem”. Attempts to solve this problem by
introducing symmeiries [24] have led to the prediction of undetected particles [25]
and believers have also supplied theories to explain why these particles should
be undetectable [26]. It may be be more worthwhile to en(iuire [13] whether the
dipole moment calculations are in fact reliable. This is what we propose to do in
this section.

A. Parity in the presence of 45 and the chiral anomaly

The usual free Dirac action
So = / dtz G(if— m) (5.1)
is known to be invariant undér the parity transformation
W(Z,z0) — Y U(~Z, z0), P(Z, z0) — %(=F, z0)7°. (5.2)

Under this transformation, 11 transforms as a scalar, Piysy as a pseudoscalar,
Yv#y as a (four-)vector and so on.

Let us consider a free Dirac theory where the mass term is not a scalar but
involves a scalar piece as well as a pseudoscalar one.

Sp = /‘d“:c V' (ip— m — iysm! )y’ (3.3)

~

What happens to parity in this theory ? Under (5.2}, the pseudoscalar mass term
picks up a minus sign, while the other terms stay unchanged, indiceting that S}
is not invariant. However, this does not mean that the theory breaks parity. Just
as the transformation (5.2) was found in an attempt to keep Sp invariant, one
should attempt to find a transformation that replaces fields at Z by fields at —&
and leave (5.3) invariant {13]. After all, symmetry transformations ir. field theory
are determined by the symmetry properties of the Lagrangian in th: asymptotic

~wwy  domain and the pseudoscalar mass term, which is quadratic in the fields, must be
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taken into account in the construction of the symmetry transformation. Let this

transformation be
¥(Z,20) — V' (=T, 20) , ¥'(F,20) — ¥'(—F,20)y° V7" (5.4)
This will leave (5.3) invariant if
VIV = =y, (FVIYINV =10, (5.5)

(FOV A0 (m + dysm’) = m + fysm’. (5.6)

Let us try the following ansatz for V :

¢
V =%, (5.7)

where 3 is a real number. We find that {5.3),{5.6) are satisfied provided

e~ (m + ivsm' )10 = m + iysm/, (5.8)
i.e.,
(co828 + i3in2Bvs)(m — ivsm’) = (m + iysm') (5.9)
ie.,
mco323 + m'sin2f = m, msin26 — m'cos23 = m/ (5.10)

which are simultaneously satisfied if

!
3 =tan"' = (5.11)
m

Thus the transformation (5.4) with V determined by (5.6) and (5.10) leaves S}
unchanged, showing that this theory does have reflection invariance. Note that V

satisfies
Vi=v=v-1 (5.12)
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as usual, and there is no conflict with the fact the square of a parity transformation
is the identity. In fact, the transformation (5.4) can be seen to correspond to the
ysual parity transformation in terms of fields ¢ which have a real mass term.

It is important to note that along with the definition of parity, the transfor-
mation for the fermion bilinears also chaﬁge. Clearly, ¥4’ is no longer a scalar

and 1Y'vs1’ no longer pseudoscalar :
YU (F, z0) — (cos 28)P'Y' (—F, zo) + i(sin 28)¢0 vsy'(—F, zo) (5.13)

U39 (£, 20) — —(cos 2B)9 3¢’ (— T, z0) — i(sin 2B)0P'Y' (—F,z0)  (5.14)

The true transformation rules are obeyed by 1/e*#7¢ (scalar) and ¢'yse*P7109y’
(pseudoscalar) respectively. Thus the mass term ¢'(m + iysm’)¥’, which can also
be written as (m? + m/2)Y/e¥ 13, is actually a scalar under the transformation
(5.4). Note that y’y#y’ continues to transform like a vector and v//~#y51’ like an
axial vector.

Having found that the presence of 45 in the mass term in a free fermionic
theory does not spail reflection invariance, we would like to know what happens
when interactions are switched on. There is one further complication in QCD -
the fact that the mags matrix M, though diagonal, is not necessarily proportional
to the identity in flavour space. This makes 3 itself a matrix in flavcur space. But

there is no conceptual difficulty. The matrix 17 is defined by

L’ - ",/‘Jemp{'i‘/atan"l {G{A’It?'ﬂ/l-l)—l }]
" (5.15)
~ AUl + iysB(Mitr M~y 1)

L g
Note that this factor may be obtained from 4 in the standard parity transforma-

tion by using the chiral transformation used by Baluni. The parity transformation
defined in this way leaves the pure quark part of the QCD action invariant. The

introduction of gluons necessitates the definition of a parity transformation for
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them. We adopt the usual definition :
Ao(Z,z0) — Ao(—Fyz0), Ai(Z,20) — —Ai( =T, 20) (5.16)

The integral of the kinetic term for gluons is then invariant as usual. What is
more nontrivial is the invariance of the interaction piece. But (5.5) ensures that
this occurs even though V differs from the usual 4°. We conclude then that the
action of QCD is invariant under the modified parity transformation in which 4°
is replaced by the RHS of {(5.15). |

What implication does this have for the quantum theory corresponding to
QCD with the Baluni term? One would be tempted to say that the quantum
theory too has a reflection symmetry. However. it is necessary to be more care-
ful. Recall that in a gauge theory of massless fermions, the action is invariant
under chiral transformations. so that there is a classical symmetry, but this is
broken in the quantum theory by the anomaly. Can our reflecton symmetry be
similarly broken by an anomaly ? There is some reason to fear that it can be,
for the transformation (5.15) does involve a chiral piece, which may lead to some
anomaly. Note, however, that we are concerned here with constant chiral trans-
formations rather than spacetime dependent ones : the distinction is important
because only the latter have perturbatively nonvanishing anomalies. Thus, for the
constant chiral transformation (1.10), the measure of the path integral with the
first option changes by an anomalous Jacobian ezp (—gﬂ-’;(Tra) [diz Tr(F ﬁ‘)).
While expressions like Tr{FF) appear in perturbative calculations, it is an exact
four - divergence, so that [d*z Tr(FF ) vanishes fosgluon configurations that can
be handled by#perturbative techniques. Hence perturbative calculapions should
not be able to detect any violation of reflection invariance in the quantized the-
ory. This can be further confirmed as follows. If perturbation theory is used, the

vertices are standard and involve v#, and only the quark propagator involves 4.
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However, this propagator can be written as
p— M — iy (TrM~1)"16]71 = e~tems[p_ M]~letom (5.17)
. -

and the wavefunction as
wlp, M + iy Trdd =) ) = e uip, M), (5.18)

while
= IOTE M gioTs (3.19)

with an appropriate . Thus the #-dependent factors in the internal quark lines
cancel out at the vertices, leaving the propagators and the vertices of the theory
without ¢. If there are external quark lines, the remaining factors in the propa-
gators cancel out with those in the wavefunctions. Consequently, diagrammatic
techniques will never detect the presence of 6.

That still leaves the question whether there can be non-perturbative effects
of 8. We do not know the answer. But this is precisely the same situation as in
the original formulation {1.2) of the theory. The only possible effects of 4 in that
formulation must be non- perturbative, viz., through gluon configurations where
[d*z Tr(FF) does not vanish even though Tr(FF) is a four-divergence. The
same is true about the present formulation, as could have been expected. But
the authors [10] who worked in this formulation apparently thought that effects of
# would be visible even by methods which were blind to non-perturbative gluon
configurations. Our conclusion is that they were wrong. (See also [15]). It is worth
repeating that it is not enough to have a calculational framework that is sensitive to
the perturbative anomaly. The integral of the anomaly, which is nonperturbative,
has to be probed. Following our mention of the anomaly in [13], some lattice-based
authors [14] stated that lattice calculations, which take disconnected diagrams

{with qudrk loops} into account and hence see the perturbative gluon anomaly,
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should be able to detect an NEDM, in contrast to calculations which neglect
such diagrams. But this is untenable. Lattice methods would need to include
instanton-like gluon configurations in their purview. While this is possible in
principle, topological calculations on the lattice are in practice beset with such
severe ambiguities [27] that there is no hope of any reliable lattice calculation of

the NEDM in the near future.
B. Remarks on Current Algebra calculatians with the chiral mass term

Eﬁeczs*of the #-term in the Baluni form have silegedly been seen in current
algebra calculations [10]. One might think that these could be genuine effects since,
after all, current algebra is not perturbaticn theory. But current algebra, or to be
more precise, methods used in the work [10] under discussion, make no reference
to instantons or gluon configurations with non trivial topology which could make
[d*z Tr(FF) nonzero. It is even insensitive to the perturbative anomaly. This
immediately suggests that the predicted effects are illusions. It is not difficult to
see how they arise{13].

The crux of the calculation of the electric dipole moment of the neutron by
the current algebraic method [10] is a CP violating ”scalar coupling” of pions and
nucleons, represented by

Qﬂﬁy(é.;-)wmr“ (5.20)
Here g(ox 6) is the scalar coupling invented by the said authors, ¥ is the nucleon
field and 7 the o-th member of the pion (Nambu-Goldstone boson) octet. A term
of the form (5.20) has been alleged to occur in the effective theory of pions and

nucleons. This was thought to arise from the Baluni term and thus to be related

to the nonzero matrix element
H{—10)(TrM~1)"Y (7N | /v’ | N) (5.21)
In the same way, the nonzero matrix element of /451’ between the n and two
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pion states suggests [10] an amplitude for the decay proportional to 6. Since
the current algebra estimates of the matrix elements have nothing to do with
gluon configurations of nontrivial topology, the logic of the previous subsection
immediately tells us that something must be wrong here : parity can be broken
only through such gluon configurations [13]. |

Let us try to understand the error [13] in the current algebra calculation
{10} of the neutron electric dipole moment. The coupling coming from (5.21) was
identified as a scalar coupling because the soft pion theorem yields

) bt 1@8, ) )
= By |0 | )

B(Tr A1) Ume N | Fysy! | N) =

(5.22)
But the pion also has a conventional pseudoscalar coupling to the nucleon. This
was not treated in any detail by the current algebraists [10], who simply wrote
down the phenomenological value for the coupling constant. The pseudoscalar
coupling in the conventional theory with # = 0 is related to the matrix element
m2({N | x® | N}, which, by PCAC, can be written as (%:)(N | Bu(Pyvs 1) | NY.
By virtue of the equation of motion, this is proportional to (¥ | ¢ys{M, %}u} | N).
Now this expression is not invariant under the chiral transformation taking v to

LA

T A o7 A®
Bu(frv#rs 5 0) = iWpvs {M, -}
2
. J\G /\“ (5023)
= iy {M, -} = 20(Tr M=) 71

where it has been assumed that M differs only infinitesimally from (:&;TrM )L

Thus the pion coupling is related to

(N Bu(Gri s w) | N) = N | ' { M5 )¢ | N)
. (5.24)

"~ - A%
= (N {TrM )7 5y | N)
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The previous authors [10] identified the first piece on the RHS as a psendoscalar
coupling and obtained the dipole moment from the interference between these two.
But this idéntification is false, for these two terms by themselves do not have well-
defined transformation properties. Only the combination has such a property: it
is pseudoscalar. In other words, there is no scalar coupling, and no dipole moment

in the current algebra approximation {13].

6. Concluding Remarks

The question. how to describe a Dirac fermion in Euclidean metric, plays a
key tole in the present discussions. Everything clse flows from the stance one
adopts regarding the answer to this question. There is, on the one hand. the
traditional and popular OS scenario [6] where cach Dirac fermion is associated
with two independent Dirac fields. On the other hand, the second scenario [17)
presented here, requires only one Dirac field 4(z) to describe a Dirac fermion in
Euclidean metric. The conjugate field ¢(z) ( or, equivalently x(z)) is defined
in terms of 4(z). Gauge interactions of fermion and gauge invariance enter in
a fundamental way in the definition (3.3) of ¢/(z) and of the fermion measure
{3.6). There is a direct correspondence between the OS scenario and the first
option (1.6) for FPI, and between the second scenario and the second option (1.7)
for FPL. Thanks to the paper of Osterwalder and Schrader [6] on the one hand
and that of Gamboa-Saravi et al [4] on the other, insofaras consistency from the
mathematical point of view is concerned there is not much to choose between the
two options and hence between the two competing scenarios of a Dirac fermion
in Euclidean metric. Consideration based on physics and the fallout of the two
scenarios on issues in physics emanating from the instanton sector are expected to
play the decisive role in this crucial choice,

Ome recognises strong resemblance between a relativistic Dirac fermion and
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the second scenario. This resemblance is not confined merely to the one-to-one
correspondence of a Dirac fermion and a Dirac field. It should be observed that
the degrees of freedom associated with fermion zero modes, for which there is
no identifiable signature in the relativistic world, are redundant in the second
5CEnario.

The ambivalence in representing the QCD #-term (1.3) in effective Lagrangian
models, called the U(1) dilemma by 't Hooft [11], is a legacy of the first option
and hence of the OS scenaric [6]. The dilemma is absent in the second scenario.
The most significant and, perhaps, the most decisive impact of the second scenario
is on the strong CP problem which has defied all attempts towards a resolution
for the last fifteen years. The strong CP problem, it has to be recognised, is
basically a theorists’ problem and arises from the large value for NEDM estimated
theoretically from the Baluni term (1.11). In the second scenario effects of the
Baluni term are unphysical. In a chirally invariant theory like QCD the Baluni
term can be trivially transformed away by a chiral rotation. This would not be
true in the first option for FP1. There, one can only trade the Baluni term for an
additional piece in the QCD §-term (1.3). Thus, the second scenirio, in essence,
evades the storng CP problem and states that the Baluni framework for theoretical

cstimates for NEDM due to the #-term is untenable.
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