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in Euclidean metric the usual description of a Dirac fermion needs two in.. 

dependent Dirac fields for 1,b{x) and ~(x). In the insta.nton sector this leads to 

the first option for the fermion path Intcgral which vanishes in the chlral limit 

due to the zero eigenvalues of the Euclidean Dirac operator. \Ve propose here a 

novel representation of the conjugate field w(x) whlch depends on w(x). and Is 

consistent with the Ostcrwaldcr-Schrader injunction t.b{x) :/:; ¢t(x) and the chiral 

properties of the fermion LagrangiaJ.i. This alternative scenario yields thc second 

option for FPI whose .chirallimit coincides with the product of only the nonzero 

eigenvalues of the singular Dirac operator. The strong CP problem and 't Hooft's 

U (1 )-dilenuna in effective Lagyangian models, both arfi~gaclt1s of the first option 

for FPI. The second option is free from these blemishes,. 
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1. Introduction 

In Euclidean metric Yang-:Nlllls fi~lds reveal interesting mathematical struc

tures. The 6trtlcture which seelIlS to have had profound effect au the developetnent 

of QeD o·...er the years is the butanton configuration characterised by a non-trivial 

winding number 11 f:. 0-..,., 

(1.1) 


Effects of instanton configurations manifest dircctlj: in the QeD action 

t 
SQCD = Jifi(IfJ- im)1P cr~ + ~ JTr(F,...F,.,,) cr~ + AS (1.2) 

through the (i·term 

(1.3) 


If v = 0, i.e., in the absence of instantons, the f)-term drops out. The (I·term is 

odd under CP and T transformations, and, therefore, a potential source of CP 

violation in strong interactions. 

In the fermion sector the signature of a non-trivial winding number of Yang.. 

l1ills fields is the emergence of notmalisable zero modes of the Euc]jdean Dirac 

opera.tor. In the kernel space, i.e., in the space spanned by eigenfunctions cor

responding to zero eigenvalues, the Dirac operator 1p and the "Y5 ma.trix can be 

simultaneously diagonalised. This means that the normalisable zero modes are all 

of de:fi.nite chirality. The precise relation between the winding number JJ and the 

zero modes is given by the Atiyah-Singer index theorem 

(1.4) 

where n+(n_) is the number of normalisable zero modes of positive (negative) 

chirality. 
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The feI1nionic weight of instanton configuration of gluon fields is represented 

by the fermion path integral (FPI) 

(1.5) 

where dJ.L denotes the integration measure for Dirac fermions. The first and the 

popular option is to identify the FPI in ch1ralllmlt m = 0 with the determinant 

of the Dirac operator [1-3] 

Z f(m == 0) =detlfJ. (1.6) 

In non-trivial sector the Euclidean Dirac operator is singular and non-invenible 

and as a result the fermion propagator is undefined. What is puzzling is that in 

relativistic ~fink.owsld metric there is no identifiable signature of the zero modes 

of the Euclidean Dirac operator. The second option proposed sometime ago by 

Gamboa-Satavi et a/ (4J gets atound this problem by prescribing the value of the 

FPI in chirallimit as the product of only the non-zero eigenvalues of the singular 

Dirac operator 

· U' det(lP+. f.l.) d 11])Z f (m == O) = tIl '. = et .lY0 (1.7)
t .....O en. 

! 

In v ::: 0 sector the two options, (1.6) and (1.7) coincide. Differences manifest 

only when II i: O. A tesoludOll of the 8lllbivq).ence between the twO options, 

therefore, holds the key to the physics emanating from instanton ccnfigurations 

of gluon fields, and in particular, to problems arising from strong CP violation 
~ 

implied by the QeD 8-term (1.3). 

To resolve this ambIvalence from first principles the natural starting point is 

to ~ametrise the Dirac fields 1P(x) and 1,li(x; in terlIIs of Grassmann generators {5J, 

Precisely at dtis stage, one is confronted with the second ambivalence. Question is 

whether the Grassmann generators needed to parametrise W(x) should depend on 

or be independent of those employed for tt'(x). Stated differently, muSt we employ 

:} 
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twO independent Dirac fields for w(x) and its conjugate ij,(x) to de5crib~ a single 

Dirac fermion in Euclidean metric, or ~ as in relativistic field theory, the fields w(x) 

and ~(a:) associated with the Dirac fermion must be related to and derivable from 

each other? The only guideline, thanks to Osterwalder and Schrader [6] (OS), is 

the injunction that in Euclidean metric 

(1.8) 

This is dictated by the hemtiticity properties of the Dirac pi'opagatol in Euclidean 

metric. To implement the injunction (1.8), one possible way, adv(,catedby the 

authors of ref.6, is to assume that iP(:z) is a new Dirac field iildepend~nt of t/J(m). 

Though this was nlooted originally as a suggestion, it propagated in the literature 

[7] as the only available option. Deviation [8] froIIMhis orthodox attitude is a recent 

phenonH~nol. An extra Dirac field, in principle, suggests that in the passage from 

relativistic theory to Euclidean metric the degrees of freedom of a Dirac fermion 

has doubled (6,8J. This is not only unnatural but unnecessary. 

A precise de::7cription of a Dirac fernlion is fundamental to the study of FPI. 

A resolution of the first ambivalence, therefore, depends in a large measure on the 

position one adopts vis-a-vis the second, viz., whether only one or two Dirac fields 

are employed to describe a Dirac fermion. This, however, is not the whole story . 

.;\ crucial input in this resolution is how a 'global' chiral rotation is realised in 

Euclidean metric. We shall see in sec.2 that if either 1jj(x) is independent of t/J(x}, 

or if chlral rotation is realised as a non-unitary scale transfromation [8] 

(1.9) 

the natural result for FPI is the first option {1.6}. On the other hand, if we insist 

that not only should the fields tb(x) and ,zi(x) depend on and be derivable from 

each other but they must also transform unitarily under chlra.l rotation 

(1.10) 
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then. as demonstrated in sec. 3. the inescapable result for FPI is the second option 

(1.7). 

An artific.e to which recourse is taken almost universally to extract the CP 

violating effects of ~S. is the Baluni trick [9. 10] of implementing a Global chira~ ,.-
L:"( 1) rotation (1.10) of fenni fields in FPI. \Ve show in sec.~ that the two options. . . 

. " 
respond differently to this innocuous procedure. In the first option the parameter 

o in :lS (,1.3) c~ be changed at will and for the special chole.a Q '!9 for the:1\1: 

parameter of chiral rotation. tlS can be traded for the Baluni ~erm (9~ 101 

~'S = ern jrh;d' d4 
J (1.11) 

In the second option, however, 1lS remains unaffected, with the Baluni tl~nn (1.11) 

appearing in the fermion sector ~ an extra piece involving the (J"p&rttttleter. The 

~anonlalous transfonnation of the O..tenn 1.Ulder chiral rotation is the genesis of the 

l./(1 } dilemma [11. 12} in effective Lagrangian models. It is. therefore. argtted in 

sec.4 that the C'( 1) dilemma is a legacy of the first op~on (1.6) for fPI. Lagrangian 

models COiliorrnfIg to the second option (1. 'i) are not afflicted with this dilemma.. 

The Baluni teITfl is potentia.lly utlphysicaJ in the frarnf'wor1< of the second 

option for FPI. \Vhat prevents it frorn being unphysical in the first option, is the 

presence of the fennion zero rnodes. \Ve show in sec.5 t.hat nt:aither perturbative 

treatments nor current algebraic rnethods are capable of probing this essentially 

non-perturbative feature (13]. Even t.he state of the a.rt technology in la.ttice calcu

lations Inay not prove equal to the task and wll'avel the CP violating effects of the 

Baluni term [141. Taking cue from this. several authors [15] have recently pointed 

out atnbiguities in the derivation of a large :\"ED11 within the fi'alnework of ef

fectiye Lagrangians [161.Irrespective of this controversy, one can at least conclude 

t.hat. like the [7( 1) dilemma. the large :'\ED11 obtained in effective La.grangian 

models is a legacy of the first option for FPl. 

5 
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2. The Euclidean Dirac Fermion and the First Option for FPI 

In Euclidean metric the Dirac operator defined as 

(2.1) 

with 1-matrices obeying the algebra {--rp., --r",} = 26p."" is hermitian with reaJ eigen

values ,xn and orthonormal eigenfunctions ¢n(Z).· 

(2.2) 

Each non-zero eigenvalue An has its chirally conjugate partner -An with eigen

functiol;l cP-n 

(2.3) 

In non-trivial sector there will be zero eigenvalues. The normallsable eigenfunc

tions corresponding to these eigenvalues arc all of definite chltality. Assume, for 

definiteness. 11 = 1 so that there is only one zero eigenvalue with eigenfunction tPo 

of positive chirality .. 
~ 0 . 1'1 \A.i 

.If'''+'O = ~ ~o = it T ;5;\1:'0· (2.4) 

The set {¢n(X)} together with tPo{x) constitute a complete basis in function 

space. The Dirac field can be expanded in this basis as 

(2.5) 

where the sum is over only positive eigenvalues. The four degrees of freedom 

corresponding to each mode of a Dirac field is accounted for if we split [2] Q±n as 

(2.6) 
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with O±n, /3±n real-valued Grassmann generators. The mode cPo; which is essen

tially a \-Vey1 mode, has only two degrees of freedom 

ao = 0:0 + iDO (2.7) 

The hermitian conjugates Q±n = (a±n -i~±n)' Qo = (ao -i{3o) are the involutions 

[5] of a±n and ao respectively. The generators~ therefore, define a Grassmann 

algebra with involution [5]. 

It is convenient to substitute xt(x) for 1li(x) in the fermion action 

SE(m) == Jxt(z)(.Q) - im)W(z) tfz 

xt(x) == 1P(x). (2.8) 

The second ambivalence is about whether to make an ansatz of the form 

x(x) = O(z)w(x), (2.9) 

where the only constraint imposed by the OS injunction (1.8) is that the operator 

O(x) should be non-trivial. SO(4) and gauge invariance are implemented by an 

O{x) invariant under these transformations. In ref.6, Osterwalder and Schrader 

tecomtllended the alternative scenario wherein X(x) is independent of u'(x) and a 

relation like (2.9) does not exist. In the OS scenario [6J the conjugate Dirac field 

admits of an expansion exactly analog01.l5 to (2.5) 

x(x) = E (bn + b-n;r,)¢n(X) + bOqJo(x), (2.10) 
A .. >O 

with a new set of complex-valued generators {b}, unrelated to the set {a} employed 

fortt!(x). The hermitian conjugates b±n' bo arc, as before, the involutions in the 

Grassmann algebra [5J. The formula (2.8) for the fermion action yields the result 

'" 
SE(Tn. = E t(.~n - 'im)b~an + (-An - iln)b:nu-nl -imb(juc (2.11) 

.\..., >0 
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where the subsets {b} and {a·} are absent. To integrate over the subsets of gen

erators {a} and {b·} which appear in the action one introduces the corresponding 

truncated measure 

dp, = dbodao II db~dandb:nda_n 
-"",>0 	 (2.12) 

and obtains 

Jdp. exp[-SE{m)] = det(ip- im}. (2.13) 

In chiralllmit this agrees with the first option (1.6) for FPI. 

In the OS scenario [6) the number of effective degrees of freedom is reduced 

by a factor half by excluding essentially the operation of hermitian conjugation in 

the fermion sector. This is done in two steps. FirSi, only the component SEem) 

instead of the full hermitian form [SE(m) + S1(m)] Is considered as the fermion 

action. The second step consists in integrating with the truncated measure (2.12) 

instead of the full measure IT db-dbcla-da. In the absence of these prescriptioDS 

of truncating both the action and the measure the result would ,be det( IP +m2 ) 

instead of (2.13) as expected for the FPI for two independent Dirac fields with req

uisite number of dynamical degrees of freedom. An obvious fallout of the loss of 

the operation of hermitian conjugation is that the two point function ("pt(y)X(x»), 

which is hermitian conjugate to the fermion propagator (X t (:l:)tiJ(y)), is incalcula

ble in the OS scenario. The degrees of freedom, l.e., the Gtassmatlll generators, 

associated with X(x) and ¢t(y) arc not dynamical. Recall that the injunction 

( 1.8), which is the genesis of the OS scenario [61, has its origin in 'the misma.tch 

of the hermiticity properties of the Green function (1PT(x)1/J(y)), and the pertur

bative Dirac propagator in Euclidean metric. It is, therefore, ratheJ: strange that 

.......,.. 	 precisely this hermitian conjugate, (X(x)1t,t(y)), of the fermion propagator should 

be incalculable in the OS scenario. 
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The unnaturalness of having to describe a single Dirac fermion with two in

dependent Dirac fields and the problem of hermiticity arising from this, prompted 

~lehta [8] to seek a conjugate field X(~) of the form (2.9). He 'argues for O(~) = "-Yo, 

which is the obvious choice if O(x) is spa.ce-time independent. This only means 

that in the expansion (2.10), one should substitute ia! (ia~,,) for b~n (b!) and 

iao for boo Once again one obtains the first option for FPI. The problem with 

the choice O(~) = i"Yo is that under chiral rotation, X(~) transforms identically 

as 'ft1(X). This means that with the unitary realisation 'I/J(x) --+ eiarlJ¢(x) of chi

ral rotation the mass term in the fermion action (2.8) will be invarian," and ihe 

'kinetic energy' term non-invariant. The scenario will, therefore, be exactly op

posite to what physics dem~ds. On the other hand, the no»-unitary realisation 

(1.9) of crural rota.tion, recommended in ref.S, is inappropriate for the popular 
'I 

U(3) ,,;'( U(3) crural symmetry in standared modeL Another obvious iu.1lout of this 

unconvention.u realisation is tha,t the Jacobian tsee sec.4) for chiral rota.tIon is 

real and cannot cancel the imaginary O-term (1.3) in the fermion action. Thus 

in estimating physical effects of the B-term, e.g., NEDM, the conveut!onal route 
~ via a chil'al quark mass term, like the Baluni term (1.11), is not available in this 

approach. 

3. The Euclidean Dirac Fermion and the Second Option for FPI.. 
f 

Both in the OS scentL.~o [6] and in the scenario presented in ref.8, the unsat

isfactory features arising from the definition of the conjugate Dirac field manifest 

already in the trivial II = 0 sector. They have nothing to do with fermion zero 

modes. Let us first assure ourselves that there exists a representation for X(x) free 

from these blemishes. 

First observe that an infinitesimal unitary chiral rotation 

(3.1 ) 
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induces among the generators for 1P(x) a transformation 

(3.2) 

Conversely, the transformation (3.2) of the generators implements a. unitary crural 

reta.tion (3.1) for ~(x). It is new easy te verify from (3.2) tha.t the combina.tion 

(an - a_n"Ys) transforms as 

This means that the representation [17] 

x(x} = E (an - a-n'Y~)¢n(W) (a.3) 
Aft >0 

realises for the conjugate field the desired transformation xCX) -+ (1 - i8'Y5) xC:l! ) 
for infinitesimal chlral rotation. 

One can motivate the representation (3.3) also from an analogy with the for

mula X(:t) = {o ¢(:t) valid in~finkowski metric. The opposite chiral transformation 
".", 1 .,. 

property of X(x) is realised through the "Yo matrix. In Euclidean metric, -where 

no distinction is to be made between time and space componentfi, the opposite 

crural property of the conjugate field is ach1eved by substituting for "Yo a matrix of 

the form P#l{~ with P#I a suitably normalised four vector. "The twin requirements 

of 80(4) and gauge invariance lead to the unique choice P" oc D~f the covariant 

deriv.,tive; and hence to the representation [17] 

X(x) =- lim (-¥JI ,1,,, '2 QIrp(x). (3.4)
a-O ,J T t" )-1 

for the conjugate field. The infinitesimal parameter € ensures that the normali

sation factor makes sense e\"cn in the kernel space of lfJ. One easily verifies the 

representation (3.3) from (3.4). Substituting (;.).3'} for X(x) in the formula (2.8) 

for fermicntaction one obtains 

(3.5) 

10 
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lutegration with the full fermion u;te8Jillre appropriate for tlte single Dirac field 

1j;(x) 

dJ1. = II da;'danda':nda-n (3.6) 
An >0 

gives the desired result for FPI in the trivial v = 0 sector 

Zv=o(m) == f dJ.l. €Xp( -SE(m)) = fl (.\; + m2). (3.7a) 
t" An >0 


In non-trivial 1I -:f::. 0 sector the central question is whether the zero modes 


can appear in the representation for x(x). In the present framework, where X(x) 

depends on and is derived from ti'{x), as in eq.(2.9), and, further, has the opposite 

chiral transformation property there is no way for zero modes to appear in x(x). 

A priorl~ this should be evident from the formula (3.4). The Dirac operator 1fJ 

annihilates the zero modes, if any, present in "p(x). To probe further, note that 

each zero mode is really a Weyl mode endowed with just two degrees of freedom. 

For the positive chirality \\~eyl mode ,¢o(x), for example, these two degrees of 

freedom are already accounted for by~ ao, the complex-valued generator (2.7) in 

the representation (2.5). Cnder dural rotation ao acquires a phase ao ~ ao(l +io). 

If 4>o(z) were to appear in X{x) then, according to eq. (2.9), we must have 

(1 - ia)O(x) = O(x)(l + ia). 

to implement the opposite chiral transformation property for X(z). This, obvi

ously, is not possible. In the case of the contribution from a Dirac mode ¢n(X), 

however, reversal of chlral property is not a problem. This is because each Dirac 

mode comprises two ,\Veyl modes of opposite chirality. The Grassmann generators 

corresponding to the two Weyl modes can be swapped to realise the chiral prop
~ 

erty appropriate for the contribution from the Dirac mode rPn(X) to the conjugaie 

field X(x). In the OS scenario [6], this problem is a non-issue, simply 'because the 

11 
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conjugate field is independent of 1/;{x) and one is free to invent the generators for 

Xex) without any prejudice for the generators employed for 'flex). 

The upshot of all this is that fermion zero modes cannot appear in the conju

gate field and the representation (3.3) for X(x) remains valid even in the nontrivial 

11 :F 0 sector. The significance of this remarkable result is immediately realised if 

one substitutes the representation (3.3) for X(x) in the formula (2.8) for fermion 

action. All the degrees of freedom associated with the zero modes in the rep

resentation for the Dirac field 1/J(x), e.g., the Grassmann genera.torS ao in the 

rep1'6Sentation (2.5), drop ou~ from the fermion action, and one recovers in the 

nontrivial sector the same ex-pression for SE(m) as that given itl (3.5). The inte

.......,. gration measure appropriate for this action is therefore, the &a.lILe as in eq. (3.6). 

The Grassmann generators associa.ted with the zero modes in the Dirac field, are 

therefore, absent both in the action and the integration measure. One recognises 

the similarity with the sets of generators {b}!IIrand {aoj<} in the OS scenario [6] dis... 
t 

cussed in sec.2. The degrees of freedom associated with the zero modes in ¢(x), 

are, therefore, redundant, and in calculating the Green function of the theory the 

effective Dirac field can be represented by the truncated expansion 

WE(X) = L (an + a-n 15)¢n, (3.9) 
)'",>0 

without the zero modes. It is now a simple matter to convince oneself tha.t the 

zero eigenvalues of the Dirac operator do not contribute to FPlin an instanton 

background 

(:J.7b) 

In the chirallimit (3.7b) coincides with the second option (1.7) for FPI. 

It may be verified that Euclidean Green functions in the present formulation 

correspond to a unique relativistic field theory. For this, it is necessary that they 

obey the physical positivity condition [17] which allows to define a positive metric 

12 



Hilbert space of physical states. The positivity condition is defined in terms of the 


antilinear mapping 9. In the fermion &ector e maps the Dirac field 1/J(x) to its 


conjugate Xt (x) and vice-versa [18] 


(3.10) 

(8F,F) ~ 0 	 (3.11) 

was proved by Osterwalder and Seiler [18] for gauge invariant functions F(z) of tbe 

Dirac field ti'(z) and its conjugate Xt(x) at positive times Xo > O. This then allows 

to define [18] the physical Hilbert ~pace with respect to the norm II A 112= (SA, A). 

For gauge field theory of Dirac fermions the proof of the positivity condition \vas 

carried out by Osterwalder and Seiler [18] on the lattice in the framewQJ:k of OS 

scenario [6] where 1jJ(x) and xt(x) are independent of each other. ThE: s8.J]le proof 

seems to follow mutatis mutandis when the Dirac field WE(X) and i1is conjugate 

xt(x), as given in eqs. (3.9) and (3.3) respectively, are dependent on each other. 

Recently, Kupsch [20] has given a construction of Euclldean Dixa.c fields as 

transforms of white noise, wbJch rep;roduces all Schwinger functio:tU9 t\ll.d has the 

correct behaviour under Euclidean and gauge transformations. It 1& remarkable 

that this construction is in complete agreement with the representatlon (3.i1) for 

..,...." 	 conjugate Dirac field which has been motivated [17] essentia.lly by int.uitive argu

ments. In formulating Euclidean field theory for fermions, difficulty really stems 

from short distance singularities whlch tend to bEcome non-renormalisable when 

one tries to elpress Schwinger functions in an interacting theory in terms of free 

Euclidean fields [21 J. It is, therefore, significant that gauge interaction.s of fermion 

and gauge 'invariance enter in a fundamental way through the definitions of the 

conjugate field (3:~) and of the fermion measure (3.6). 
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4. Global Chiral Rotation and the U(l) Dilemma 

It is remarkable that all estimates in literature for NEDM and strong CP 

violation have been obtained, not directly from the 8-term (1.3), but either from 

the Baluni term (1.11) or from its representation in effective Lagrangians. The 

alibi for this is that the fermion measure dJ-L in the vacuum functiona] in QeD 

ZQCD =Jd,lDA. ezp[SQCD] (4.1) 

would acquire under global chiral U(I) rotation a non-trivial jacobian J(o) related 

to the Adler-Bell-J ackiw anomaly. For a suitable value of the parameter a of chiral 

rotation (1.10), InJ(o) may cancel the O-term (1.3). The Baluni term (1.1t) arising 
from the chlral rotation of the quark mass term in SQCD (1.2) will in that case 

be the only surviving signature of the 9-term in QeD action. The credibility of 

this alibi, and, more important, whether any real simplification is achieved in this 

apparently hmocuous procedure deserve careful scrutiny. 

The Jacobians in. the two options for FPI will naturally be different and can 

be calculated directly from Fujikawa's [22] result 

(4.2) 

where the sum is over the dynamical modes dictated by the fermion measure dJ.L. 

In the second option, only Dirac modes with nOD,.J'.ero eigenvalues are dynamical. 

From the. ortlonormality of ¢n(X} and ¢-n(:1!; = '''f5¢n(X), it follows that In J{a) 

vanishes [4J in the second option (1.7). In the first option (1.6), however, the dy

namical modes encompass the \Veyl modes (2.4) corresponding to zero eigenvalues. 

This makes all the difference, because, according to (4.2) In J(o:) is in this case 

given by -2ia(n+ - n_} which coincides with -2iaJ.l by the index theorem (1.1). 

The net result is that the BaJuni trick lea.ds to different actions in the two options 
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for FPI : 

/I r ,1 "1 

S~CD = 11'):(4'- im)1J; + -Tr(FF) I d4x + t.'S (4.3) 
.J L 4..! 

in the first option, and 

S~CD = Jf.tP(~- j·m)l,b + ~Tr(FF)l cflx + f).'S + as (4.4) 
L 4 j 

in the second, with t:J.:5 and dS., as before, the 8-term (1.3) and the Baluni term 

(1.11) respe,cti vely. 

~~ote that in their respective frameworks the actions (4.3) and (4.4) are equiv

alent to the same old QeD action (1.2)_ From this, one thing is clear. In the second 

option the Baluni term is unphysical and cannot be held responsible for any'ob

servable CP violation. This is not so for the Baluni term in the action (4.3) which 

corresponds to the first option. There, the 8-term fl.S has been tr,a.ded for the 

Baluni term ~'S. The generators for fermion zero modes in the measure dJ1. (2.12) 

constitute the link beween fl.'S and tl.S. If this link is snapped through inadequa

cies in approximation schemes the interchangeablity of ~IS and AS is lost and 

b/S becomes unphysicaL Thus, even in the first option (1.6) for FPI, estimates 

of ~EDM and strong CP violation derived from the Baluni term, if nan-trivial, 

should be regarded as spurious unless the theoretical probes satisfy the litmus 

test of being sensitive to fermion zero modes. ~t\.las, theoretical pro'bes based on 

perturbative treatments or on current algebraic methods in the 50ft meson ap

proximation do not qualify in this test. It is not enough, as is popularly believed 

[14-16J fot the probe to be able to detect the triangle (ABJ) anomaly. Perturbative 

calculations are quite capable of that, but fermion zero modes and a non-trivial 

8-term are essentially non-perturbative, and, therefore, beyond the pale of pertur

bation theory. Even with the state of the art technology in the lattice framework 

it will be difficult (14] to unravel the CP violating effect of a non-trivial O-term. 

'-------- / 



·.\n interesting feature of the {i-term in the first option, revealed by the Baluni 

trick, is that the B- parameter can be changed at win by a global chiral rotation. A.'priori, the QeD 8-term (1.3) is built out of gluon fields and theref,)re expected to 
.

be chirally invariant. The gluon fields can, however, acquire chirality in a certain 

sense (11] from the hidden fermionic degrees of freedom when they are integrated 

out. One may think in this connection of the A.BJ anomaly equation in the first 

option: 
• 2 

(8Iit J#JtS)(1) = (2m1P,51/J) + ~~2 (tr F~JlF~JI) (4.5) 

This does not yet guarantee a non-trivial chirality for F P. For instance, the 

axial current and its divergence, though built out of quark fields, are chirally 

invariant. The non-trivial chirality of FF manifests only in the in.stanton sector 

from Fujikawa's (22) identity 

(4.6) 

Each Dirac mode (recall our discussions in Sec.3) corresponds to t\Vo Weyl modes 

of opposite chirality and their contributions cancel in the sum. It is the unpaired 

\Veyl modes corresponding to zero eigenvalue that survive. This is the reason \Vhy 

for global crural rotation the fermiomc Jacobian in the first option is non-trivial 

and brings about a change in the 8-parameter of the 8-term ll.S. 

In an effective theory there is no fermion measure and hence no Jacobian. 

The piece representing the B-term in the effective Lagrangian should-incorporate 

the effect! of the missing Jacobian and therefore break chira.l inva.dance explicitly 

like the mass term in QeD. There is a price to pay for this procedure when one 

considers the 'anomaly equation' which in the effective Lagrangian framework re

ally means the normal \Vard identity for the divergence of the U(l) axial current. 

The divergence equation picks up contributions from all terms that break crural 
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invariance. The 9-parameter therefore will appear explicitly in the 'anomaly equa


tion', as indeed it does in 't Hoooft's [11] model (see his eq. (4.19)). Tbis is in 


conHict with the anomalous Ward identity (4.5) in the underlying QeD and con


stitutes the crux of what 't Hooft calls the [J(1) dilemma [11,12]. In retrospect, it 


is the mismatch between the intrinsic and the effective transformation plopertiea 


of the QeD 8-term under global chiral rotations which is at the. heart of the U(l) 


dilemma. In this sense the U (1) dilemma 1s a legacy of the first option (1.6) for 


FPI. 


In the second option (1.7), the \Veyl modes corresponding to zero eigenvalues 


of the Ditac operator are not dynamical. Eq. (4.0) now dictates that evell hi the 


iIiStanton sector ~ JFF dol z should behave as chirally neutral. The Dusmatch be


tween the intrinsic and the effective chlral transformation properties (If tbe 8-term 


~ 	therefore disappears in the second option. In a.n effective Lagrangian correspond

ing to this option~ the 8 parameter can appear as a coefficient of only a cbiraJIy 

invariant term. To account for the ABJ anomaly in this option [4,23],.. 
. 2 

l!.'ltj.,,(2)-(?m ll T. ....;.'1/t'4-.2(t9 trF D ,"/"t"","/".) (4.7)\u". ;i-:::', - - 'Y I:J y'! I \ 157f2 p.u.c PO'" - L..i If'O, ,Slf'OI 

where ¢Ui'5 are zero modes~ one has to Introduce in the effective Lagrangian a 

separate term whlch is invariant under global chiIal rotations but not under local 

ones. This is reminiscent of the 'anomaly term' suggested by Christos [12], viz. 

fz ( -~) (a,. Tr log (}v1/ lvft)) 2 , where 1v1 stands for the meson matrix. 

5. "CP violation" from the chiral mass term 

The Baluni term (9] was used by him and by others [10J to E!stimate the 

electric dipole moment of the neutron. The estimate came out to be 8 times a 

rather large number. Since a dipole moment has not been observed in practice, the 

conclusion seems to be that fJ is very small. This is generally regarded as unnatural, 

17 

/ 



,... 


and referredfto as the "Strong CP Problem". Attempts to solve thls pr.obIem by 

introducing symmetries [24] have 1ed to the prediction of undetected particles [25] 

and believers have also supplied theories to explain why these panicles should 

be undetectable [26]. It may be be more worthwhile to enquire [13J whether the 

dipole moment calculations are in iact reliable. This is what we propose to do in 

this section. 

A. Parity in the presence of 1'5 and the chiral anomaly 

The usual free Dirac action 

So =Jct'x ~{ilJ- m)1jJ (5.1) 

is known to be invariant under the parity transformation 

(5.2) 

'Cnder this transformation, i{nJ; transforms as a scalar, ijJi,s1P as a i?Seudoscalar, 

i[;;~1/J as a (four-)vector and so on. 

Let us consider a free Dirac theory where the mass term is not a scalar but 

involves a scalar piece as well as a pseudoscalar one. 

86 = Jct':c ~/(ilJ- m i-rsm/).,pl (5.3) 

What happens to parity in this theory'? Under (5.2), the pseudoscalar mass term 

picks up a minus sign, while the other terms stay unchanged, inclicc.ting that Sb 

is not invariant. However, this does not mean that the theory breaks parity. Just 

as the transformation (5.2) was found in an attempt to keep So iIlvariant, one 

should attempt to find a transformation that replaces fields at i by fields at ...,i 

and leave (5.3) invariant {I3]. After all, symmetry transfotmation8 in field theory 

are determined by the symmetry properties of the Lagrangian in thl~ asymptotic 

--r domain and the pseudoscalar mass term, which is quadratic in the n{!lds, must be 
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taken into account in the CO'lutruction of the symmetry transformation. Let this 

transformation be 

This will leave (5.3) invariant if 

(5.5) 

(5.6) 

Let us try the following ansatz for V : 

(5.7) 


where f3 is a real number. \Ve find that (5.5),(5.6) are satisfied provided 

(5.8) 

i.e., 

(cos2{j + isin2{j,s)(m - i"Ysm') = (m + i"Ysm') (5.9) . 

Le., 

mcos2t3 + -m'sin2t3 =m, msin2B - m'c082B =m' (5.10) 

wbleh are simultaneously satisfied if 

m'f3 = tan-I- (5.11). Tn. 

Thus the transformation (5.4) with V determined by (5.6) and (5.10) leaves So 
unchanged, showing that this theory does have reflection invariance. Note that V 

satisfies 

V t =,l=V-1 (5.12) 
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, 


as usual, and there is no conflict with the fact the square of a parity traJlsformation 

is the identity. In fact, the transformation (5.4) can be seen to correspond to the 

'U8ual parity transformation in terms of fields 1/J which have a real mass term. 

It is important to note that along with the definition of parity, the transfor

mation for the fermion bilinears also change. Clearly, iP'1/J' is no longer a scalar 

and 1P'1'51/1' no longer pseudoscalar : 

1/)'1/1/(fi, xo) -1> (cos 2(1)iiJ'1/1'( -fi, xo) + i(.'Jin 2p)ii;''Y5'¢'(-fi, xo) (5.13) 

tP'1'51jJ'(X, xo) --i' -(cos 2(3)iP' '"'(51/1' ( -iE, xo) - i(sin 2{j)i!l1/J' (-fl, xo) (5.14) 

The true transformation rules are obeyed by ij)'ei f;J1 5 1/J' (scalar) and ij)'r5€i/3101jJ' 

(pseudoscalar) respectively. Thus the mass term iP'(m + i'Y5m')1jJ', which can also 

be written as (m2 +m,2) t if;,e i{3"r1J 1/J', is actually a scalar under the transformation 

(5.4). ~ote that i/J''YIl'1/J' continues to transform like a vector and if;'~/1l'151b' like an 

axial vector. 

Having found that the presence of ;5 in the mass term in a free fcrmionic 
". 

theory does not spoil reflection invariancc, we would like to know what happens 

when interactions are switcllcQ on. There is onc further complicatIon in qeD 

the fact that the mass matrix lll'Il though diagonal, is not nuccssaril:r proportional 

to the identity in ftavour space. This makes B itself a matrix in llavcur space. But 

there is no conceptual difficulty. The matrix V is defined by 

(5.15) 

f 
~ote that this factor may be obtained from ,0 in the standard parity tra.nsforma

don by using the chiral transformation used by Baluni. The parity transformation 

defined in this way leaves the pure quark part of the QeD action invariant. The 

introduction of gluons necessitates the definition of a parity trant~formation for 
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them. We adopt the usual definition: 

.t (- \ .• r .... 'A (-' A ( - ) (5.16)-'"1.o .. X,XO) -+ _"'10\-x,Xo), . i JV,XO) -+ - i .. -X,Xo 

The integral of the kinetic term for gluons is then invariant as usual. \Vbat is 


more nontrivial is the invariance of the interaction piece. But (5.5) ensures that 


this occurs even though V differs from the usual 1'0. \Ve conclude then that the 


action of QeD is invariant under the modified parity transformation in which 1'0 


is repla.ced by the RHS of (5.15). 


What implication does this have for the quantum theory corresponding to 


QeD with the Baluni term? One would be tempted to say that the quantum 


theory toO has a reflection symmetry. However. it is necessary to be more care


ful. Recall that in a gauge theory 9f massless fermions, the a.ction is invariant 


under crural transformations. so that there is a classical symmetry, but this is 


broken in the quantum theory by the anomaly. Can our refiecton symmetry be 


sinrllarly broken by an anomaly? There is some reason to fear tha.1; it can be, 


for the transformation (5.15) does involve a chiral piece, which may lead to some 


anomaly. Note, however, that we are concerned here with constant cJ:Liral trans


fortna.tions rather than spacetime qependent ones l the distinction is impol't~t 


because dllly the latter have penurbatively nOllvanishing anomalies. Tnus, for the 


constant chiral transformation (l.I0)~ the measure of the path integral with the 

-.yr 

first option changes by an anomalous Jacobian exp ( - s~~ (Tra) Jct'z Tr (F f) ) _ 


\Vhile expressions like Tr(FP) appear in perturbative calculations, it is an exact 


four - diveIgence~ so that f d'xTr(F f) vanishes fn;-gluon configurations that can 


be handled b~atperturbative techniques. Hence perturbative calculations should 


not be able to detect any violation of reflection invariance in the quantized the

ory. This can be further confirmed as follows. If perturbation theory is used, the 


vertices are standard and involve 11-', and only the quark propagator involves e. 
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However, this propagator can be written as 

iJ;- 1'.,11- i"';'5(TrAl-1)-le)-1 == e-in:i'3lP-l\:[J-le-ic.t1'D (5.17)•. 
and the wavefnnction as 

f ~1" fliT -1-1)_1) ifl''''''. ( -1)'u,\p,.tv. ;- 1.i'.5U~ 'rJY. .. -. = e - ..··UtP, JV, , (5.18) 

while 

(5.19) 

with an appropriate G, Thus the £i-dependent factors in the internal quark lines 

cancel out at the vertices, leaving the propagators and the vertices of the theory 

without (). If there are external quark lines. the remaining factors in the propa

gators cancel out with those in the wavefunctions. Consequently, diagrammatic 

techniques will never detect the presence of (). 

That still leaves the question whether there can be non-perturbative effects 

of 8. n'e do not know the answer. But this is precisely the same situation as in 

the original formulation (1.2) of the theory. The only possible effects of 8 in that 

formulation must be non ... penurbative, viz., through gluon conftgurE~tions where 

f d4 J! Tr(FF) does not vanish even though Tr(FF) is a four-divergence. The 

same is true about the present formulation, as could have been expected. But 

the authors [10] who worked in this formulation apparently thought that effects of 

fJ would be visible even by methods which were blind to non-perturbative gluon 

configurations. Our conclusion is that they were wrong. (See also [15]). ItJs worth 

repeating that it is not enough to have a calculational framework that is sensitive to 

the perturbative anomaly. The integral of the anomaly, which is nonperturbative, 

has to be probed. Following our mention of the anomaly in [13], some lattice-based 

authors [14] stated that lattice calculations, which take disconnected diagrams 

(with quark loops) into account and hence see the perturbative gluoD anomaly, 
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should be a.ble to detect an :\,ED1\.1, in contrast to calculations which neglect 

such diagrams. But this is untenable. Lattice methods WOlHd need to include 

instanton-like gluon configufations in their pur\l-iew. \\1Ule this lS possible in 

principle, topological calculations on the lattice are in practice beset with such 

severe ambiguities [27] that there is no hope of any reliable lattice calculation of 

the ~EDM in the near future. 

B. Remarks on Current Algebra calculatiGlll!i with the chiral mass term 

Effects 'of the B-term in the Baluni form ha.ve allegedly been see;n in current 

algebra ca1culations (1 OJ. One might think that these could be genuine effects since~ 

after ali, current algebra is not perturbation theory. But curre:ut algebra, or to be 

more precise, methods used in the work [10] under discussion, make no reference 

to instantons or gluon configurations with non trivial topology which could make 

JrJix Tr(Ft) nonzero. It is even insensitive to the pertnrbative anomaly. This 

immediately suggests that the predicted effects are illusions. It is not difficult to 

see how thev arisefl31.
" '" ~ 

The crux of the calculation of the electric dip?le moment of the neutron by 

the cnrrent algebraic method [10J is a CP violating "scalar coupling" of pions and 

nucleons, represented by 

(5.20) 


Here g(ex: 9) is the scalar coupling invented by the said authors, 't/JN is the nucleon 

field and 11"4 the a-th member of the pion (Nambu-Goldstone boson) octet. A term 

of the form. (5.20) has been alleged to occur in the effective theory of pions and 

nucleons. This was thought to arise from the Baluni term and thus to be related 

to the nonzero matrix element 

(5.21) 

In the same way, the nonzero matrix element of iP'1'5 til between the 1] and two 

23 

/' 



pion states suggests [10] an amplitude for the decay proportional to 8. Since 

, 


the current algebra estimates of the matrix elements have nothing to do with 

gluon configurations of nontrivial topology, the logic of the previous subsection 

immediately tells us that something must be wrong here : parity can be broken 

only through such gluon configurations [13]. 

Let us try to understand the error [13] in the current algebra calculation 

(10) of the neutron electric dipole moment. The coupling coming from (5.21) was 

identified as a scalar coupling because the soft pion theorem yields 

9(Tr l.,1-1)-1 (7!'G1'1 1Ij:'-/51/J' IN) = Cf~{} )(Tr.'.1-1) -1 (N I [Q~, 1j:'"/51/J'll N) 

= (~: )(Trlvi-I )-1 (N I iji' >.; l/J' IN) 

(5.22) 

But the pion also has a conventional pseudoscalar coupling to the nucleon. This 

was not treated in any detail by the current algebraists [10], who simply wrote 

down the phenomenological value for the coupling constant. The pseudoscalar 

coupling in the conventional theory with fJ = 0 is related to the matriX element 

m;(lv I 'KG Ilv}, which, by PCAC, can be written as (i::){.tv I8".(1/J'YJ. i 'Y5 ;11>1/1) \lv}. 

By ,,..inue of the equation of motion, this is proportional to (.tv I iirY5 {}'I!, ~ }t/J IN). 

~ow this expression is not invariant under the chiral transformation taking t/J to 

w' : 

(J,.($'Y"'Y5 ~G ,p) =iWiS{M, ~G}1/! 
(5.23) 

=iW'-:s {M, ,~G }?,(!' _ 29(TrM-1 )-liP' ~B l/J', 

where it has been assumed that lvI differs only infinitesimally from (-A;Tr1vI) · I. 

Thus the pion coupling is related to 

I~! i a (,j'. ...,IJ. .. 1 _ Aa,,:~\ I ~T\ - ,;/~: I '1f.'-,.I , .. - :~(JJ'i1!J11 AT)
\ ~ "I ,.. \..;.- f f 0 2 ..,..) .i." I -,- .. \ .. " I '+" lOt - .::r-, 2 ..,.. .J. " 

(0.24) 
t (( l' l-~V" )'- 29 ;.V I i.Tr.Zv[- )- ,p' -2 ¢' IN 
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The previous authors [10] identified the first piece on the RHS as a pseudoscalar 

coupling and obtained the dipole moment from me int~rference between these two. 

But this idtntification is false, for these two terms by themselves do not have well

defined transformation properties. Only the combination has such a property: it 

is pBeudoBcalar. In other words, there is no scalar coupling, and no dipole moment 

in the current algebra approximation [13]. 

6. Concluding Remarks 

The question. how to describe a Dirac fermion in Euclidean metric, plays a 

key role in the present discussions. Everything else flows from 'the stance one 

adopts regarding the answer to this question. There is. on the one hand, the 

traditional and popular as scenario [6) where each Dira.c fermion is associated 

with two independent Dirac fields. On the other hand, the second scenario [17] 

presented here, requires only one Dirac field 1,b(x) to describe a Dirac fermion'in 

Euclidean metric. The conjugate field ,p(x) ( or, equivalently x(x)) is defined 

in terms of "'(.3:). Gauge interactions of fermion and gauge invariance enter in 

a fundamental way in the definition (3.3) of if, (x) and of the fermion measure 

(3.6). There is a direct correspondence between the OS scenario and the first 

option (1.6) for FPI, and between the second scenario and the second option (1.7) 

for FPI. Thanks to the paper of Osterwalder and Schrader [6] on the one hand 

and that of Gamboa-Saravi et al [4] on the other, insofaras consistensy from the 

mathematical point of view is concerned there is not much to choose between the 

two options and hence between the two competing scenarios of a Dirac fermion 

in Euclidean metric. Consideration based on physics and the fallout of the two 

scenarios on issues in physics emanating from the instanton sector are expected to 

play the decisive role in this crucial choice. 

One recognises strong resemblance between a relativistic DirlC fermion and 
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the second scenario. This resemblance is not confined merely to the one-to-one 

correspondence of a Dirac fermion and a Dirac field. It should be observed that 

the degrees of freedom associated with fermion zero modes, for w blch there is 

no identifiable signature in the relativistic world, are redundant in the second 

scenario. 

The ambivalence in representing the QeD 8-term (1.3) in effective Lagrangian 

models, called the U(l) dilemma by 't Hooft [11], is a legacy of the first option 

and hence of the OS scenario [6]. The dilemma is absent in the second scenario. 

The most significant and, perhaps, the most decisive impact of the second scenario 

is on the strong CP problem which has defied all attempts towards a. resolution 

for the last fifteen years. The strong CP problem, it has to be recognised, is 

basically a theorists' problem and arises from the large value for NI;DM estimated 

theoretically from the Baluni term (1.11). ~ the second scenario effects of the 

Baluni term are unphysical. In a chlrally invariant theory like QeD the Baluni 

term can be trivially transformed away by a chiral rotatio:q.. Tbis would %lot be 

true in the first option for FPI. There, one can only trade the Balun! term for an 

additional piece in the QeD B-term (1.3). Thus, the second scena.rio, in essence,....., 
evades the stomg CP problem and states that the Baluni framework for theoretical 

estimates for XED~I due to the B-term is untenable . 

•. 
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