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Abstract

We simulate the critical relaxation process of the two-dimensional Ising
model with the initial state both completely disordered or completely or-
dered. Results of a new method to measure both the dynamic and static
critical exponents are reported, based on the finite size scaling for the dyna-
mics at the early time. From the time-dependent Binder cumulant, the dy-
namical exponent : is extracted independently, while the static exponents
/v and v are obtained from the time evolution of the magnetization and

its higher moments.
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1 Introduction

For statistical systems in equilibrium or near equilibrium critical phenomena arise
around the second order phase transition points. Due to the infinite spatial and
time correlation lengths there appear universality and scaling. The universal
behaviour of critical systems is characterized by the critical exponents. The
determination of critical exponents has long been one of the main interests for
both analytical calculations and numerical simulations.

Numerically critical exponents are usually measured by generating the confi-
gurations in the equilibriumn with Monte Carlo methods. To obtain the critical
exponents from the finite size scaling. Binder’s method is widely accepted [1. 2].
The dynamical exponent : is traditionally measured from the exponential decay
of the time correlation for finite systems in the long-time regime [3. 4]. As is well
known. numerical simulations near the critical point suffer from critical slowing
down. Much effort has been made to circumvent this difficulty. To study the sta-
tic properties of the system, some non-local algorithms, e.g., the cluster algorithm
[5. 6]. have proved to be very efficient compared to the normal local algorithins.
However, in this case the original dynamic universality class is altered by the
non-locality of the algorithm. Properties of the original local dynamics can not
be obtained with non-local algorithims.

In recent years the exploration of critical phenomena has been broadened.
Universality and scaling are also discovered for systems far from equilibriuni.
Better understanding has been achieved of the critical relaxation process even up
to the early time. A representative example for such a process is that the Ising
model initially in a random state with a small magnetization is suddenly quenched
to the critical temperature and then evolves according to the dynamics of model
A. Janssen, Schaub and Schmittmann [7] have argued by an e-expansion up to
two-loop order that, besides the well known universal behaviour in the long-time
regime. there exists another universal stage of the relaxation at early times, the
so-called critical initial slip, which sets in right after the microscopic time scale
tmic. The characteristic time scale for the critical initial slip is tg ~ mg /%0 where
my is the initial magnetization and x4 is the dimension of it. It has been shown
that xg is a new independent critical exponent for describing the critical dynamic
system.

The characteristic behaviour of the critical initial slip is that, when a non-

zero initial magnetization my is generated, due to the anomalous dimension of the



operator my the time dependent magnetization AM(¢) undergoes a critical initial
increase

M(t) ~ mg t, (1.1)

where @ is related to xg by 2y = 6z+4/3/v. The exponent 8 has been measured with
Monte Carlo simulation for the Ising model and the Potts model both directly
from the power law increase of the magnetization in (1.1) [8. 9] and iudirectly
from the power law decay of the auto-correlation [10}-[12]. The results are in good
agreement with those from an e-expansion and the scaling relation is confirmed.

In a previous paper [13] we proposed to measure both the dynamic and static
exponents from the finite size scaling of the dynamic relaxation at the early
time. The idea is demonstrated for the 2-dimensional Ising model. Since the
measurement is carried out from the beginning of the time evolution, the method
is efficient at least for the dynamic exponent z. Even though certain aspects
of this dynamic approach should still be clarified, the results indicate a possible
broad application of the short-time dynamics since the universal behaviour of the
dynamics at early time is found to be quite general [14]-[19].

One of the purposes of the present paper is to give a detailed and complete
analysis of the data briefly reported in [13]. While in that letter we have ex-
tracted the exponents by the optimal fit of two curves in a certain time interval
(“global™ fit), we propose here in addition a new approach by which the critical
exponents are obtained for each time step separately (“local” fit). Furthermore
the simulation has been extended to a longer time interval in order to confirm
the stability of the measurements in the time direction and to see how the scaling
possibly passes over to the long-time regime.

On the other hand, we may easily realize that for the scaling of the short-time
dynamics a small initial magnetization is important besides the short initial cor-
relation length. This is because my = 0 is a fixed point for the renormalization
group transformation. However, there exits also another fixed point correspon-
ding to mg = 1. Therefore one may like to know whether around that fixed point
universality and scaling are also present or not. Actually some trials have been
made with Monte Carlo simulation {20, 21]. For a large enough lattice, one may
expect a power law decay of the magnetization

M(t) ~ t™5= (1.2)

before the exponential decay starts. From this behaviour the exponent 3/(vz)

can be estimated. However the results are not yet complete.
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Therefore another purpose of this paper is to present a systematic investiga-
tion of the finite size scaling for the critical relaxation starting from my = 1. It
will be shown that scaling is observed in the early stage of the time evolution and
with the help of the finite size scaling all the critical exponents z. .7 and » can
be obtained from the lattices which are much smaller that those in [20. 21].

The following section 2 is devoted to the critical relaxation with my = 0 and

Sect. 3 to mg = 1. The final section contains some discussion.

2 The Critical Relaxation

with Zero Initial Magnetization
The Hamiltonian for the Ising model is

H=J]5> 5S5;. S; =41, (2.3)
<ij>
with < {j > representing nearest neighbours. In the equilibrium the Ising model
is exactly solvable. The critical point locates at .J. = log(1 + /2)/2. and the
exponents ;3 = 1/8 and v = 1 are known. In principle any type of the dynamics
can be given to the system to study the non-equilibrium evolution processes.
Unfortunately up to now none of them can be solved exactly.

In this paper we consider only the dynamics of model A. For the numerical
simulation, typical examples are the Monte Carlo Heat-Bath algorithm and the
Metropolis algorithm. For the analytical calculation, the Ising model should be
assumed to be described by the A¢' theory. Then the Langevin equation can be
introduced as a dynamic equation. For the Langevin dynamic system the renor-
malization group method may be applied to understand the critical behaviour
as universality and scaling. For the critical relaxation with the initial condi-
tion of a very short correlation and small magnetization, Janssen. Schaub and
Schmittmann [7] have performed a perturbative renormalization calculation with
an e-expansion up to two-loop order. They have obtained the scaling relation
which is valid even in the short-time regime, and all the critical exponents in-
chuding the new dynamic exponent § which governs the initial behaviour of the
critical relaxation.

Of special interest is here the extension of the scaling form in Ref. [7] to
finite-size systems [22, 8]. In accordance to the renormalization group analysis
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for finite-size systems. after a microscopic time scale t,,;,. we expect a scaling
relation to hold for the k-th moment of the magnetization in the neighbourhood

of the critical point starting from the macroscopic short-time regime [23. 7. 24].
MWt 7. Lomg) = 08 A (b2 b7 BL. b~ my) (2.4)

assuining that the initial correlation length is zero and the initial magnetization
my is small enough. Here ¢ is the dynamic evolution time, 7 = (T —T)/T. is the
reduced temperature, L is the lattice size, and b is the spatial rescaling factor. It
has been discussed that under certain conditions the effect of my remains even in
the long-time regime of the critical relaxation [25]. This modifies the traditional
scaling relation where the effect of my has usually been suppressed.

In this paper we are only interested in the measurement of the well-known
critical exponents z, 3, and v. To make the computation simpler and more
efficient, we set my to its ﬁxed‘point my = 0 in this section. Therefore the
exponent r, will not enter the calculation. Furthermore, now the time scale
to = my~/™ — oo, and the critical initial slip gets most prominent in time
direction even though the magnetization itself will only fluctuate around zero.

The initial state with mg = 0 is prepared by starting from a lattice with all
spins equal, then the spins of randomly chosen sites are switched, until exactly
half of the spins are opposite. This initial state is updated with the Heat-Bath
algorithm to 300 time steps for L = 8,16, 32, and to 900 time steps for L = 64.
The average over 50000 samples of this kind with independent initial configu-
rations has been taken in each run, and 8 runs are used to estimate the errors.
The critical value J, = 0.4406 has been used and. in order to fix 1/v separately,
we have repeated all simulations with J = 0.4386. In each case the observables

|M(t)]. MP(t) and MM (t) have been measured.
To determine z independently, we introduce a time-dependent Binder camulant
M@ |
L) =1~ ——— 25
U(t.L)=1 TRV (2:5)

Here the argument 7 has been set to zero and skipped. The simple finite size

scaling relation
U L)y=U({,L'): t = b’t, L' =bL (2.6)

for the cumulant is easily deduced from Eq.(2.4).



The exponent = can easily be obtained through searching for a time scaling
factor b° such that the cumulants from two different lattices in both sides in
Eq.(2.6) collapse. We call this global scaling fitting.

Input | Lattice |, | t)..x 2 23/v 1/v
8 16 | 10 | 300 | 2.100(2) | 0.2473(02) | 1.13(1)
16 < 32| 10 2.149(2) | 0.2494(06) | 1.08(4)

U 50 | 300 | 2.134(4) | 0.2510(11) | 1.00(5)
32 « 64 | 200 2.140(4) | 0.2488(11) | 1.03(4)

AL? 50 | 900 | 2.151(2) | 0.2531(08) | 1.02(2)
200 2.153(2) | 0.2523(08) | 1.02(2)

U |32 64] 50 | 900  2.151(3) | 0.2515(11) | 1.03(2)
|M| 200 2.152(3) 1 0.2521(11) | 1.03(2)

Table 1: Results for z, 23/v and 1/v, respectively, from the 2-dimensional Ising model with
initial magnetization mg = 0. The values are obtained from a global scaling fit for two lattices.

Here the cumulant U(t. L) obtained from each of the 8 runs for lattice size L
has been compared with each run for L' = 2L. The best scaling factor 2° has
been estimated by the method of least squares. Figure 1 shows the cumulants
for L = 8.16.32 and 64 by solid lines. The dots fitted to the lines for L up to 32
show the results for L' = 2L rescaled in time with the best fitting scaling factor
2. Ouly a selected munber of 30 equidistant points has been plotted. One sees
the remarkable scaling collapse even in the short-time regime. Compared with

the figure shown in the previous paper [13] the evolution time for L' = 64 has

!
madx

been extended up to ! . = 900. The average value for z and the error estimated
from this procedure have been given in Tab. 1 for different pairs of lattices using
Eq. (2.6). In the first steps of the time evolution, the values of A and M
are quite small. A careful view at the data shows that their accuracy and in
particular the accuracy of the cumulant U(#, L) is not so good as for lager t. One
may expect that skipping the region of smaller t will give more reliable results.
Therefore we have performed fits for different time intervals [t ..t ..]. The

=1 and ¢, = 300. Fig. 1 is from
= 900. The longer evolution time of # = 900

max

results in reference [13] corresponds to .,
a fit with ¢ ,, = 50 and 1!

‘min ‘mazx

for lattice L = 64 shows also the stability of the scaling in the time direction.

(1]



Input | Lattice |7, | f1... x 23 /v 1/v |
8 16| 10 | 300 | 2.333(4) | 0.2372(08) | 1.11(1)

U 16 =32 10 | 300 | 2.143(2) | 0.2448(11) | 1.19(5)
M?2 13264 50 | 900 | 2.148(3) | 0.2510(16) | 1.07(2)
200 2.155(2) | 0.2488(10) | 1.05(2)

U 132 64| 50 | 900 | 2.144(4) | 0.2541(28) | 1.07(2)
|M] 200 2.153(3) | 0.2501(14) | 1.05(2) |

Table 2: Results for z, 23/v and 1/v, respectively, from the 2-dimensional Ising model with
initial magnetization myg

fit.

= 0. Values are from an average in time direction with a local scaling

From the results we can see that = for larger time f is slightly bigger than that
for smaller time t. Later we will come back to this point.

With z in hand, the scaling relation for the second moment

MO@Ly=¥rM2 @, L)y, ¢=bt L =bL (2.7)

can be used to estimate the exponent 23/v in a similar way . The results have
been included in Tab. 1. The curves for M® for the different lattice sizes and
the corresponding scaling fits can be found in Fig. 2. We have cut the time scale
at t = 220 in order to show the data relevant for the scaling fit more clearly.
Slightly more complicated appears the determination of 1/r. One can use the
derivative with respect to 7 either of U or of M'?). Here the latter gives more

stable results. From

O MP (4,7, L) o = b0 In M2 (7', L) |10 (2.8)

with ¥ = b°t and L' = bL, the exponent 1/v can independently be calculated.
The derivative is approximated by taking the difference of the values for M) at
J = J. = 0.4406 and J = 0.4386. divided by its value at J.. It is clear and can
also be seen in Fig. 3 that the result for this related quantity fluctnates more
than that for U(¢, L), in particular for small t. The results of this calculation
have also been included in the last column of Tab. 1.

It is interesting to point out, see Tab. 1, that the results from the scaling fit of
L =16 and L = 32 are already quite good. This is probably due to the fact that
the spatial correlation length in the short-time regime of the dynamic evolution
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is very small and therefore from small lattices one can already obtain reasonable
results. We also like to mention that the procedure of comparing each run for
the small lattice with each run for the big lattice may underestimate the errors.
Therefore the data including the errors given in Tab. 1 sometimes do not cover
the exact values. The real errors may be a factor two bigger.

In order to have more rigorous understanding of the dynamic scaling. we
alternatively present a local approach for estimating the critical exponents. in
contrast to the global scaling fitting procedure discussed above. For example.
comparing the functions U(t, L) and U(¥,2L), for each time step t we search for
t' such that U(¢,L) = U(¥.2L), and from the ratio ¢/t = 2° the value of = is
obtained according to Eq.(2.6). For the same time step ¢ this particular value
of = can be used to estimate 23/v from Eq.(2.7) and 1/v from Eq.(2.8). Then
we obtained all the exponents as functions of the time ¢. The result is shown
in Fig. 4 for a pair of lattices with L = 32 and L = 64. In order to guide the
eye. three horizontal lines = = 2.14, 23/v = 0.25, and 1/v = 1 are included, the
latter 2 values being the exact results for the 2-dimensional Ising model. The
figure shows clearly that the fluctuations for smaller time t are big. But for = and
in particular for 23/v the curve tends very nicely to a horizontal line for 2 30.
The situation is less satisfactory for the curve of 1/ where it shows still some
fluctuations up to a fairly late time t. The reason may be either less statistics
or from the approximation of the differentiation by a difference. The exponents
2, 23/v and 1/v can be obtained by averaging over the time direction. To show
the effect of the fluctuations for smaller ¢, one takes the average starting from
different initial times. The values of the exponents obtained in this way have
been given in Tab. 2. The errors have again been estimated by a comparison of
each run for L and with each run for L' = 2L.

In Fig. 4, when ¢ <30 the exponent = is somewhat small. This might be due
to the effect of t,,;.. In some cases, e.g. in the measurement of 6 [8, 9, 26] and 3/v
in the next section, this effect hardly shows up. However, in some other cases it
can remain till # ~ 20 — 30 [9, 26]. This kind of effect probably comes from the
fact that the initial magnetization density is not uniform enough. As we have
already mentioned before, from Fig. 4 one can see explicitly even for ¢ 230 that
the exponent = slightly rises as time evolves. Even though the reason is not clear,
but it is interesting that the tendency of z to rise does not affect the measurement
of the static exponents, especially 23/v. They are quite stable. On the other

hand, even for z itself, 1% of the fluctuation in the time direction should also be
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not too bad. It may be due to the finite size effect or some technical reasons.

The curves from a scaling fit of the lattices 8 « 16 and 16 « 32 which are
not shown in the figures here look qualitatively the same as those in Fig. 4, but
the fluctuations for 1/v are somewhat larger. The curve for z from the smaller
lattice sizes 8 « 16, however, rises continuously for 220, thus showing that
such a lattice size is too small for this kind of analysis. The result of an average
of these values are also included in Tab. 2.

To measure z, 23/v and 1/v, instead of U, M® and 9, M® one can also use
U, |M| and 8,|M| with
U(t L)zl-w (2.9)
’ (M2 -
From Eq.(2.4) one easily deduces that the relation (2.6) holds for U as well as

for U7, and (2.8) holds as well for 8, In|M|. Only Eq.(2.7) is slightly modified to
[M(t,L)| = ¥"|M(t,L")); L' =bL, (2.10)

We do not plot the curves here, since they look very much the same as Figs.1-3
for the global and local analysis. For simplification we have compared only the
two lattice sizes L = 32 and L = 64, where we have used the full time scale up
to t,,,, = 900 for L = 64. The results for the global fit have been included in the

lower part of Tab. 1. All the values in the table are remarkably consistent. The
same holds for the results from the local approach. They are shown in Tab. 2.

3 The Critical Relaxation
with Initial Magnetization One

In the previous section we have investigated the finite size scaling of the critical
relaxation of the Ising model up to even the macroscopic short-time scale, starting
from a random state with zero initial magnetization, i.e., a completely disordered
state. From a measurement of the time evolution of the observables |M(¢, L)|,
M@)(t, L), and M®(t, L) together with the scaling relation (2.4) the critical
exponents z, 23/v and 1/v were obtained. They are in good agreement with
the known results. This is a strong support for the scaling relations derived by
Janssen. Schaub and Schmittmann [7].

At this stage one may ask whether there is also a scaling relation for the critical
relaxation starting from a completely ordered state, i.e. with initial magnetization
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g = 1. It has been known for some time that, before the exponential decay of
the magnetization starts, there exists a time regime where the magnetization
behaves non-linearly and decays according to a power law. The question is only
when such a scaling behaviour starts. Some effort has been made in this direction
[20, 21] with Monte Carlo simulation. The authors have simulated the critical
relaxation with an extreme big lattice but only up to a quite short evolution
time and have estimated the exponent 3/vz from the power law decay of M(t).
However, the result has not been so clear and also other exponents as : and 1/r
have not been obtained.

Input | Lattice | ¢ .. t‘;nml z 23/v 1/v l

50 | 300 | 2.121(4) | 0.2489(4) | 1.03(2)
U |32 64 200 2.122(5) | 0.2491(5) | 1.02(2)
e 50 | 900 |2.129(5) | 0.2503(5) | 1.04(2)

200 2.129(5) | 0.2505(6) | 1.04(2)
U 132<64| 50 | 900  2.140(5) | 0.2514(6) | 1.07(2)
|M] 200 2.141(5) | 0.2515(7) | 1.07(2)

Table 3: Results for =, 23/v and 1/v, respectively. from the 2-dimensional Ising model with

initial magnetization my = 1. The values are obtained from a global scaling fit for two lattices,

In this section we study syvstematically the scaling behaviour of the critical
relaxation from a completely ordered initial state. but in finite systems . following
a procedure parallel to that discussed in the previous section. The advantage is
that a not too big finite system allows for more statistics and longer evolution
time even though the power law decay of the magnetization will not he perfect.
From our results we confirm that the scaling appears in a quite early stage of the
relaxation as in the case of mg = 0.

Here we will only present data from the scaling collapse for lattice sizes L = 32
and L = 64. Also we confine ourselves to 4 runs with 50000 updations each,
instead of 8 runs in the previous section.

The curves for the second moment of the magnetization start with the value
one for t = 0 and decrease for later time. This is seen in Fig. 6. A similar decrease
is found for the curves for the cumulants U(t, L) in Fig. 5, while 8, In M@ (¢, L) in
Fig 7 shows a rising behaviour. In all three figures points mark the values for L =
64 rescaled in time by the best fit values of z, 23/v, and 1/v. Surprisingly here
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we also observe very nice dynamic scaling. Table 3 shows the results of the global
fitting procedure up to ¢, . = 300 or ¢,

max

= 900. respectively. Since the values of
U. M™ and 8. M@ for smaller t are large now compared with those in the case of
mg = 0 in the previous section, the results show less fluctuations for smaller time
t. Actually one may also expect that due to the unique initial configuration less
statistics is needed to obtain stable results. This is also supported by Fig. 8 from
the local approach. It is very interesting that the exponent 23/v shows almost
tnvisible fluctuations in the whole time regime even up to the very beginning.
although : has some similar unstable behaviour as that in the case of my = 0.
Especially in the first 30 time steps its value is also a bit small. The fact that
in the first steps of t the exponent = is quite near to 2.0 might indicate that at
the very beginning of the time evolution the system is “classical”. Similarly as
Tab. 2 of the previous section, Tab. 4 gives the averages over the time direction,
starting at different initial values ¢/

min*

Input | Lattice |t ;. { =2 23/v 1/v
U 3264 50 [2.122(7) | 0.2508(3) | 1.04(2)
M? 200 | 2.122(8) | 0.2510(4) | 1.04(2)
U 13264 50 |2.133(6) [ 0.2516(4) | 1.06(2)
| M| 200 | 2.134(7) | 0.2520(5) | 1.06(3)

Table 4: Results for z, 23/v and 1/v. respectively, from the 2-dimensional Ising model with
initial magnetization mg = 1. Values are obtained from the average in the time direction from

up to t),,, = 900 with a local scaling fit.

I
mnz

As in the previous section. we carry out also the analysis with U defined in

9), |[M| and 8,|M|. The results have been included in the lower parts of Tab. 3
from the global fit, or in Tab. 4 from the local approach, respectively. They
again have a similar quality as those reported above. In comparison with the
results in [20, 21, 27], the value of = we obtained is definitely smaller and near
to the one from the e-expansion and other traditional measurements (4, 28]. In
case of mg = 0, the results for z measured from U and U are almost the same.
However, in case of my = 1, the value measured from U is somewhat smaller than
that measured from U. In the construction of U we have not subtracted the odd
moments. This may have some effect on the measurement of =.

As compared to those in the previous section for the case of mq = 0, the
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results here are somewhat more stable. This may really indicate that it is also
promising to measure the critical exponents from the critical relaxation process
starting from an ordered state even though some more theoretical arguments like
that by Janssen, Schaub and Schmittmann [7] are still needed. It is clear that
in case of a random initial state with mg = 0 all the observables discussed start
their evolution from zero and therefore the fluctuations at the beginning of the
time evolution are natural bigger. Besides this, the effect of the non-uniformity
of the magnetization density in the practically generated initial configurations is
not completely negligible for not too big lattices. Another way to measure the
critical exponents is to study the critical relaxation starting from an initial state
with small but non-zero initial magnetization [9, 26]. However, the situation is
not so clear since the new dynamic exponent # enters the calculation. Further
investigation is needed.

Finally we plot the time evolution of the magnetization with both double-log
scale and semi-log scale in order to see whether it has entered the regime of linear
decay or not. In Fig. 9 the straight line shows definitely that the magnetization
is still in the regime of non-linear decay. From the slope of M (¢t} in double-log
scale one can obtain the exponent 3/(vz). For each time f we have measured
it by a least square fit within a time interval [¢,? + 50]. In Fig. 10 instead of
3/(vz) the exponent z is plotted vs. time using the exact value 3/v = 1/8. Note
that the time scale in Fig. 10 is different from that in Fig. 8. Figure 10 shows
that in the regime 150 2 ¢ 2t = 30 the values for : are rather consistent with
those obtained before, especially those measured from U in Tab. 3. However, the
lattice size L = 64 seems not to be big enough to present a rigorous power law

behaviour in the whole time region.

4 Discussion

We numerically simulate the critical relaxation process of the two-dimensional
Ising model with the initial state both completely disordered or completely or-
dered. Based on the finite size scaling for the dynamics at the early time, both
the static and dynamic critical exponents are measured. To determine z inde-
pendently, a time-dependent Binder cumulant is constructed. The value of z
measured from the critical relaxation from a completely ordered state is slightly
smaller than that from a completely disordered state. The reason is not yet clear.
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Taking the average of the four measurements of = from the global scaling fit of
U and U within the time interval [50.900] of ¢ for both relaxation processes. see
Tab. 1 and Tab. 3, we conclude

Jt

z = 2.143(5)

This should be compared with the existing numerical results = = 2.13(8) from [4].
and z = 2.14(5) from [28], and also with z = 2.126 obtained from an e-expansion
in [29]. even though some bigger values are also reported recently [20. 21, 27].
It is remarkable that from the short-time dynamics one can not only efficiently
measure the dynamic exponent z, but also the static exponents. Especially the
quality of the exponent 23/v is very good. All these results provide strong
confirmation for the scaling relation at the early time of the critical relaxation
process. Compared with the traditional methods, the advantage of our dynamic
Monte Carlo algorithm is that the measurement is carried out in the beginning
of the time evolution rather than in the equilibriumn where critical slowing down
is more severe. Therefore our method is efficient. Compared with the non-local
algorithms. our dynamic algorithm can study the properties of the original local
dynamics. On the other hand, it has recently been suggested that the critical
exponents can also be measured from the power law behaviour of the observables
including the auto-correlation in the macroscopic short-tinie regime in a large
enough lattice [9, 26]. Compared with that approach, the advantage of estimating
the exponents from the dynamic finite size scaling as reported in this paper is
that one needs not too big lattices. However, the result has to be obtained by
comparing two lattices and longer time of the evolution for the bigger lattice
should be carried out.

It is somewhat surprising that for the critical relaxation from the completely
ordered initial state there exist also universality and scaling in such an early stage
of the time evolution. Further investigation especially on a more general critical
relaxation process from an ordered state with initial magnetization m, smaller
but near to one can be interesting. One may expect that a new dynamic exponent

should be introduced in order to complete the scaling relation.
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Figure 1: The cumulants U(¢.L) for L = 8, 16, 32 and 64 for initial magnetization my = 0

plotted versus the time t. The dots fitted to the lines show the cumulants with lattice size 2L

rescaled in time by the best fit value 2¢ given in Table 1.
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Figure 2: The second moments M{?(¢, L) for L = 8, 16, 32 and 64 for initial magnetization
mg = 0 plotted versus the time t. The dots fitted to the lines show the second moments with

lattice size 2L rescaled in time by the best fit value 2% and 2/3/v given in Table 1.
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Figure 3: 9, ln M®(¢, L) for L = 8. 16, 32 and 64 for initial magnetization my = 0 plotted
versus the time t. The dots fitted to the lines show those with lattice size 2L rescaled in time
by the best fit values 2% and 1/v given in Table 1.
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Figure 4: The curves show the values for z, 28/v and 1/v calculated for initial magnetization
mg = 1 with the local scaling fit.
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Figure 5: The cumulants U(t, L} for L = 32 and 64 for initial magnetization my = 1 plotted

versus time ¢. The dots fitted to the line of L = 32 show the cumulant with lattice size 2L
rescaled in time by the best fit value 2% given in Table 3.
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Figure 6: The second moments M‘? for L = 32 and 64 for initial magnetization mgy = 1
plotted versus time ¢. The dots fitted to the curve for L = 32 show the second moment with
lattice size L = 64 rescaled in time by the best fit value 27 and 28/v given in Table 3.
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Figure 7: 8, nM®)(¢,L) for L = 32 and 64 for initial magnetization my = 1 plotted versus

time ¢t. The dots fitted to the line for L = 32 show that with lattice size L = 64 rescaled in

time by the best fit values 2° and /¥ given in Table 3.
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Figure 8: The curves show the values of z, 23/~ and 1/v obtained for initial magnetization

mo = 1 from a local scaling fit for L = 32 and L = 64.
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Figure 9: The quantities In M(#. L) for L = 64 and mo = 1 plotted (a) versus ¢, and (b) versus
cln(t). The factor ¢ has been chosen such that at 900 of the abscissa both curves coincide.
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Figure 10: The exponent = calculated from the slope of the magnetization M(t) in a double-
log scale. The slope 3/(vz) has been fitted for each time step within the time interval [t, ¢ + 50].
In order to calculate z we have used #/v = 1/8 as input.
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