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1 Introduction 

For statistical systems in equilibrium or near equilibritwl critical plH~llonlella arise 

around the second order phase transition points. Due to the infinite spatial and 

time correlation lengths there appear universality and scaling. The universal 

behaviour of critical systel11s is characterized by the critical exponents. The 

determination of critical exponents has long been one of the lllain interests for 

both analytical calculations and numerical simulations. 

Numerically critical exponents are usually llleasured by generating the confi­

gurations in the equilibrimu with ~Ionte Carlo luethods. To obtain the critical 

exponents from the finite size scaling. Binder~s lnethod is widely accepted [1. 2]. 

The dynamical exponent z is traditionally Ineasured fron1 the exponential decay 

of the tin1e correlation for finite systems in the long-time regime [3. 4). As is well 

kno"\\'n. numerical simulations near the critical point suffer fronl critical slowing 

down. :Nluch effort has been made to circunnrent this difficulty. To study the sta­

tic properties of the system, SOOlt' non-local algorithms, e.g.~ the duster algorithn1 

15. G). have proved to be very efficient compared to the oormallocal algorithills. 

HoweveL in this case the original dynan1ic twiversality dass is altered by the 

non-locality of the algorithm. Properties of the original local dynalllics can not 

be obtained \\;th non-local algorithms. 

In rf'cent years the exploration of critical phenolnena has been broadeued. 

Univprsality and scaling are also discovered for systems far frol11 equilihriulll. 

Better uuderstanding has been achieved of the critical relaxation process even up 

to the early time. A representative example for such a process is that the L'ling 

l110del initially in a randon1 state with a snlalllIlagnetization is suddenly quenched 

to the critical ten1perature and then evolves according to the dYllarnics of model 

A. Janssell~ Schaub and Schmittmann [7) have argued by an E-expansion up to 

two-loop order that, besides the well known universal behaviour in the long-time 

regime. there exists another universal stage of the rela.xation at early ti"1.es~ the 

so-called critical initial slip~ which sets in right after the microscopic time scale 

tmie. The characteristic time scale for the critical initial slip is to r-vm,;z/xo ~ where 

n10 is the initial magnetization and Xo is the dimension of it. It has been shown 

that :Z:o is a new independent critical exponent for describing the critical dynamic 

system. 

The characteristic behaviour of the critical initial slip is that, when a non­

zero initial magnetization mo is generated~ due to the anonlalous dimension of the 
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operator 1no the time dependent magnetization .:.\J(t) undergoes a critical initial 

Increase 

(1.1 ) 

'where eis related to .;fO by J~o = Oz+l3/v. The exponent Bhas been measured with 

J\lonte Carlo shnulation for the Ising nlodel and the Potts model hoth directly 

from the power law increase of the magnetization in (1.1) [8. 9] and indire·ctly 

from the power la,v decay of the auto-correlation [10J-{12]. The results are in good 

agreenlent with those from an E-expansion and the scaling relation is confinlled. 

In a previous paper [13J We proposed t.o measure both the dynanlic and static 

exponents from the finite size scaling of the dynalnic rela.xation at the early 

tinle. The idea is demonstrated for the 2-dinlensional Ising lliodel. Since the 

measurenlent is carried out froIn the beginning of the time evolution~ the Inethod 

is efficient at least for the dynamic exponent ::. Even though certain aspects 

of this dynanlic approach should still be clarified~ the results indicate a possible 

broad application of the short-time dynamics since the universal behaviour of the 

dynanlics at early tinle is found to be quite general [14]-[191. 
One of the purposes of the present paper is to give a detailed and eoniplete 

analysis of the data briefly reported in {13). \Vhile in that letter we have ex­

tracted the exponents by the optinlal fit of two curves in a certain time interval 

("global" fit). we propose here in addition a new approach by w~ich the critical 

exponents are obtained for each time step separately C'''locar' fit). Furthennore 

the siInulation has been extended to a longer tillle interval in order to confirnl 

the stability of the Illeasurenlents in the tilne direction and to see how the scaling 

possibly passes over to the long-tinle reginle. 

On the other hand. we may easily realize that for the scaling of the short-tinle 

dynamics a small initial magnetization is important besides the short initial cor­

relation length. This is because 'mo = 0 is a fixed point for the renormalization 

group transformation. However, there exits also another fixed point COITespOIl­

ding to TrIO = 1. Therefore one luay like to know whether around that fixed point 

universality and scaling are also present or not. Actually some trials have been 

made ,vith ~lonte Carlo simulation [20, 211. For a large enough lattice, one nlay 

expect a power law decay of the magnetization 

(1.2) 

before the exponential decay starts. From this behaviour the exponent 13/(v z ) 

can be estimated. However the results are not yet complete. 
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Therefon.l another purpose of this paper is to present a systenlatic investiga­

tion of the finite size scaling for the critical relaxation starting from 1110 = 1. It 

will be shovvn that scaling is observed in the early stage of the titne evolution and 

with the help of the finite siz(.> scaling all the critical exponents ~. 3 and 1/ can 

be obtained from the lattices which are llluch smaller that those in [20. 21 J. 
The following section 2 is devoted to the critical relaxation with lno = 0 and 

Sect. 3 to 111,0 = 1. The final section contains some discussion. 

The Critical Relaxation 


with Zero Initial Magnetization 


The Hamiltonian for the Ising rnodel is 

H = J L Si Sj. (2.3 ) 
<ij> 

with < ij > representing nearest neighbours. In the equilibriunl the Ising illodel 

is exactly solvable. The critical point locates at Jc = 10g(1 + /2)/2. and the 

ex-ponents ;3 = 1/8 and 1/ = 1 are known. In principle any type of th(' dynamics 

can be giyen to the systelll to study the non-equilibrium eyolution processes. 

"Unfortunately up to now none of therll can be solved exactly. 

In this paper we consider only the dynalnics of Inodel A. For th(' nUIllerkal 

simulation, typical exaillpies are the ~lonte Carlo Heat-Bath algorithlll and the 

~\'letropolis algoritllln. For the analytical calculation. the Ising rnodel should he 

assumed to be described by the A(,)'1 theory. Then th(' Langeyin c:quation ca.n he 

introduced as a dYIlaruic equation. For the Langevin dynanlic systenl the renor­

rnalizatioll group method may be applied to understand the critical behaviour 

as universality and scaling. For the critical relaxation with the initial condi­

tion of a very short correlation and small magnetization, Jallssen~ Schaub and 

Schmittnlann [7] have performed a perturhative renornlalization calculation with 

an f-expansion up to two-loop order. They have obtained the scaling relation 

which is valid even in the short-time regime, and all the critical exponents in­

cluding the new dynamic exponent e which governs the initial behaviour of the 

cri tical relaxation. 

Of special interest is here the extension of the scaling form in Ref. [7] to 

finite-size systelns [22~ 8]. In accordance to the renormalization group analysis 
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for finite-size systems~ after a microscopic time scale tmic we expect a scaling 

relation to hold for the k-th moment of the luagnetization in the neighbourhood 

of the critical point starting from the macroscopic short-time regil11e [23. 7. 2-1]. 

assulning that the initial correlation length is zero and the initial nlagnetization 

nzo is small enough. Here t is the dynamic evolution tilne~ T = (T - Tc)/T~. is the 

reduced temperature, L is the lattice size. and b is the spatial rescaling factor. It 

has been discussed that under certain conditions the effect of ,no relllaills e,'en in 

the long-time regime of the critical relaxation (251. This modifies the traditional 

scaling relation where the effect of n1,o has usually been suppressed. 

In this paper we are only interested in the measurement of the well-known 

critical exponents z, /3. and v. To Blake the computation simpler and rnore 

efficient. we set r120 to its fixed point Tno = 0 in this section. Therefore the 

exponent IO will not enter the calculation. Furthermore, now the time scale 

to =Tn~;;/xo -+ oo~ and the critical initial slip gets most prominent in titne 

direction even though the nlagnetization itself will only fluctuate around zero. 

The initial state with 'mo = a is prepared by starting from a lattice '\'vith all 

spins equat then the spins of randonlly chosen sites are switchf'd~ until exactly 

half of the spins are opposite. This initial state is updated with the Heat-Bath 

algorithm to 300 time steps for L = 8, 16~ 32~ and to 900 time steps for L = 64. 

The average over 50000 sanlples of this kind with independent initial configu­

rations has been taken in each run, and 8 runs are used to estimate the errors. 

The critical value Jc =0.4406 has been used and. ill order to fix l/v separately, 

,~,re ha,'e repeated all simulations with J = 0.-1386. In each case the observables 

/1'I(t)l. Jl(2)(t) and Af(4)(t) have been measured. 

To determine z independently, we introduce a time-dependent Binder cUlnulant 

A[(4) 

[T(t.L) = 1- 3(~f(2))2 (2.5) 

Here the argument T has been set to zero and skipped. The simple finite size 

scaling relation 

U (t. L) = U(t' , L'): L' =bL (2.6) 

for the cumulant is easily deduced from Eq.{2.4). 
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The exponent z can easily be obtained through searching for a tiIlle scaling 

factor b: such that the cumulants from two different lattices in both sid('s in 

Eq.(2.6) collapse. 'Ve call this global scaling fitting. 

lp' min rnar ~/ l 

t~ 

1'12 

8 ~ 16 

16 ~ 32 

10 

10 

300 2.100(2 ) 0.2473(02) 1.13( 1) 

2.149(2) 0.2494(06) 1.08(4) 

32 ~ 64 

50 

200 

300 2.134(4) 0.2510(11 ) 1.00(5) 

2.140(4) 0.2488(11) 1.03(4) 

50 
1 

900 

200 

2.151(2) 0.2531(08) 1.02(2) 

2.153(2) 0.2523(08) 1.02(2) 

t 
11\11 

32 ~ 64 50 

200 

900 2.151(3) 0.2515(11) 1.03(2) 

2.152(3) 0.2521(11) 1.03(2) 

Table 1: Results for z, 2/3/v and 1/11, respectively, from the 2-dimensional Ising model wit.h 

initial magnetization mo = O. The values are obtained from a global scaling fit for two lattices. 

Here the cllnlulant F(t~ L) obtained fronl each of the 8 runs for lattice size L 

has been conlpared \vith each run for L' == 2L. The best scaling factor 2: has 

been estinlated by the method of lea')t squares. Figure 1 shows the cllnllliants 

for L == 8.16.32 and 64 by solid lines. The dots fitted to the lines for L up to 32 

show the results for L' == 2L resealed in tilne \vith the best fitting scaling factor 

2'::. Only a selected nlllnher of 30 equidistant points has been plotted. One sees 

the relnarkable scaling collapse even in the short-time reginle. Conlpared with 

the figure sho,,'n in the previous paper [13] the evolution time for L' 64 has 

been extend(ld up to t~wr == 900. The average value for z and the error estiIuated 

from this procedure have been given in Tab. 1 for different pairs of lattices using 

Eq. (2.6). In the first steps of the time evolution, the values of Al(2) and Al(4) 

are quite sillall. A careful view at the data shows that their accuracy and in 

particular the accuracy of the cumulant lJ (t, L) is not so good as for lager t. One 

may expect that skipping the region of smaller t will give more reliable results. 

Therefore we have perfonned fits for different time intervals [t~in' t~nc~z]' The 

results in reference [13] cOITesponds to t'min == 1 and t'max == 300. Fig. 1 is from 

a fit with t~lin == 50 and t~,WZ 900. The longer evolution tinle of f'rnaz == 900 

for latt.ice L == 64 shows also the stability of the scaling in the time direction. 
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LpU 1/tll<JXmin I r 

8 +-+ 16 300 2.333( 4) 0.2372(08)10 1.11(1) 1 

iT 1.19(5)16 +-+ 32 10 300 2.143(2) 0.2448(11 ) 

90032 +-+ 64 50 2.148(3) 0.2510(16) 1.07(2)1'12 

2.155(2)200 0.2488(10) 1.05(2) 

[T 32 +-+ 64 2.144(4)50 900 0.2541(28) 1.07(2) 

200 2.153( 3) 0.2501(14) 1.05(2)IAII 

Table 2: Results for z, 2,8/v and l/v, respectively, from the 2-dimensional Ising model with 

initialmagnetjzation !no = O. Values are from an average in time direction with a local scaling 

fit. 

From th€' results \ve can see that z for larger time t is slightly bigger than that 

for smaller tim€' t. Later we will come back to this point. 

\Vith ;; in hand, the scaling r€'lation for the second n10111ent 

L' =bL. ( 'J_. -)J 

can b{' used to ('stimate the exponent 2/31v in a similar way . The results hav{' 

b€'en included in Tab. 1. The curves for Al(2) for the different lattice sizes and 

the corr('sponding scaling fits can be found in Fig. 2. 'Ve haye cut the tin1(, sfale 

at t = 220 in order to show" the data relevant for the scaling fit 1110re clearly. 

Slightly IIlor€' complicated appears the determination of 1It' . Ou€' can use the 

derivative with respect to T either of [T or of JI(2). Here the latter gives nlore 

stable results. Fronl 

;\[(2'(t L)I - l-1/1/8 1 "'f'(2)(t' , L')I8l' 11l.H: , T~ 1'=0 - J 1" n oil- . ,T , 1"=0 (2.8) 

with t' = b::t and L' = bL~ the exponent 11v can independently be calculated. 

The derivative is approximated by taking the difference of the values for J1(2) at 

.] .Ie = 0.4406 and,] = 0.4386, divided by its value at .Ie. It is clear and can 

also be seen in Fig. 3 that thtl result for this related quantity fluctuates more 

than that for U(t, L), in particular for srnall t. The results of this calculation 

have also been included in thtl la'3t column of Tab. 1. 

It is interesting to point out, see Tab. 1, that the results from the scaling fit of 

L = 16 and L = 32 are already quite good. This is probably due to the fact that 

the spatial correlation length in the short-time regime of the dynamic evolution 
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is very small and therefore from small lattices one can already obtain reasonable 

results. 'Ve also like to lllention that the procedure of comparing each rUll for 

the small lattice \vith each run for the big lattice may tmderestimate the errors. 

Therefore the data including the errors given in Tab. 1 sometimes do not cover 

the exact values. The real eiTors may be a factor two bigger. 

In order to have more rigorous understanding of the dynamic scaling. we 

alternatively present a local approach for estiInating the critical e:oq)onents. ill 

contrast to the global scaling fitting procedure discussed above. For exanlple. 

comparing the functions U(t, L) and U(tl, 2L), for each time step t we search for 

tf such that U(t,L) = U(f.2L), and from the ratio t/t = 2: the value of.: is 

obtained according to Eq.(2.6). For the same time step t this particular value 

of z can be used to estimate 2/3/v froin Eq.{2.7) and 1/1/ from Eq.(2.8}. Then 

we obtained all the exponents as functions of the time t. The result is shown 

in Fig. 4 for a pair of lattices with L = 32 and L = 64. In order to guide the 

eye. three horizontal lines z 2.14, 2;3/v = 0.25, and l/v = 1 are illcluded~ the 

latter 2 values being the exact results for the 2-dimensional Ising nlodel. The 

figure shows clearly that the fluctuations for smaller tinle t are big. But for z and 

in particular for 2J/ v the curve tends very nicely to a horizontal line for t ~ 30. 

The situation is less satisfactory for the curve of 1/11 'wher(' it shows still SOID(, 

fluctuations up to a fairly late tinH~ t. The reason nlay be eith('r less statistics 

or from the approximation of the differentiation by a difference. The e~q)onents 

z, 2/3/v and l/v can be obtained by averaging over the time direction. To show 

the effect of the fluctuations for snlaller t, one takes the a\T'rage starting from 

different initial tiIlles. The values of the exponents obtained in this ,vay have 

been given ill Tab. 2. The errors have again been estilnated b~v a comparison of 

each run for L and with each run for L' = 2L. 

In Fig. 4, when t;S 30 the exponent z is sOIllewhat small. This might be due 

to the effect of tmic. In some cases, e.g. in the Iueasurement of B [8~ 9, 26] and (3/v 

in the next section, this effect hardly shows up. However, in some other cases it 

can renlain till t 20 30 [9, 26]. This kind of effect probably comes fronl thef"V 

fact that the initial magnetization density is not uniform enough. As we have 

already mentioned before, from Fig. 4 Olle can see explicitly even for t,<:30 that 

the exponent z slightly rises as time evolves. Even though the reason is not clear, 

but it is interesting that the tendency of z to rise does not affect the llleasurement 

of the static exponents~ especially 2/3/v. They are quite stable. On the other 

hand, even for z itself, 1 CX) of the fluctuation in the time directioll should also be 
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not too bad. It may be due to the finite size effect or some technical reasons. 

The curves from a scaling fit of the lattices 8 f-t 16 and 16 +-;. 32 which are 

not shown in the figures here look qualitatively the same as those in Fig. -t but 

the fluctuations for 1 11/ are somewhat larger. The curve for z from the sluall(lr 

lattice sizes 8 ~ 16, however, rises continuously for t;C; 20. thus showing that 

such a lattice size is too small for this kind of analysis. The result of an an:'rage 

of these values are also included in Tab. 2. 

To nleasure z, 2/3/v and I/v, instead of lJ, Al(2) and or]\,I(2) one can also use 

iI, IJiI! and orlArll with 
_ . ~J(2) 

IJ(t,L) = 1- lJil/ 2 ' 
(2.9) 

From Eq.(2.4) one easily deduces that the relation (2.6) holds for (.T as well Cl..'i 

for [T. and (2.8) holds as well for Or In l..i\ll. Only Eq.(2.7) is slightly modified to 

L' =bL, (2.10) 

\Ve do not plot the curves here, since they look very much the same as Figs.1-3 

for the global and local analysis. For simplification we have compared only the 

two lattice sizes L = 32 and L = 64, where we have used the full time scale up 

to t'max = 900 for L =64. The results for the global fit have been included in the 

lower part of Tab. 1. All the values in the table are remarkably consistent. The 

same holds for the results from the local approach. They are shown in Tab. 2. 

The Critical Relaxation 


with Initial Magnetization One 


In the previous section we have investigated the finite size scaling of the critical 

relaxation of the Ising model up to even the macroscopic short-time scale, starting 

from a random state with zero initial magnetization, i.e., a completely disordered 

state. From a measurement of the time evolution of the observables 1.L\I(t, L)I, 
1\1(2)(t,L), and M(4)(t,L) together with the scaling relation (2.4) the critical 

exponents z, 2{3Iv and 11v were obtained. They are in good agreement with 

the known results. This is a strong support for the scaling relations derived by 

Janssen, Schaub and Schmittmann [7}. 

At this stage one may ask whether there is also a scaling relation for the critical 

relaxation starting from a completely ordered state, i.e. with initial magnetization 
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~no = 1. It has been known fOl' some time that, before the exponential decay of 

the magnetization starts~ there exists a time regime where the Inagnetization 

behaves non-linearly and decays according to a po"\ver law. The question is only 

when such a scaling behaviour starts. Some effort has been Inade in this direction 

[20, 21] with 1fonte Carlo simulation. The authors have sinlulated tlH' critical 

relaxation with an extreme big lattice but only up to a quite short evolution 

time and have estimated the exponent f3 / v::. frOln the power law decay of :\I( t ). 

However~ the result has not been so clear and also other exponents a" ,: and 1/l! 

have not been obtained. 

Input Lattice t~in t~nax :.: I 2;3/1J l/v 

50 300 2.121(4) 0.2489(4) 1J)3(2) 

U 32 f-+ 64 200 2.122(5) 0.2491( 5) 1.02(2) 

).'12 50 900 2.129(5 ) 0.2503(5) 1.04( 2) 

200 2.129(5) 0.2505(6) 1.04(2) 

u 32 f-+ 64 50 900 2.140( 5) 0.2514(6) 1.07(2) 

Il~11 200 2.141(5) 0.2515(7) 1.07(2) 

Table 3: Results for ::. 23/v and l/v, respf'ctively. from the 2-dimensional Ising model \vith 

ininialmagnetization mo = 1. The values are obtained from a global scaling fit for two lattices. 

In this section we study systeluatically the scaling behaviour of the critical 

relaxation froIn a cornpletely ordered initial state. hut in finite 8ystems . following 

a procedure parallel to that discussed in the previous section. The advantage is 

that a not too big finite system allows for morf\ statistics and longer flvolution 

tirHe even though the power law decay of tlH~ magnetization will not hf' perf('ct. 

FroIn our results we confinll that the scaling appears in a qui te early stage of the 

relaxation as in the case of mo = O. 

Here we will only present data from the scaling collapse for lattice sizes L = 32 

and L = 64. Also we confine ourselves to 4 rUllS with 50000 updations each, 

instead of 8 runs in the previous section. 

The curves for the second Uloment of the magnetization start with the value 

one for t = 0 and decrease for later time. This is seen in Fig. 6. A similar decrease 

is found for the curves for the cumulants U(t, L) in Fig. 5\ while OT In Af(2)(t~ L) in 

Fig 7 shows a rising behaviour. In all three figures points mark the values for L = 
64 rescaled in time by the best fit values of z, 2;3/1/, and l/v. Surprisingly here 
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we also observe very nice dynamic scaling. Table 3 shows the results of the glo hal 

fitting procedure up to t'max = 300 or t~na:r: = 900. respectively. Since the values of 

U ~ J.'1(2) and 87"1,[(2) for smaller t are large now cOlllpared with those in the eas(-' of 

n~o 0 in the previous section, the results show less fluctuations for smaller tiuH' 

t. Actually one may also expect that due to the unique initial configuration less 

statistics is needed to obtain stable results. This is also supported by Fig. 8 froIn 

the local approach. It is very interesting that the exponent 2,3/v shows almost. 

invisible fluctuations in the whole time regime even up to the ver;\- beginning. 

although z has some similar unstable behaviour as that in the case of 1110 = o. 
Especially in the first 30 time st.eps its value is also a bit small. The fact that 

ill the first steps of t the exponent:; is quite near to 2.0 might indicate that at 

the very beginning of the tiIne evolution the system is ··classical~'. Similarly as 

Tab. 2 of the previous section. Tab. 4 gives the averages over the tinH~ direction. 

starting at different initial values t~nin' 

[! 32 +-; 64 50 2.122(7) 0.2508(3) 1.04(2) 

A12 200 2.122(8) 0.2510(4) 1.04(2) 

[i 32 +-; 64 50 2.133(6) 0.2516( 4) 1.06(2) 

200 2.134(7) 0.2520(5) 1.06(3)1.111 

Table 4: Results for z) 2,'l/v and l/zl • respectively, from the 2-dimensional Ising modd with 

initial magnetization ruo 1. Values are obtained from the average in the time direction from 

t~lIjll up to t~laJ.' = 900 with a local scaling fit. 

As ill the prE'vious section. we carry out also the analysis with [~ defined in 

(2.9)~ IA11 and 87"IAll. The results have been included in the lower parts of Tab. 3 

fronl the global fit, or in Tab. 4 from the local approach, respectively. They 

again have a similar quality as those reported above. In comparison with the 

results in [20, 21, 27], the value of z we obtained is definitely smaller and near 

to the one from the E-expansioll and other traditional measurements [4, 28]. In 

case of rno = 0, the results for z measured from U and [r are almost the same. 

However~ in case of tno = 1, the value measured from (T is somewhat smaller than 

that measured from O. In the construction of [T we have not subtracted the odd 

moments. This may have some effect on the measurement of z. 
As compared to those in the previous section for the case of n10 = 0, the 
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results here are somewhat more stable. This may really indicat.e that it is also 

promising to measure the critical exponents from the critical relaxation process 

starting from an ordered state even though some more theoretical arguments like 

that by Janssen, Schaub and Schmittmann [7} are still needed. It is clear that 

in case of a randonl initial state with mo = 0 all the observables discussed start 

their evolution from zero and therefore the fluctuations at the begiuuing of the 

time evolution are natural bigger. Besides this, the effect of the non-uniformity 

of the magnetization density in the practically generated initial configurations is 

not completely negligible for not too big lattices. Another way to measure the 

critical exponents is to study the critical relaxation starting from an initial state 

with small but non-zero initial magnetization [9, 26]. However. the situation is 

not so clear siuce the new dynamic exponent (} enters the calculation. Further 

investigation is needed. 

Finally we plot the time evolution of the magnetization with both double-log 

scale and semi-log scale in order to see whether it has entered the reginle of linear 

decay or not. In Fig. 9 the straight line shows definitely that the magnetization 

is still in the regime of nOll-linear decay. From the slope of Af(t) in double-log 

scale one can obtain the exponent r3/(vz). For each time t we have measured 

it by a least square fit within a time interval It, t + 50]. In Fig. 10 instead of 

;3/(11 ::') the exponent z is plotted vs. time using the exact value /3/v = 1/8. Note 

that the time scale in Fig. 10 is different from that in Fig. 8. Figure 10 shows 

that in the regime 150 ~ t:<: tmic ~ 30 the values for z are rather consistent with 

those obtained before, especially those nleasured from (r in Tab. 3. However, the 

lattice size L = 64 seems not to be big enough to present a rigorous power law 

behaviour in the whole time region. 

Discussion 

vVe numerically simulate the critical relaxation process of the two-dimensional 

Ising model with the initial state both completely disordered or completely or­

dered. Based on the finite size scaling for the dynamics at the early time, both 
the static and dynamic critical exponents are measured. To deternline z inde­

pendently, a time-dependent Binder cumulant is constructed. The value of z 

measured from the critical relaxation from a completely ordered state is slightly 

slnaller than that from a completely disordered state. The reason is not yet clear. 
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Taking the average of the four measurenlellts of ::: from the global scaling fit of 

LT and (::- within the time interval [50. 900] of t' for both relaxation processes. SN' 

Tab. 1 and Tab. 3, we conclude 

z = 2.143(5) 

This should be cornpared with the existing numerical results::: 2.13(8) from [4]. 

and;:; = 2.14(5) from [28L and also with z = 2.126 obtained from an f-expansioll 

in [29]~ even though some bigger values are also reported recently [20. 21. 27J. 

It is reluarkable that from the short-time dynaillics one can not ouly efficielltl~· 

nleasure the dynamic exponent z, but also the static exponents. Especially the 

quality of the exponent 2/3II} is very good. All these results provide strong 

confirnlation for the scaling relation at the early time of the critical relaxation 

process. Compared with the traditional methods, the advantage of our dynarnic 

l\ionte Carlo algorithm is that the measurement is carried out ill the beginning 

of the tiIlle evolution rather than in the equilibriuIll where critical slowing down 

is more severe. Therefore our method is efficient. Compared with the non-local 

algorithms~ our dynanlic algoritlnn can study the properties of the original local 

dynaluics. On the other hand. it has recently been suggested that th{' critical 

exponents can also be nleasured from the po'wel' la'w behaviour of the 0 bservahles 

including the auto-correlation in the Illacroscopic short-tinle reginH' in a large 

enough lattice [9.26]. Compared with that approach~ the advantage of estimating 

the exponents from the dynamic finite size scaling as reported in this paper is 

that Ol1e needs not too big lattices. However, the result has to be obtained by 

comparing two lattices and longer tinle of the evolutio11 for the bigger lattice 

should be carried out. 

It is somewhat surprising that for the critical relaxation froln the c011lpletely 

ordered initial state there exist also universality and scaling in such an early stage 

of the tinle evolution. Further investigation especially on a more general critical 

relaxation process fronl an ordered state with initial nlagnetization rno smaller 

but near to one can be interesting. One may eX1>ect that a new dynalllic exponent 

should be introduced in order to complete the scaling relation. 
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Figure 1: The cumulants U(t.L) for L 8, 16,32 and 64 for initial magnetization mo = 0 

plotted versus the time t. The dots fitted to the lines show the cumulants with lattice size 2L 

rescaled in time by the best fit value 2Z given in Table 1. 
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Figure 2: The second moments A1(2)(t, L) for L = 8, 16,32 and 64 for initial magnetization 

!no = 0 plotted versus the time t. The dots fitted to the lines show thE' second moments with 

lattice size 2L rescaled in time by the best fit value 2: and 2/J/v given in Table 1. 
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Figure 3: 8r lnAl(2)(t,L) for L 8.16,32 and 64 for initial magnetization mo 0 plotted 

versus the time t. The dots fitted to the lines show those with lattice size 2L rescaled in time 

by the best fit values 2z and 1/v given in Table 1. 
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Figure 4: The curves show the values for z, 2,B/v and l/v calculated for initial magnetization 

1110 1 with the local scaling fit. 
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Figure 5: The cUIIlulants U(t~ L) for L = 32 and 64 for initial magnetization mo = 1 plotted 

versus time t. The dots fitted to the line of L = 32 show the cumulant with lattice size 2L 
rescaled in time by the best fit value 2':: given in Table 3. 
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Figure 6: The second moments AJ(2) for L = 32 and 64 for initial magnetization mo 

plotted versus time t. The dots fitted to the ctU've for L = 32 show the second moment with 

lattice size L =64 rescaled in time by the best fit 'value 2Z and 2fJ/v given in Table 3. 
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Figure 7: 8,..lnAl(2)(t,L) for L 32 and 64 for initial magnetization rnu = 1 plotted versus 

time t. The dots fitted to the line for L = 32 show that with lattice size L = 64 rescaled in 

/ lltime by the best fit values 2Z and bl given in Table 3. 
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Figure 8: The curves show the values of z, 2j3/l' and l/v obtained for initial magnetization 

mo 1 from a local scaling fit for L = 32 and L = 64. 
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Figure 9: The quantities In J.\1 (t, L) for L = 64 and mo = 1 plotted (a) versus t, and (b) versus 

c In( t). The facto!' c has been chosen such that at 900 of the abscissa both curves coincide. 
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Figure 10: The exponent z calculated from the slope of the magnetization Af(t) in a double­

lug scale. The slope f3/(vz) has been fitted for each time step within the time interval [t, t+50]. 
In order to calculate z we have used /31v = 118 as input. 
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