Killing spinors on Kédhler manifolds

-~

2 K. D. Kirchberg

% -SFB 288 Preprint No. 18

ROUTE TO B s iﬁ«-*zi‘{
NAME LocATioN] i Ak

cETURS 10 raredi o ARY

p——

Diese Arbeit ist mit Unterstiitzung des von der Deutschen Forschungsgemeinschaft ge-
tragenen Sonderforschungsbereiches 288 entstanden und als Manuskript vervielfitigt
worden.

Berlin, Juni 1992

wA¥



Killing spinors on Kahler manifolds

K.-D. Kirchberg, Berlin

Abstract

In the paper Kihlerian Killing spinors are defined and their basis properties
arc investigated. Fach Kahler manifold that admits a Kahlerian Killing spinor is
Einstein of odd complex dimension. Kahlerian Killing spinors are a special kind
of Kahlerian twistor spinors. Real Kahlerian Killing spinors appear for example,
on closed Kahler manifolds with the smallest possible first eigenvalue of the Dirac
operator. For the complex projective spaces @ P?~! and the complex hyperbolic
spaces @ H¥-1 with | > 1 the dimension of the space of Kihlerian Killing spinors
is equal to (2,‘) It is shown that in complex dimension 3 the complex hyperbolic
spaces @113 is the only simple connected complete spin Kihler manifold admitting
an imaginary Kahlerian Killing spinor.

Introduction

If (M",g,S) is a Ricmannian spin manifold with metric g and
spinor bundle S, then a section 0 # 3 € I'(S) is called a Killing
spinor to the Killing number k € @ (k # 0) iff ¢ satisfies the
differential equation

Vxh+6X =0 (1.1)

for all vector fields X. Killing spinors appear in Mathemati-
cal Physics as well in purely mathematical context. There are
many interesting results concerning the geometrical structure
and the classification of Riemannian spin manifolds admitting
Killing spinors (see references). For instance, such a manifold
must be Einstein with scalar curvature R = 4n(n—1)x2. More-
over, it is known that, on a Kahler manifold, the equation (I.1)
has only the trivial solution for n > 2. Consequently, for a
spin Kahler manifold, equation (I.1) must be modified. This



can be done in the following way: Let (M?*™ J, g, S) be a spin
Kahler manifold of complex dimension m with complex struc-
ture J, Kahler metric g and spinor bundle S. Then S possesses
a canonical decomposition S = SyPS1P- - - DS, into holomor-
phic subbundles S, with ranlgS, = (T) We consider sections
0 =1v_1+ ¢ €T(S,_1 8 85;) (1 <r < m) such that for each
vector field X the differential equations

Vxr_1+ g(X + ZJX)% =0 (I 2)
Vit + 5(X — iJX )y = 0 ‘

are satisfied, where x # 0 is a given complex number. The
first result is that the existence of a non-trivial solution of
the equations (1.2) implies that M?™ is an Einstein space with
scalar curvature R = 4m(m + 1)x2, where m is odd and r =
(m +1)/2 (Theorem 3).

If M?™ is a spin I{ihler-Einstein manifold of complex dimension
m = 2l — 1 and scalar curvature R # 0, then K,(M?™) and
K_(M?™) denote the spaces of solutions of the equations (1.2)
for r = [ to the Killing numbers x, = /R/4m(m + 1) and k_ =
—K,, respectively. The non-trivial elements of these spaces are
called Kahlerian Killing spinors. The Killing numbers x, and
k_ can be real (R > 0) or purely imaginary (R < 0). According
to this a corresponding Kéhlerian Killing spinor is called real
or imaginary, respectively. We prove

dimg K4 (M*™) = dimg K_(M*™) < 2 - (T) (1.3)
where [ = (m + 1)/2 (Theorem 4). In general we have the in-
clusions K (M?*™) C E*+(D) and K_(M?™) C E*-(D), where
E*+(D) and E*-(D) denote the eigenspaces of the Dirac oper-
ator D to the eigenvalues Ay = (m + 1)k4. Moreover, if M?™
is closed, then &, x_ € IR and K+(M?™) = E*+(D) (Theorem
5). Hence, Kéhlerian Killing spinors are related to the limiting



case of the inequality

1 |m+1

A2 R (1.4)

for the first eigenvalue Ay of the Dirac operator which holds in
case of M?*™ being closed and Ry := min(R) > 0. We recall
that M?™ must be an Einstein space of odd complex dimen-
sion if (I1.4) is an equality (see [18]). Thus, Kéahlerian Killing
spinors are important for the investigation of the limiting case
of the inequality (I.4) and the associated classification prob-
lem, which has only been solved for the trivial case m = 1
and for m = 3 up to now (see [19]). Further, the first com-
ponent ¥;_; of each Kahlerian Killing spinor ¥ = ¥, + ¥y
(m = 21 — 1) is a Kahlerian twistor spinor of type (I,I — 1).
Hence, Kahlerian Killing spinors yield examples of Kahlerian
twistor spinors of special kind. Moreover, for m = 2l—1 > 1, it
holds pi_1 K, (M?™) = pi_1K_(M?*™) = ker DY where p;_;
denotes the projection onto the subbundle S;_; and ker D=1
is the space of Kahlerian twistor spinors of type (I,/ —1) (The-
orem 6). The motive for the denomination ”Killing spinor” is
the fact that the Kahlerian Killing spinors are closely related
to Killing fields (Theorem 9).

In Section 2 we further investigate the structure of the space
K+(M?™) being isomorphic to KX_(M?*") and we construct
Kahlerian Killing spinors with special properties in case
K4+(M*™) # 0 (Theorem 10, 11). By Theorem 12 we deter-
mine the action of the curvature tensor on the Killing field
associated to a Kahlerian Killing spinor.The results mentioned
last are used in Section 4, where we treat the problem of classi-
fication of all spin Kahler manifolds M9 adinitting a Kéhlerian
Killing spinor. If M?® is closed, the solution of this problem
is already known. The only closed spin Kahler manifolds M
possessing Kahlerian Killing spinors are the complex projective
space € P® and the flag manifold F(1,2). Since, in the closed
case, each Kahlerian Killing spinor is real, @ P? and F(1,2) are
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examples of manifolds with real I{ahlerian Killing spinors. We
prove that each simple connected complete spin Kahler mani-
fold M® with imaginary Kihlerian Killing spinor is analytically
isometric to the complex hyperbolic space € H® (Theorem 17).
This is one of the main results of the paper. In Section 3, for
m = 2] — 1 > 1, we compute a basis of the space ker D-1)
in case of the Fubini metric on @™ and in case of T H™, re-
spectively (Theorem 13). For these two cxamples the limiting
case of the inequality (I.3) is realized and also in case of ¢ P™
(Theorem 15). Thus, we obtain that (I.3) is a sharp estima-
tion. In Section 1 we define the basic notions appearing in
this paper. We describe the structure of the spinor bundle of a
spin Kahler manifold and we mention the needed facts of the
theory of Kéhlerian twistor spinors. In more detail, one can
find all this in [20] and [22]. Moreover, in Scetion 1 we prove a
result on the description of Kahlerian twistor spinors in terms
of complex forms (Theorem 1) and we give an estimation of
the dimension of the space of Kahlerian twistor spinors of type
(r,7 — 1) in case r # 1, (m + 2)/2 (Theorem 2). These results
are used in Section 3.

1 Some basic notions and facts

Let (M?*™, J,g,S) be a spin Kahler manifold of complex dimen-
sion m with complex structure J, Kahler metric g and spinor
bundle S. We always suppose that M?™ is connected. The
spin structure of M?™ is defined by a holomorphic line bun-
dle L being a square root of the canonical bundle A™°. There
exists a canonical splitting

S=S®S1 DD Sm (1.1)

into holomorphic subbundles S, 2 A ® L (r =0,---,m).
Let ¢ : § — S be the bundle map ¢ = £y ¢"p,, where p, : § —
S is the corresponding projection with p,S = S,. Then we have
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1 = ¥ o(=1)"p,. There is a canonical anto-unitary bundle
map 7 : S — S having the property j% = (=1)™m+1)/2, Hence,
for m = 4k and m = 4k + 3 (m = 4k + 1 and m = 4k + 2),
J is a real (quaternionic) structure of the spinor bundle. It
holds jS, = S,.—r, i.c., j determines an anti-unitary isomor-
phism of the bundles S, and S,,—,. Since jp, = pm-rj, We
obtain the relations ji = i™j and 7.2 = (=1)™%j. j com-
mutes with the Cliffors multiplication by real vectors. Thus,
if Z is a complex vector field on M?™ and 3 € I'(S), then
we have jZ¢ = Zji. Using the denotations p(X) = %(X -
iJX), p(X) = (X + iJX) from the real Clifford relation
XY +YX = —2¢g(X,Y) one derives the comples Clifford re-
lations p(X)p(Y) + p(¥)p(X) = 0, HX)F(Y) + F(Y )(X) = 0
and p(X)5(Y) + BV )p(X) = —20(p(X),5(Y)) = —g(X,Y) -
iQ(X,Y), where  is the Kabler formn defined by Q(X,Y) =
g9(X,JY). Using the convention S, = 0if r ¢ {0,1,---,m},
for any r € ZZ, cach X € T(M?™) and each ¢ € I'(S,), it
holds that p(X)y € I'(Sy+1) and p(X)yY € I'(Sr-1). More-
over, we have the relations ¢ X = J(X)¢, Xt = —J(X) and
Xi? = —2X for cach vector ficld X. For ¢,9 € T'(S) let o)
be the complex vector field defined by g(X, ¢9) = —i(Xp, ¢),
where (-,-) denotes the usual Hermitian scalar product on S.
Then we obtain the formulas

o= (p)h)=J(ey) (Ge)UY)=—-ve  (1.2)

p(Z) = (Zo)y — 2i{p,¥)Z (1.3)

where Z is any complex vector field. Moreover, if ¢ € I'(S,_;)

and 9 € I'(S;), then J(py) = —ipy and J(¢Pyp) = ipp. Let V

be the covariant derivative defined by the metric g and let V

also denote the corresponding covariant derivative on S. Then
it holds

V() = (Vz)¥ + o(Vz9). (1.4)

Let X (&) be any vector field (covector field or 1-form) then

we denote the corresponding 1-form (vector field) by g(X)
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(g7'(€)). The Clitford product & € T'(S) of a spinor field
¥ € T'(S) by any 1-form ¢ is defined by £y = g1(£)y. More-
over, for any r-form w and ¢ € I'(S), the Clifford product
wy € T'(S) is defined as follows: Let (Xi,..., Xs,) be a local
orthonormal frame of vector fields and let (€',...,£%™) denote
the corresponding coframe. Then we have the local representa-

tion w = > Waya, €V A ... AEY and we define locally
1<ay < <o, <m :

wy = 2 Way..ar Xay * " Ko, - 9,
I<ai<-<ap<m
where X, - - - Xq, -9 denotes an iterated Clifford product. Clear-
ly, this definition does not depend on the choice of the orthonor-
mal frame. Hence, we obtain a globally defined spinor field w1p.
In this sense any r-form w can be considered as an endomor-
phism of S or I'(S). For example, if we consider the Kéhler
form €2 as an endomorphism of S, then we find

Q=3 i(m—2r)p,. (1.5)
r=0

If £ is any 1-form and w any r-form (real or complex), then we
have the relation (in the sense of endomorphisins)

(w=¢ANw—-¢ 3w wE=wAl+(-1)¢ Lw. (1.6)

Moreover, for any complex r-form w and any ¢, € I'(S), the
relation

(we, b) = (=1) 2 (0, oy) (1.7)
is valid. Further, we have the formula
Vx(wip) = (Vxw)p +w(Vx). (1.8)

If ¥ € T'(S,) and w € T(A*Y), then wyp € I'(S,-;) and @y €
I'(Sy4s). Let o € T'(Sy) and w, o € T(A™?), then

wdthy = (—1)"+D297 (1w, o)epy, (1.9)

where here (-, -) is the usual Hermitian scalar product on A0,
For each 1 € T'(S,) this yields the following: Let P € M*™ be
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any point and let U be a sufficiently small ncighbourhood of P
such that there exists a section ¥y of Sy|y which does not vanish
at any point of U. Then there is an r-form w € T'(A™|y) that
is uniquely determined by ¥ = wipy. We say that w is a local
represcntation of 1 with respect to 1y. According to this a
local represcntation of ¥ € I'(S) with respect to ¥y € I'(So|v)
is a set of complex forms wy,wi,...,wn with w, € T(A™|y)
such that p,v¥ = @,v. Such a local representation is said to be
holomorphic iff the corresponding section 9 is holomorphic.
Let (Xi,...,Xam) be any local frame of vector ficlds. We use
the denotations gy = g(Xk, Xi), (¢¥') = (gr) ! and X* = g*' X
(Einstein’s convention of summation). Let D, D : T(S) — IY(S)
be the differential operators of first order locally defined by
Dy = X*.Vx,4 and Dip = J(X*)- Vx,9. Then D is the
Dirac operator and D is called the Kahler twist of D. D and
D satisfy the relations

DD+ DD =0 D?=D? (1.10)
For the operators D, and D_ defined by Dy = %(D;z[)) this
implies the identities ,
D=0 D*=0 D,D_+D_D,=D> (1.11)
Moreover, if ¢ € I'(S,), then Dy € I'(S;41). For any r-form
w and any spinor field ¢, the formula
D(wp) = ((d+ d*)w)y + (—=1)"wDyp —2(X* 4 w)Vx, ¢ (1.12)
is valid. i
Let D4 := Vxth+L(X-Dyp+J(X)-Dip),wherer € {1,...,m}.
Then the operator D) : I'(S) — T(TM?*™ ® S) locally given
byn Dy = Xk ® ’D(Q ¥ 1s the Kahlerian twistor operator of
type r. The elements of the space ker D(") are called (Kéhlerian)

twistor spinors of type r. By definition, we have 3 € ker D(")
if ¢ satisfies the differential equation of first order

Vi + 4—17:(XD¢ + J(X)D) =0 (1.13)
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for each vector field X. The operators D) arc compatible
with the decomposition (1.1), i.e., it holds that (1®p,)o D) =
DMop, for r = 1,...,mands=0,...,m. Let D"%) := D"op,.
then D) = @™, D"*) and, hence, ker D) = @™, ker D).
The elements of the space ker D("®) = ker D) N T(S,) are
called twistor spinors of type (r, s). It holds that jker D("®) =
ker D("™~%)_ Moreover, if M?™ is not Ricci-flat, then ker D) =
ker D=1 4 jker D(""~1), Thus, in case Ric # 0 (Ric denotes
the Ricci tensor), it suffices to consider the space ker D=1,
¥ € ker D) implics

o, TR
D= —v (1.14)
€ R 1 €
Al = mlwz - ;|D¢|2~ (1.15)

For r # (m+2)/2, we have 1 € ker D"~ iff ¢ € T'(S,_;) and
1 satisfies the equation

1
for each vector field X. This equation implies
R

p(Ri - X)=0 1.17

P(Ric(X) - — X)p = (1.17)
and, moreover, in casc r > 1,

1 .
VxDy + Ep(Rlc(X))w = 0. (1.18)

From (1.16) and (1.18), respectively, it follows
Vp(X)Q/) =0 Vﬁ(){)Dl/) - 0, (1.19)

i.e., ¥ is antiholomorphic and D is holomorphic. The first of
the equations (1.19) implies

D_1 =0. (1.20)
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Lemma 1.1: Let U C M?*™ be an open set and let 1y € T'(So|v)
be a holomorphic section that does not vanish at any point of
U. Then, for any w € T(A™|y), it holds that D (o) =
(0@)o and D_(@hg) = (0*® — 2p(Xo) _ @), where Xy :=
grad log |1|%.

Proof: Since 1) is holomorphic, the equation
Vxtho = (81og [9o|*)(X )30 = g(X, B(X0))%o (*)
is satislicd for cach vector field X. Using this we have
Do = X*V x,3b0 = g(X, P(X0)) X o = p(Xo)tho = 0.
Thus, 1y has the property
Drpy = 0. (2%)
Moreover, since @ € I'(A%"|y), we find
J'w =0 (dw)ye=0. (3%)
By (1.12), (%), (2%) and (3%) it holds

D(@yy) = (0 +0+0*+ 0" )by + (—=1) @Dy —
2(Xk _ (D)kad)o =
= (0@)y + (0*@)ho — 2((9( X, P(X0)) X*) L @)ho =
= (Owypy + (0*@)yo — 2(P(Xo) 1 @)o.
Since D = Dy + D_, (90)go € T(Sri1ly) and (0*@)yp —

2(5(Xo) o @)ho € T(Sr-1ly), this yields Dy (@) = (0@)3ho
and D_(@yo) = (0" — 2p(Xo) - @)%, q.e.d.

Theorem 1: Let ¢ € I'(S,_1) and r # (m + 2)/2, then ¢ €

ker D=1 iff each local holomorphic representation (w, ) of
Y satisfies the differential equations

1
Vi) ([tol’w) =0 Vyxyw = ;p(X) 0w (1.21)
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for each vector field X .

Proof: Let ¢ € kerD(’"”'""'l) and let (w, ¥p) be any local holo-
morphic representation of 1. Then we have ¢ = @1)y. Since g
is holomorphic, it holds

Vit = (Vx@)h + @Vxth = (Vx@ + g(X, p(Xo))@)o,

where X = grad log |1/y|?. Using Lemma 1.1 and the equations
(1.6) it follows

P(X)Ditp = p(X) D (@hy) = H(X)(0w)ho = —2(p(X) s I)3ho.
Inserting these results into equation (1.16) we obtain
1 _
(Vx@ + g(X, p(Xo))o — —p(X) 1 0)shp = 0
and hence the equation
1
Vxw+ g(X, p(Xo))w = ;p(X) _1 Ow, (1.22)

which is equivalent to the equations (1.21). Conversely, it is
not hard to sce that the equations (1.21) imply the twistor
equation (1.16), q.e.d.

Theorem 2: Let r # 1, (m+2)/2. Then we have the estima-
tion
m + 1)

r

dimg ker D™D < ( (1.23)

Proof: We consider on S,_; @ S, the covariant derivative v
defined by

1
VO r_1+1,) = Vx(¢r_1+z/),-)+-2—1;z7(X )¢r+§p(Ric(X))¢,._1.

We see that ¥,_; + ¢, € ['(S,—1 @ S:) is parallel with respect
to V(" iff the differential equations

Vit 5 DXt = 0 (1.24)
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Vit + p(Ric(X)p1 = 0 (1.25)

are satisfied for each vector field X. Equation (1.24) implies
the equation

Yy = Dp,_y. (1.26)

Thus, by (1.24) and (1.26), ¥»_; satisfies (1.16), i.e., we have
Yr_1 € ker D=1 Conversely, we conclude from (1.16) and
(1.18) that ¢ € ker D=1 implies 1 + Dy € ker V(). Hence,
we obtain an isomorphism of complex vector spaces

ker D=1 = ker V() (1.27)

defined by 9 — 1 + Diy. Each ¢ € ker V(") is generated by
parallel displacements of a spinor ¢p, € (Sr—; ® S,)p, from any
fixed point Py € M?™ into all the other points. Thus, we have

dimg ker D1 = dimg ker V) < dimg(S,_; ® Sy)p, =
1
_ ( m )+(rra):(m+ )
r—1 r r

and hence (1.23), ¢.c.d.

2 General properties of Kahlerian Killing
spinors

Let ¥ = Y1 + ¢, € T'(S,—1 D Sr) (1 < 7 < m) be a section

such that, for ecach vector ficld X, the equations

Vxtr_1 + f{*ﬁ(X)"/)r =0 Vx¢r+ ’ip(X)"pr-—l =0 (21)
are satisfied, where k # 0 is a given complex number.
Theorem 3: Let M?™ be a spin Kdahler manifold such that the

equations (2.1) have a non-trivial solution. Then M?™ is an
Einstein space of odd complex dimension with scalar curvature
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R = 4m(m + 1)k? and r = (m + 1)/2 holds.

Proof: Suppose that ¢ = 1,5;_1 + ), is a non-trivial solution of
(2.1). By direct calculations the equations (2.1) imply

CX,Y)ths = KB )P(X) = B(X)p(Y)r-1 (2:2)

CX, V)¢ = £ (p(Y)B(X) — p(X)B(Y))¢r,  (2.3)

where C denotes the curvatiire tensor of the spinor bundle.
Using the well-known relations

X*C(X, X,) = —-%Ric (X) (2.4)
XE5(Xe) = —m — i X*p(Xy) = —m +iQ  (2.5)

and (1.5) we have by (2.2)

—%Ric (X)r_y = X*C(X, X)pr_1 =
— KXP(XP(X) ~ X 5(X)p(Xe)hrt =
— RXR(X)p(X) — XH(—p(Xe)P(X) —
29Xk P(Obrt =
= K((=m — iQ)p(X) + (=m + i Q)B(X) + 25(X))th,—1 =
= R(—mp(X) + (m — 2)p(X) — mp(X) -
(. 2(r — 2)P(X) + 2(X)hy-1 =
= —2k*(rp(X) 4+ (m —r + Dp(X)) 1.

Hence, we obtain
Ric (X )tpr—1 = 4&%(rp(X) + (110 — 7 + 1)p(X) J¢br—1 (*)
and, by a similar calculation,
Ric (X )¢ = 45 (rp(X) + (m —  + 1)p(X)). (2%)
Using the general identity
X*Ric (Xi) = —R, (2.6)

12



from (x) and (2%) one derives the relations

(R=8k*(m—r+1)(2r —1))¢p_1 = 0 (3%)
(R —8k*r(2m —2r + 1))y, = 0. (4%)

Now, it cannot be that ,_; or v, vanishes identically. For
example, suppose that 1,_; = 0. Then it follows from (2.1)
that 1, is a non-vanishing parallel spinor. This implies Ric = 0
and hence R = 0. Because of (4%) we obtain a contradiction.
The supposition 3, = 0 contradicts (3%). Thus, the relations
(3%) and (4x) yield the equations R = 8x%(m — r + 1)(2r — 1)
and R = 8x%r(2m — 21 - 1), which imply immediately r =
(4 1)/2 and R = dm(mn + 1)x?. By this, lorming the s of
the equations (%) and (2%) we obtain

(Ric(X) — 2(m 4+ 1)k2X)p =0

and hence

R

: 2

1C = N - -__X

Ric(X) = 2(m + 1)k“X 57 X

since 1 = 9,_; + ¥, #Z 0. Thus, we sce that M?™ is Einstein,

.c.d.

In the following we use the denotations and definitions men-
tioned in the introduction, for example, the denotations
K+(M?™) and the definition of a Kéhlerian Killing spinor (real,
imaginary). |

Theorem 4: Let M*™ be a spin Kdhler manifold admitting
a Kahlerian Killing spinor 1. Then v does not vanish at any
point. If 1 is real, then the function ||? is constant. Moreover,
it holds

CZRL(MP™) = Ke(M*™) (2.7)
and we have the estimation
dimg Ko (M?™) < 2('7) (2.8)
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where m = 21 — 1.

Proof: Applying the map 2 to the equations (2.1) we obtain
(2.7). Now, let us consider the covariant derivatives V* and
V~ on the bundle S;_y ® S; (m = 21 — 1) defined by

Ve = Vxp + ke (p(X)pi-1 + 5(X)pr)p.
It is easy to see that
Ki(M*™) = ker V=. (2.9)

Hence, each Kahlerian Killing spinor 9 is generated by parallel
displacements of a spinor p, € (Si—1HSi)p, with respect to V*
or V~, where Py € M?™ is any point. Thus, we have p # 0
for each P € M*™ iff 1p, # 0. It follows further

dimg ’C:i:(M2m) < dimg(Si-1 ® Si)p, = 2(7) .

Finally, we remark that for R > 0 the covariant derivatives V*
and V~ are metric since the corresponding Killing numbers «,
and k_ are real. This implies that, for a rcal I{ahlerian Killing
spinor v, the function |¢|? is constant, q.e.d.

Theorem 5: Let M*™ be a closed spin Kahler manifold admit-
ting a Kahlerian Killing spinor. Then each Kdahlerian Killing
spinor s real and

Ki(M*™) = E*(D). (2.10)
Proof: Let ¢ = ¢y_; 4+ ¢y € K, (M?™) (m = 2] — 1). Then, by

definition, the equations

Vxioi +6:p(X)Pp =0 Vx4 64p(X)hii =0 (2.11)

are satisfied. Using the first equation, by (1.5) and (2.5) we
have Dy_1 = X Vg = =k X*p(Xi)h = —ky(—m —
DY = —ky(—m+ (m — 20 = 2k = (m+ Dy =
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A+¢. By a quite similar calculation we obtain Dy = Ap¢-;.
Thus, the equations (2.11) imply

Dy =Mt D= Ayt (2.12)

This yiclds Dy = Ay4 and hence K (M?™) C E* (D). By
Theorem 3, M?™ is an Einstein space of scalar curvature R =
— +1,\2 Hence, we have

- |
Ay = il,} ~'—’%—R (2.13)

Now, let M?™ be closcd. Since, in the closed case, the Dirac
operator D has only real eigenvalues, A, is real and hence
R > 0. Thus, by (2.13) we see that here the limiting case of the
inequality (I.4) is realized and that A, is the first eigenvalue
of D. If follows from Scction 3 in [18] that each cigenspinor
¥ € E*(D) is a section of the bundle S;_; ® S; such that the
compouents ;_; and ¢; of ¢ satisfy the equations

Ay Ay
Vxoi- 1+—~—p(X)<PI 0 sz0:+——P(X)901-

Because of A, = (m+ 1)k, this implies ¢ € K (M?™). Hence,
we have K, (M?™) = E*+(D). By (2.7) and the general relation
*END) = E™X(D) (2.14)
this equation is equivalent to K_(M?™) = E*-(D), q.e.d.
Theorem 6: Let M*™ be a spin Kdihler-Einstein manifold of

complex dimension m = 2l—1 > 1 and scalar curvature R # 0.
Then there are isomorphisms

K (M?™) 2 ker DD, (2.15)

Proof: Let v = ¢_; + ¥ € K (M?™). Then, by (2.12), the
first of the equations (2.11) can be written

Vxhior + I)(X)D¢z 1= 0.
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Hence, by (1.16), it follows that 1;_; € ker DH-1), Conversely,
let ¢ € ker DY=1, Since M?™ is Einstein, we obtain by (1.16),
(1.18) and (1.20) that

1
o+ Div € Ky (M*™). (2.16)
+

This yields the isomorphism (2.15), q.e.d.

Theorem 7: Let ¢ = ¢¥_1 + ¢ be a Kdahlerian Killing spinor
to the Killing number k.

(i) If ¢ is real, then
grad|yy|? = —grad|y1[* = £J(¥¥) (2.17)

, R
Al = —Alpa* = ‘Z‘;};(Wﬂfg — |ial?). (2.18)
(i) If ¢ is imaginary, then
grad|y|® = grad|¥_1|* = —ikyy (2.19)

Al = Alpia|* = 2—”;(|1/f1—1|z + |vil?). (2.20)

Proof: Let ¥ = 1;_1 + 1 be a real Kéhlerian Killing spinor to
the Killing number k. Then, by (2.1), it holds

g(X, grad|t]?) = X (|ul*) = (Vxi, i) + (¥u, Vxihr) =
= (—kp(X)r_1, 1) + (b1, —kp(X)th1-1) =
= —ir(g(X, Y1) — 9(X, 1hi-1)) =
= kg(X, J(W1) + J (1)) = 9(X, I (¥9)).

This yields grad|¢|? = sJ (). By Theorem 4, the function
[|2 = |[11]® + |1 is constant. Thus, it follows that grad
[1-1|2 = —kJ(¥3). Moreover, using the general formula

div(py) = ~i((De, ¥) — (0, DY), (2.21)
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by (2.12) and (2.17) we have

Al|? = —div grad|v|* = —kdiv(J (ye)) =
= —kdiv(J (Y11 + i) = —rdiv(ihihiy — wWi_1th) =
= —k({Dy, ¥1_1) — (1, Dpi—1) — (Dpi—1, Yi) + {11, D)) =

= —KmA Dl P 2m+ D) = o (ol [ ).

In the imaginary case one obtains the equations (2.19) and
(2.20) by quite similar calculations, q.e.d.

Corollary 7.1: Let ¢ be any Kahlerian Killing spinor.
(1) If v is real, then

Al ) = (i, ). (2.22)
(1) If 3 is imaginary, then
AP = Sy (2.23)

Corollary 7.2: If vy is any imaginary Kahlerian Killing spinor,
then the function (1,21 is constant and the function |y|* does
not possess any local mazimum.

Theorem 8: Let ¢ = Y_1+y; be any Kahlerian Killing spinor
to the Killing number k. Then we have the following:

(1) It holds
grad(v, ji1) = kJ(Pj1h). (2.24)

(i3) If | is even, then the function (i, jii—1) is constant.
(iir) If 1 is odd, then

Al j91) = i, i) (2.25)

17



Proof: Using the obvious relation

Vi = Yi_1 i1 + Yigid, (2.26)

for any vector field X, we have

9(X, gl'ad(¢z,j¢1~1)) = X((d)z,jl/)z—l)) =
- (Vleaj'l/}l—-l) + (whjvxwl—l) =
—k({p(X)¥1-1, 1) + (¥, p(X)jin)) =
—k(ig(X, i1 jhi-r) — ig(X, Yugh)) =

= g(X, k(—ii_1ji—1 + b)) = g(X, J (P5¢)).
This implies (2.24). Because of m = 2] — 1 it holds
§t = (-1 (2.27)

Using this and (1.2) it follows that ¥jy = —(G%)jy =
(-—1)’“1/)_7'1/}. Hence, the vector field ¢ jvy vanishes identically

for even . By (2.24) this implies (ii).
Now, let [ be odd. Using (2.12), (2.21) and (2.24) it holds

Ay, jipi1) = —div grad (¢, 1)) = —kdivd (i) =
= kdiv(ith_1ji-1 — i) =
K({D1-1, jb1-1) — (i—1, D11} = (D, jioi) + (1, F D)) =
26({Dvi_1, 3%1-1)+ (1, DY) =
= 2k((m + )s(r, jiimr) + (m + 1)k(r, jhir)) =

= (4 DR i) = (i)

I

This proves (iii), g.e.d.

Theorem 9: Let ¢ = ;1 + Yy be a Kahlerian Killing spinor.
Then the following holds:

(i) If ¢ is real, then Yy is a Killing field iff the function
(¥, 29} does not vanish identically.

(i) If ¢ is tmaginary, then J(Y) is a Killing field.

18



(iii) If | is odd, then Re(vjv) (Im(yjv)) is a Killing field iff
the function Re(yr, ji-1) (Im(yy, j¢i—1)) does not vanish
wdentically.

Proof: Let v = 1/;_; + ¢y be a real Kahlerian Killing spinor to
the Killing number k. Then one proves by a straightforward
calculation that

9(Vx(¥y),Y) = —ic({(p(X)p(Y) — p(Y)p(X))hi-1, h1-1) +
+H{(p(X)p(Y) — p(Y)P(X))thi, i) (2.28)

for all vector fields X,Y. This shows that the tensor field
V(1)) is skew symmetric. Thus, ¥ is a Killing ficld iff it does
not vanish identically. From (2.17) and (2.22) we see that this

is the case iff the function (v, (21)) does not vanish identically.
If v = 1h_; + 4y is imaginary, we find
9(Vx(J(¥9)),Y)=r({(B(X)p(Y)—p(Y)p(X))thi-1, 1-1) -
—{((p(X)B(Y) — p(Y)D(X))¥1, %)) (2.29)
Hence, in the imaginary case the tensor field V(J (1)) is skew
symmectric. From (2.19) and (2.23) we sce that the vector field
Y1y can never vanish identically since R < 0 is constant and

|#)|? is a function that docs not vanish at any point. Now, let
[ be odd. Using (1.2) and (2.1) it holds

Vx(i-1ivi-1) = (Vxhi-1) it + i1 (GVxthi-r) =
= —k(P(X)Y1)jbi-1 — si1(P(X) 1) = =26(p(X)th1) jthi-1-
The second of the equations

Vx(i-1jic1) = —26(p( X)) ji-1 (2.30)
Vx (W) = =26(p(X) 1) i ’

can be derived quite similarly. Using (2.26) and (2.30) we ob-
tain |

9(Vx (i), Y) = 2ic{(p(Y)D(X) — p(X)B(Y))%1, j¥i-1)-
(2.31)
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This shows that V(yjvy) is skew symmetric. Thus, our asser-
tion (iii) is completely proved by (2.24) and (2.25), q.e.d.

Theorem 10: Let M*™ be a spin Kahler manifold of complex
dimension m = 2l — 1 admitting any Kahlerian Killing spinor.
Then there is an anti-unitary automorphism C of the space

K (M*™)® K_(M?*™) such that
CKi(M*) = Ko(M*™). (2.32)

Moreover, if the scalar curvature R is positive (negative), then
it holds
C? = (-1)' (C*=(=1)"*). (2.33)

Proof: First of all, we remark that for 2 > 0 (R < 0) we have
FEL(MP™) = Ka(MP™) (GKa(M™) = Ko (MP™).  (2.34)

Thus, for R > 0, we define C by C¢ = ji. According to (2.7)
and (2.35) we define C by Cy = (259 if R < 0. Because of
(2.27) and

i = —j5i (2.35)

+1 q.e.d.

in this case we have C? = 1251%j = —2j%2 = (—1)
Corollary 10.1: Let M*™ be any spin Kdihler manifold of
complex dimension m = 2l — 1 admitting a real (imaginary)
Kahlerian Killing spinor. Ifl is odd (even), then dimg Ko (M?*™)
is even and not less than 2.

Proof: In the situation considered here we have C? = —1, i.e.,
according to (2.32) C determines a quaternionic structure of
the spaces K (M?*™) and K_(M?™). Since K.(M?™) # 0, this
implies dimg K4 (M?™) > 2, q.c.d.

Corollary 10.2: Let M*™ be a spin Kdhler manifold of com-
plex dimension mn = 2l—1 admitling a real (imaginary) Kdhlerian
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Killing spinor. If | is even (odd), then, for each Killing num-
ber, there is a Kihlerian Killing spinor v with (1, 2¢) = 0.

Proof: Here we have C? = 1, i.e., C determines a real struc-
turc on K, (M?") and K_(M?™). Hence, in cach of these
spaces there are Kahlerian Killing spinors ¥ having the prop-
erty Cy¥ = 1. In case R > 0, we have Cy = ¢ iff jy = 1.
Hence, it holds that (1, 2¢) = (5e*¢,j¢) = —(259,5¢) =
—(2Y,¥) = —(,1*p). This implies (,:*p) = 0. In case
R < 0, we have Cy = o iff jy = 1%, where j2 = —1. Thus,
it holds that (1, :29) = (¥, j¥) = (%, jv) = — (¢, ) and,
hence, (¥, t*1) = 0, q.e.d.

Theorem 11: Let M*™ be a spin Kdhler manifold of com-
plex dimension m = 2l — 1 admitting an imaginary Kahlerian
Killing spinor. Then we have the following:

(i) To each Killing number there is a Kdahlerian Killing spinor
Y with (1, 124) = 0.
(it) If 1 1s even, then, for each Killing number, there is a
Kdhlerian Killing spinor ¢ = 11+ with (i1, j¥i) = 0.
Proof: By Corollary 10.2, it suffices to consider the case where
l is even. Let ¢ = _; + ¢y be any (imaginary) Kahlerian
Killing spinor. From Corollary 7.2 and Theorem 8 we know
that the functions a := (¥,:2¢) = |P|* — |i-1|? and b =
(Y11, 7¢) are constant.
Moreover, it follows from Theorem 10 that, for all pairs of
complex numbers (z,w) # (0,0), the spinor field ¢ := 29 +
wCY = (2911 — wj) + (2¢ + wji_y) is a Kihlerian Killing
spinor to the same Killing number. Using the notations ¢;_; =
zP1-1 — wivhy, o1 = 2z + wi_y we find

|S01|2 - |<P3-1|2 = a(|z|2 - [11)[2) + 4Re(bzw) (%)
(pi1,d01) = b2* — bw? — azw. (2+)
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Let us suppose b # 0. In this case the equation bz? — bw? —
azw = 0 possesses the special non-trivial solution (zg,wy) =
(a/2b + \/(a/2b)2 +b/b,1). By (2%) this proves the assertion
(ii).. On the other hand, if ¥ = ;_; + ¢4 has the property
(-1, Ji) = 0, then it follows from () that ¢ := 1 + C has
the property (¢, t2p) = 0, q.e.d.

By Theorem 4 and Theorem 11, (i) we immediately obtain

Corollary 11.1: Let M?™ (m = 21 —1) be a spin Kihler man-
ifold admitting an imaginary Kahlerian Killing spinor. Then,
for each Killing number, there is a Kdhlerian Killing spinor
Y = Y1 + Y1 whose components Yt and Y; do not vanish at
any point.

Let K be the curvature tensor of M?™ defined by
K(X,Y)Z =VxVyZ—-VyVxZ —VixvZ
and let T' denote the tensor field given by
T(X,Y)Z =20X,Y)J(Z)+Z 3 (Y AX +J(Y) A J(X)),

where () is the Kahler form.

Theorem 12: Let ¢ = _1 + 9 be a Kihlerian Killing spinor
to the Killing number k.

(i) It holds
K(X,Y)(y) = £'T(X,Y)(y3)) (2.36)

(ii) If | is odd, then

K(X,Y)(@i_1ihie1) = 2620 )p(X)—(X)p(Y )bi—1) i
K(X,Y) (i) = 26°(p(Y)D(X)—p(X)B(Y )thr) 5.
(2.37)
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Proof: For example, let ¢ = 1 + ¢ be real (R = ). Then
we have
Vy(Wi-1) = (Vydi)r+ via(Vydr) =
= —k((P(Y))b1 + P (p(Y)h1-1))-

Using this we obtain the equation

VxVy @) = —c((B(VxY)V)Yr + v (p(VxY)imr)) +
+ &)X )h-1)thr + i (P(Y)D(X )hr) +
+ (YY) ) (p(X) i) + (X)) (p(Y)hi—r))-

Hence, we find

KX, Y) () = &*(BY)P(X) = p(X)p(Y))hr-1)¥1 +
(%)
+ Y ((p(Y)P(X) — p(X)B(Y))dr)).
We obtain the same equation if 1 is imaginary.
Now, by (1.3) we have

Vi1 (p(Y)p(X)h) = (P(Y)thi-1)(P(X ) i) —
2i (i1, P(X)P)p(Y) =
= (p(X)p(Y) 1) — 2¢(p(Y )thi-1, ¥)p(X) —
2i(1—1, D(X)Y)p(Y) =
= (p(X)P(Y) 1)t — 29(X, Yi-1991)p(Y)
and, hence,
Y11 ((p(Y)p(X) — p(X)p(Y)¥) = ((p(X)p(Y) —
p(Y)D(X)) 1) — 29(X, hi19))p(Y) +
29(Y, i) p(X).
Inserting this into the equation (x) we obtain
K(X,Y)(%1-1, %) =26 GUX, Y )19+ 9( X, Yi_19)p(Y) —
—g9(Y, Yi1)p(X)) =
= 22X, Y)J (Yi-19) — g(X, b)Y + g(Y, ro1th) X —
~g(J X, Y1) JY + g(JY, Yi19) J X).
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Because of p(¥¢) = t—13; this implies (2.36).
Using the equations (2.30) one obtains the equations (2.37) by
similar calculations, q.e.d.

3 The Fubini metric and the complex hyper-
bolic space |

In this section we work with the complex manifolds @™ and

= {(z},...,2™) € @™ =™ ,|z°|*> < 1} simultancously,
where m = 20 — 1 is any odd natural number. On @™(D™)
we consider the function f = 1+X™, |2*]2 (f = 1-2™, [2*)
and, for any real number ¢ > 0, the function F = c?log f

(F = — 2logf). Using the denotations Z, = 3%, Zz =
Zy = az,_., (o = 1,...,m) we obtain a Kihler metric g =

Gopdz® ® dz¥ + gapdz*® ® dz” on @™(D™) whose components
9oj ‘= 9(Za, Z3) = Gap are defined by
O*F
gafgzm (G’,ﬂ:l,...,ﬂl).
The explicit expressions arce
c? 7o2P c? 7o2P

Gopg — 7(601[9 - f ) (ga[—'} = 7(6frﬂ + f )) (31)

This yields
X f Y [£ 83 (43 3 f (Y (Y‘- &
b= (8 Ft2077) (¢" = (0 - 2v2")). (3:2)

This Kahler metric on@™(D™) is called the Fubini metric (met-
ric of the complex huperbolic space TH™). In general, the
corresponding Christoffel symbols I'} ; are given by

- 09ea
76
Fap 9zF
Using this we obtain by direct calculations
[0s= "“’(‘57 Z’ + 8}z 32%) (Thp = —(5Z5ﬁ +632%)).  (3.3)
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The canonical bundle A™Y of @™ is trivial. It is generated by
the global holomorphic section wy, = dz' A ... A dz™. Thus,
by o := /W, we have a global holomorphlc section of Sy =
VA™D, Because of |wn|? = det(g®®) and |tho|? = Jwm| from
(3.2) we obtain

[l = f—; (m =2l -1). (3.4)

For1 <o) <---<a_; <mlet £ be the (I — 1)-forms
on @™ (D™) defined by

£oi-1 = —l-dz“'l A Adz®1,

fl
Then, by (3.4), it follows immediately that
VZE(II/)OPgm...m_,) =0 (35)

for o = 1,...,m. Moreover, we have

Lemma 13.1: Fora=1,...,m, it holds

1
Vznfm...a,__l — 720 N 0£a1...()(;_1. (36)

Proof: For example, let us consider the case of the Fubini
metric. By (3.3) we have

m

Vg, d2" = —F:’,ﬂdzﬂ = ?( 2%dz27 4 61 3 7Pd2P).
f=1

Using this it holds

vzué-a]...a,_l — ( _ fl+1 dzﬂ’) A /\ dzal-l +

-1
“‘l"l Z Az A--- A Vzadza" A---A dzal——l) —

fl+l( —Z%z N ANdZM +
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+(Z 7PdzP )/\ (Z( 1)’c I(S"‘"dz"“ Ao Adzo A A dz®-))

A=1
= le( — Z%z AN - Ad2z® 4

+(ﬂ§ FPALPYN(Zy 2 (d2™ A -+ Ad2™))) =
_ % (= fm(zz dPY Adz A - Adz) =
_ Ly ggee

In case of @ H™ the calculation is quite analogous, q.e.d.

Now, for 1 < f3) < --- < 3y £ m, let us consider the (I — 1)-
forms defined on ¢™(D™)

= —ﬁ(zﬂZﬂ) J(dZPr AN d2P,

where Einstein’s convention is used in the term 2#Z;. Clearly,
it holds

V(o> ) =0 (a=1,...,m). (3.7)

Lemma 13.2: Each of the forms nP-P satisfies the equations
1

Vg nt P = 7Za o PP (a=1,...,m). (3.8)

Proof: The definition implies the relation

,/i, ___"Z:l( 1)&, 1. ﬁkfﬁl“'ﬂk"‘ﬁl (3.9)

Using this, (3.6) and the identity

{ N | )
(1_1) z(_l)k—*l‘sgkfﬂl-.-ﬂk-.-ﬂl = Z(—l)kdzﬂ"/\(z(, N fﬂ,...ﬂk...ﬂ,)
k=1 k=1

we obtain (3.8) by a direct calculation, q.e.d.
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We define spinor ficlds on @%~'(D%-") by
M-t = armat gy PP = BB gy, (3.10)

By Theorem 1, (3.5), (3.6), (3.7) and (3.8) we sce that cach of
these spinor ficlds is a twistor spinor of type (1,1 — 1). Obvi-
ously, the set of all these Kahlerian twistor spinors is lincarly
independent over@'. Hence, it generates a complex vector space

of dimension 2- (211—1) = (zll) = (mfl). By Theorem 2, this yields

immediately

Theorem 13: Let m =2l — 1> 1. Then the set

{(pou...a)_l, ¢ﬂ1ﬁ:l1£al < <oy S m, 1 Sﬁl L s <:Bl S m}
(3.11)
forms a basis of the space ker DD on@™(D™) furnished with
the Fubini metric (complez hyperbolic metric).

In particular, Theorem 13 shows that the estimation (1.23)
is sharp since (1.23) is an equality in the situation considered
here. Now we consider the case of @™,

Lemma 14.1: Let m = 2l—1 > 1. Then, in casc of the Fubin:
metric, we have

ltpuimm—;iz — _2}:’_,1.(1 + 1_2:‘ Izm,rz) (312)
c2m—1 f Py
-1 i
WA = g PP .13
G

forl<a;> <o <mandl1 <p <--- < <m.

Proof: First we remark that the relation

-1
s A= A = () (1 1) *)


http:twist.or

is valid. Moreover, for 7 # k, one proves the identity

(dP A NN NP AN A
— (—fi)l_l(el)”kﬂéﬂ‘zﬁ".

A '-/\dzﬂ')z

(2%)

Using the formulas (1.7), (1.9), (3.2), (3.4) and (*) we have

i1 [2 = (g gy, ETT < ahy) =
= (=)D (g magaas . gy, ghg) =

{
— 21 1I£a1 m..ll |¢ IZ 21 lfmldzm A _._Adzm_-ll‘z . 1:__ —
cm
21 1 g 21 1 -1 0
= Cmf‘,ldzo"/\---/\dz"”"l c’"f’( 2) (1+ Z |27¢%) =
2i-1 1 =

= Zm—l_(l + Z Iz‘-"kl )

and, hence, (3.12). Further, by (%) and (2x), it holds

2—1
lwﬂl-..ﬂllz — ;:m_f[l(zﬁzﬂ) . (dzﬂl A Adzﬂzlz —
21 I 4
= f[(Z( 1) PidP A - AdZT A Nd2P
(m
1 ——
El(—l)k”lzﬁ"dzﬂl A AN AdPY =
2! P .
= ,,,f,(Z |BLRdP A ANdE A AdZP? +
+ Z S (=1)HkPEPedP N A a2 A A dz",
i=1 ki
Az A - /\JZﬂ“ AeeeAdsPY) =
2-1 1

k#i i=1 k#i

-1

Zm ]fZIZ

q.c.d.
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Theorem 14: Let m = 2l — 1 > 1. Then dimgker D¢-D =
2(',") holds on @ P™.

Proof: We show that cach element of the basis (3.11) can
be extended on @P™. It suflices to prove that the functions
|®1 =12 and [P #|? are bounded on ™. By Lemma 14.1
we have

-1 ol-1

l(pal"-ﬂ't—llz < and W)ﬂt'"ﬂtI? <

q.e.d.
The Fubini metric (metric of @H™) given by (3.1) is a

Kahler metric of constant holomorphic sectional curvature 2/c?
(—2/c?). In particular it is Einstein with scalar curvature

2m(m + 1)
o2

_2m(m +1)

S (314

R= (R=

Hence, by Theorem 6, Theorem 13, and Theorem 14 we imme-
diately obtain

Theorem 15: Let m=2l—1> 1. Then

dimg Ko (@P™) = dimg KL(@H™) =2 (rln) . (3.15)

By Theorem 5, we conclude from (3.15) that for all @ P™ of
odd complex dimension m the limiting case of the inequality
(I.4) is realized (For m = 1 the assertion is trivial.). This
is alrcady known from [6], where the spectrum of the Dirac
operator on @ P¥~! is computed. Finally, we remark that by
(2.16) one can derive the explicit expressions of the Kahlerian

Killing spinors corresponding to the twistor spinors given by
(3.10).
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4 Imaginary Kahlerian Killing spinors in di-
mension six

If M?® is a closed spin Kahler manifold admitting a I(ihlerian
Killing spinor, then M® is analytically isometric to the com-
plex projective space € PP° or to the flag manifold F(1,2), re-
spectively, furnished with their natural I(ahler structures (see
[19]). @P? and F(1,2) are examples of Kéahler manifolds with
real Killing spinors. In this section we will prove an analogous
classification result in case of G6-dimensional IGihler manifolds
admitting an imaginary Kahlerian Killing spinor.

Let M?® be a connected spin Kahler manifold with an imaginary
Kéhlerian Killing spinor ¥ = 11 + 93 to the Killing number .
Then we know that M9 is an Einstein space of scalar curvature

R = 48k* < 0. (4.1)
Moreover, we have the relation
= E’Q = 8k} (4.2)

between the Ricci form p and the Kahler formn 2. The spinor
bundle S of MY splits in the form

S=S5 DS, DSy D S3

and we have ¥ € ['(Sy), ¥9 € I'(Sy). For each vector field X
on M5, the differential equations

Vxr + kp(X)pe =0 Vx4 6p(X)h =0 (4.3)

are satisfied. By Theorem 11, (ii) we can assume that

(1, 3pa) = 0. (4.4)
Let X3 := ¥ = 139 + 1p91p;. Then it holds
P(Xs) = hiype p(X3) = . (4.5)
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Theorem 7, (ii) yiclds
grad|y|? = —2ik X, (4.6)

ARl = T = 16621 (4.7

Further, by Theorem 9, J(X3) is a Killing field and Theorem
12 implies
K(X,Y)X; = s*T(X,Y)X;. (4.8)

Now, let P € Uy, := supp(¥1%2) be any point and let U C Uy, be
a neighbourhood of P such that there is a holomorphic section
Yy € T'(Sp|y) that does not vanish at any point of U. Then we
define real vector ficlds X, X3 on U by

X1 =Yoo+ P1ho Xa = ho(3vha) + (51b2) 0.
By definition, we have the relations

P(X1) = otn p(X1) = 1o (4.9)
P(X2) = vo(J¥2) p(X2) = (J¥2)vo. (4.10)

Moreover, we find

P(X1)%o = 2ilyhol*P1 p(Xa)tho = 2ishol*jab. (4.11)
In particular, this implies
(XY =0 f)(Xg)'l,bz = 0. (4.12)

Lemma 16.1: For all vector fields X andY, defined on U the
equations

KX, V)X, =rT(X, V)X, (k=1,2) (4.13)

are satisfied.

Proof: By (4.3) and because of Vg = 9 log |1o|?> ® 1o we have

Vy (¥oth1) = (Vyvo)r + ¢Yo(Vyh) =
= (0log [v0]*)(Y) o1 + wvpo(B(Y )2).
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Using this we find

VxVy (%oth1) = X((81log [v0]|*)(Y))votp1 +
+ (91og 9o *)(X)(Olog [4ol*) (Y )hotp1 +
k(9 10g |0 *) (Y )ho (P(X )1ha) +
+ K(81og [o]*) (X))o (P(Y )ha) + ko (P(Vx Y )b) +
+ &2Po(p(Y)p(X )¢h)
and hence
K(X,Y)(3ov) = &2 ((p(Y)P(X) — p(X)p(Y)y) +
+ (X ((81og [th*)(Y)) — Y ((B1og [3h]*) (X)) —
—(9log [¢hol*))(IX, Y]))dhoths =
= K& %o(((Y)p(X)—p(X)p(Y))¢h1)+(0D log [3ho|*)(X, ¥ )ehotr.

Since the curvature form of Sy is equal to ;g it holds by (4.2)
8 log || = —-%g — 4K, (4.14)

Moreover, using the formula (1.3) we obtain
Do((P(Y)p(X) = p(X)p(Y))1) = 260X, Y)hosh1+
+29(Y7 ¢0¢1)ﬁ(X) - QQ(X: ¢’0¢1)]7(Y)

Inserting this and (4.14) in the result of the calculation above
we find

K(X,Y)(%oth1) = =262 (X, Y )shothr+
+g(X, Ip(ﬂ/)l)]_)_(Y) - Q(Ya 1/)01/)1)17(X))~ (415)
By similar calculations one obtains
K (X,Y)(ojtbr) = — 262X, Y )pujtpa+
+9(X, g n)B(Y) — gV, dojt)p(X)).  (4.16)

From (4.9) and (4.10) we see that the equations (4.15) and
(4.16) are equivalent to the equations (4.13), q.c.d.
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Lemma 16.2: There are the relations '
g(p(X)ap(XQ)) - Oa 9(7)(X1)a17(X3)) - 07 g(p(X2)>p(X3)) =0
and it holds |X1l2 = 4!1/)0|2|1/)1l2, IX2|2 = 4|'l/)0'2|¢2|2.

Proof: By (4.4) and (4.11) we have
= o) = (———=n(X — T y -
0 (1/)1,]1/)2) ( 2!,(/)0|2p( 1)1/)0) 2]¢0|2I)(X2)¢0)

(P(X2)p(X1)1po, 1) S9(p(X1), p(X2))

. _ b

4|eol" 2|aho
and, hence, g(p(X;),p(X2)) = 0. Morcover, using (4.5) and
(4.12) it holds

g(p(X1),5(X3)) = g(p(X1), ¥1th2) = —i(p(X:1)yh1, 9he) =0,
9(p(X2),5(X3)) = 9(p(X2), v1vh2) = —i{p(X2)91, ¢a) =
= (11, P(Xa)th2) = 0.

Finally, we obtain by (4.9), (4.10) and (4.11)

| X1]* = 2[p(X))[* = 29(p(X1), B(X1)) = 29(p(X1), Yhoth1) =
= —2i(p(X 1), ¥1) = —2i(2i[oo|*P1, P1) = 4[vpol*|vn[?,
| Xal* = 29(p(Xa2), Yojtha) = —2i(p(Xa)tho, J1b2) =
= —2i(2i[po|*j1a, jiba) = 4lbol*|¢al’,  qee.d.
Theorem 16: Let M° be a connected spin Kahler manifold ad-
mitting an imaginary Kahlerian Killing spinor to the Killing
number k. Then M8 is of constant holomorphic sectional cur-
vature 4x2.

Proof: By (4.8), Lemma 16.1 and Lemuna 16.2 we sec that
K|y = &*T|y since (p(X1),p(X2),p(X3)) is a complex orthog-
onal frame on U C Uy. This implies the identity K = 2T
on Uy. By (4.3) 1, is antiholomorphic and 1, is holomorphic.
Hence, p(X3) = ¢yip; is holomorphic and Uy, = supp(yaip;)
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is an open dense set in M®. Thus, we can conclude that the
equation
K =k*T (4.17)

1s satisfied globally, q.c.d.

By Theorem 15, Theorem 16 and the Theorems 7.8, 7.9 in
[21], Chapter IX we immediately obtain

Theorem 17: The only connected and simple connected com-
plete spin Kdhler manifold M admitting an imaginary Kahlerian
Killing spinor is the complex hyperbolic space @ H?.
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