
Killing spinors on Kahler manifolds 

~K. D. Kirchberg 

~ SFB 288 Preprint No. 18 

!ti\'tlLAlt 
; 1992. 

i{":.F W""1 
,-/:.:...:... ~ .... 

Diese Arbeit ist mit Untersttitzung des von der Deutschen Forschungsgemeinschaft ge­
tragenen Sonderforschungsbereiches 288 entstanden und als Manuskript vervielfatigt 

worden. 

Berlin, Juni 1992 

........_---=--:::;:-----~,..." "\.',c; CJ 

ROUTE TO,~_-. 
NAf>.~E LOCATION ~.__ 

L---......---I"--' 

.....L$AI!I: 

I-------I-.<~ 

,,,.,--~'. 

1--------""1~..­
.... , .......HI ,.",·~-..t~.~.~---I 

i"t'i\jk\\~ ',0 t{J\;'r1; i,.;;, AI\Y 



Killing spinors on Kahler manifolds 

I(.-D. I(irchberg, Berlin 

Abstract 

In the paper Kahlerian Killing spinors are defined and their basis properties 
are investigated. Each IGihler ma.nifold that admits a Kahlerian Killing spinor is 
Einstein of odd complex dimension. Kahlerian Killing spinors are a special kind 
of Kahlerian twistor spinors. Real Kahlerian Killing spinors appear for example, 
on closed Kahler manifolds with the smallest possible first eigenvalue of the Dirac 
operator. For the complex projective spaces <c p21-1 and the complex hyperbolic 
spaces <c11 21- 1 with 1 > 1 the diInension of the space of Kahlerian Killing spinors 
is equal to (~I). It is shown tha.t in complex dimension 3 the complex hyperbolic 
spaces <c113 is the ouly simple connected complete spin Kahler manifold adlnitting 
an imaginary Kahlerian Killing spinor. 

Introduction 

If (MU, g, S) is a TI,icrnannian spin rnanifold wi th nlctric g and 
spinor bundle S, then a section 0 =1= 'lj; E r(S) is called a I(illing 
spinor to the I(illing nurnber ~ E (C (~ =1= 0) iff 'lj; satisfies the 
differential equation 

(1.1) 

for all vector fields X. I(illing spinors appear in Mathemati­
cal Physics as well in purely mathematical context. There are 
rnany interesting results concerning the geometrical structure 
and the classification of R.iemannian spin manifolds admitting 
Killing spinors (see references). For instance, such a rnanifold 
must be Einstein with scalar curvature R = 4n(n-1)K2. More­
over, it is known that, on a Kahler manifold, the equation (1.1) 
has only the trivial solution for n > 2. Consequently, for a 
spin I(ahler manifold, equation (1.1) nlust be modified. This 
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can be done in the following way: Let (M2m, J, g, S) be a spin 
I(ahler manifold of complex dimension m with complex struc­
ture J, Kahler metric 9 and spinor bundle S. Then S possesses 
a canonical decomposition S = SOEBSI EB· .. EBSm into holomor­
phic subbundles Sr with ranl~Sr = C;). We consider sections 
<P = '¢r-l + '¢r E r(Sr-t E9 Sr) (1 < r < 'In) such that for each 
vector field X the differential equations 

\7X'¢r-l + ~(X + iJX)'¢r = 0 
(1.2)

\7X'¢r + ~(X - iJX)'¢r-l = 0 

are satisfied, where K, =/:. 0 is a given complex nunlber. The 
first result is that the existence of a non-trivial solution of 
the equations (1.2) implies that M2m is an Einstein space with 
scalar curvature R = 4m(m + 1)K,2, where m is odd and r = 
(m + 1)/2 (TheorcIll 3). 
If M2m is a spin I(ahler-Einstein manifold of cOlnplex dimension 
m = 21 - 1 and scalar curvature R =/:. 0, then IC+(M2m) and 
IC_(M2m) denote the spaces of solutions of the equations (1.2) 
for r = 1to the I(illing numbers K,+ = JR/4rn(m + 1) and K,_ = 
-K,+, respcctively. The non-trivial clelllcnts of these spaces arc 
called I(ahlerian I{illing spinors. The I{illing nurnbers K,+ and 
K,_ can be real (R > 0) or purely imaginary (R < 0). According 
to this a corresponding Kahlerian Killing spinor is called real 
or imaginary, respectively. We prove 

dimCL'K+(M2m) = dimCL'K_(M2m) < 2· (7) (1.3) 

where 1= (m + 1)/2 (Theorem 4). In general we have the in­
clusions K+(1V[2m) C E>"+(D) and K_(1V[2m) E>"-(D), where 
E>"+(D) and E>"-(D) denote the eigenspaces of the Dirac oper­
ator D to the eigenvalues A± = (m + 1)K,±. Moreover, if M 2m 

is closed, then K,+, K,-: E 1R and K±(M2m) = EA±(D) (Theorem 
5). Hence, I{ahlerian I{illing spinors are related to the limiting 
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case of the inequali ty 

I ~ m+ IR.AI > 0 (1.4)
-2 m 

for the first eigenva.luc .Al of the Dirac opcrator which holds in 
case of M 2m being closed and Ro :== lllin(R) > o. We recall 
that M2m must be an Einstein space of odd complex dimen­
sion if (1.4) is an equality (see [18]). Thus, Kahlerian Killing 
spinors are itnportant for the investigation of the limiting case 
of the inequality (1.4) and the associated classification prob­
lem, which has only been solved for the trivial case m 1 
and for 1n == 3 up to now (see [19]). Further, the first com­
ponent 'l/JI-l of each I(ahlerian I(illing spinor 'l/J == 'l/JI-l + 'l/JI 
(rn == 21 1) is a I(ahlerian twistor spinor of type (1, 1 - 1). 
Hence, I(ahlerian I(illing spinors yield examples of Kahlerian 
twistor spinors of special kind. Moreover, for 1n == 21-1 > 1, it 
holds Pl_IIC+(M2m) == PI_IIC_(M2m) == kerV{/,/-l), where PI-I 
denotes the projection onto the subbundle 81-1 and ker V{l,I-I) 
is the space of I(ahlerian twistor spinors of type (1, 1 - 1) (The­
orem 6). The n~otive for the denornination "Killing spinor" is 
the fact that the I(ahlerian Killing spinors are closely related 
to I(illing fields (Theorem 9). 
In Section 2 we further investigate the structure of the space 
IC+(M2m) being isorIlorphic to IC_(M2m) and we construct 
I(ahlerian I(illing spinors with special properties in case 
IC+(M2r11) =f:. a (Theorenl 10, 11). By Theorem 12 we deter­
mine the action of the curvature tensor on the I{illing field 
associated to a I{iihlerian Killing spinor.The results mentioned 
last are used in Section 4, where we treat the problem of classi­
fication of all spin I(ahlcr rnanifolds M6 adlnitting a I(iihlcrian 
I(illing spinor. If M6 is closed, the solution of this problem 
is already known. The only closed spin I{ahler manifolds M6 
possessing I(ahlerian I(illing spinors are the conlplex projective 
space (Cp3 and the flag rnanifold F(l, 2). Since, in the closed 
case, each I(ahlerian I(Hling spinor is real, (Cp3 and F(l, 2) are 
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examples of lllanifolds with real I(ahlerian I(illing spinors. We 
prove that each simple connected complete spin I(ahler mani­
fold M6 with imaginary Kahlerian Killing spinor is analytically 
isometric to the complex hyperbolic space (C H3 (Theorem 17). 
This is one of the main results of the paper. In Section 3, for 
m = 21 - 1 > 1, we compute a basis of the space ker V(l,l-l) 

in case of the Fubini metric on (Cm and in case of (C Hm, re­
spectively (Theorem 13). For these two examples the limiting 
case of the inequality (1.3) is realized and also in case of (Cpm 

(Theorern 15). Thus, we obtain that (1.3) is a sharp estima­
tion. In Section 1 we define the basic notions appearing in 
this paper. We describe the structurc of the spinor bundle of a 
spin Kahler manifold and we mention the needed facts of the 
theory of I(ahlerian twistor spinors. In more detail, one can 
find all this in [20] and [22]. Mor(~over, in Seetioll 1 we prove a 
result on the description of I(ahlerian twistor spinors in terms 
of complex forms (Theorem 1) and we give an estimation of 
the dimension of the space of Kahlerian twistor spinors of type 
(r, r 1) in case r f=. 1, (m + 2)/2 (Theorcln 2). These results 
are used in Section 3. 

Some basic notions and facts 

Let (M2m, J, g, S) be a spin I(ahler lnanifold of complex dimen­
sion rn with complex structure J, I(iihlcr rnetric 9 and spinor 
bundle S. We always suppose that M2m is connected. The 
spin structure of M 2 m is defined by a holomorphic line bun­
dle L being a square root of the canonical bundle Am,O. There 
exists a canonical splitting 

(1.1) 


into holomorphic subbundles Sr N AO,r ® L (r = 0",·, m). 
Let t : S -+ S be the bundle map t ::::: E~=o irpr, where Pr : S -+ 

S is the corresponding projection with PrS = Sr. Then we have 
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1.,2 = L~~o(-l)rPr. There is a canonical anto-unitary bundle 
map j : S --+ S having the property j2 == (-1 )m(m+l)/2. Hence, 
for m = 4k and m == 4k + 3 (m == 4k + 1 and m = 4k + 2), 
j is a real (quaternionic) structure of the spinor bundle. It 
holds jSr == Sm-r, i.e., j dcterrnines an anti-unitary isomor­

ophism of the bundles Sr and Sm-r Since jPr == Pm-rj, we 
obtain the relations j/" == im/"j and j/.,2 == (_I)mI.,2j. j com­
mutes with the Cliffors multiplication by real vectors. Thus, 
if Z is a complex vector field on M2m and 1jJ E reS), then 
we have jZ1jJ == Zj'lj;. Using the denotations p(X) == ~(X ­
iJX), p(X) == !(X + iJX) from the real Clifford relation 
XY + YX == -2g(X, Y) one derives the comples Clifford re­
lations p(X)p(Y) + p(Y)p(X) == 0, p(X)p(Y) + p(Y)p(X) = 0 
and p(.IY)p(y) + p(Y)p(X) == -2g(p(X),p(Y)) == -g(X, Y) ­
iO(X, Y), where {1 is the I(ahler forIll defined by {1(X, Y) = 

g(X, JY). Using the convention Sr = 0 if r ¢ {a, 1"", m}, 
for any r E LZ, each X E T(M2m) and each 1jJ E r(Sr), it 
holds that p(X)'lj; E r(Sr+l) and p(X)'lj; E f(Sr-I). More­
over, we have the relations /.,X == J(X)/", X I., == -I.,J(X) and 
.IY /.,2 == _/.,2)( for each vector field X. For cP, 'lj; E reS) let cp'lj; 
be the complex vector field defined by g(X, ep'lj;) == -i(Xep, 'lj;}, 
where (-,.) denotes the usual Hermitian scalar product on S. 
Then we obtain the fOflnulas 

'lj;cp == cpVJ (/,cp)(/"'lj;) == J(CPVJ) (jep)(j1/)) == -VJcp (1.2) 

cp(Z'lj;) == (Zcp)'lj; - 2i(ep,'lj;}Z (1.3) 

where Z is any cOlnplex vector field. Moreover, if ep E r(Sr-I) 
and'lj; E r(Sr), then J(ep'lj;) == -iep'lj; and J('lj;ep) == i'lj;ep. Let \7 
be the covariant derivative defined by the nlctric 9 and let V 
also denote the corresponding covariant derivative on S. Then 
it holds 

\7z(cP'lj;) == (Vzcp)¢ + cp(Vz¢)· (1.4) 

Let X (~) be any vector field (covector field or I-form) then 
we denote the corresponding I-forIll (vector field) by g(X) 
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(g-l(€)). The Clifford product €V) E reS) of a spinor field 
1/; E reS) by any I-form € is defined by €1/; == g-l(€)1/;. More­
over, for any r-form wand 1/; E reS), the Clifford product 
w1/; E reS) is defined as follows: Let (X}, ... ,X2m ) be a local 
orthonorrnal frarne of vector fields and let (~J, ... ,~2m) denote 
the corresponding coframe. Then we have the local representa­
tion w == 2: wOl'''OrC;Ol A ... A €Or and we define locally 

lSOl<"'<OrSm 

where X 01 ••• X Or ·1/; denotes an iterated Clifford product. Clear­
ly, this definition does not depend on the choice of the orthonor­
mal frame. Hence, we obtain a globally defined spinor field w1/;. 
In this sense any r-form w can be considered as an endornor­
phism of S or reS). For exanlple, if we consider the Kahler 
form n as an endomorphism of S, then we find 

m 

n== '2:i(rr,-2r)Pr' (1.5) 
r=O 

If c; is any 1-form and w any r-form (real or cOIIlplex), then we 
have the relation (in the sense of endorIlorphislllS) 

c;w == C; A w - C; ~ w w€ = wAC; + ( -1)r € -1 W. (1.6) 

Moreover, for any complex r-form wand any <p, 1/; E reS), the 
relation 

(w<p,1/;) = ( 1)r(r+l)/2(<p, w1/;) (1.7) 

is valid. Further, we have the formula 

\1x (w1j;) == (\1X W )1j; +w(\1x1j;). (1.8) 

If 1/; E r(Sr) and w E r(A'CJ,O), then w'¢ E r(Sr-.t;) and w'¢ E 
r(Sr+s). Let 1/;0 E r(So) and w,a E r(Ar,O), then 

(1.9) 


where here (.,.) is the usual Herluitian scalar product on Ar,O. 

For each 1/; E r(Sr) this yields the following: Let P E M2m be 
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any point and let U be a sufficiently sIIlall neighbourhood of P 
such that there exists a section 11')0 of Solu which does not vanish 
at any point of U. Then there is an r-form W E f(Ar,Olu) that 
is uniquely deterIuined by v'; = wv';o. We say that w is a local 
reprcsentat,ion of 1/) with respect to t/Jo. According to this a 
local representation of t/J E f(S) with respect to v';o E f(Solu) 
is a set of cOInplex forms wo, WI, . .. , Wm with Wr E f(Ar,Olu) 
such that Pr t/J = wr'l/;o. Such a local representation is said to be 
holomorphic iff the corresponding section v';o is holomorphic. 
Let (Xl, ... , X 2m ) be any local fraIlle of vector fields. We use 
the denotations gkl = g(Xk' Xl), (gkl) = (9kl)-1 and Xk = gklXl 
(Einstein's convention of sUlnmation). Let D, D : f(S) -? f(S) 
be the differential operators of first order locally defined by 
Dv'; = X k . "Xi t/J and Dv'; = J(Xk) . "Xiv';. Then D is the 
Dirac operator and iJ is called the I(ahlcr twist of D. D and 
D satisfy the relations 

- - - 2 2DD + DD = 0 D = D . (1.10) 

For the operators D+ and D_ defined by D± = !(D=FiD) this 
implies the idcnti tics 

D! = 0 D~ = 0 D+D_ + D_D+ = D2. (1.11) 

Moreover, if v'; E f(Sr), then D±v'; E f(Sr±l). For any r-fornl 
wand any spinor field v'; , the formula 

D(wv';) = ((d+ d*)w)'l/; + (_l)rwDt/J - 2(Xk -1 w)"Xi v'; (1.12) 

is valid. 
Let 1J~)1/; := \7x1/;+ 41r(X.D1/;+J(X).b1/;),where r E {I, ... , m}. 
Then the operator 1J(r) : f(S) -? f(TM2m ® S) locally given 

bYll v(r)V) = Xk ® V~~1/) is the I(~ihlerian twistor operator of 
type r. The elements of the space kerV(r) are called (I(ahlerian) 
twistor spinors of type r. By definition, we have 'ljJ E ker vCr) 
if 'l/; satisfies the differential equation of first order 

1 ­
"xv'; + 4r (X Dv'; + J(X)Dv';) = 0 (1.13) 
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for each vector field X. The operators V('-) are cOlnpatible 
with the decomposition (1.1), Le., it holds that (1 ®Ps) oVer) = 
v(r)ops for r = 1, ... , m and s = 0, ... , m. Let vCr,s) := v(r)ops, 
then vCr) = EB~o vCr,s) and, hence, ker vCr) = EB~o ker v(r,s). 
The elements of the space kcrV(r,s) = kcrV(r) n r(Ss) are 
called twistor spinors of type (r, s). It holds that j kerV(r,s) = 
ker v(r,m-s). Moreover, if M 2m is not Ricci-flat, then ker vCr) = 
ker v(r,r-l) + j ker v(r,r-l). Thus, in case Ric t= 0 (Ric denotes 
the Ricci tensor), it suffices to consider the space kerV(r,r-l). 
'l/J E ker vCr) implies 

D2'l/J = r R 'l/J (1.14)
4r - 2 

~1t/J12 = R 1t/J12 - ~IDt/J12. (1.15)
4r - 2 r 

For r =1= (rn +2)/2, we have 'l/J E kerV(r,r-l) iff'l/J E r(Sr-l) and 
'l/J satisfies the equation 

1 
\7x'l/J + 2rP(X)D'l/J = 0 (1.16) 

for each vector field X. This equation implies 

R 
p(Ric(X) - 2X)'l/J. 0 (1.17)

4r ­

and, moreover, in case r > 1, 

V'xDt/J + ~p(Ric(X»t/J = O. (1.18) 

From (1.16) and (1.18), respectively, it follows 

V'p(X)¢ = 0 V p(x)DVJ = 0, (1.19) 

i.e., 'ljJ is antiholorIlorphic and D1/) is holoIIlorphic. The first of 
the equations (1.19) implies 

(1.20) 
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Lemma 1.1: Let U C M 2m be an open set and let t/Jo E r(Solu) 
be a holomorphic section that does not vanish at any point of 
U. Then, for any w E r(Ar,Olu), it holds that D+(wt/Jo) = 
(8w)t/Jo and D_(wt/Jo) = (8*w - 2p(Xo) ..J w)t/Jo, where Xo := 
gradIog It/JoI 2 • 

Proof: Since t/Jo is holomorphic, the equation 

D'ljJo = XkVxJ:t/Jo = 9(Xk,p(XO))Xkt/Jo = p(Xo)t/Jo = o. 
Thus, t/Jo has the property 

Dt/Jo = o. 
Moreover, since W E r(AO,rlu), we find 

8*w = 0 (8w)t/Jo = o. 
By (1.12), (*), (2*) and (3*) it holds 

D(w1/;o) = «(8 +[) +8* + [)*)w)1/;o + (_l)rwD1/;o ­
2(Xk --I w)\1XI: 1/;0 = 

(8w)1/;0 + (8*w )1/;0 - 2((g(Xk' p(Xo) )Xk) ..J w)1/;o = 
(Dwt/Jo + (D*w )'l/Jo - 2(]1(Xo) ..J w)tPo. 

Since D = D+ + D_, (8w)t/Jo E r(Sr+llu) and (8*w)t/Jo ­
2(p(Xo) ..J w)1/;o E r(Sr-du), this yields D+(wt/Jo) = (8w)1/;0 
and D_(w1/;o) = (8*w 2p(Xo)..J w)1/;o, q.e.d. 

Theorem 1: Let 1/; E r(Sr-l) and r f:. (m + 2)/2, then 1/; E 
ker v(r,r-l) iff each local holomorphic representation (w, "po) of 
t/J satisfies the differential equations 
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for each vector field X . 

Proof: Let "p E kerV(r,r-l) and let (w, "po) be any local holo­
morphic representation of¢. Then we have ¢ = w¢o. Since ¢o 
is holomorphic, it holds 

. \lx"p = (\lxw)¢o +w\lx¢o = (\lxw + g(X,p(Xo))w)¢o, 

where Xo = grad log l¢oI2. Using Lemma 1.1 and the equations 
(1.6) it follows 

p(X)D+"p = p(X)D+(w"po) = p(X)(8w)"po = -2(p(X) ..J 8w)"po. 

Inserting these results into equation (1.16) we obtain 

1 ­
(\l XW + g(X,p(Xo))w - -p(X) -1 8w)¢o = 0 

r 

and hence the equation 

1
\lXw + g(X,p(Xo))w = -p(X) -18w, (1.22)

r 

which is equivalent to the equations (1.21). Conversely, it is 
not hard to see that the equations (1.21) irnply the twistor 
equation (1.16), q.e.d. 

Theorem 2: Let r =1= 1, (m + 2)/2. Then we have the estima­
tion 

UilIlCC kcrV (r,r-l ) < 
( 

Tn r+ 1) . (1.23) 

Proof: We consider on Sr-l EB Sr the covariant derivative \l(r) 
defined by 

V~\tPr-l+tPr) = Vx (tPr-l +tPr) + 2~p(X)tPr+~]J(RiC(X))tPr-1. 
We see that ¢r-l + "pr E r(Sr-l EB Sr) is parallel with respect 
to \l(r) iff the differential equations 

(1.24) 
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V'x'l/;r + ~p(Ric(X) )'I/;r-l = 0 (1.25) 

are satisfied for each vector field X. Equation (1.24) implies 
the equation 

'l/Jr = D'ljJr-l. (1.26) 

Thus, by (1.24) and (1.26), 'l/Jr-l satisfies (1.16), i.e., we have 
'l/Jr-l E ker V(r,r-l) . Conversely, we conclude from (1.16) and 
(1.18) that 'l/J E kerV(r,r-l) implies 'l/J + D'l/J E kerV(r). Hence, 
we obtain an isornorphism of complex vector spaces 

ker v(r,r-l) rv ker vCr) (1.27) 

defined by 'l/J 1-+ 'l/J + D'l/J. Each cp E ker vCr) is generated by 
parallel displacements of a spinor CPPo E (Sr-l EBSr)Po from any 
fixed point Po E M2m into all the other points. Thus, we have 

dim(C kerV(r,r-l) = dim(C ker vCr) < dim(C(Sr-l EB Sr )Po = 

= C. m1) + (r;t) = (m ~ 1) 
anu hellce (1.23), (l.e.d. 

2 General properties of Kiihlerian Killing 
•splnors 

Let 'l/J 'l/Jr-l + 'l/Jr E r(Sr-l ED Sr) (1 < r < m) be a section 
sHch t.1Hl.t, ror {~a('h v(~ct.()r ri(~ld ~\, t1~e eq1JatioJlH 

VX'l/Jr-l + K,fi(X)'l/Jr = 0 Vx'l/Jr + K,p(X)'l/Jr-l = 0 (2.1) 

are satisfied, where K, =1= 0 is a given cornplex number. 

Theorem 3: Let M 2
fn be a spin Kahler manifold such that the 

equations (2.1) have a non-trivial solution. Then M 2m is an 
Einstein space of odd complex dimension with scalar curvature 
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R == 4rn(1n + 1)~2 and l' == (rn +1)/2 holdB. 

Proof: Suppose that 'l/J == t/J~-l +1/Jr is a non-trivial solution of 
(2.1). By direct calculations the equations (2.1) imply 

C(X, Y)'l/Jr-l == ~2(p(Y)p(X) - p(X)p(Y»'l/Jr-l (2.2) 
C(X, Y)VJr == ~2(p(Y)p(X) - p(X)p(Y) )'l/Jr , (2.3) 

where C denotes the curvature tensor of the spinor bundle. 
Using the well-known relations 

(2.4) 

Xkp(Xk) == -m - in Xkp(Xk) ~ -m + in (2.5) 

and (1.5) we have by (2.2) 

1 . k ... ,
-2Ric (X)'l/Jr-l == X C(X, Xk)'l/Jr-l == 

~2(Xkp(Xk)P(X) - Xkp(X)p(Xk»'l/Jr_l == 
- ~2(Xkp(Xk)p(X) - Xk( -p(Xk)p(X) -

2g(~Yk' p(X») )'¢r-l == 
~2((-m - iO)p(X) + ( -m + iO)p(X) + 2p(X) )'l/Jr-l == 
~2(-mp(X) + (m - 2r)p(X) - rnp(X)­

(m - 2(r - 2»p(X) +2jj(X»'l/Jr-l == 
_2~2(1~p(~Y) + (rn - 1~ + l)p(X»1j)r-l. 

Hence, we obtain 

and, by a similar calculation~ 

Using the general identity 

XkRic (Xk) == -R, (2.6) 
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from (*) and (2*) one derives the relations 


(R - 8K2(m - r + 1)(2r - l))tPr-l = 0 


(R - 8K2r(2rn - 2r + l))tPr = o. 

Now, it cannot be that tPr-l or 'ljJr vanishes identically. For 
exarnple, suppose that 'ljJr-l =o. Then it follows from (2.1) 
that tPr is a non-vanishing parallel spinor. This implies Ric =0 
and hence R _ o. Because of (4*) we obtain a contradiction. 
The supposition tPr =0 contradicts (3*). Thus, the relations 
(3*) and (4*) yield the equations R = 8K2(m - r + 1)(2r - l) 
auel Ii == 8,,:2'1"(21/1. 21· -I- 1), which irnply iIfIJJJ('<1ja.t.(~1'y 7' = 
(lIt + 1)/2 aud 1(, == thn(lIt + 1)1'.:2. lly this, fOf111iug the SIUll of 

the equations (*) and (2*) we obtain 

(R,ic(-"Y) - 2(rn + l),,?X)'ljJ == 0 

and hence 

Ric(X) = 2(rn+ 1)1\':2X = R X,
2rn 

since tP = 'ljJr-l + tPr 1= o. Thus, we see that M 2 
m is Einstein, 

<I.e.d. 

In the following we use the denotations and definitions men­
tioned in the introduction, for example, the denotations 
JC±(M'2m) and the definition of a I{ahlerian I{illing spinor (real, 
irnaginary) . 

Theorem 4: Let M2m be a spin Kahler manifold admitting 
a Kiihlerian Killing spinor tP. Then'l/J does not vanish at any 
point. If tP is real, then the function ItPI2 is constant. Moreover, 
it holds 

t2K±(M2m) = K=r=(M2m) (2.7) 

and we have the estimation 

dimo:K±(M2m) < 2(7), (2.8) 
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where Tn = 21 - 1. 

Proof: Applying the rnap t 2 to the equations (2.1) we obtain 
(2.7). Now, let us consider the covariant derivatives V+ and 
V- on the bundle 8,-1 EB 8, (rn = 21 - 1), defined hy 

vjcp = V xcp + K±(p(X)PI-l + p(X)PI)cp. 

I t is easy to see that 

(2.9) 


Hence, each Kahlerian Killing spinor "p is generated by parallel 
displacements of a spinor "pPo E (81-1 EB 81) Po with respect to V+ 
or V-, where Po E M2m is any point. Thus, we have "pP f=. 0 
for each P E M2m iff "pPo f=. o. It follows further 

dimo; K±(M2m) < dimo;(SI-l E9 SI)Po = 2 (7) · 
Finally, we remark that for R > 0 the covariant derivatives V+ 
and V- are metric since the corresponding I(illing numbers K+ 
and K_ are real. 1'his itnplics that, for a real I(iihlcrian I(illing 
spinor "p, the function l"p 12 is constant, q.e.d. 

Theorem 5: Let M2m be a closed spin Kahler manifold admit­
ting a K iihlerian Killing spinor. Then each K ahlerian Killing 
lJpinor ilJ real and 

JC±(M2m) = EA±(D). (2.10) 

Proof: Let "p = "pl-l +"pl E JC+(M2m) (m = 21 1). Then, by 
definition, the equations 

VX"pl-l + K+p(X)"pl = 0 VX"pl + ",+p(X)"pl-l = 0 (2.11) 

are satisfied. Using the first equation, by (1.5) and (2.5) we 
have D"pl-l = XkV XI: "pl-l = -K+Xkp(Xk)"p1 = -K+(-m ­

iO)¢1 -K+(-rn + (111, - 21»1/J1 = 2IK+1/J1 = (rn + l)K+1/J1 = 
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A+tPl. By a quite sirnilar calculation we obtain DtPl = A+tPI-l­
Thus, the equations (2.11) imply 

DtPI-l = A+tPl DtPl = A+tPl-l. (2.12) 

This yields Dtj) = A+tP and hence JC+(M2m) C E).+(D). By 
Theorelll 3, M 2m is an Einstein space of scalar curvature R = 
~:'1 A!. Hence, we have 

(2.13) 


Now, let M2m be closed. Since, in the closed case, the Dirac 
operator D has only real eigenvalues, A+ is real and hence 
R > O. Thus, by (2.13) we see that here the limiting case of the 
inequality (1.4) is realized and that A+ is the first eigenvalue 
of D. If follows frorn Section 3 in [18] that each eigenspinor 
'lfJ E E).+ (D) is a section of the bundle 8,-1 EB 8, such that the 
components <Pl-l and <PI of <P satisfy the equations 

A+ A+
VX<PI-l + 1p(X)<pI = 0 VX<PI + 1p(X)<PI-l = O. 

rn+ m+ 
Because of A+ = (m+ I)K+ this implies <P E JC+(M2m). Hence, 
we have JC+(M2rn) = E).+(D). By (2.7) and the general relation 

£2 E).(D) = E-).(D) (2.14) 

this equation is equivalent to JC_(M2m) = E).-(D), q.e.d. 

Theorem 6: Let M2m be a spin Kiihler-Einstein manifold of 
complex dimension m = 21-1 > 1 and scalar curvature R i- O. 
Then there are isomorphisms 

K±(M2m) rv kcrV(/,/-l}. (2.15) 

Proof: Let 1fJ = 1fJ,-l + tPl E K+(M2m). Then, by (2.12), the 
first of the equations (2.11) can be written 

1 
Vx'lfJ,-l + 2Z P(X)D'lfJI-l = O. 
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Hence, by (1.16), it follows that 'l/Jl-l E kerV(l,I-l). Conversely, 
let cp E kerV(I,I-l). Since M 2m is Einstein, we obtain by (1.16), 
(1.18) and (1.20) that 

i{J + ,LD+i{J E K±(M2m). (2.16) 

This yields the isolIlorphislll (2.15), q.e.d. 

Theorem 7: Let 'l/J == 'l/JI-l + 'l/J, be a I(iihlerian Killing spinor 
to the I(illing n1Lrnber K. 

(i) If 'l/J is real, then 

gradl'l/J,/2 == -grad r'l/Jl-d2 == KJ( 'l/J'l/J) (2.17) 

2 12 R I f2 I 2~I'l/J,I == -~I'l/J'-1 == -2-(1/)1 - 1/)I-d ). (2.18) 
rn 

(ii) If'l/J is imaginary, then 
2 . 2

gradl'l/Jd == gradl'l/JI-il == -iK'l/J'l/J (2.19) 

2 2 R 12 I 12 (2.20)~11/)11 == ~1'l/JI-ll == 2m (11/)1-1 + 1/JI ). 

Proof: Let 'l/J == 'l/JI-l + '¢I be a real I(ahlerian I{illing spinor to 
the I(illing number K. Then, by (2.1), it holds 

9(X, grad1'l/J" 2 ) == X ( I'¢112) == (\7X 1/)" 1/)1) + (1/)1, \7X 'l/JI) == 

(-Kp(X)'¢I-l,1/)I) + ('¢I, -Kp(X)'¢I-l) ­

-iK(g(X, '¢1-1'l/JI) - g(X, 1/;/1/)1-1)) == 

Kg(X, J('¢1-1'¢/) + J(1/)(l/;l-l)) == g(X, KJ(,¢,¢)). 


This yields gradl'l/J112 == K,J( 'l/J1jJ). By Thcorcrn 4, the function 
1'l/J12 == 1'l/J1-112 + l'l/Jrl2 is constant. Thus, it follows that grad 
l'l/Jl-d2 == -KJ('l/J'l/J). Moreover, using the general fornlula 

div(cp'l/J) == -i((D<p, 1/J) - (cp, D'l/J), (2.21) 
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by (2.12) and (2.17) we have 

~11/1112 = -div gradl1/1112 = -Kdiv(J(1/11/1)) = 

-Kdiv( J(1/111/11-1 + 1/1,-11/1,)) = -Kdiv( i1/1,1/1,-1 - i1/1,-11/1,) = 
- -K( (D1/1I' 1/1,-1) - (1/)1, Dt/)1-1) - (D1/1,-1, 1/11)+ (1/1,-1, D1/1,)) = 

R 
-K(2(rn+ 1)KI1/)1_1I2 - 2(rn+ 1)KI1/1112) = 2m (11/1112-11/1,_112). 

In the imaginary case one obtains the equations (2.19) and 
(2.20) by quite similar calculations, q.e.d. 

Corollary 7.1: Let 1/1 be any Kiihlerian Killing spinor. 

(i) If 1/) is real, then 

(2.22) 

(ii) If 1/1 is irnaginary, then 

~11/112 = R'1/112. 	 (2.23) 
m 

Corollary 7.2: If 1/1 is any imaginary Kiihlerian I(illing spinor, 
then the function (1/1, £21/1) is constant and the function 11/112 does 
not possess any local rnaximurn. 

Theorem 8: Let 1j; = 1/)1-1 +'1/)1 be any Kiihlerian Killing spinor 
to the I(illing nurnber K. Then we have the following: 

(i) 	It holds 
grad(1/1I,j1/1'-1) = KJ(1j;j1j;). (2.24) 

(ii) If 1 is even, then the f1Lnction (1/1" j1/)I-l) ill constant. 

(iii) If I is odd, then 

~(1/1I,j1/1I-1) = R (1/1I,j1/1,-1). (2.25)
m 
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Proof: Using the obvious relation 

(2.26) 

for 	any vector field X, we have 

9(X, grad(tPI, j tP1-1)) == X ( ( tPI, j tP1-1)) == 

(\7XtPI,jtPl-l) + (tPI,jV XtPl-l) == 

-K((P(X)tPl-l,jtPl-l) + (tPI,p(X)jtP/)) == 

-K(ig(X, VJI-ljtPl-l) - ig(X, tPljVJI)) == 

g(X, K( -itPI-ljtPl-l + itPljtPl)) == g(J\., KJ(VJjVJ)). 


This inlplies (2.24). Because of m == 21 - 1 it holds 

(2.27) 

Using this and (1.2) it follows that tPjtP == -(j2tP)jtP == 

(-1 )l+I VJ jVJ. Hence, the vector field tPjtP vanishes identically 

for even I. By (2.24) this implies (ii). 

Now, let I be odd. Using (2.12), (2.21) and (2.24) it holds 


6.(tPI,jtPI-l) == -div grad(tPI,V)I-l) == -KdivJ(1/Jj1/)) == 

Kcliv(itPI-ljtPl-l - itPljtPl) == 


K( (DtPI-l, jtPl-l) - (tPI-l, j DtPI-l) - (DtPI' jtP/) + (tPI, j DtP/)) == 


2K( (DtPI-l,jtPl-l)+(tPl,jDtP/)) == 

2K ( (m + 1)K ( tPI, j 1/J1-1) + (rn + 1)K ( 1/)1, j V)1-1 )) == 


4(m + 1)",2 ('Ij;l, j'lj;l-l) = R ('Ij;/, Nl-l). 
m 

This proves (iii), q.e.d. 

Theorem 9: Let tP == tPl-l + tPl be a I(iihlcrian I(illing spinor. 
Then the folIo/wing holds: 

(i) 	If tP is real, then tPtP is a Killing field iff the function 

(tP, t2tP) does not vanish identically. 


(ii) If tP is irnagina1'y, then J( tPtP) is a Killing field. 
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(iii) 	If 1 is odd, then rte('¢jt/)) (IIU('¢j'¢)) i.t; a 1(illing field iff 
the function Re('¢/,jt/)I-l) (Im('¢I,j'¢l-l)) does not vanish 
identically. 

Proof: Let '¢ = t/)I-l + '¢I be a real Kiihlerian I(illing spinor to 
the I(illing Ilurnber K. Then one proves by a straightforward 
calculation that 

g(\1 x('¢'¢), Y) = -iK(((p(X)p(Y) - p(Y)p(X))'¢I-l, '¢I-l) + 
+((p(X)p(Y) - p(Y)p(X))V)L, '¢/)) (2.28) 

for all vee tor fields X, Y. This shows that the tensor field 
\1 ( V),¢) is skew syrmnetric. Thus, '¢'¢ is a I(illing field iff it does 
not vanish identically. From (2.17) and (2.22) we see that this 
is the case iff the function (,¢, ,~2'¢) does not vanish identically. 
If V) = V)I-I + V)I is hnaginary, we find 

g(\1x( J( '¢'¢)) , Y) - K( ((p(X)p(Y) -p(Y)p(X) ),¢I-h ,¢I-l)­
-((p(X)p(Y) - p(Y)p(X)),¢I,'¢/)). (2.29) 

Hence, in the irnaginary case the tensor field \1 ( J ('¢'¢ )) is skew 
SYIIllI1ctric. FrOlH (2.19) and (2.23) we see that the vector field 
'¢'¢ can never vanish identically since R < 0 is constant and 
1'¢12 is a function that does not vanish at any point. Now, let 
1 be odd. Using (1.2) and (2.1) it holds 

\1x(1/)I-lj'¢I-J) = (\1XV)I-I )jV)I-l + '¢I-l (j\1X'¢I-l) = 

= -K(p(X)'¢I)j'¢l-l K'¢I-l (p(X)j'¢l) = -2K(p(X),¢I)j,¢l-l. 

The 	second of the equations 

\1x('¢1-lj'¢l-l) = -2K(p(X)'¢I)j'¢l_l 
(2.30)

\1x (1/)lj'¢l) = -2K(p(X)V)I-l)jV)1 

can be derived quite similarly. Using (2.26) and (2.30) we ob­
tain 

g(\1x ('¢j'¢) ,Y) = 2iK((p(Y)p(X) - p(X)p(Y))'¢I,j'¢l-l). 
(2.31 ) 
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This shows that \l(¢j¢) is sl~ew sYllllnetric. Thus, our asser­
tion (iii) is completely proved by (2.24) and (2.25), q.e.d. 

Theorem 10: Let M2m be a .fJpin Kahler manifold of complex 
dimension m == 21 - 1 admittin.q any Kahlerian Killing spinor. 
Then there is an anti-unitaryautomorphisrn C of the space 
/('+(M2m) EB /('_(M2m) such that 

C/(,±(M2m) == JC±(M2m). (2.32) 

M oreO'lJer, if the scalar curvatu,rc R is po.c;iti'lJC (negativc), thcn 
it holds 

(2.33) 


Proof: First of all, we rernarkthat for R > 0 (R < 0) we have 

j/('±(M2m) /('±(M2m) (jJC±(M2m) == /(,=f(M2m)). (2.34) 

Thus, for R > 0, we define C by C¢ == j¢. According to (2.7) 
and (2.35) we define C by C¢ == t 2j¢ if R < O. Because of 
(2.27) and 

t'2j == _jt2 (2.35) 

in this case we have C 2 == t2jt2j == _t2j2t2 == (_1)/+1, q.e.d. 

Corollary 10.1: Let M2m be any spin Kiihler manifold of 
complex dimension rn == 21 - 1 adrnitting a rea.! (im,aginary) 
Kahlerian Killing spinor. Ifl is odd (even), then dim(l' /('±(M'2m) 
is even and not less than 2. 

Proof: In the situation considered here we have C 2 == -1, i.e., 
according to (2.32) C determines a quatcrnionic structure of 
the spaces JC+(M2m) and JC_(M2m). Since JC±(M2m) i- 0, this 
implies dim(l' JC±(M2m) > 2, q.e.(L 

Corollary 10.2: Let M2m be a spin Kiihler manifold of com­
plex dirnension 1n . 21-1 o,drnitling a real (irnagin(L1'Y) K iihlerian 
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Killing spinor. If 1 is even (odd), then, for each ](illing nurn­
ber, there is a Kiihlerian ](illing spinor "p with ("p, ,}"p) == o. 

Proof: Here we have C 2 = 1, i.e., C determines a real struc­
ture on K+(Jy[2m) a.nd K_(M2m). lIenee, in each of these 
spaces there are I(ahlerian Killing spinors "p having the prop­
erty C'lj) = "p. In case R > 0, we have C"p = "p iff j"p = "p. 
Hence, it holds that ("p, "2,,p) = (jl/2"p,j"p) == _("2j"p,j,,p) = 
- ("2"p, 'lj)) = _ ('lj), I, 2t/.J). This irnplies ("p,,,2"p) = O. In case 
R < 0, we have C'lj) == 'lj) iff j'lj) == ,,2'lj) , where j2 = -1. Thus, 
it holds that ("p, ,,2'lj)) == ("p,j'lj)) = (j2"p,j'lj)) = -("p,j'lj)) and, 
hence, ('lj), /,2'lj)) = 0, q.c.d. 

Theorem 11: Let M 2 
m be a spin Kiihler manifold of com­

plex dirnension m 21 - 1 admitting an irnaginary K iihlerian 
Killing spinor. Then we have the following: 

(i) 	To each Killing number there is a Kiihlerian Killing spinor 
"p 'with ('lj),,,2"p) = O. 

(ii) If 1 i.e; e1Jen, 	 then, for each Killing nurnber, there i.e; a 
Kiihlerian ](illing SlJinor"p = "p,-l+"p, with (t/),-bj"p/) = O. 

Proof: By Corollary 10.2, it suffices to consider the case where 
1 is even. Let"p = "p,-l + "p, be any (imaginary) Kahlerian 
ICilling spinor. Fron1 Corollary 7.2 and TheoreIn 8 we know 
that the functions (L :== ("p,1,21/)) == 1'lj)112 - 1"p,-d2 and b := 

("p/- h j"p/) are constant. 
Moreover, it follows from Theorem 10 that, for all pairs. of 
complex numbers (z,w) f=. (0,0), the spinor field cp:= z"p+ 
wC"p = (Z"p,-l - l1Jj"pl) + (Z"p, + lVj"p,-l) is a I(iihlerian Killing 
spinor to the saIne I(illing nUInber. Using the notations CPI-l = 
Z"p,-l - wj'lj)I, 'PI = Z"p, + 1lJj"p,-l we find 

1'P112 - l'Pl-d2 	 a(lzl2 - ItlJI2) + 4Re(bztv) 
bz2 bw2

(CP1-l, jCP/) 	 - - azw. 
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Let us suppose b =1= O. In this case the equation bz2 - bw2 
­

azw == 0 possesses the special non-trivial solution (zo, wo) 
(a/2b + J(a/2b)2 + bib, 1). By (2*) this proves the assertion 
(ii). On the other hand, if 1/J == tPl-J + '1/)1 has the property 
{'lfJ,-t,j'l/)I} == 0, then it follows fro III (*) t.hat. <p:== '1/) + C'l/) hn..<; 
the property {<p, t 2<p} == 0, q.e.d. 

By Theorem 4 and Theorem 11, (i) we irnmediately obtain 

Corollary 11.1: Let M2m (rn == 21-1) be (L spin I(iihler rnan­
ifold admitting an irnaginary Kiihlerian Killing spinor. Then, 
for each Killing number, there is a K iihlerian Killing spinor 
"p == "pl-l +"pl whose componentt'J '¢1-1 and"pl do not vanish at 
any point. 

Let I( be the curvature tensor of M 2m defined by 

and let T denote the tensor field given by 

T(X, Y)Z == 20(X, Y)J(Z) + Z ..J (Y A X + J(Y) A J(X)), 

where 0 is the I(ahler form. 

Tlleorem 12: Let 1/) == 1/)/-1 + 1/)1 be a Kiihleria1l, I(illing .'Jpinor 
to the Killing number K,. 

(i) It holds 
I{(X, Y)( '¢'¢): ",2T(X, Y)( '¢"p) (2.36) 

(ii) If 1 is odd, then 

I((X, Y)( 'lfJ1-lj1jJl-l) 2",2((p(Y)p(X) ­ p( X)p(Y))'lfJ,-l )j'lfJ,-l 

I((X, Y)("plj"pl) 2K,2((p(Y)p(X) -p(X)p(Y))'I/),)j"p,. 
(2.37) 
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Proof: For exaulple, let 1/1 = 1/11-1 + 1/11 be real (R = K). Then 
we have 

\1y(1/)1-11/11) = (\1y1/11-1)¢1 + ¢1-1(\1y1/11) = 
= - "'((p(Y) 1/)1 )1/)1 + 1/)1-1 (p(Y)1/)1-1». 

U sing this we 0 htain the equation 

\1x \1Y ( ¢1-11/11) = - "'((p(\1X Y)¢r)¢1 + 1/11-1 (p(\1X Y)¢1-1» + 
+ ",2 ( (p(Y)p(X)'l/Jl-1)1/)1 + ¢1-1 (p(Y)p(X)'l/Jl) + 
+ (iJ(Y)1/Jl)(lJ(JY)'l/)I--1) + (p(JY)1/)I) (p(Y)¢I-l ». 

Hence, we find 

I«X, }/)(1/11-11/)1) - ",2«(p(Y)p(X) - p(X)p(Y»'l/JI-l)¢1 + 
(*) 

+ 1/Jl-1«P(Y)p(X) - p(X)p(Y»1/)r). 

We obtain the saIne equation if ¢ is hnaginary. 
Now, by (1.3) we have 

'l/JI-I(p(Y)p(X)'l/JI) = (p(Y)¢I-I)(p(X)'l/JI) ­
2i(1/)I-1 ,p(X)1/)I)lJ(Y) = 

- (p(X)p(Y)¢I-J )V)1 - 2i(P(Y)V)I-b ¢1)p(X) ­
2i(¢I-biJ(X)¢I)p(Y) = 

- (1J(X)pC1/)¢I-l )¢1 2g(X, tPl-1¢1)p(Y) 

and, hence, 

¢1-1«p(Y)p(X) - p(X)p(Y))tPl) = «p(X)p(Y) ­
p(Y)p(X) )1/Jl-1)¢1 - 2g(JY, ¢1-1¢/)p(Y) + 
2g(Y, tPl-1¢1)p(X). 

Inserting this into the equation (*) we obtain 

I((X, Y) (1/11-1, 1/11) =2",2 ( incX, Y)¢1-11/11 +g(X, ¢I-l¢I )p(Y) ­
-g(Y, 'l/Jl-1'l/Jl)lJ(X» = 

- ",2(2n(X, Y)J('l/Jl-ltPl) - g(X, 'l/Jl-l'l/JI)Y + g(Y, ¢I-l'l/JI)X ­
-g(JJ\., 1/JI-l'l/JI)JY + g(JY, 'l/Jl-11/1I)JJY). 
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3 

Because of fi(1/)'l/J) = 'l/Jl-l'l/Jl this iUlplics (2.36). 

Using the equations (2.30) one obtains the equations (2.37) by 

similar calculations, q.e.d. 


The Fubini metric and the complex hyper­
bolic space 

In this section we work with the complex manifolds (Cm and 
Dm = {(zi, ... ,zm) E (Cml2:::=11zO'I 2 < 1} sirIlultaneously, 
where 1ft = 2l - 1 is allY odd llatural lltllUhcr. Ou (Cfll(D7U) 
we consider the fUIlction f = 1+2:::=1 Izol2 (f 1- 2:~~1 IzO'I2) 
and, for any real number c > 0, the function F = c2 10g f 
(F = -c2 10gf). Using the denotations ZO' = 8~a, Zii = 
20' = 8~a (a = 1, ... , m) we obtain a Kahler llietric 9 = 
gO'pdzO' Q9 dzP + giipdzO' Q9 dzP on (Cm(Dm) whose corIlponents 
gap := g(ZO', Zp) giiP are defined by 

82F 
lJO'p= 8z0'8zP (a,{3= 1, ... ,rn). 

The explicit expressiolls are 

c2 zO' zP 

gap = Y(Oa{i - T) 


This yields 

g,,/J = 
c
L 

2 
(/ja{3 + z"z(3) 

This I(ahler metric on(Cm(Dm) is called the Fuhini metric (met­
ric of the complex huperbolic space (cHm). In general, the 
corresponding Christoffel syrubols r~p arc given by 

r 7 _ 7£8g£0'
O'p - g 8zP' 

Using this we obtain by direct calculations 

1 7 -P 7 -0' 7 ~.!.. 7 -P 7 -0'r:p = f (/j"z + /jpz) (r,,{3 - / DoZ + DpZ )). (3.3) 
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The canonical bundle AW'o of O}m is trivial. It is generated by 
the global holoIllorphic section Wm = dz 1 

" ••• " dzm
• Thus, 

by tPo := JWm we have a global holoIIlorphic section of So = 
JAm,O. Because of Iwml2 = det(gaP) and 11/)012 = Iwml from 
(3.2) we oht;a.ill 

2 I'ItPol = - (11t = 21 - 1). (3.4)em 

For 1 < oq < ... < (\'/-1 < rn let ~ll'1 ..•ll'1-1 be the (1 - I)-forms 
on 0}111 (nut) defined by 

1 
("'1"'''''-1 = f'dZ"'I" ... " dZ""-1 · 

Then, by (3.4), it follows irrullediately tha.t 

VZii (11/)0 12~(l'l ...ll'l_l) = 0 (3.5) 

for a = 1, ... ,Tn. Moreover, we have 

Lemma 13.1: For a = 1, ... , Tn, it hold.fJ 

't"7 cCt'l"'ll'I_l - !Z {)C('l'l ... ll'I-l 
V Ztr~ - 1 (} -l ~ . (3.6) 

Proof: For exaulple, let us consider the case of the FUbini 
metric. By (3.3) we have 

Using this it holds 
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m 
1+( E zPdzP) /\ (Zo: -1 (dzU1 

/\ ••• /\ dZa1
- ))) == 

P=l 
1 1 rn 

1-z ....J ( - -(" zPdzP) /\ dz a1 
/\ ••• /\ dZ a1

- ) == 1 0: }'I+l L....JP=l 
!z aCO'l ...O'I-l
1 0'-1 ~ . 


In case of (C Hm the calculation is quite analogous, q.e.d. 

Now, for 1 < fi1 < ... < fi, < rn, let us consider the (1 - 1)­
forms defined on (Cm(Dm) 

TJP1 "'P, = JI1 
(zp Zp) ...J (dz P1 /\ ••• /\ dzP,), 

where Einstein's cOllvention is used ill the ternl zljZfJ. Clearly, 
it holds 

Vza(I'l/JoI2r/11'''Pl) = 0 (a == 1, ... , m). (3.7) 

Lemma 13.2: Each of the forrns fJP1 ",P1 satisfies the equations 

(a == 1, ... , rn). (3.8) 

Proof: The definition implies the relation 

1 . ~ 
1/f11 ...{J1 == E (_I)k-l ZfJA:~f11 .. ·{Jk·"fJl. (3.9) 

k=1 

Using this, (3.6) and the identity 
, A AI 

(1-1) E (_I)k-lb~A:~{31"·PA: .. ·{31 ~ E (-I)kdzPA: /\ (Za -1 ~fJl"'PA:"'PI) 
k=1 k=l 

we obtain (3.8) by a direct calculation, q.e.d. 
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We define spinoI' fields on (C2/-] (D2/-1) by 

tpO'l"'O'I-t == ~O'l .. ·al-l • 1/Jo 1/JPl ···P, == r/P1 '"PI • 1/)0. (3.10) 

By Theorenl 1, (3.5), (3.6), (3.7) and (3.8) we sec that each of 
these spinor fields is a twist.or spinoI' of t'ype (l, I - 1). ()hvi­
ously, the set of all these I(ahlerian twistor spinors is linearly 
independent over(C. Hence, it generates a cOlup}ex vector space 
of dinlension 2· (2/,1) == (~/) == (m-;-l). By Theoreln 2, this yields 
imrnediately 

Theorem 13: Let rn == 21 - 1 > 1. Then the .r;et 

{ tpG:t· ..al-t , 1/JPl"'P/ll < 0:'1 < ... <0:'/-1 < rn, 1<fJl < ... < fJI < m} 
(3.11 ) 

forms a basis of the space ker V(/,I-1) on(Cm(Dm) fttrni.r;hed with 
the Fubini metric (complex hyperbolic rnetric). 

In particular, Theorem 13 shows that the estirnation (1.23) 
is sharp since (1.23) is an equality in the situation considered 
here. Now we consider the case of (C1Jm 

• 

Lemnla 14.1: Let 1n == 21-1 > 1. Then, in ca.'Ic of the Fubini 
metric, we have 

(3.12) 

(3.13) 

for 1 < 0:'1 > ... < (\'1-1 < rn and 1 < {J1 < ... < {JI < 1l1,. 

Proof: First we rClnark that the relation 

f 1-1 
IIdzO'l A ... A dz l't - 1 12 == (2" )/-1(1 + L Iz°l: 12) 

C k=l 

.,.. 
.. I 

http:twist.or


is valid. Moreovcr, for i f= k, onc proves the idcnti ty 

fl --fl- fl fI -flk (3(dz 1 /\ ••• /\ dz S /\ ••• /\ dz I, dz 1 /\ ••• /\ dz /\ ... /\ dz ') = 

= ( ~)/-1 ( -:-1) i+k+1 ZPi zllo . (2*) 
c 

Using the formulas (1.7), (1.9), (3.2), (3.4) and (*) we have 
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Theorem 14: Let m = 21 - 1 > 1. Then dirn(CkerV(I,I-l) = 
2C;) holds ono:pm. 

Proof: We show that each elernent of the basis (3.11) can 
be extended 011 o:ptn. It suffices to prove that the functions 
1<p0'1"'0'1-112 and 11/;}11···}111 2 are bounded on o:m. By Lerllma 14.1 
we have 

2/- 1 

I 0'1"'0'1-112 < -­ and<p - c2m- 1 

q.e.d. 

The Fubini metric (metric of O:Hm) given by (3.1) is a 
I(ahler metric of constant holorllorphic sectional curvature 2/c2 

(-2/c2 ). In particular it is Einstein with scalar curvature 

R = 2rn(rn + 1) (R= (3.14) 
c2 

Hence, by Theorem 6, Theorem 13, and Theorem 14 we imrne­
(liatelyobtain 

Theorem 15: Let rn = 2l - 1 > 1. Then 

dima'K±(<l'pm) = dima'K±(<l'Hm) = (3.15)2· (7). 
By Theorem 5, we conclude from (3.15) that for all 0:pm of 

odd complex dinlension m the limiting case of the inequality 
(1.4) is realized (For m = 1 the assertion is trivial.). This 
is already known frorB [6], where the spectrum of the Dirac 
operator on o:p2/-1 is COIllputed. Finally, we remark that by 
(2.16) one can derive the explicit expressions of the Kahlerian 
I(illing spinors corresponding to the twistor spinors given by 
(3.10). 



• • 
4 Imaginary Kahlerian Killing spinors in di~ 
menSIon SIX 

If M6 is a closed spin I(ahler rnanifold adrni t ting a I(iihlerian 
I(illillg spinor, then M6 is analytically isorIletric to the COlll­
plex projective space (Cp3 or to the flag Inanifolcl F(l, 2), re­
spectively, furnished with their natural I(iihler structures (see 
[19]). (Cp3 and F(I, 2) are examples of I(iihler manifolds with 
real Killing spinors. In this section we will prove an analogous 
classification result ill case of G-ditnensional I(~ihler rnanifo1c1s 
admitting an irnaginary I(iihlcriall I(illing spinor. 
Let M6 be a connected spin I(iihlcr lllanifoid with an irnaginary 
I(ahlerian I(illing spinor ¢ == 1/)1 + ¢2 to the I(illing nUlnber "'. 
Then we know that M6 is an Einstein space of scalar curvature 

2R == 48", < O. (4.1) 

Moreover, we have the relation 

R 2 
(! == -0 == 8", {l (4.2)

G 

between the Ricci forln e and the I(iihlcr forn1 {2. 'The spinor 
bundle 8 of M6 splits in the forln 

8 == 80 EB 81 ED 82 ED 83 

and we have ¢l E r(81), ¢2 E 1"(82), For each vector field X 
on M 6, the differential equations 

are satisfied. By Theorclll 11, (ii) we can assume that 

(1/)1, }VJ2) == o. 

Let X3 :== ¢'lj) == ¢1¢2 + 'lj)2¢1. Then it holds 

fi(.i'Ya) 7/),1/)2 p(..tY:J) 1/;27/)). 

(4.4) 

( 4.5) 
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TheorClIl 7, (ii) yields 

grad/1/;12 == - 2iKX3 (4.6) 

~ I¢12 = R I¢12 = 16K.21¢12. (4.7)
3 

Further, by Theorenl 9, J (X3) is a I(illing field and Theorenl 
12 implies 

(4.8) 

Now, let P E Ut/J :== snpp(1/;11/;2) be any point and let U C Ut/J be 
a neighbourhood of P such that there is a holomorphic section 
1/;0 E r(Solu) that does not vanish at any point of U. Then we 
define real vector fields Xl, X 2 on U by 

By defiuition, we have the relations 

p(X1) == 1/)0'1)1 p(X1) == 1/;11/;0 (4.9) 
p(X2) == 1/;0(j1/;2) p(X2) == (j1/;2)1/;O. (4.10) 

Moreover, we find 

In particular, this implies 

(4.12) 

Lemma 16.1: For all vector fields X and Y, defined on U the 
equations 

are satisfied. 

Proof: By (4.3) and because of V¢o == 8 log 1¢012®¢0 we have 

Vy (1/;01/;1) == (Vy 1/;O)1/;l + '1)0(V'y1/J1) = 
- (Dlog /'l/)o/2)(Y)'1)o1/;1 + K1/;o(p(Y)1/;2). 
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Using this we find 

V X V Y (¢OVJl) = X((alog l¢oI2)(Y))¢OVJl + 
+ (a log IVJoI2)(X)(alog l¢oI2)(Y)¢OVJl + 

I'b(Dlog I1/JoI2)(Y)1}bo(1>(X)1jJ2) + 
+ I'b(8 log l¢oI2)(X)¢O(p(Y)VJ2) + I'bvJo(fi(Vx Y)VJ2) + 
+ 	 1'b2¢o(ij (lT)p(X)¢1) 

and hence 

I((X, }T)(V)OVJl) = ",2 VJO ((p(Y)zJ(./Y) p(./Y)p(Y))1/Jl) + 
+ 	(.LY((8Iog l¢oI2)(y)) - Y((8Iog IVJoI2)(./y)) ­

-(Blog l¢oI2))([X, Y]))1/J01Pl = 
",2¢O((zj(Y)p(X) -p(X)p(Y) )¢1)+(Balog I¢O/2)(X, Y)¢O¢l. 

Since the curvature forIn of So is equal to ~t! it holds by (4.2) 

- I ,2 'l . 2aa log ¢o = -2[J ~ -4",,,, flo (4.14) 

Moreover, using the forrnula (1.3) we obtain 

¢o((p(Y)p(X) p(X)1J(}?)4JI) == 2i~l(./\,Y)¢o'~JI+ 
+2g(Y, 1Po1Pl)fi(X) - 2g(X, VJ01Pl)p(Y). 

Inserting this and (4.14) in the result of the calculation above 
we find 

}((X, Y)(¢O¢l) = _2",2(if2(X, Y)¢OVJl+ 
+g(./Y, ¢O¢l)P(Y) g(Y, ¢O¢l)P(X)). (4.15) 

By sirnilar calculations one obtains 

]«(X, Y)(VJoj'¢2) = -21'b2(if2(.tY, Y)'ljJOj1jJ2+ 

+g(./Y, ¢Oj1P2)P(Y) - g(Y, ¢OjVJ2)p(X)), (4.16) 

Frorn (4~9) and (4.10) we see that the equations (4.15) and 
(4.16) are equivalent to the equations (4.13), q.e.d. 
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Lemma 16.2: There are the relation.() 

g(p(X),p(X2)) == 0, g(p(X1),ij(Xa)) == 0, g(p(X2),p(Xa)) == 0 

2and it holds /Xl 1 == 411/)oI21¢112, IX212 == 4/¢oI21¢212. 

Proof: By (4.4) and (4.11) we have 
. . 

o ("pi, jt/J2) = (- 21;oI2P(Xl)"pO, - 21;oI2P(X2)"po) = 
1 1 

- 41~~;)i4 (p( X 2)zI(X,)1/'U, 1h) 21¢~F!J(1{XI)' jl( X 2 )) 

and, hence, g(p(..tYl),P(X2 )) == o. Moreover, using (4.5) and 
(4.12) it holds 

g(p(XI), ij(..tY:~)) g(p(X I ), 1/)1 1/)2) == -i(p(Xl )1/)1, '1/)2) == 0, 
g(P("Y2) ,p(X:J)) g(p(X2), '1/)1 ¢2) == -i(p(X2)¢t, ¢2) == 

i(¢1,p(X2)1/)2) == o. 
Finally, we obtain by (4.9), (4.10) and (4.11) 

/Xd2== 2Ip(.<\J)12 == 2g(1J(..t\1),jJ("\1)) == 2g(1J(X1),1/)01/)1) == 
-2i(p(X1)1/Jo,1/)1) == -2i(2il1/)O/2¢1, 1/)1) == 4/1/)O/21¢112, 

IX2 1
2 == 2g(p("\2) , ¢O.i¢2) == -2i(p(X2)¢o, i¢2) == 

-2i(2i/1/)oI2.i1/)2,i¢2) == 411/)01211/)212, q.e.d. 

Theorem 16: Let Af6 be .a conn(~cted spin Kahler manifold ad­
mitting an imaginary I{iihlerian Killing spinor to the Killing 
number 1'\,. Then 1\16 i.fJ of con.r;tant holomorphic sectional cur­
vature 41'\,2. 

Proof: I3y (4.8), LenlIua 16.1 and LClIlina. 16.2 we sec that 
I(lu == ~2Tlu since (lJ(..tYt),lJ(X2),p(X3)) is a cOlIlplex orthog­
onal frame on U C U,p. This ilnplies the identity I{ = K,2T 

on U,p. By (4.3) 1/)1 is antiholornorphic and 1/J2 is holomorphic. 
Hence, p(..I\3) 4'2'1/)1 is holoillorphic and Uti' == supp(4'21/)1) 
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M 6. Th 	 1 1 hIS 	an open dense set 111 . us, we can cone Ul e that t e 
equation 

(4.17) 

is satisfied globally, q.e.d. 

By TheorerIl 15, TheorerIl 16 and the rrhcorclIls 7.8, 7.9 in 
[21], Chapter IX we iUllIlcdiately ohta.in 

Theorem 17: The only connected and sirnple connected com­
plete Bpin Kiihler rnanifold NIH ad.,.nitting an irna.fJinal':lJ !(iihlcr'ian 
[(illing Bpinol' is the cornple;J; hypeTbolic Sp(LCe (J)If:~ . 
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