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Abstract 

Willmore tori with umbilic lines are constructed using methods of the 
theory of integrable equations. The umbilic set is the intersection of the 
torus with a plane. Parts of the torus lying above and below the plane 
are minimal surfaces in hyperbolic space, realized as upper and lower half 
spaces with the Poincare metric. 

Introduction 

Let M be a torus in R3. The Willmore functional of M is defined as follows: 

w= fMH2dS, (1) 

where H is the mean curvature and dS is an area element. Critical points of W 
are called Willmore" tori. Background information about Willmore surfaces can 
be found in [19,23]. 

We add one more interesting family of Willmore tori to those already known 
[22,12,5,6,13]. The the main result of this paper is a construction of the Willmore 
tori with umbilic lines. The tori we construct possess the following properties: 

1) there is a plane A (infinity plane) intersecting M orthogonally and de
composing it into 3 parts M =M+ U Mo U M_ (lying respectively above A, on 
A and below A), 
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2) M± are minimal surfaces in hyperbolic spaces, realized as upper and lower 
(with respect to A) half spaces with the Poincare metric, 

3) Mo is an umbilic set, i.e. for the points of Mo two principal curvatures 
coincide. 

To construct these tori we use the methods of the integrable equations. These 
methods were already successfully applied [17,24,6,7] to differential geometric 
classifisation of some submanifolds. In particular the case of constant mean 
curvature (CMC) surfaces in 3-dimentional space forms R 3, S3, H3 has received 
a fairly complete treatment in [24,5,6]. 

Our starting points are the results on description of the tori with CMC 
H,IHI > 1 obtained in [6], based on the solution of the corresponding Gauss 
equation au+sinh u = O. In the present paper we are interested in the minimal 
surface case H = 0, the Gauss equation of which is the elliptic cosh-Gordon 
equation 

au = coshu. 

The corresponding modifications were made in [2] and are presented in Sect.2. 
Because of the maximum principle there are no compact minimal surfaces 

in H3. But it turns out that some of the minimal surfaces we construct are 
analytic tori in two copies (!) of H3 suitably glued. How we get Willmore tori 
in this way is explained in Sect.3. 

To construct these tori we need doubly periodic solutions of the elliptic cosh
Gordon equation (which necessarily blow up; the lines where u --+- +00 become 
later preimages of the umbilic lines). More precisely to construct surfaces we use 
the finite-gap solutions of the elliptic cosh-Gordon equation, which were found 
in [1]. These results as well as the formulas for the corresponding surfaces are 
presented in SectsA,5. 

In general, the surfaces are not tori. To describe a torus the immersion 
function must be doubly periodic. The periodicity conditions (Sect.7) are for
mulated in terms of the spectral curve. Although they are rather complicated, 
it is possible to investigate the simplest cases and to prove the nondegeneracy 
of these conditions. The simplest tori constructed are of rectangular conformal 
type with closed mean curvature lines (Sect.9). The lowest possible genus of the 
spectral curve determining these tori is 3 (Sect.10). 

The famous Willmore conjecture is that for any torus W ~ 211"2. This con
jecture is proved for the canal tori [16] and for the tori with the conformal type 
close to square [20]. In Sect.S we derive a formula for the Willmore functional 
W in terms of the spectral curve, without hope, however, of finding a torus with 
W<211"2. 

The present paper is parallel ideologically and technically to [6,5]. To follow 
details of the theta function calculations one can use these papers and the book 
[3]. 

We would like to mention also the recent paper [25], where minimal surfaces 
in H3 with one family of spherical curvature lines were constructed. These 
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surfaces are close to these of ours considered in Sect.9, they are also generated 
by the genus 3 solutions of the elliptic cosh-Gordon equation with the symmetric 
spectral curve. The relation with Willmore tori and periodicity conditions we 
use in Sect.l0 are not discussed in [25]. 

In Figs. 2,3 with the help of Mathematica [27] we present the simplest exam
ples of the surfaces constructed. They are described by Jacobi theta functions 
and elliptic integrals. Unfortunately we can not, in the same way, construct 
pictures of the tori since they are described by theta functions and abelian in
tegrals of the Riemann surfaces of genus > 1, which are not implemented in 
Mathematica. At the present time this higher genus implementation is being 
developed in Berlin by SFB 288 and we hope to be able to look at these tori 
soon. 

The authors are thankful to B.Palmer and U.Pinkall for useful discussions. 

2 	 Minimal surfaces in hyperbolic space. For
mula for immersion. 

A hyperbolic space Q 
{F,F} =-1 

is embedded into the Lorentz space R3,1 .The metric of R3,1 

{a,b} =albl + a2b2 + a3b3 - aobo 

induces a positively definite metric on Q. 
Let M be a smooth orientable surface in Q. The metric {,} induces a complex 

structure of a Riemann surface 'R. on M. Let 

F : 'R. --+ M C Q C R3,l 

be a conformal parametrization of M. This means that the immersion function 
is normalized as follows: 

where z is some local parameter on 'R., and Fz, F"F are the partial derivatives. 
Vectors F, Fz , F"F may be supplemented with a normal N in such a way that 

{Fz,N} ={FE,N} ={F,N} =0, {N,N} =1. 

Let us also introduce the following notation: 

u{Fz, FE} =2eu
, {Fzj",N} =2Hhe , {Fzz,N} =Ah, 

where Hh and Ah are called respectively the mean curvature and the Hopf 
differential. The Gauss curvature is equal to 

Kh = -1 _ (Hh)2 _ ~AhAhe-2u. 
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The variation of the basis F, Fz , Fz ,N with respect to motion along the 
surface is described by the equation : 

fJ'z=UfJ', fJ'z=VfJ' ,fJ'=(F,Fz,Fz,N) (2) 

Uz 0 Aho )u = u0 0( 2H;e2~U 
1 0 

_Hh _lAhe-u 
2 

0 1 0 
u0 0 2Hhe

( Ahv = 2~U ).0 Uz 
_lAhe-u _Hh 02 

The constant mean curvature (CMC) condition 

Hh = const 

leads to the following Gauss-Peterson-Codazzi equation: 

Uzl + 2«Hh)2 - l)eU 
- AhAhe-u /2 =0, A~ =O. 

The case (Hh)2 > 1 is described in [5,6]. Here we consider the case(Hh)2 < 1 
(see also [2]). In new variables 

(3) 

we obtain the equations 

2 U lAA- -u 0UZHZH - e - 2' e = (4) 

AZH = 0 (5) 

Theorem 1 A CMC surface in Q, conformally parametrized, generates a holo
morphic quadratic differential Ah(dz)2. The induced metric u(z, z) satisfies (4). 

The system (4,5) can be represented as the compatibility condit.ion 

UzH - VzH + [U, V] =0 

of the system 
~ZH =U~, ~ZH =V~ (6) 

with the matrices 

2 _ 1 ( 0 2'AeU
/ ) _ 1 ( (7)U - -2 A -u/2 , V - -2e UZH 
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depending on an extra parameter A, which is called a spectral parameter in the 
theory of integrable equations. 


We note that U - V pair (7) satisfies the reduction 


For the solution of the system (6) it gives 

-1 
~(A) =0'2~(-A )M(A) (8) 

with some matrix M(A) independent of z, Z. Here and below O'a denote the 
Pauli matrices 

(01) (0 -i)
0'1 = 1 0 ' 0'2 = i 0 ' 

Let us identify the Lorentz space with the space of (2 x 2) hermitian matrices 
XT=X 

a 
X =(XO,X.,X2,Xa) E Ra,l +---+ X =Xol + LXI:O'I: (9) 

1:=1 

with the scalar product 

1 T
{X, Y} =-"2tr(X0'2Y 0'2)' 

Theorem 2 Let Ah(ZH)(dzH)2 be a holomorphic quadratic differential on 'R, 
U(ZH,ZH) be a solution of (4) and let 

q 2itb~O(ZH' ZH, A=e- e ) 

be a solution of (6). Then 

F = ~~~o 1 , N =~*O' ~ 1 (10)Vdet ~o det ~~ o a 0 v'det~o det~o' 

where ~o =~5 in the variables (9) satisfy equations (2) for the moving frame 
and describe a surface in Q with the mean curvature 

H =tanhq. 

Proof. Since F =F* and det F = 1, we see that (10) describes a surface 
in Q. Multiplying ~o by a complex number gives us det ~o E R. Further we 
suppose the determinant to be real. Let us denote 

5 



U sing the identity 

for invertible matrices, we have 

F=4>2"I4>1 , N=4>2" 10'34>1. 

The functions 4>1 and 4>2 satisfy (6) with ,\ = '\1 = e- f e2i ,p and ,\ = '\2 = 
2i-e f e ,p respectively. To see the last fact we should take (8) into account. 

Direct calculations prove all the identities (2). In particular, we have 

{FZH' FZH } = -"21 
tr((UI - U2)0'2(V1 - V2)

T 
0'2) = 

= 2eu cosh2 q, 

{FZHZH ' N} = "21 
tr(((UI - U2)Ul - U2(U1 - U2) + (U1 - U2)z)0'3) = 

e ,p A cosh q,= 2i


FZHZH 4>2"I((U1 - U2)V1 - V2(U1 - U2) + (U1 - U2)z-)4>1 = 


= 2eu F cosh2 q + 2eu N cosh q sinh q, 


where Ui =U('\i), Vi =V('\i). The change of variables (3) completes the proof. 
Remark. The sign of Jdet 4>0 det 4>~ in (10) determines a sheet of Q. For 

the surfaces lying on both sheets of Q, which we will consider, it must be chosen 
correctly (see Sect.5). 

Remark. We restrict ourself to the most interesting case of the minimal 
surfaces H = O. In this case q = 0 and ,\ has to be taken on the unit circle. 
Further, we do not distinguish 

ZH = z. 

We will also use the Poincare model of the hyperbolic space, namely the 
half-space model 

It is related to that already described by the following conformal map 

More precisely, if we denote by Q± the upper (Fo ~ 1) and the lower (Fo ~ 1) 
sheets of Q, then 

t' 
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H+ and H_ are separated by the infinity plane G3 =O. For the induced metric 
of the H -model we keep the same notation 

(11) 


where IG31 is an euclidean distance from the point to the infinity plane A. 

Theorem 3 Let 

~(z,z,A =e2i f/;!) 

be a solution of (6) with some A and u. Then in the H -model the corresponding 
minimal surface is described by the formulas: 

G iG - ab +dc G _ .6 (12)
1 + 2 - bb +dd' 3 - bb + dd' 

where 

(13) 


Minimal surfaces ill hyperbolic space and Will
more surfaces with umbilics 

We will consider surfaces M in R3, which are sufficiently smooth (with immer
sion function G = (G1, G2 , G3) : 'R. ---+ R 3, G E C4). 

Decompose M into three parts M = M+ U Mo U M_: 

M± = {P E MI ±G3(P) > O} 


Mo = {P E MIG3(P) =OJ. 


Theorem 4 Let M be a smooth (C4) surface in R3 such that both M± are 
minimal surfaces in H± respectively (i.e. with respect to the metric (11)). Then 

(i) M is a Willmore surface, 
(ii) Mo is an umbilic line. 

Proof. We will use two metrics 
<, > - euclidean metric in R 3 ,

{,} =G'32 <, > - Poincare metric on H±. 
Let us consider the conformal parametrization G(z, i) of M in R3. This 

parametrization is also conformal for the hyperbolic metric {,}. The normal 
vectors Ne and Nh differ by a factor 
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since < Ne, Ne >= {Nh, N h} = 1. 
The first fundamental form of the hyperbolic and euclidean models are sim

ply related 
Ih = {dG,dG} = G;2 < dG,dG >= G;2Ie. 

The expression for the second fundamental form is a little bit more complicated 

hid h h 
II = -"2 dt {d(G + tN ),d(G + tN )}G+tNh It=o= 

-{dG,dNh}G - ~! {dG,dG}G+tNh It=o= -G;lIr + G;2 N;r. (14) 

Here the upper indexes hand e denote hyperelliptic and euclidean models and 
the lower index of {,} denotes a point, where it is calculated. Using the defini
tions of the Gaussian and mean curvatures 

J(e =det(Ir(r)-l), J(h + 1 =det(IIh(Ih)-l), 

He = !tr(IIe(r)-l), Hh = !tr(IIh(Ih)-l),
2 2 

one can easily derive the following relation 

(15) 

where dSe,h are the area forms in e and h-models: dSh = G;2dSe. Let us 
integrate (15) over some domain DC M, D n Mo =0 

Due to the Gauss-Bonnet theorem the last two integrals are reduced to the in
tegrals over boundary aD. Let us consider variations of D vanishing along with 
their derivatives on the boundary aD. With respect to these variations the last 
two integrals are constant. The minimal surfaces are critical for both integrals 
Iv(Hh)2dSh and Iv dSh, therefore D is critical for the Willmore functional (1). 
This proves that M± satisfy the Euler-Lagrange equation corresponding to (1). 
This is an elliptic equation 

aH + 2H(H2 - J() = O. (17) 

The simple behaviour of M near the infinity plane A (orthogonal intersection) 
allows us to represent the surface in the neighbourhood of A as a graph. The 
equation (17) shows that the graph function satisfies some elliptic equation of 
the forth order. Combined with general C4 differentiability of G this fact allows 
us by standard methods 1 ([4], p.467) to prove that the same equation is valid 
for all points of M. This finishes the proof of (i). 

IThe authors are thankful to Bennett Pahner for explanation of this. 
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The equality (15) in particular gives 

G3{Gzz;,Nh} = GaAh = At! =< Gzz;,Nt! > . (18) 

Zeros of At! are the umbilic points of M 

K - H2 = _At!.Jt! < Gz,Gg >-2. 

Let us denote 'R+, 'Ro, 'R_ C 'R preimages of M+ , M0, M_ respectively. Vanish
ing of the derivative oAh/oz on'R± gives 

At! _ oAt!/oz 
(19)

G3 - OG3/0Z ' 

Since M is orthogonal to the infinity plane A, the derivative oG3/oz does not 
vanish on'Ro. It determines a continous continuation of Ah to'Ro by the formula 
(19) 

(20) 

Rewriting (19) 
t! oAt! /oz 

(21)A =G3 oG3/oi' 

we see that At! vanishes on Mo. The theorem is proved. 
Holomophicity of Ah on 'R± and continuity on 'Ro gives 

Corollary 1 Let M be as in Teorem 4. Then Ah = {Fzz;, N h} is holomorl'pic 
everywhere on 'R. 

The aim of this paper is to construct Willmore tori with umbilic lines. If'R 
is a torus, it can be represented as a quotient C/A with respect to some lattice. 
There is only one holomorphic quadratic differentials on C / A , therefore we can 
normalize 

A=2, (22) 

which reduces equation (4) and its Lax representation to the following form: 

U zz =4 cosh U, (23) 

0 A u/2 ) (Uz/2 -e-
U

/ 
2 

) (24)~z = U~, ~j" = v~, u = ( e-u/2 U:/2 'v= i eu/ 2 o 
Finally, to construct a Willmore torus with umbilic lines, we should find 

a doubly periodic solution of (23) such that the immersion function given by 
(12,13,24), is also doubly periodic and describes a smooth torus in R3. It is 
possible to construct these tori using the finite-gap doubly-periodic solutions of 
(23). 
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4 Complex valued finite-gap solutions of the 
cosh-Gordon equation 

The equation (23) is one of the real versions of the sine-Gordon equation 

Ue'1 = 4sinu, 

finite-gap solutions of which are well known [18,21,8,14,3,9]. Generally these 
solutions are analytic functions of eand '7, given by explicit formulas in terms 
of theta functions. In this section we present these formulas as well as for
mulas for the corresponding Baker-Akhiezer function in a modified form. This 
modification will be used in the next section to get real valued solutions of (23). 

We start with introducing some standard ingredients of the theory. Consider 
the Riemann surface X of the hyperelliptic curve 

2g 

p2 = ~ rr(~ -Ei). (25) 
i=l 

It is a double cover of ~-plane with Ei, 0,00 being ramification points. We 
denote the hyperelliptic involution as follows: 

1r(A,p) = (A, -p). (26) 

Let an, bn , n = 1, ... ,g be the canonical basis of cycles and dUn be the normal
ized holomorphic differentials on X 

f. dUn =21ri6nm . 
a", 

The associated period matrix 

defines the Riemann theta function with characteristics a, f3 E Rg 

o[ ;; ] (z) = L exp{ ~ < B(m+o), m+o > + < z+21riP, m+o >}, (27) 
mEZg 

z E C g • For zero characteristics we will use the notation 

O(z) = 0 [ ~ ] (z). 

The function II = 0, multivalued on X, defines a Riemann surface X, which 
is an unramified covering of X. This covering can be defined by a contour £. on 
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X, which fixes a branch of II on X \ C. The function II is multiplied by a factor 
(-1)<),,£> , when a circuit of l' is tranversed. Here < 1', C > is the intersection 
number of l' and C. 

We need also the abelian integrals of the second kind 

0 0,00 =1 dOo,00 , 

A=OO 

normalized by the condition 

1dOo,oo =0 , n = 1,"',9 
an 

and the following asymptotic behaviour at the singularities: 

dll
dOoo -+ dll, II -+ 00 ; dOo -+ -2' 11-+ O. 

II 

Recall that we have fixed a certain branch of II on X. Periods of dOoo and dOo 
over theb-cycles we denote as 

(28) 

Now we consider z and i as independent complex variables. Let 

9 9 

C = E~;ai + E~ibi =< ~2,a > + < ~bb > 
i=l i=l 

be a decomposition of the cycle C with respect to the chosen basis of cycles. 

The Baker-Akhiezer function'" = ( ~~ ) is a vector-function on X, given 

by the formula 

9(u + 0)9(D) ._.,pI (P) 9(u + D)9(0) exp(zOoo + uOo), 

6 [ ~lj~ ](u +O)6(D) 

2 [ ~ /2 ] exp(zOoo + iiOo). (29) 

9(u + D)O ~~/2 (0) 

H;re 0 = zU + iiV + D, u is an Abel map u =J:' du, P = (A, 1-') E X, 0 0 ,00 = 
Joo dOo,00 , U and V are the vectors of b-periods 

-, 
U = (U1, ... , Ug ), V = (VI, ... , Vg ), 

D E cg is arbitrary. The paths of integration in u and 0 0 ,00 are identical. 
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The functions "pI and V"p2 are single-valued on X. The divisor of poles V of 
"pI as well as "p2 is of degree 9 and is determined by the theta function in the 
denominators of "p. 

In a standard way [3,9,8,21] it is proved that "p satisfies the system 

"pte = U"p "pi = V"p, 

U = (-U~/2 U:/2) , V = ~ C~ -~-.). (30) 

Let 1 be a path on X from 00 to P E X and VI be an analytic continuation 
of V along this path (we denote by II the analytic continuation of the function I 
along the path I). Let I· be a path from 00 to 1rP such that < C,I > - < C, l* > 
is odd. Then VI = V,-, Let us denote "pi = "pil,,,pi = "pit-. They comprise a 
matrix valued function on X 

.T, ("pI "pt)
'If = "p2 "p; , 

which also satisfies the system (30). Considering this function at V =0 we get 
the following formula for u: 

(1(0) 1ri 1ri. 
u =2log [Al/2] - 2 < Al,A2 > +2 + 1r.k. 

(1 A2/2 (0) 

Here k is the parity of the intersection index < C, 1[0,00] >, where 1[0,00] is a path 
from A =00 to A =0 on X such that C =1[0,00] - 1r/[o,oo] (1r is the hyperelliptic 
involution of X). 

From now on we set 
< Al,A2 >= 1. 

It turns out that real finite-gap solutions of (23) can be described by this spe
cialization (see Sect.5). 

Remark. If Co and C1 are two C-cycles on X with k =0 and k = 1 respec
tively, then the corresponding solutions are related in a simple way. Replacing 
Co by Cl, we add to Co a small contour around the point A = 0 and in this way 
change a sign of the local parameter at A= O. Therefore, if u(z, z) is a solution 
generated by Co, then C1 determines the solution u(z, -z) +1ri. 

From now on we consider only the case k = 0 as determining two families of 
solutions 

(k =0), (31) 

(k = I), (32) 
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Beside the simbols ± for these two families we keep the simbol k, which is equal 
to 0 for the first and to 1 for the second families respectively. 

We can summarize the above arguments in the following theorem. 

Theorem 5 The function 

(33) 
W:i: =zO(X) ± izOo 

is a solution of (90) with u(z, z) given by (91, 92). In (90) v =VI and < I, t. > 
is even. 

The systems (30) and (24) are gauge equivalent 

veU/2 
4'= ( 0 (34) 

We obtain also a useful formula for 

analysing its analytical properties. It is a meromorphic function on X with 
divisor of poles 'D +1f''D and divisor of zeros El + ... + E2g at the branch points 
of (25). In addition vd(P) is a single-valued function on X and its assymptotics 
at " =00 give d(oo) =-2. Finally we get the following expression in terms of 
theta functions: 

~1/2 ] [0]lJ2(d) (J [ 0 (u)(J ~2/2 (u) 

d = -26(D - u)8(D + u) 6 [ !1~2 ] (0)6 [ !1~/2 ] (0) . 
(35) 

Now we are in a position to present a final formula for 4'. 

Theorem 6 The matrix 

'. 
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solves (24) with u(z, z) given by (91,92). The paths of analytic continuation of 
v and integration in u, {} are identical. The determinant of () is as follows: 

O[~1/2](U)O[ 0 ](U) 
det () =_2ve1fik/ 2 O({}±) 0 ~2/2. (37) 

o[ ~~~; ] (O±) 0 [ llt2 ] (0)0 [ 1l~/2 ] (0) 

For the proof we use (31-34,35) and cancel () by a non-essential constant 
right factor. 

5 Reality conditions 
From now on we again consider z and z as complex conjugate variables 

z = x + iy, z = z - iy. 

To construct surfaces we need real-valued u(z, z). Real finite-gap solutions of 
the equation (23) were constructed in [1]. Here we present the main results of 
this paper 2 

For the described complex finite-gap solut.ions to be real-valued, X neces
sarily has an antiholomorphic involution (see symmetry (8)) 

T :.\ -+ _X-I. 

In particular, it implies that the genus of X is odd 9 = 2n + 1. More exactly, 
let us consider the spectral curve 

N 

p.2 = '\('\-E2N+d('\+E;J+I) II('\-Ek)('\+E;1 )('\-Ek+N)('\+E;~N)' (38) 
k=1 

A canonical basis of cycles can be chosen in such a way that T acts on it as 
follows (see Fig.l): 

Tai =	-ai+N, Tai+N = -ai, Ta2N+I = -a2N+I, 

Tb i =bHN, Tbi+N =bi, Tb2N+I =b2N+l! i = 1, ... , N. (39) 

2There are some misprints in [1]. The correct version of (5a,b) and z! iu the final table is 
as follows: 

ZI = (iVo + Voo)t + (Vo + iVoo)x, 

Z2 (iVo - Voo)t + (Vo - iVoo)x, 

z! = i(iVo - Voo)t + i(Vo - iVoo)x +z~. 

In the English trall8lation of [1] the table with the final results is split into two parts, whicb 
makes it completely nonunderstandable. 
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E -1- 1 

1 

thl____ J 

E -1- 3 

r--
I 
I 
I 
I 
I 

I 

E -1- 7 
I 

Fig.l 

We use the matrix notation 

Ta =Ta, Tb = -Tb, T =T- 1 =TT, 

T= (~ ~ ~),
001 

where I is N x N matrix. The cycle £ is as follows: 

2N+l 

£= L: an +b2N+l, Al =(0,0,1), A2=(I,I,I). (40) 
n=1 

Theorem 7 Real finite-gap solutions of the equation (£3) are given by the for
mulas (91,3£), where X is a real curve (98) with the basis (39,40) and D:J:; are 
as follows: 

(41) 

Proof. A recipricity law [11] for the abelian integrals of the second kind allows 
us to express their periods in terms of the normalized holomorphic differentials: 

For the branch of v'X fixed by the contour £ shown in Fig.1, we have 

(42) 
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when P is in a neighbourhood of .;\ =0. To prove (42) we mention the connection 
of v'X with p. 

v'X(P) = (_1)N (-i) exp(-<E arg Ei)P.(P)(1 + 0(1», P - 0, 

1/v'X = p.(P).;\-g~1(P)(1 + 0(1», P - 00 (43) 

and the transformation law of p. 

IJ.(TP) = (_l)N exp(iL:argEj)IJ.(P).;\-9-1(P). 

The differentials du transform as follows: 

The straightforward calculation 

-TVdV.;\(P) =-Tdu(P) =dU(TP) =-Ud(l/V.;\(TP» = iUd(V';\(P», 

where .;\(P) - 0, proves the conjugation law 

iTO =-V. 

For O± we have 
TO± =±O±. 

The vectors D± given by (41) have the same symmetry as O±. 
The theta function also satisfies a simple conjugation law 

[ a 1 [ -Ta 1 8 f3 (z) =8 Tf3 (-Tz). 

which is proved by the change of the summation index m = -Tn, taking into 
account the symmetry of the period matrix iJ = TBT. Finally, we see that both 
theta functions in (31) as well, as the onein the nominator of (32) are real. On 
the other hand, the theta function in the denominator of (32) is imaginary, since 
it is odd and T .6.1,2 = -.6.1,2, 

Since 

16 




6 

is real, using (37) we may choose the square root in (13) as 

. 8(0±) 8 [ ~~2 ] (u)8 [ ~~/2 ] (u) 
~ - 2e'fralt:/2 (44) 

- 8 [ ~1/2 ] (O±) 8 [ ~d2 ] (0)8 [ 0 ] (0) 
~2/2 0 ~2/2 

This shows that in this case formulas (12,13) describe an analytic surface in 
R3. Due to Theorem 4 it is a Willmore surface. Taking into account the last 
factor in (36) we have 

G. =IJ(O%)IJ [ ~~~~ ] (O%)/(z, z), 

where f(z, z) does not vanish. This means that the umbilic line G3 = 0 on the 
z-plane is given by the equation 

IJ(O%)IJ [ ~~~~ ] (0%) =o. 

Simplest surfaces 

The simplest possible case under consideration is the case of elliptic spectral 
curve 

p.2 = A(A - E)(A +E- 1),E E R. 

The integral 
(45) 

is a function, its periods vanish, and arguments of theta function depend only 
on y for k = 0 and only on z for k = 1. We denote 

0 1 =0 00 iOo =2000 - P./A 

an additional integral to (45). For w± in (36) we have 

w+ = P./AZ + iOly, w_ = OIZ + iYP./A. 

Let us consider k = 0 case and introduce 

v =u/(2i). 

Combining together formulas (12,13) and (36,37), we get 

Gl + iG = 93 (Uy + v)7f;(Uy - v) - 81(Uy + v)8t(Uy - v) e 2w+ 

2 

83 (Uy - v)93 (Uy - v) + 91 (Uy - v)91(Uy - v) , 


G
3 

= h 93 (Uy)91(Uy) eW ++w+ l46) 
93 (Uy - v)93(Uy - v) - 91(Uy - v)91(Uy - v) 

h = 21 92(V)94 (v)1
92(0)94 (0) , 
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where we used Jacobi theta functions [26] related with the ones we used before 
as follows: 

81(v) =-8 [ ~ ] (2iv), 82(v) =8 [ ~ ] (2iv), 

83 (v) =8 [ ~ ] (2iv), 8.(v) =8 [ ~ ] (2iv), 

O(v) =O(v,q), q =eB / 2 . 

In (46) U is as above the b-period (28) of 0 00 , 

Theta functional factors in (46) are periodic in y. Due to the exponential 
factors, formulas (46) generally describe surfaces of spiral shape. There are 
cases when these surfaces are especially symmetric. Let us take a curvature line 
parametrization: A = -1. Due to (3,22), the quality A =< Fzz , N >= -2Ga is 
real, and the parameter curves ::r; = const, y = const are curvature lines on the 
surface. There are two different cases: 

(a) A 1, E > 1 , both p.IA and 01 are imaginary, 
(b) A= -1, E < 1 , both p. IA and 0 1 are real. 

Fig.2a. Willmore surface of revolution, E=2 
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Fig.2h. Meridian curve 

We see that (a) gives surfaces of revolution. Examples 3 of these surfaces 
are in Fig.2 and on the cover of the preprint in your hands. 

Fig.3. Willmore cone with two folds, E=O.53 

Family (h) consists of cones. If the ratio of the periods of the exponent and 

3The examples shown in Figs. 2,3 were calcula.ted using Ma.therna.tica. [27] 
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of the theta functions in (46) is rational 

the cone closes up. The case with minimal possible number of folds equal to 2 
is shown in Fig.3. 

7 
it 

Periodicity conditions 

In general the immersion G(z, i) (12) determined by real finite-gap solution is 
not periodic. We derive periodicity conditions simultaneously for both cases 
k =0 and k 1 using, as above, the notation ± to distinguish them. 

Let Z be a period of the immersion 

G(z + Z, i + Z) =G(z, i). (47) 

It is a period of the metric u(z, i). Due to the periodicity properties of t,het.a 
functions, the vector U Z ± iVZ must be a lattice vector 

UZ ± iVZ = 21riM + BN, M,N E zg. 
Let us consider an abelian differential 

All periods of this differential are imaginary and proportional t.o 21ri 

1. dw± = -21riN, 1dW± =21riM. 

Lemma 1 The immersion x(z, i) given by (12,19,96, 44) is a periodic ftmction 
(47) with a period Z if and only if there exists a differential dw± of tlte sf:clJfl.d 
kind such that: 

(i) The only singularities of dw are at tl&e points .\ = 0,00 and they are of 
the form 

dW± =Zd(V"i), .\ f'W 00, 

dw± =±iZd(l/V"i), .\ f'W O. (48) 

(ii) For any closed cycle; on X 

-2 (4H)
1 .1 dW± E Z,1r1 "y 

(iii) 

(50) 
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Proof. We already proved (i) and (ii). To prove (iii) we use the identities 

exp{- < u,N > +lri« N'~2 > - < M'~l >)}.....,....--,-lo-~-'Ii"'--
8 

(51) 
8 

[Z ] = 21riM + BN. 

Under the shift z ~ z + Z the exponent in (36) aquires a factor 

).= e 2i <fo 

exp{L (ZdOex> ± iZdOo)0'3}, 

which jointly with (51) gives the following transformation law for <Jl 

2i 

( ±1 0) ).=e <fo 

<Jl ~ 0 1 <Jl exp{0'3 lex> dW±}, 

where dW± are defined by (48). 

Theorem 8 The immersion function G(z, z) determined by (12,13,36,44) de
scribes an analytic Willmore surface M. 

(i) M is a Willmore torus if and only if G(z, z) is doubly-periodic 

(ii) G( z, z) is doubly-periodic if and only if there exist on X two abelian 
differentials of the second kind dwl and dWl (the same sign for both) satisfying 
the conditions (i)-(iii) (with Zl and Z2 respectively) of Lemma 1. 

(iii) All these Willmore tori have urnbilic lines with preimages on the z-plane 
given by 

~1/2 ] )
(J [ ~2/2 (O± =O. 

Proof. The properties (i),(ii) follow from Theorem 4 and Lemma 1. By the 
maximum principle there are no compact minimal surfaces in H3, therefore the 
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tori constructed must intersect the infinity plane G3 =O. The metric u( z, i) is 
singular on the umbilic line (see Sect.3) 

U 1 
e ...... IG 1 -+ +00. 

3 

Combined with (31,32) this proves (iii). 
There is a unique differential dw± with the asymptotics (48), normalized 

by the condition that all its periods are imaginary. The number of periods is 
4N + 2, but due to 

(52) 

only 2N+1 of them are independent. To prove (52) we compare the singularities 
of the both sides using (42). 

Finally for a doubly-periodic immersion we get 2(2N+1) intrinsic periodicity 
conditions (49) (2N + 1 for dw~ and 2N + 1 for dw~) and 4 (real) extrinsic 
periodicity conditions (50). All of them are conditions on the branch point.s 
of the spectral curve (4N + 2 real parameters) and on the periods Zl, Z2 (4 
real parameters). The situation is quite similar to the case of constant mean 
curvature tori [5], [6]. The numbers of parameters and conditions coinside. It is 
not difficult to see that for any N 2: 1 a countable number of spectral curves 
exists defining distinct Willmore tori with umbilic lines. The case N = 1 is 
considered in Sect.10. For general N this statement can be rigorously proved 
by the methods of [10]. 

There is no restriction on the vector D±. The change of this vector in t.he 
directions transversal to the plane U z ± iVz changes the torus. This means t.hat 
the Willmore tori constructed have 2N - 1 commuting flows of deformat.ions. 

Willmore functional 

Let II be a fundamental region of the lattice A on the z-plane. It is a parallelo
gram determined by the vectors Zl, Z2. 

The relation (15) allows us to express the Willmore functional for tori as 
follows 

w = f (He)2dse =_ f (/{h + l)dSh . 
JT'J JT'J 

Here we used the minimality Hh 0 and the Gauss-Bonnet theorem for t.he 
tori fT'J [(edse =O. On the other hand, the normalization (22) gives for 

[(h + 1 = _e-2u , 

which together with dSh =4eUdxdy, z =x + iy yields 

W =4ke-Udxdy. (53) 
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Fortunately, it is possible to perform integration in (53) explicitely and hence 
to obtain a more effective formula for W. The substitution of the asymptotics 

,p1,2 =(1 + b1•211-1 + ...)e,;J', 11-+ 00 

in the equation ,pz = V,p gives 

(54) 

On the other hand, a direct calculation, using (29), leads to the following formula 
for b1z: 

~b - ~!.-l {8(0 + u)8(D) ±i:fkP } = 
8z 1 - 8z 8p og 8(0 + D)8(0) e 1,,=0 

±ik - 88_ 88 log 8(0 + u)1 -0 =±ik + 88_ 88 log 8(0), (55)
z p ,,- z z 

where p =11-1 is a local parameter at ,\ = 00, and k is defined by the condition 
that dOo = kdp at II =00. To derive (55) we used the form of Abels map near 
A=oo 

u =-Up, (56) 

which is proved in a standard way using a reciprocity law [11] for dO oa and (iu. 
Because of (56) the derivative 8/8p in (55) may be replaced by 

8/8p -+ -8/8z. 

A reciprocity law also allows us to define k in a more convenient way 

dOoa = kdll, II -+ O. 

Applying the Stokes formula to (53,54,55) we obtain the following 

Theorem 9 For the constructed Willmore tori the Willmore functional is eqflal 
to 

W =J(He)2dse ==f4ikS(ll), 

where S(ll) is the area of fundamental parallelogram ll. 

Tori of rectangular conformal type 

From now on we consider an asymptotic line parametrization of minimal surfaces 
in Q 
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Due to (3,22), A =< Fzz , N >= 2iG3 is imaginary, and curvature of the param
eter lines z = const, y = const on the surface is equal to the mean curvature. 
This is the mean curvature parametrization of surfaces in R3. 

The case of tori of rectangular conformal type can be formulated in terms of 
the spectral curve. Namely, in this case X possesses a holomorphic involution 

).. -+ -1/)... 

The equation of X is the following: 

2N+1 
p2 = )..2N+2 II ().. - )..-1 - ek), (57) 

k=l 

where the set of the points ek is invariant with respect to complex conjugation. 
The coverings X -+ Xl and X -+ X 2 are given by 

Xl == {(s, t1)lt~ =n;~i1(s - fk)}, 

X 2 == {(s,t2)lt~ =(s2 +4)ni~i\s- ek)}, (58) 
s =).. - )..-l,t1 = p)..-N-1,t2 = /J)..-N-1().. + )..-1). 

Now the two integrals dw~2 we are looking for can be considered as integrals on 
X 1 and X 2 with singularities at s =00. Analysis of the singularities with the 
help of (43,58) shows that the following theorem holds. 

Theorem 10 The following specialization of the spectr'al data detennines Will
more tori, as above, of rectangular confonnal type (Zl+ = X+, Z2+ = iY+; Zl- = 
X_, Z2- = iY_, where ± denote two families of so/tdions as above): 

(1) The spectral curve is of the fonn (57), 
(2) dw~2 are differentials on X 1.2 respectively with all periods integer' mu.l

tiples of 211"; and the following asymptotics at s = 00: 

sN+1) SN+1)
dW~ = X+d ( -t-1- , dw: =iY_d ( -t-1- , (59) 

sN+2) N+2)dw2 =X d _s_ (60)dw~ =iY+d ( T ' (- - t2 ' 

(3) 

-:1 1"=2i dWl E Z. (61) 
11"1 00 

The mean curvature lines of these tori are closed. 

To finish the proof, we mention that the extrinsic periodicity condition (50) for 
dwi are automatically satisfied since s =2i is a branch point of X2. 

Again we have equal numbers 2N +3 of parameters (ek , X, Y) and conditions 
(2N +1 intrinsic and 2 extrinsic (61», which isolate a discrete set of the spectral 
curves. 

24 



10 Simplest Willmore tori with umbilic lines 

We consider the symmetric case N = 1 in more detail. We suppose that not all 
branch points of X are real 

The genera of Xl and X2 

are equal to 1 and 2 respectively. 

10.1 Intrinsic periodicity 

Since Jac(Xl) is one dimentional u+(z, z) is always periodic in the x-direction 
and u_ (z, z) is periodic in the y-direction. The periodicity in another orthogonal 
direction is described by 

Theorem 11 The solutions u±(z,z) of the e.ljuation (23), generated by the 
curve (62), are doubly-periodic if and only if q is rntional 

(64) 

where 1~2 are indicated in Fig.4. 

Proof. In Sect.7 we saw that existence of the differential of the second 
kind with all periods integer multiples of 21ri is equivalent to existence of t.he 
normalized differential with the same singularity, b-period of which belong to 
the lattice of the Jacobian. Let us denote by dW± the corresponding normalized 
differentials on X2 with the singularities (60). Then the following condition 
must be satisfied: 

(65) 

where dUn are the normalized holomorphic differentials of X 2 and I± are some 
cycles on X 2 • On the other hand a reciprocity law [11] allows us to express 
b-periods of dw± in terms of dUn 

(66) 

25 



[---- 2i Il
I--I-f- -----") 

I 
~ Ie2 1* I 

- --,'-I- I

I?11 
I I 

el I 

J I
~I- I1I 

I 
 e2 I I
1""""

I 
I

\._-------_./I 

. II -2i I'------"" 
-_/,

Fig.4. 

To use reality arguments, we choose the a-cycles coinciding with 1:2 shown 
in Fig.4. The normalized differentials change sign T'" du = -du under the action 
of 

T : (s, t2 ) --+ (s, -t"2). 

For the periods of dw± we have 

J. dW+, iJ. dw_ E R, 
bn bn 

which implies that i± must be decombosable with respect to 1~2 respectively 
( T/~2 = =F/~2). Combining (65,66) together with the decomposition argument 
above, we get 

(=~~ )d/~;t ) =qll dUn +qll dUn (67) 
s 2 1'=00 l~ l~ 

with q~2 integer. The relation (67) is independent of the choice of basis of 
holomorphic differentials. Written down in the basis (ls/t2, s(ls/t2 it gives (64) 
and determines the periods Y+,X_. 

10.2 Extrinsic periodicity 

To get a torus it is now enough to satisfy the extrinsic periodicity condit.ion for 
dWl only, since for dwi they are automatically satisfied (see Sect.B). Let us 
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consider the elliptic curve 

(68) 


and the differential dw± on it with the asymptotics 

and all periods imaginary. The real part of the integral J:' dW± is a well defined 
function. It is not difficult to prove the following 

Lemma 2 Zero sets of Re J:' dW± 

S± = {PIRe J: dw± = O} (69) 

1) consist of two ovals 8± = 81 u 81, 
2) 8± are invariant with respect to the involution i -+ -I, 
9) the projections &(81), &(81) to the i-plane are curves connecting (et, 00) 

and (ea, e2) respectively, 
4) &(81) lie on the real axis, 8(81) intersect real axis at one point only. 

Let us choose X+ and Y_ such that (see Fig.5) 

'-- --  ..... 
I 
I 

J 

\._----

, 
I 
I 
1"-' 

-_./ 

Fig.5. 

(70) 


Then all periods of dw± are imaginary and proportional to 21l"i, i.e. the 
intrinsic periodicity conditions are satisfied. Let us take some "rational" point 
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pO on Si 
pOL dw± = rip, p= n/m E Q, n,m E Z. (71) 

The transformation 

(72) 

reduces the curve (68) to the form (63) with both intrinsic and extrinsic pe
riodicity conditions satisfied by the differential dw± = mvP7/2dw±, (X+ = 
mvP7/2X+,Y- mVP7/2Y-). 

The restriction (64) can be rewritten in terms of the modulus of the elliptic 
curve (68) 

where 1~2 are the same as in Fig.4. Elliptic curves (68) with rational qp(o) 
determine Willmore tori with umbilics. The condition (73) is nondegenerate 
since qp(o) is an analytic function different from a constant. The last fact for 
the plus family u+ is proved in Appendix. 

Finally, the simplest Willmore tori with umbilic lines are described by the 
following 

Theorem 12 Elliptic curve (68) with the conditions (70,71,73) satisfied gener
ate a one-parameter family of Willmore tori with umbilic lines. As above, they 
are described by the formulas (12,19,96,44) where the spectral curve (62) is of 
genus 3 and is related to the elliptic curve (68) by (63,72). The mean curvature 
lines of these tori are closed. 

11 Branch point case 

The formulas for the immersion obtained are not valid when the point 

is a branch point of the spectral curve. In this case columns in (33) coincide 
and det <) vanishes. . 

Simple regularization gives a correct answer. Let p = ..;1T'.,\-_--E'I"""l be a local 
parameter at.A e2i,p. We take the function 

1 ) (I/P 0)1 0 1 Ip=o (74) 
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instead of (33). It satisfies the equations (30) and 

8 
det Wbp =8p det W, (75) 

," 

where det W is given by (35). 
The same transformation (34) provides us a regularized function ~: 

1 
(76) 

ve7rik/2 :p {8(O± + u)ew:t: -log8(D +un ve7rik/ 28(O± - u)e-w:t: ) 

w
( tp {9 [ !~~n (O± + u)ew

" -log9(D + un -9 [ !~~~ ](O± - u)e- " ' 

7rik 2det ~bp =-2ve / cbp ~:/~ ) , 

8 ~2/2 (0=) 

1,;{8 

As before (44), we choose the analytic square root (13) 

A 7rik/21 I 8(O±) (77)
'-I.bp =2e Cbp [~1/2] . 

8 ~2/2 (O±) 

Theorem 13 If A = e2itP is a branch point of the spectral curve, then the cor· 
responding Willmore surface is described by tl&e formulas (12,13,76, 77). TI&is 
immersion is doubly.periodic if and only if tl&ere exist on X two independent 
abelian differentials of the second kind dWl and dWi 

(i) with singularities of the form (48) (with Zl and Z2 respectively), 
(ii) with all periods being integer multiples of 21ri, 
(iii) (extrinsic periodicity) vanishing at A =e2itP 

2itP ) =O.dw~2(A =e (78) 

Proof. As above, (ii) is the intrinsic periodicity condition. It guarantees 
doubly-periodicity of the metric and of the theta functions and their derivatives 
in (12,13, 76). Formulas (12,13,76) show that there is a linear term (in z and z) 
in G 1 + iG2 coming from the derivative 8w±/8p in (76). Generally, the surface 
determined by (12,13,76) with intrinsic periodicity conditions satisfied possesses 
two translational periods parallel to the absolute. The condition of vanishing of 
these periods is (iii). 
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A Appendix 

Let us consider the curve Xl (63) with modulus 

k =sin(~ arcsin(el - e2» E (0,1) 

and introduce the following notations: 

p =k3
/ 
2 I e2 - el I, e =el- I e2 - el I . 

We consider the case 

k -+ 0, e -+ 0, P E 'Dp =(1/2,3/2). (79) 

The known analytic properties of the normalized (fa =0, see Fig.5) ellipt.ic 
integral 

X J' 8 - So J-- --(.S:F 
2 tl 

with period 411"i = f{3 d:F allow us to represent it in the following way 

:F =2K(Z(u, k) - ikcn(u, k» - 1I"i, v =2u + iK', 


sn(v, k) =ih/-../l- 2kh, cn(v, k) =-../1- 2kh + h2/vr:-"I--""""'2k"""'h, 


h = ...(f(s - e)/(2p). 


Here we use the standard notations for the elliptic functions and integrals 
(Z(u, k) is the Jacobi zeta function). For finite S 

r
I S - 2p 1< const, 

where the constant is independent of k. This implies h -+ 0 and the following 
asymptotics ([15], page 906) for (:F/1I"i)2 holds: 

(:F/1I"i)2 =k2(1 - kh + h2)(1 + 0(k5/2». (80) 

Requiring Re:F(s = 2i) = 0 gives 

e = -v'kp(1 + 0(k2», (81) 

which agrees with (79). Substituting (81) into (80) yields the following 

Lemma 3 For k -+ 0 it is alway possible to choose tlte branch points (e ~ 
-v'kp) such that :F(s = 2i) is imaginary. In t/tis case 

:F(S=2i»)2 2 
ql = ( 1I"i =k (1 + k 0(1», (82) 

where 0(1) is uniformly bounded for p E'Dp. 
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Let us calculate now the asymptotics of the ratio (64) for k ....., O. We set 

_ N _ f;t t;lds + f~2 t;lds 
(83)q2 - M - re2 t- lds + J,e2 t-lds' 

Jel 2 el 2 

It is evident that rationality of q2 is equivalent to rationality of (64). To calcu
late the nominator of (83) we make a fractional linear transformation s ....., SI, 
mapping the points ±2i,e2, e2 to the points ±2, ±Pl (PI E R) respectively. This 
transformation implies 

(84) 

where we use the notation 
e2 = a + ib. 

Similarly, to calculate the denominator of (83) we make a fractional lin
ear transformation s ....., S2, mapping the points a ± ib, ell 00 to the points 
±ib,±/2 (/2 E R) respectively. This transformation implies 

ds. dS2 S2 - 12 
(85)t; = 1C2 J(s~ + b2)(s~ - {f) J(S2 - a)2 + b2' 

iC2 = -i«a - el + r2)2 + b2)«/? + 4){(/2 - a)2 + b2)(/2 - el))-1/2 

r~ = (el - a)2 +b2, 12 =el - r2. 

If (k,p) is such that ReF(s =2i) =0 and the conditions (79) hold, we have 

Cl = _k3/ 4 (3p)-1/2(1 + 2kp-2/3 + O(k2», 

C2 = pl/2kl/4(1 _ kp2/8 + O(k2», 

gl = 4pk-3/2(1 +kp-2 +O(k2», 

It = _~pk-3/2(1 - kp-2 + O(k2», 

12 = -2pk1/ 2 (1 + O(k2», 
a = p3 k- 1/ 2(1_ k(p2/4 +2p-2) +O(k2», 
b 2p2k-l(1 - kp2/4 +O(k2». 
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Substituting the Teilor series for 

., 
in (84,85) we represent the nominator and denominator of (83) in the form of 
series in k. The coefficients in these series are expressed in terms of complete 
elliptic integrals of the curves 

W2 - (s2 4)(s2 p2) W22 _- (s22 + b2)(s22 - 122).1- 1- 1-1' 

Finally, we get 

4.k3
/ k 2 Vk 17 5/2

N -4,-(1 + - + O(k »(-K(kl) - -k E(kd)v'3P 6p2 2p 32 

2 . 5/4 3/2 4p k ( 3)( 2--,k p- log-(1+- 5--- 1+0(k »,= va Vk 12p log * 
M _ip-3/2k7/ 4(1 + kp2 )(K'(k) _ !(1- kp2)E'(k»(1 + O(k2»= 2 2 

_ip-3/2k9 / 4 Iog ~(1 + Vk + kp2 )(1 + O(k2-f»,= k 2 log t 2 

where 

kl =';1- k~2, k~ = 2/Pl -+ O. 
Lemma 4 In the conditions of the previous lemma t/u foll(Jwing asympt(Jtics 
for q2 is valid: 

(86) 

Formulas (82,86) show that the map (k,p) -+ (ql,q2) is nondegenerate and 
there exist (k, p) generating rational pairs ql, Q2. This completes the proof of 
the existence of the tori. 
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