
SDC-92-400

SDC
SOLENOIDAL DETECTOR NOTES

SDC OFFLINE SOFTWARE CONCEPTS
VERSION 1.0

December 11, 1992

SDC Data Modeling Working Group
SDC Core Software Working Group

SDC Software Process Working Group

1. INTRODUCfION .. 1
1.1 SDC Off-line Computing System Overview .. 1
1.2 SDC Off-line Computing Software: Goals and Overview 3
1.3 Computing Tasks of SDC Off-line Software ... 4

1.3.1 Physics Analysis .. 6
1.3.2 Application Code Development ... 6
1.3.3 Simulation ... 6
1.3.4 Calibration ... 6
1.3.5 Level 3 Trigger and Production Reconstruction 6

1.4 Scope of Document .. 6
2. SOC SOFIW ARE ORGANIZATION ... 8

2.1 Classes of Software .. 8
2.1.1 Core Software ... 8

2.1.1.1 System Services ... 8
2.1.1.2 Communication Services ... 8
2.1.1.3 Process Control ... 8
2.1.1.4 Graphical User Interface ... 8
2.1.1.5 Data Services .. 8
2.1.1.6 Common Utilities ... 9
2.1.1.7 Shells ... 9

2.1.2 Application Software ... 9
2.1.2.1 Common Tools .. 10
2.1.2.2 Common Subroutine Libraries 10
2.1.2.3 Community Tools ... 10
2.1.2.4 Community Subroutine Libraries 10
2.1.2.5 Private Code ... 10

2.1.3 Application Code Development Software 10
2.1.3.1 Software Development Tools 10

2.2 Other Centrally Provided Services ... 11
2.3 User Interaction With SDC Software .. 11

2.3.1 User Roles: Data Services ... 11
2.3.2 User Scenarios .. 13

2.3.2.1 Analysis Scenario ... 13
2.3.2.2 Development Scenario .. 13

2.4 Architecture of Core / Application Software .. 16
3. SOFIW ARE COMPONENTS: Summary and schedule 18

3.1 Software Development Processes .. 18
3.1.1 Application Software Processes .. 18

3.1.1.1 Certification Hierarchy ... 18
3.1.1.2 Common Physics Software Certification 18
3.1.1.3 Private Code Development Process 19
3.1.1.4 Community Tools Development Process 19
3.1.1.5 Common Tools Development Process 19
3.1.1.6 Production Reconstruction Development Process 20
3.1.1. 7 Level 3 Trigger Development Process 20

3.1.2 Core Software Development Process 20
3.1.3 Software Review Board ... 21
3.1.4 Organization ... 21

3.2 Core Software .. 22
3.2.1 Core Software Architecture .. 22
3.2.2 Core Software Services .. 23

3.2.2.1 User Interface .. 23
3.2.2.2 Process control service ... 23
3.2.2.3 Communications service ... 23
3.2.2.4 Data Service .. 23

3.3 Proposed Schedule ... 25
4. PROCESSES ... 27

4.1 Process-Related Terminology .. 27
4.2 Process Considerations for SDC Software ... 28

4.2.1 Physics Applications ... 28
4.2.1.1 Certification .. 28
4.2.1.2 Physics Analysis Application Software 28
4.2.1.3 Production Reconstruction Application Software 28
4.2.1.4 Level 3 Trigger Application Software 31
4.2.1.5 Application Code Development Software 31

4.2.2 Core Software ... 31
4.3 Physics Application Software Processes .. 31

4.3.1 Common Physics Software Certification 31
4.3.2 Private Code Process ... 32
4.3.3 Community Tools Process .. 33
4.3.4 Common Tools Process ... 33
4.3.5 Production Reconstruction Process .. 33

4.3.6 Level 3 Trigger Process .. 33
4.4 Core Software Development Process .. 33

4.4.1 New Development .. 34
4.4.1.1 Planning .. 34
4.4.1.2 Requirements Analysis ... 34
4.4.1.3 Design .. 34
4.4.1.4 Coding .. 35
4.4.1.5 Integration .. 35
4.4.1.6 Verification and Testing .. 35
4.4.1.7 Build and Delivery I Installation 35

4.4.2 Inspections .. 35
4.4.3 Reviews .. 35
4.4.4 Configuration Management.. .. 36
4.4.5 Maintenance ... 36

4.4.5.1 Problem Report Scenario ... 36
4.4.5.2 Change Request Scenario .. 37

4.5 Organization .. 37
4.6 Systems Administration ... 38

5. Core Software ... 39
5.1 Description of Software ... 39
5.2 Software Architecture .. 39
5.3 User Interface .. 39

5.3.1 Scope ... 39
5.3.2 Requirements .. 40

5.4 Process Control Service ... 40
5.4.1 Scope ... 40
5.4.2 Requirements .. 41

5.5 Communication Service ... 44
5.5.1 Scope ... 44
5.5.2 Requirements .. 45

5.6 Data Services .. ~ 45
5.6.1 Scope ... 45
5.6.2 Requirements .. 46

5.6.2.1 General Requirements .. 46
5.6.2.2 Design-Time (Preparing the Data Model) 48
5.6.2.3 Coding-time .. 51

5.6.2.4 Run-time ... 53
5.6.2.5 Requirements on Data Repository 54

6. Application Software ... 56
6.1 Private Code .. 56

6.1.1 Scope .. 56
6.1.2 Requirements .. 56

6.2 Community Subroutine Libraries•........................... 56
6.2.1 Scope ... 56
6.2.2 Requirements .. 56

6.3 Community Tools .. 57
6.3.1 Scope ... 57
6.3.2 Requirements .. 57

6.4 Common Subroutine Libraries ... 57
6.4.1 Scope ... 57
6.4.2 Requirements .. 57

6.5 Common Utility Tools .. 58
6.5.1 Scope .. 58
6.5.2 Requirements .. 58

A Glossary .. 59
A.l General. ... 59
A.2 Software Architecture ... 59
A.3 Process .. 60
A.4 Process Control. ... 60
A.5 Data Services ... 60

B. References .. 62
B.l General. ... 62
B.2 Data Modeling Working Group Meeting Minutes 62
B.3 Core Software Working Group Meeting Minutes 62

1 . INTRODUCTION
This document is addressed to two audiences of readers, hence its purpose is twofold. The first
three chapters are addressed to the collaboration physicist outside the SOC Computing Group.
These introductory chapters are intended to introduce the collaboration to SOC off-line software
ideas and to the ways in which the average collaboration physicist will interact with the software to
perform analysis.

Chapter 1 provides an overview of SOC off-line computing and software systems, describes the
goals of the software system, and discusses the scope of this document. Chapter 2 focuses on
organization of the software physicists will use and how the software systems will be used. Of
particular emphasis are the services of the "core" software supporting the entire SOC off-line
system, and the common tools physicists will use. Chapter 2 thus discusses what software and
services will be provided by a central SOC Computing Group and what software is written by
individual physicists. Finally, chapter 3 provides a summary of requirements and preliminary
architectural choices that have been made in three major software areas: the core software itself,
data modeling systems, and software development systems.

The later chapters are directed at members of the SOC Computing Group. These chapters should
be considered as appendices to the first three chapters. They document the results to date of the
following working groups in specifying SOC off-line software concepts:

SOC Data Modeling Working Group
SOC Core Software Working Group
SOC Software Process and Methodology Working Group

Chapter 4 describes the processes to be used in developing, integrating and maintaining SOC off-
line software. Included is a process for "certifying" software written outside a central SOC
computing group at the SSCL and incorporating it into the SOC baseline. Chapter 5 defines
preliminary requirements for the "core" software. Requirements for the Data Services,
Communication, and Process Control components are contained there. Chapter 6 defines
preliminary requirements for the common tools and libraries to be integrated and maintained by a
central SOC Computing Group at the SSCL.

A glossary and references are provided as appendices.

1.1. SDC Off-line Computing System Overview

The SOC off-line computing system will provide the capabilities needed by: (1) physicists for
production, analysis, and simulation; (2) developers for software design, coding, testing,
integration, and maintenance; and (3) system administrators for management and control of the
system configuration, change/update management, problem response and system recovery. Given
the data rates, event size, and number of physicists expected in the SOC, the system must handle
raw data rates and supply processing capability, storage capacity, and data access that are two to
three orders of magnitude greater than corresponding systems for detectors now in operation. The
size and geographical distribution of the SOC require extensive network connectivity and high
speed data transfer capability. These capabilities can be provided by a combination of the SOC
computing system located at the SSCL, some number of geographically separated regional
computing centers and local centers at users' locations. Analysis capabilities provided to remote
users should be essentially the same as those provided to users at the SSCL. A diagram of the
conceptual architecture for SOC computing is shown in Fig. 1-1.

1

ReConmuctIon
Proceaor FarmI

=:,~=-~--

$YStem Management
server

Ialsaar

Local
storage
Server

WAN

Local
Compute
Server

File Server
& DBMS

Figure 1-1 Conceptual Archit '''Jre Diagram for SDC Computing

One of the most critical system requirements is that events be reconstructed at a rate that keeps pace
with the recording of experimental data. The 100 Hz trigger rate and a 1 Mbyte maximum event
size require a system sized for raw data sets of up to 101"5-bytes per SSC year. Providing storage
and access for this amount of data drives the planning of the computing system much more than
does satisfying the CPU power requirements.

A major computing facility for SDC production reconstruction will be located at the SSCL. It will
use processors that probably will be chosen from commercial RISC offerings. The output of the
production reconstruction will be divided into physics oriented data sets from which physicists will
draw samples of data for analysis.

Following production reconstruction, the data, or a description of the data, will be put into a
database format to facilitate searches for events matching physics criteria. The ability to construct a
database with the required capabilities can be inferred from present operational and developmental
database systems. Continued collaboration with the computing industry and academic community
will be needed to be sure that SDC needs are met in this regard.

The off-line system will provide data management services for the raw event data, reconstructed
and derived physics data, and data sets generated by Monte Carlo simulation. Access to data will
be via a standardized query interface.

Separate computing systems that emphasize interactive capabilities will be needed for later stages of
data analysis. Methods must be defined for distributing processed data and providing access for
physicists doing analysis. It is likely that both networks and physical transport of storage media
will be used to supply data to a number of SDC regional computing centers. The regional centers
will be located within the US, Japan, and Europe at geographically convenient places and will be
repositories of intermediate size data samples.

It is assumed that the individual workstation, within a distributed system, will be the standard
desktop device that a physicist will use. The workstation will be used both for local processing
and for access to computing facilities at regional centers or at the SSC Laboratory.

Further details about the proposed hardware architecture for SDC offline computing and of the
hardware requirements are given in the SDC Technical Design Report. Note that this document
does not address these hardware issues, although we do recognize the critical nature of, in
particular, the ability to access efficiently vast quantities of data. Several other efforts, especially
the PASS (petabyte Access and Storage Solutions) Collaboration, are working on these problems,
and the SDC computing group will address hardware issues more fully in subsequent documents.

1.2. SDC Off-line Computing Software: Goals and Overview

The primary goal for SDC offline software systems is to provide a robust yet user-friendly
environment for collaboration physicists to accomplish their computing tasks. These tasks include
simulation, code development and testing, production reconstruction, calibration and monitoring,
and data analysis. The software systems must make it easy for all collaboration physicists to
participate in software development and data analysis, while at the same time providing
mechanisms to ensure that production code is fully tested and certified. The software system
should present a uniform environment for the variety of computing tasks, and should facilitate
porting of application code from one task to another.

SDC software will in part be written by collaboration physicists and in part by a central (yet
geographically dispersed) SDC computing group. In addition, the central computing group will
provide certain services (such as code distribution, integration and testing, and code maintenance)
for software originally written by individual physicists. Thus, one of the major purposes of this

3

4

document is to describe the relationship between the central computing group and the remainder of
the collaboration.

Software for SDC off-line computing will consist of "core" and "application" software. Core
software will provide the structure within which all SOC off-line software operates, plus the
general services needed by all parts of the system. Thus, as described below, the core consists of
both the outer layers (frameworks or shells) within which applications run, and the inner layers of
kernel services on which all applications rely. The core will be the responsibility of the central
SDC computing group located primarily at the SSCL.

Application software consists of standalone processes/packages called tools in this document, and
libraries of subroutines (not standalone) used by tools. This software is expected to use general
services provided by the core. Application software will largely be provided by appropriate SDC
subsystem groups and/or users.

The SDC computing group will provide development systems and some tools, defme standards,
and organize code management and distribution. The group will also establish a certification
process to incorporate software developed outside the group into the SDC core, common tools and
production systems. Code management and library management will be the responsibility of the
SDC computing group, assisted by software development and maintenance programs. These
programs will assure access by the user to the appropriate current software libraries, and will be
organized for distribution of libraries and tools.

Software implementation will make effective use of then-available technologies. Key areas are data
management (database utilization, data location transparency), user/system interaction, and
software development (methodologies, CASE tools). Software engineering methods are expected
to be used in core software development. The SDC will rely on publicly available and commercial
software where possible. Standards defined by the computing industry will be relied on heavily to
allow replacement and upgrading of software with new versions, either commercially produced or
written by the SDC. The extended time scale, both before and after detector tum-on, dictates the
maximum possible use of standards to minimize obsolescence.

Development of prototype versions of most of the core must occur before the subsystem groups
and other users begin writing detector specific software. Thus, development of the first release of
core software must parallel hardware design and development, starting in FY1993. Writing of
much of the detector specific software will begin after first release of the core. Later versions of
the core will preserve the look and feel of the frrst releases while providing additional functionality
(such as parallel processing support and optimization for different computing environments),
allowing early developed application software to remain in use. Chapter 3 below suggests a
schedule for production of the first versions of core and other SDC software. Note that although
the TOR assumes that the initial production versions of SDC application software should be
complete by the end of FY1998, it is recognized that development of this application software is
already taking place, and so every effort will be made to provide prototype core, data modeling and
software development systems as soon as possible.

1.3. Computing Tasks of SDC Off-line Software

The SDC software system must support several different computing tasks. While the various
software tasks need to be optimized for their specific requirements, they should share commOn
features and have a common "look and feel" for users to be able to move from one task to another.
The architectural model of the SDC off-line software system for supporting the tasks is shown in
Fig. 1-2, which also shows the relationship between the core and application software. The core
consists of both the outer shell or framework for each of the computing tasks (simulation,
production reconstruction, physics analysis, calibration and monitoring, and application code

development) together with the inner layer of kernel services. Physics applications (common tools
and libraries, community tools and libraries, and private code) reside in the middle layer in Fig.
1-2, where they are invoked by the outer frameworks, and can make use of inner kernel services.

Fig. 1-2. SDC Off-line Software Architectural Model

II)

'Oil) o C1)
+J.-\0-

~e .- ,g c:.-:::s-E"O
E~
8

5

6

Core software provides the structure within which other SOC off-line software tasks are
perfonned. If necessary, different frameworks with a common look and feel and different kernel
services will be provided for different computing tasks. The inner layer of kernel services includes
system services, data modeling and access services, communication among software layers, user
interface, process control of software execution, and common utilities such as histogramming,
plotting, fitting and event displays.

SOC off-line computing tasks are briefly described below.
1.3. 1. Physics Analysis

This task requires software involved with the selection of events and/or pieces of events, and with
cataloging the data samples for later use, in addition to physics analysis tools and programs (both
commonly used and individually written) which execute on the data samples. Convenient access to
large amounts of data must also be provided.

1.3.2. Application Code Development

This task utilitzes tools for analysis, design, coding, testing and debugging of software. Tools are
provided both for the "professionals" to develop core software and common tools, and for the
physicist to write private application code. The application code can be written in FORTRAN or
C++.

1.3.3. Simulation
Software for this task must provide an accurate model of the actual detector and physics processes
under study, and must generate simulated events that are capable of passing through all subsequent
stages of analysis.

1. 3. 4. Calibration

This task is involved with reading large amounts of raw data for specialized analysis of particular
subsystems to detennine calibration constants and monitor detector perfonnance. The task must
provide easy and straightforward access to user-chosen data samples and ways to incorporate
personal code into the application.

1.3.5. Level 3 Trigger and Production Reconstruction

This task requires software programs which execute against all events, "reconstructing" the raw
data into physically meaningful quantities that can be used in later stages of physics analysis. In
particular, the Level 3 trigger programs cause events to be discarded. The software will require
considerable computing power, and typically will not be repeated. Therefore, it must meet the
highest standards of software engineering to ensure its functionality and correctness.
1.4. Scope of Document

This document describes the proposed relationship between collaboration physicts and the central
SOC computing group, the relationship between centrally provided core software and physicist
written application software, and the additional services that will be provided by the central group.
It gives requirements as well as preliminary architectural choices for several key components of the
core software, including data modeling, communications, process control, and user interface. It
discusses the various categories of SOC software and gives early suggestions for the rules
governing the software development process for these categories. It discusses some of the
centrally provided software tools and libraries. Finally, it gives proposed schedules for
implementation of prototypes for the "core" software system.

This document specifically addresses processes and requirements to develop (and/or acquire) Core
and Common Tools software for the Physics Analysis and Application Code Development tasks.
Processes for specification, development, certification and maintenance of the various classes of
such software are highlighted in Chapter 4. Because Level 3 Trigger and Production
Reconstruction software is common across the SOC system and must meet high standards,
processes to incorporate it into the SDC baseline are also documented there. However, its
software requirements are not addressed in this document. Chapters 5 and 6 present requirements
for core services and common utilities that will be used in all SDC computing tasks. Processes and
requirements for: (1) Simulation and (2) Calibration are not yet addressed in this document.
Another Computing Group task force is studying the needs for SDC simulation systems and will
issue a report in a separate document.

The present document also does not concern itself with hardware architectures, which will be
studied separately. In particular, the PASS collaboration is studying the problems of storage and
access of petabyte (10**15 byte) size data samples and developing prototype systems to test out
their ideas, and the computing group maintains close contact with them.

Finally, the reader will recognize the preliminary nature of much of the planning described here.
This document is written with a major purpose of provoking thoughtful comments and suggestions
from the collaboration at large. Please do your part!

7

8

2. SDC SOFTWARE ORGANIZATION
In this chapter we describe the different classes of software to be considered in this document, and
give some scenarios showing how physicists will interact with the software systems as they
perform various computing tasks. We also discuss the other services to be provided by the central
computing group.
2. 1. Classes of Software
soc software is divided into the centrally provided core software (section 2.1.1), and the physicist
provided application software (section 2.1.2). In addition there is software that supports
application code development (section 2.1.3).

2. 1. 1. Core Software
SDC Core Software consists of kernel services (Sections 2.1.1.1-2.1.1.6) and shells or
frameworks (Section 2.1.1.7) for the different computing tasks.

2.1.1.1. System Services
System Services include basic operating system functions of system and resource management, 110
management, system administration support, and access control. Other management functions
belong to this class. Components include:
1. Operating system
2. System management services
3. Network operating system/management
4. Code management
5. Metrics collector

2.1.1.2. Communication Services
Communication Services effect the flow of communications among the other classes of SDC off-
line software in a heterogeneous environment. Components include:
1. Distributed message service
2. Distributed remote procedure call
3. Communications application program interface (API)

2. 1.1. 3. Process Control
Process Control supports the definition of a "control map" (a graphical representation of the
collection of software modules and their relationships) for execution of software tools/programs to
accomplish a physics analysis task or other defined tasks. It also initiates and controls activation of
tools/programs along the control map through completion of the task. Components include:
1. Process defmition
2. Process enactment
3. Module execution.

2. 1. 1.4. Graphical User Interface
A single Graphical User Interface (GUI) provides the facilities for a friendly, consistent "look and
feel" interface to people using the SDC off-line system. Components include:
1. User interface (UI) builder
2. Presentation service
3. GUI application program interface (API)

2.1.1.5. Data Services
Data Services provide the facilities for: (1) definition of data structures (data modeling); (2)
program access to the data (data repository API); and (3) efficient storage, retrieval and
manipulation of the data (data repository I manager). Components include:

1. Data modeling
a. Graphical user interface
b. Data base defInition

2. Data repository
a. Data base defInitions
b. File/object catalog
c. EffIcient data query/extraction
d. Evolution of data base defmitions

3. Data repository API
a. Complex data structure support
b. FORTRAN and C(++) support
2.1.1.6. Common Utilities

The fInal component of the kernel services is a collection of commonly used utilities, collected into
stand-alone packages (utility tools) and utility libraries of independently callable routines (utility
subroutines). Examples of such utilities are histogramming packages, fitting packages, and
graphics routines.

2.1.1. 7. Shells
An important component of the core software is the set of shells or frameworks that will be
provided for the different SDC computing tasks. Five separate tasks have been identifIed:
1. Level 3 TriggerlProduction Reconstruction
2. Physics Analysis
3. Calibration
4. Simulation
5. Application Code Development
These computing tasks differ in the degree of interactive control necessary and in their 110
requirements. Production reconstruction is batch oriented, with minimal interactive requirements.
The task accesses large amounts of data serially for both input and output, and must take advantage
of parallel processing systems. Simulation is batch oriented with no input and serial output.
Physics analysis is somewhat more interactive and requires random access to input events.
Application Code development is extremely interactive, with full access to debugging tools and
symbol tables, but needing only small numbers of events.
Users must be able to run the same physics application code for any of these tasks. Thus, the core
software must provide a set of frameworks, optimized differen,t1y for the differing needs of the
separate computing tasks, with a common look and feel and a common interface that allows
physics software to move easily from one task to another.

2. 1.2 . Application Software
Physicist provided application software is divided into several categories on the basis of:
1) whether the software is a complete stand-alone package (a tool), or a collection of callable
routines (a subroutine library);
2) how widely used is the software. There is a hierarchy ranging from common software (used by
the entire collaboration and maintained by the central computing group), to community software
(used by, for example, a subsystem group and made available to the collaboration), and private
code. Common and community software have stricter testing and certifIcation requirements than
private code, as described more fully in chapters 3 and 4.
Some of the most widely used common and community tools and subroutines may be written by
the central computing group or be imported from outside the collaboration (eg, CERNLm).

9

10

This application software will most likely be written in a variety of programming languages. While
it is anticipated that core software will probably be written in C++, it is expected that physicists
will continue to make heavy use of both FORTRAN 90 and FORTRAN 77.

2.1.2.1. Common Tools
It is anticipated that a suite of common tools will be integrated and maintained at the SSCL by the
SDC Computing Group, intended to be widely used throughout the collaboration. Approximately
10 - 15 physics tools might be included, such as a jet cluster finding package, an event display
package, and an electron identification package. These tools are self contained stand-alone
packages.

2. 1.2.2. Common Subroutine Libraries
In addition to the Common Tools, standard libraries of subroutines, used by these tools and
others, will be integrated and maintained by the central SDC Computing Group. These libraries
can be used one routine at a time.

2.1. 2.3. Community Tools
There are other widely used physics tools which will not be supported by the central SDC
Computing Group. However, these applications will be cataloged and made available to the
collaboration "as is".

2 .1.2.4. Community Subroutine Libraries
Other widely used libraries of subroutines also exist, which will not be supported by the central
SDC Computing Group. As with the Community Tools, these libraries will be cataloged and made
available to the collaboration "as is".

2.1.2.5. Private Code
As has always been the case, typical physicists will often be creating their own code for physics
analysis. This code may take the form of:

a) Tools I subroutines written using SDC common tools and standards such as those in the
SDC Developer's Toolkits (see Section 2.1.3.1), to minimize complexity and maximize
efficiency:
b) "Roll your own" tools I subroutines.

Use of SDC common tools and standards will be highly encouraged when accessing SDC data.
2.1. 3. Application Code Development Software

Besides the core software itself, the SDC Computing Group will also provide tools and
methodologies for development of the different classes of SDC software. Chapter 4 discusses in
detail the processes to be used for software development, including procedures for code
certification and migration of code from one level to another.

2.1. 3.1. Software Development Tools
Software development tools for SDC Core developers and physicists will be packaged into one or
more SDC Developer's Toolkits. Both commercial and HEP community "standard" development
tools are likely to be included. Typical components are:
1. Editor(s), compiler(s), debugger(s)
2. Data access and other API programming conventions
3. User's and Style Guides
4. Checklist(s)
Core developer and other selected developer toolkits might optionally contain process control
and/or code management clients.

2.2. Other Centrally Provided Services
Section 2.1 identified three separate functions that the central computing group will provide:
1) "Ownership" of the core software: the central group will specify, design, code, test and maintain
the core software (subject to review and critique from the collaboration);
2) Providing software development tools, procedures and environments for various classes of
software for use by both the central group and the collaboration at large; and
3) Maintenance of common tools and libraries, and ownership of certain of these toolsllibraries.
In addition, the central group will provide software support services to the collaboration at large.
(This is independent of any hardware support services such as system design, procurement, and
system management which are outside the scope of this document.) These support services do not
form part of the offline software architecture, but they are important in understanding the proposed
relationship between the collaboration and the central computing group, so they are listed here.
In general, these support activities have to do with testing, integrating and certifying code,
packaging physicist code into "release versions" for distribution to the collaboration, porting code
to different hardware platforms, and maintaining and documenting code beyond what is done by
the code authors. The central group will supply a standard uniform tool for accessing and
maintaining software documentation. The code authors are still responsible for fixing bugs in the
code as they are discovered, but the central group provides a clearing house for packaging and
distributing software tools and subroutine libraries. Code is "delivered" to the central group by the
code authors, whereupon the central group takes on some of the testing and code maintenance
activities. These relationships are described more fully in chapter 4 where the software processes
for different categories of code are defined.
Finally. note that while the central computing group is primarily located at the SSCL, it is also
composed of additional collaboration physicists and computer specialists located at remote
locations who work in close conjunction with the portion of the group at SSCL.
2.3. User Interaction With SDC Software
This section gives some examples of how users will interact with the various classes of software
defined in Section 2.1. User roles and typical usage scenarios are described.

2.3. 1. User Roles: Data Services
The purpose of this section is to define who will produce and use the Data Services and how
production and use is envisioned to occur. There are different groups of data tools (or data tool-
kits) for different activities, and it is envisioned that there will be different people involved in the
various stages of data service production and use. Therefore, the roles which follow describe the
different types of people involved and how they might be involved in data service production
and/or use.
There are two general types of people involved in data service production and use: (1) the SOC
Computing Group (Core-Developer group) primarily at the SSCL; and (2) the User-Developer or
typical physicist at a local institution, regional center or at the SSCL. These groups of people are
further defined as follows:
1. Core-Developers

a. Generic Data Tool-Kit Provider
Typical Skills : Physicists and Professional Software Engineers
Tasks :

Specifies, designs and makes or buys the data tool-kits which are not physics
specific. Typically these would include a Data Modeling Tool-Kit with a Graphical

11

12

User Interface (GUI) to be used at analysis/design time and a Data Repository Tool-
Kit with a GUI and Application Program Interface (API) to be used at code and
run-time.
Integrates the above generic data tool-kits within the overall Core software
architectural framework. Within the Core architecture these generic tool-kits are
part of data "services".

b. Global Physics Data Tool-Kit Provider
Typical Skills : Physicists and Professional Software Engineers
Tasks :

Uses the generic data modeling tool-kit to analyze, design and develop the global
physics data definitions (data dictionary or metadata) for the general use data bases.
This might include, for example, the calibration data base anellor the top level
hierarchy of the production reconstruction data base.
As part of the above activity implements "built in" types (classes) of common use
data structures for subsequent inclusion in unique physics code developed by the
User-Developers described below. The "built in" types depend on the
implementation, but might take the form of C++ structures or FORTRAN 90
TYPEs. (See below for further discussion. These built-in types may be compiled in
or interpreted at run-time.)
Designs and develops any FORTRAN 90 or FORTRAN to C++ "bridge" or API
code as needed to access the underlying data transparently.
Documents guidelines for use of the global data definitions. These guidelines are
used by the User-Developer described below. They include such things as on-line
help, programming style guide, descriptions on how to use the APIs, how to use
the GUI to search through the data definitions on-line, etc.
Provides a tool as needed to import any existing Zebra bank or other data structures
and store within the global data defmitions described above.
Maintains and refines the global data definitions using the data modeling tool to
check consistency and using run-time tools to tune performance. The toolkit
provider is responsible for overall data base integrity and efficiency.

2. User-Developer
Typical Skills: Physicists & part-time programmers
Tasks :

Uses the global data definitions (built-in types, etc.), APIs, data repository tool-kit,
and documentation provided by the Core-Developers to access physics data in the
development of physics analysis code. It is envisioned that physics data will be
accessed via built-in types or user defined types. A type in this context refers to a
named structure consisting of named elements which are also typed. Access to
elements of a structure would normally be direct and compiled in, e.g., in C++ one
would code "structure.element" or in FORTRAN 90 one would code
"structure%element" . This would avoid the need for navigational code.
Optionally, generic code could be written to access the definitions and interpret it at
run time.
Optionally, builds private user defined types. This would normally be done by
designing the user defined type using the generic data modeling tool-kit and
automatically generating the code from the definitions. (The code would be in the

fonn of a C++ structure or a FORTRAN 90 TYPE.) It would probably be a policy
to encourage sub-class definition on existing built-in types.
At any time browses the definitions and data on-line using the data repository tool-
kit. User-Developers granted write authority by the data administrator (SDC
Computing Group) would be able to update data on-line.

2.3.2. User Scenarios
Since the SDC Computing Group prepares to produce the SDC software system which will be
used by all SDC physicists doing analysis, it is important to create understanding with the eventual
users of this system at an early stage. This section outlines conceptual examples of how physicists
would interact with that system when doing analysis of SDC data and software development.

2.3.2.1. Analysis Scenario
After logging on to a workstation, the user can choose to analyse some existing data using existing
software supported by the appropriate experts (tracking, ...) and/or private software. A screen
similar to the one shown in Fig. 2-1 would present itself so that the user could build an executable
program, give it input data, and run it, solely with mouse drag-and-click operations. Visualization
tools could include histogram displays, event displays, etc.
A repository of reconstruction and analysis packages would be available. An executable program
could be fonned by dragging the desired packages into the programming window and joining them
together. Another window would contain a list of existing datasets (stored in a database) which
can be dragged into the input package to start the execution of the program. New reduced datasets
could be created and histograms viewed within a PAW-like environment

2.3.2.2. Development Scenario
When a user wants to develop a package for personal use or to provide new tools to the
collaboration, it is important to have development tools to make this process easier and as error-
proof as possible. Fig. 2-2 shows what the code development environment might look like.
VariOllS tools such as editors, debuggers and compilers would be integrated within one screen. An
important part would also be a "Package Builder" utility that would help the developer to make sure
that code satisfies whatever requirements are needed to ensure that it works within the underlying
"Core" framework.
A menu of possible operations would be presented to the user who intends to write a new package
(for personal or eventual SDC-wide use). For example, these operations could invoke an editor, a
debugger, or a package-builder utility to interface the code to the standard Core programming
scheme.

13

14

Fig. 2-1. Example User Analysis Screen

Programming Window

Commands

I Build

I Run Tracking

etc ...

etc ...

Output Window (PAW or other)

Commands

I I J Plot • - L I Print I • • - - • etc ... • .. , . • #"

15

Fig. 2-2. Example Application Code Development Screen

,-
Operations Editor Window

I Edit
Commands

I Build I Search I
I Debug I Compile I
I Package builder etc ...

etc ...

"- J

Package Builder Window

Commands

I Define I
I Build I
etc ...

16

2.4. Architecture of Core I Application Software
An architecture is needed to implement the SDC Corel Application software system for each
computing task to meet criteria such as supportability, upgradeability, etc. The SDC Computing
Group has adapted an architectural reference model for software engineering environments of the
European Computer Manufacturers Association (ECMA) and National Institute of Standards and
Technology (NIST). This model is sometimes called the "toaster" model because of a vague
geometrical resemblance; its adaptation as the SDC architectural model is shown in Fig. 2-3.
As can be seen in the figure, the elements of the Core services form the structure of the "toaster".
Each of the blocks of the structure:

Operating system;
User interface;
Communications;
Shell;
Process control; and
Data services

support (common and user) tools as "pieces of toast". Because of the design of the structure, tools
can easily be inserted and removed as desired. Similarly, each block of the structure has clean
interfaces with other blocks and the tools, so it can be easily upgraded or replaced.
Each tool is therefore a standalone process accessing data, communicating and being controlled, as
an entity. The tool may invoke (common or user) subroutines (in a library or elsewhere) whose
execution depends on the tool, i.e., they are not standalone.
A group of tools related to a Core service or a related group of physics tools may be packaged into
a toolkit. Though each constituent tool may perform functions complementary to the others, each
tool must conform to the requirements of the architectural model as a standalone process. Hence,
"pieces of toast" may have functional relationships, but they still can be easily upgraded or
replaced. '
The SDC Computing Group has adopted the toaster model architecture for both Physics Analysis
and Application Code development functions. However, the reader should be warned that these
will likely two separate toasters. The Physics Analysis toaster is the one shown in Fig. 2-3, where
the pieces of toast correspond to different physics or service packages. The Application Code
Development toaster, on the other hand, might contain individual CASE tools, editors and
debuggers, and code management tools. (Note that in this Application Development toaster the
various software development tools communicate directly with one another as in traditional toaster
models, unlike the Physics Analysis toaster where we have chosen to forbid direct tool-to-tool
communication.) Moreover, it is recognized there may even need to be separate toasters for each
of the different of SDC computing tasks described in Section 2.l.l.7, i.e., components of the
Core may be different depending on whether Production Reconstruction or Physics Analysis is
being supported. Nevertheless, the SDC Computing Group has established a design goal of
having common components between toasters wherever possible. In particular, it is hoped that the
shells or frameworks for the different computing tasks can be implemented as different scripts
driving the process control tool, rather than as totally separate "oasters.
In summary, the key features of our adaptation of the Physics Analysis toaster model are:
1) Modularity and replace ability of software components;
2) No direct interaction between software components; all interaction is either through control
messages sent through process control, or through data structures in the data services software
component; and
3) A clean well defmed environment in which physicists can embed application code.
The architectural model of Fig. 2-3 underlies the statements and descriptions of the chapters which
follow, and is referenced throughout.

Core Services D
• FIXed support services
• Simplifies construction/use of tools
• Common utilities such as histogramming

and plotting tools provided

All components replaceable

Tools
• Invokable facilities to support

analysis and software development

--....l

18

3. SOFTWARE COMPONENTS: Summary and schedule
This chapter introduces some of the new concepts of the SOC software system. Summaries are
provided of the processes to be used in developing and maintaining SOC software (3.1) and of the
services and operation of the Core Software (3.2). In the longer version of the document, details
of the Computing Working Groups plans for SOC software are expanded in Sections 4, 5, and 6.
In addition, a proposed schedule for implementation of prototypes of the SOC software system is
given in section 3.3.

3.1 Software Development Processes

The SOC Computing Group will defme the processes to be used for developing, maintaining and
distributing code for different classes of SOC software. The different classes of software,
introduced in Sect. 2.1, affect the reliability of the overall software system and of the data and
physics analysis to vastly different degrees. Accordingly, the processes to be used will be defined
with differing degrees of strictness. At one extreme, private code (see Sect. 2.1.2.5) used for a
short time by a single individual need have no required processes, but may still benefit from
process support tools provided centrally. At the other extreme, essentially all of the Core Software
(see Sect. 2.1.1) affects the reliability and stability of the whole SOC Offline system. Its
development cycle will need to be rigidly controlled, as will fixes and upgrades to it that are made
from time to time.

The SOC Computing Group has begun to defme the controls that will be exercised over the more
critical parts of the software and to identify which sets of controls will be applied to which classes
of software. Organizations to implement the certification process have also been tentatively
identified. It is envisioned that there would be a Software Review Board (SRB) to provide
oversight for the integration and interoperability of the SOC Software and a Certification Board
(CB) to determine that software has met the minimum standards defmed for it. It may also be that
there is only one board for these two functions.

Particular attention is paid here to certification of software where a formal procedure is needed. In
general, physics application software has less need of certification and other formal procedures
than does the core software. But there is significant overlap of the two classes: application
software for the level 3 trigger needs certification at least as stringent as that applied to any of the
core software.

3.1.1 Application Software Processes
This section describes the hierarchy of different classes of application software, and briefly outline
the processes that will apply to these different classes.

3.1.1.1 Certification Hierarchy

Fig. 4-2 shows the several classes of physics application code arranged according to criticality and
stringency of certification requirements. The figure summarizes a number of considerations
affecting the software hierarchy. One important point to note is that code often starts in a low-
impact category but migrates up the ladder as it is found to be useful by more than the original
creator. Additional levels of certification will be needed as software is used in more critical ways.
Clearly, developers would be well-advised to use high standards in developing all code to avoid
substantial work in bringing code up to the standards of higher levels.

3.1.1.2 Common Physics Software Certification

Certification assumes that common physics software has been developed outside the formal
processes of the SOC Computing Group. The software may be a candidate for a common tool or

community tool; for production reconstruction; or for level 3 trigger. The software must undergo a
technical certification process in order to be incorporated into the SDC baseline.

Certification means verification that software meets SDC requirements and standards for
robustness, documentation, and maintenance. Robustness requires that regression tests be
performed and analyzed either by the SOC Computing Group, or submitted by the developer /
submitter and reviewed by the Certification Board. Minimal acceptable documentation includes a
requirements / design specification and a user's guide. There must also be a maintenance
arrangement.

The appropriate board will evaluate robustness of the software by reviewing tests and
documentation provided by the developers, and conducting a suite of regression tests of the
software after it has been incorporated into the SDC baseline. Those tests will verify the
operational readiness of the software within the system (i.e., that the software has not "regressed"
upon being integrated).

Documentation will consist of a user's guide and a requirements/design specification. The latter
document will be particularly important for maintenance and testing. Documents may also be
required to meet standards for their content.

3.1.1.3 Private Code Development Process

Private code includes personal code and tools perhaps developed external to the SDC formal
software process and outside the scope of the SDC certification process. Users (or their
organizations) are solely responsible for the development, testing, maintenance, configuration
control, and documentation of private code. There must be safeguards against damage by private
code to the SDC database, network manager, etc.

The SDC Computing Group will provide SDC Code Developer's Toolkit(s) to SDC users. The
SOC Computing Group will also provide problem support on the toolkit(s). Private applications
written with the SDC Developer's toolkit(s) can more easily be added to the SDC common physics
software baseline, though in that case they must still undergo a certification process.

3.1.1.4 Community Tools Development Process

Community tools are tools widely used by SDC physicists but developed external to the SDC
software system. These will be provided "as is." Nevertheless, community tools must undergo a
certification and integration process. The certification requirements will be less stringent than those
for production reconstruction, Level 3 trigger, and common tools. The testing burden will be on
the developer/submitter. The community tool will be integrated into a repository by the SDC
Computing Group with support from the developer/submitter, if that is available. The repository
of community tools will be available for general use.

3.1.1.5 Common Tools Development Process

Common tools are large and integrated pieces of code generally used by every member of the
collaboration. Common subroutine libraries contain routines used by the tools. Because of its
widespread use, common tool software must undergo a certification / integration / build process.
Certification requirements will be less stringent than those for production reconstruction and the
Level 3 trigger, but more demanding than those for community tools. The testing burden will be
on the developer/submitter.

Integration of common tools into the SOC process control framework will be done by the SOC
Computing Group with support from the developer/submitter. The SDC Computing Group will
build and release the upgraded process control framework to SDC users.

19

20

3.1.1.6 Production Reconstruction Development Process

Production reconstruction code is critical to every physics analysis and study in the collaboration,
though it is expected to change relatively infrequently. Therefore, it will undergo a rigorous and
complete certification, integration, and build process. The process will include testing, change
control, and well-defined maintenance. Certification will be held to stringent standards. The
testing burden will be shared by the SDC Computing Group and the developer/submitter.
Integration and build will be done by the SDC Computing Group only. There will be a mandatory,
pre-defined test suite.

3.1.1.7 Level 3 Trigger Development Process
The Level 3 trigger code is closest to the data and also the most critical. When errors are found they
must be fixed quickly but safely, and there must be an understandable and repeatable audit trail of
changes made. There will be an extremely rigorous initial certification, integration, and build
process. A fast action group of experts analogous to a "SWAT team" will accommodate quick
changes and maintenance. The expedited process will give the SWAT team enough authority to
make decisions without first consulting the Software Review Board, although the SRB will review
any and all changes made by the SWAT team. The SWAT team will be encouraged to make
changes that are simple and foolproof rather than elegant and complex. It must leave a complete
audit trail.
The SWAT team approach stresses advanced preparation. In addition to regular members of the
SDC Computing central group, there will be several experts from the diverse areas of the detector
on call. The members will be armed with good documentation, analysis tools, and a test suite.
Any fixes or changes will leave an audit trail, and will be reviewed by the SRB at the first available
opportunity.

3.1.2 Core Software Development Process

Since Core software will be used and relied on by every user in the collaboration, the process must
be formal and rigorous, yet flexible enough to make improvements and meet changing needs. An
iterative software life cycle model will probably be used, with accommodations for rapid
prototyping of the user interface. It must also be possible to take advantage of the latest software
technology during the long life of the experiment The process will be utilized and "owned" by the
central SDC Computing Group located at the SSCL.

While the process described here may seem stringent by traditional HEP community standards, it
has been driven by several factors. The Core software is important to the entire collaboration. The
software will be utilized and relied upon by all SOC users. Because of its size, early schedule, and
several functionalities, the Core software will require multiple developers. In such an
environment, a properly managed process must be used to ensure quality of the software.

The Core software development process described in this section promotes early detection of
errors, resulting in long-term cost and time savings to the SDC. A well-defined process and
methodology for developing software also results in easier maintenance after the code is
developed.

For each major version of the Core software (Le., the first version and major upgrades), the
development process will consist of the following phases:

1) Planning (risks and dependencies analysis, schedule, development plan)
2) Requirements analysis (functionality, user interactions; use of structured

methodology)
3) Design (make or buy studies, languages and other tools to be employed)
4) RequirementslDesign Review

5) Coding (automatic code generation where possible)
6) Integration (generation of complete software system, high level tests; beginning of

configuration control)
7) Verification and testing (use of test cases; formal reporting and documentation of

corrections)
8) System Verification Complete Review
9) Build and delivery/Installation (Production versions made available; documentation

available; support begun)
3.1.3 Software Review Board

To accomplish configuration management of the core software and other software managed by the
central SDC Computing Group, a Software Review Board (SRB) will be formed. Membership of
the board will include representatives from the central SOC Computing Group at the SSCL and
other appropriate representatives from the SSCL and the SDC.

The SRB will be responsible for establishing and maintaining baselines for the following Core
software artifacts (by version):

Source/object/executable modules
Documentation
Test case scripts.

Therefore, the SRB must also plan and oversee management of the actual source and libraries.

Source/object/executable modules for a given version of the Core software will first be placed
under configuration control at the end of the integration phase, that is, just before the start of
verification/testing. Test case scripts for that version will also be placed under configuration
control then. From this point forward, the SRB will assess and classify problem reports and
schedule fixes to both modules and test cases. Problem reports will come from the verification
team at first, from users later.

3.1.4 Organization

The central SDC Computing Group will be responsible for performing several tasks. These
include:

1) Developing the Core software, starting with requirements analysis through integration,
test and delivery.

2) Performing systems administration of the SDC offline system.
3) Coordinating the certification of Common Physics software, including common and

community tools, the level 3 trigger, production reconstruction, and common
physics applications or tools.

4) Developing (as part of the Core services) an SOC Developer's Toolkit(s) and providing
it to Common Physics software developers and User Code developers as required.

5) Managing repositories for Common Utilities, Common Tools and Community Tools, as
well as their subroutine libraries.

6) Building the delivery packages of Core, Level 3 Trigger and Production Reconstruction
software, and distributing to appropriate SOC users. The central SDC Computing
Group will install delivery packages for central (e.g., server) platforms at the
SSCL. The group will also provide telephone support via a help desk for remote
installations.

7) Coordinating the maintenance of SDC offline software.
8) Managing core and common physics software baselines (configuration and code

management).

21

22

Although the final authority belongs to the SDC Collaboration as a whole, there will be several
management controls. The SRB will approve or reject proposed changes to the baselines. The CB
(which may be the same body as the SRB) will certify that changes and additions to common
physics software meet SOC certification requirements, and audit Level 3 SW AT team changes.
Several support tools and systems will aid in ensuring conformity to coding standards and
requirements.

3.2 Core Software

The core software consists of a number of programs, packages, and subroutine libraries used to
build ALL the standard SDC computing. It is envisioned that five standard shells or frameworks
will be built and maintained by a central group at the SSCL. The five identified supported
frameworks are: Level 3/ Production Reconstruction, Simulation, Analysis, Calibration, and User
Code Development

The typical user will start up one of these standard frameworks, which will then load all the
appropriate SOC and system services along with the necessary tools, user programs and/or fIles.
A number of the underlying programs might be the same from one framework to the next, but their
combination will be optimized for a specific task. It will also be possible for the user to construct
his or her own framework (using the basic services, utilities and libraries discussed below).
Initially, only the five frameworks listed above will be supported. However if enough people
request an additional framework, it will be added to the list of supported frameworks.

3.2.1 Core Software Architecture

There is one common Graphical User Interface, and all interaction with the user is done through
this one interface. Through this interface the user talks to the Process Control Service, which
controls when and if a specific tool will be loaded and run. This "picking" of sp~cific tools is
what customizes each run of a job/toaster. The various shells or frameworks dicussed above are
basically the control files that specify which combination of tools (and possibly customized
services) are to be used.

All communication among the various services is done only through the "Communication
Service". Access to the data, such as the raw event data, reconstructed event data, calibration
data, etc., are all done through Data Services.

The Tools in this model are user written applications. Examples of Tools are track reconstruction
processes, Vertex finding routines, and Calorimeter reconstruction. One single Tool can ev~n be a
"Toaster" with a collection of Tools as long as it meets all the requirements for a normal Tool.

Along with user tools there are also a number of "Core" common utilities and other common tools
and libraries supported by the central group at the SSCL.

Some of the general requirements of the "Core" Software are:
A "nice" Graphical User Interface

Able to control program flow using "point and click"
Able to control program using command line
Sessions tailorable by user

Program can be run in "batch mode"
Able to switch between "batch" mode and interactive mode "on the fly"

Possible to do dynamic linking of program
"Core" program completely modular

Able to replace all parts of core program
Parallel and sequential modes identical

Only one version of program exists and it can be run in either sequential or parallel
mode (Le., sequential mode = parallel mode run on a single node).

3.2.2 Core Software Services
The major components of the core software are the user interface, process control services,
communication services, and data services.

3.2.2.1 User Interface

The Core Software User Interface includes both the Graphical interface and the "batch" interface.
There must be a standard non-graphical interface to the "Core" program such that the user is able to
run the program from a standard "dumb" terminal, or in batch mode. It must be possible to
duplicate all commands in either "batch" mode or graphical interace mode.

The user must be able to set up the Process Control map and then execute the program
interactively. The user interface will be able to interact with the running program for the purposes
of debugging and to modify the control map interactively. The graphical interface will be used to
monitor the status of the program and will animate the process of the job.

3.2.2.2 Process control service

Process control is responsible for initiating and activating tools along one or more
ordered paths specified by the user. Tools are contained in frames which are connected to
nodes via links. A frame activates its tool when a signal appears on its input link. After
the tool completes its task, the frame puts a signal on the output link. The links buffer the signals
storing the control data associated with each signal. The nodes direct the flow providing event
loops, parallel processing and filtering by selectively producing output signals based on their
inputs. Multiple tools and copies of tools may be active at one time on one or multiple platforms.

3.2.2.3 Communications service

. The Communication Service provides two way. communications between components (e.g. tools
and services or two services; recall that direct tool-to-tool communication is not allowed) of the
SDC off-line system. This service supports a distributed heterogeneous environment

The client's view of the communication service is via an application programming interface,
supported by an interface defmition language, which hides implementation details of the underlying
communication services. (The communication service itself might be replaced transparently to the
client's knowledge)

One (or more) of the following communications mechanisms are supported:

1. Messages: Operations on messages include, for example, create, delete, update, send, receive,
acknowledge, reply and ignore. There may also be registration and de-registration operations if a
multicast delivery service is used. It is with this operation that a tool or service indicates what kind
of messages in which it is or is not interested (e.g., all messages referring to my objects).

2. Process Invocation (e.g. exec, fork, invoke and spawn).

3. Remote procedure calls.
3.2.2.4 Data Service

The SDC Data Service consists of a set of related software tools that work together to provide
services to the collaboration physicists and programmers relating to data description, access and
manipulation. These functions have traditionally been provided by home-made add-ons to the

23

24

FORTRAN language (such as ZEBRA and YBOS), and were primarily motivated by deficiencies
(in data structure definition and memory management capabilities) of FORTRAN. It is hoped that
for SDC these tools will be better integrated into the overall programming environment and
commercially supported. The tools are used by a variety of types of users, including software
"core" designers, physics algorithm software designers, and physics data analysts. Furthermore,
the tools are used in various stages of the software development cycle, including at design time
(where the tools are used in defining data structures), at coding time (where the tools are used in
writing actual physics reconstruction and analysis code), and at run time (where the tools provide
access to the data and allow the user to manipulate, store and retrieve data).

Data Model and Data Repository are two comlementary aspects of the Data Service. The Data
Model is the conceptual level of the Data Repository, while the Data Repository is the physical
realization of the Data ModeL The Data Model describes the conceptual items to be stored and the
connections between them. It does not involve any physical realization of the data in any form; it is
an abstract layout of the data. The Data Repository contains the schema (data structures and
defmitions), the data itself, and all the instances of the data classes (ie, the actual data).

The Data Modeling Tool aids in representing the abstract Data Model graphically and aids in
translating it into a physical realization in the Data Repository. It has a human interface, the GUI,
for describing the Data Model and a machine interface, the output, which makes table creation
code, class definitions, etc., for laying out the physical storage in the Data Repository. Activities
such as browsing the schema in the repository or browsing the data in the repository are, strictly
speaking, supported by the Data Repository API, although the GUI presented for these functions
should be very similar to that of the Data Modeling Tool to present a coherent picture to the user-
developers.

Most work on the Data Service so far has involved identifying requirements appropriate to three
different phases of software development:

Design time, when data structures are defined;
Coding time, when the data structures are used in the preparation of application programs;
Run time, when the actual data are retrieved and stored in the data repository, guided by the

previously defined structures.

The full set of detailed requirements for data services can be found in Chapter 5.

3.3 Proposed Schedule

Various components of the SDC software system need to be in place as soon as possible to allow
application software development to proceed. The current proposed schedule plans on providing
limited functionality prototypes of various software components as soon as feasible to allow
collaboration physicists to begin using and evaluating the software. The proposed near-term
schedule for delivery of these prototype components is:

Selection of prototype data modeling
methodology and first version
of corresponding tools

Version 1.0 of core SW (frameworks
and primitive kernel services)

Selection of SW Development
methodology

First version of SW development
tools/developers guide

Evaluation of and feedback on initial
prototypes

Preliminary fully functional version
of core software provided for use in
application code development

Dec., 1992

Feb., 1993

Mar., 1993

June, 1993

Apr.-Sept., 1993

Sept., 1994

The core prototype will include versions of data modeling software (based on ZEBRA), process
control, communication and user interface (using public domain tools). Version 1.0 will be simple
and easy to use while providing the basic core functionality. The separate prototype data modeling
package will make use of the commercial OMTool package to model some already existing SDC
data structures.

Later versions of the various software system components will follow, based on user experiences
with the early versions.

25

26

Note that the following chapters contain detailed technical
material and computer jargon and are mainly intended
for the computing group task force members.

Read further at your own risk! !

4. PROCESSES
This section addresses processes for the development and control of software specific to SDC
Offline Computing. However, using these processes to meet SDC Online Computing needs as
well is not precluded. The software processes will be established so that support can be automated
to the maximum extent practical. Processes described here assume the existence of a central SOC
Computing Group located mainly at the SSCL. Some of the introductory material from chapter 3
is repeated so this chapter is self contained.

Throughout this section, references are made to the SDC offline computing tasks defined in
Section l.3, and the classes of software defmed in Section 2.l.
4.1. Process-Related Terminology
SDC offline software must support several SDC computing tasks: (1) Physics Analysis;
(2) Application Code Development; (3) Simulation; (4) Calibration; and (5) Level 3
TriggerlProduction Reconstruction. Code for each task consists of Core and Physics
Applications. Different SDC computing tasks will have different core and physics
applications, but common code will be used wherever possible. Fig. 1-2 shows the relation
between software and the tasks.

Core software is comprised of a kernel of services and a shell, or framework, for the
user to control job setup and execution. Core software is central to the operation of the SDC
computing system. Some tools belonging to the core, called Common Utilities, may be used for
several tasks. Core software must be robust and reliable. The central SOC Computing Group will
develop (or acquire), integrate and maintain core software.

Physics applications consist of standalone processes/packages called tools in this document, and
libraries of subroutines (not standalone) used by tools. This software is expected to use general
services provided by the core. Production reconstruction and Level 3 trigger software have a
special importance to the experiment; they must be as free of error as possible and very well
documented. Physics applications will largely be provided by appropriate SDC subsystem groups
and/or users.
In this chapter, Common Physics Software means physics application software
developed by physicists outside the central SOC Computing Group which undergoes a technical
certification process in order to be incorporated into the SDC baseline. Common physics software
includes:

Physics Analysis Applications (Section 2.l.2):
Common tools
Common subroutine libraries
Community tools
Community subroutine libraries

Production Reconstruction
Level 3 Trigger.

Fig. 4-1 shows Core and Common Physics Software within the context of our toaster architectural
model.

27

28

4.2. Process Considerations for SDC Software
4.2.1. Physics Applications
4.2.1.1 Certification

A number of tools as well as subroutines used by tools will be developed outside the central SOC
Computing Group located at the SSCL, but will be intended for use throughout the collaboration.
These may include common tools, subroutines in common subroutine libraries, community tools,
or subroutines in community subroutine librarie:;. In addition, production reconstruction and Level
3 trigger software will be developed by dispersed groups of experts outside the SDC Computing
Group at the SSCL.
Because such software is so critical and/or has impact on many users, its quality must be assured.
A technical certification process, tailored to the impact of the specific software to the SOC, will be
used to incorporate the software into the SOC baseline. Certification will ensure the software
meets standards for robustness, documentation, and maintenance and that appropriate test criteria
have been established

The several classes of code have different levels of criticality and impact on users; therefore, there
are several levels of certification. Each level includes different requirements for testing,
documentation, and maintenance. Fig. 4-2 shows the several classes of code arranged according
to criticality and stringency of certification requirements.

4.2.1.2 Physics Analysis Application Software
A significant portion of Physics Analysis Application software will be application code written by
physicists. Application code consists both of tools and subroutines written using SDC common
tools and standards such as those in the SDC Developer's Toolkit(s) and "roll your own" tools and
subroutines. The user (or the user's organization) will be solely responsible for controlling
development, incorporation into the baseline, and maintenance of application code. However, the
SDC offline system must provide safeguards to ensure that application code cannot damage the
database or the process control framework.
There are Community Tools and Community Subroutine Libraries widely used by physicists
which must be made available to the SDC. A less stringent certification process will be applied to
incorporate them into the SOC baseline and make them available "as is" in a repository.
Maintenance will be the responsibility of the owning groups, with updates and upgrades to be
coordinated by the central SDC Computing Group.
The Common Tools and Common Subroutine Libraries to be made available as "standards"
throughout the collaboration will likely be newly developed, though some reuse is possible. Some
(or all) such packages may be developed by small, dispersed groups outside the central SDC
Computing Group. However, a stringent certification process will be applied to incorporate these
tools into the SOC baseline. The SDC Computing Group will integrate tools under strict control.
The SDC Computing and developer groups together will maintain the code, under control of the
SDC Computing Group.

4.2.1.3 Production Reconstruction Application Software
Production Reconstruction software is expected to be a combination of new and reused code
developed by dispersed groups, outside the central SDC Computing Group. An external technical
"czar" will integrate the software and verify its robustness. Because production reconstruction is
so critical, a formal, rigorous certification process will qualify the code before it is incorporated
into the baseline. Since the code is not expected to be changed frequently, formal version and
change control processes will be applied.

LWR2.COR UI<I..35H

Fig. 4-1. Core and Common Physics Software in the Toaster Model

"Core" Software
Common Physics
Software

29

a tool at a given
rung of the

lader may use
subrou tines at
the same level

or higher

tools and
subroutines
may migrate
up the ladder
by meeting
the stricter
certification
standards of
the new level

Leve 1 3 Tri gger

Product ion
Reconstruct ion

Common Tools and
Subrout i ne L i brari es

Community Tools and
Subrout i ne L i brari es

User Code
Tools and Subroutines

Jl

increasingly
stringent

certification
standards

w o

4.2.1.4 Level 3 Trigger Application Software
Level 3 Trigger software is also expected to be a combination of new and reused code developed
by dispersed groups, outside the central SOC Computing Group. An external technical "czar" will
integrate the software and verify its robustness. A formal, rigorous certification process will
qualify this critical code before it is incorporated into the baseline. However, because the Level 3
Trigger will be tuned rather frequently, flexible control processes will be needed ... Therefore, the
level 3 trigger code will be maintained through a "SW AT team" approach. The "SW AT team" will
necessarily leave an audit trail of its actions.

4.2.1.5 Application Code Development Software
Software development tools for SOC Core developers and physicists will be packaged into one or
more SOC Developer's Toolkits. Both commercial and HEP community "standard" tools will
likely be included. Development, integration and maintenance of these Toolkits will be strictly
controlled by the central SOC Computing Group.

4.2.2. Core Software
Core software consists of kernel software and shell software. The kernel contains the user
interface, process control, communication services, data services, common utilities, and,
implicitly, system services. The shell controls job execution.
System Services software, which is principally the native and network operating systems, will be
mostly commercial. Similarly, the User Interface software, with a graphical orientation and
compliance to standards (e.g., Motif), will be mostly commercial. Custom screens for the user
will be newly developed, probably using commercial tools.
Process Control software may have a commercial component, particularly for high-level process
defmition and enactment, Likewise, Communication Services will probably be a mix of
commercial and newly developed (particularly at the tool level) software.
Data Services will likely utilize commercial products for data modeling and database management.
However, data access mechanisms from physics code may be newly developed.
Common Utilities will have a mixture of specialty and commercial tools and will contain at least the
following:

event display
histogrammer
plotter
fitter

The Shell to control task execution for physics analysis and other tasks will most likely be newly
developed.
Since every user in the collaboration will depend on the services and utilities of the Core, this
software will be developed (or acquired). integrated, and maintained by the central SOC
Computing Group. Because the Core is critical, the SOC Computing Group must exercise
rigorous control over its development and maintenance.
4.3. Physics Application Software Processes

4.3.1. Common Physics Software Certification
Certification assumes that common physics software has been developed outside the formal
processes of the SOC Computing Group. The software may be a candidate for a common tool or
community tool; for production reconstruction; or for level 3 trigger. The software must undergo a
technical certification process in order to be incorporated into the SOC baseline.

31

32

Certification means verification that software meets SDC requirements and standards for
robustness, documentation, and maintenance. Robustness requires that regression tests be
performed and analyzed either by the SOC Computing Group, or submitted by the developer /
submitter and reviewed by the SOC Computing Group. Minimal acceptable documentation
includes requirements and design specifications and a user's guide. There must also be a
maintenance arrangement
The SDC Computing Group will evaluate robustness of the software by reviewing tests and
documentation provided by the developers, and conducting a suite of regression tests of the
software after it has been incorporated into the SDC baseline. Those tests will verify the
operational readiness of the software within the system (Le., the software has not "regressed"
upon being integrated), as well as compliance with its requirements and design specifications.
Documentation will consist of a user's guide and a requirements/design specification. The latter
document will be particularly important for maintenance and testing. Documents may also be
required to meet standards for their content.
Negotiation of a maintenance arrangement between the developer(s) and the central SOC
Computing Group is a key part of the certification process. The arrangement defines the
responsibilities of both developer(s) and the SOC Computing Group after its integration into the
SDC offline system. It governs creation of fixes and upgrades to the subject software under the
coordination of the SDC Computing Group. Any fixes or upgrades not done in accordance with
the maintenance arrangement will subject the software to recertification. Since the SOC Computing
Group cannot have expertise in all SOC offline software, maintenance arrangements will be
necessary to ensure quality and timely support to SDC users.
Certification Scenario
Below is the scenario for certifying common physics software for incorporation into the SDC
baseline. The scenario assumes the existence of a Certification Board (which may be the same as
the Software Review Board, in practice).

1. The developer/submitter submits a Change Request (CR) to incorporate software into the SOC
baseline.

2. The Software Review Board assigns the Certification Board to assess and assign a priority to
the CR.

3. The developer/submitter furnishes documentation proving that the application meets SOC
certification requirements, including a negotiated maintenance arrangement

4. The Certification Board "certifies" the software and recommends a disposition of the CR to the
Software Review Board.

5. The Software Review Board accepts or rejects the CR.

6. If the CR is approved, the application is incorporated into the SOC baseline applications
repository, the application is cataloged, and made available for SOC use.

7. If the CR is rejected, feedback with reasons is provided to the author.
4.3.2. Private Code Process

User code includes personal code and tools perhaps developed external to the SDC formal software
process and outside the scope of the SOC certification process. Users (or their organizations) are
solely responsible for the development, testing, maintenance, configuration control, and

documentation of application code. There must be safeguards against damage to the SOC
database, the network manager, and so on.
The SDC Computing Group will, however, provide SOC Code Developer's Toolkit(s} to SOC
users. The SDC Computing Group will provide problem support on the toolkit(s}. User
applications written with the SOC Developer's toolkit(s} can more easily be added to the SOC
common physics software baseline, though they must still undergo a certification process.

4.3.3. Community Tools Process
Community tools are tools widely used by SOC physicists but developed external to the SOC
software system. These will be provided "as is." Nevertheless, community tools must undergo a
certification and integration process. The certification requirements will be less stringent than those
for production reconstruction, Level 3 trigger, and common tools. The testing burden will be on
the developer/submitter. The community tool will be integrated into a repository by the SOC
Computing Group with support from the developer/submitter, if that is available. The repository
of community tools will be available for general use.

4.3.4. Common Tools Process
Common tools are large and integrated pieces of code generally used by every member of the
collaboration. Common subroutine libraries contain routines used by the tools. Because of its
widespread use, common software must undergo a certification / integration / build process ..
Common tool certification requirements will be less stringent than those for production
reconstruction and the Level 3 trigger, but more demanding than those for community tools. The
testing burden will be on the developer/submitter.
Integration of common tools into the SDC process control framework will be by the SDC
Computing Group with support from the developer/submitter. Build and release of the upgraded
process control framework to SDC users will be by the SDC Computing Group.

4.3.5. Production Reconstruction Process
Production reconstruction code is critical to every physics analysis and study in the collaboration.
It is expected to change slowly. Therefore, it must undergo a rigorous and complete certification.
integration, and build process. The process will include testing, change control, and well-defined
maintenance. Certification will be held to stringent standards. The testing burden will be shared by
the SDC Computing Group and the developer/submitter. Integration and build will be by the SOC
Computing Group only. There will be a mandatory, pre-defined test suite.

4.3.6. Level 3 Trigger Process
The Level 3 trigger code is the closest to the data and also the most critical. When errors are found
they must be fixed quickly but safely, and there must be an understandable and repeatable audit
trail of changes made. There will be an extremely rigorous initial certification, integration, and
build process. A " SWAT team" approach will accommodate quick changes and maintenance. The
expedited process will give the SW AT team enough authority to make decisions without first
consulting the Software Review Board, although the SRB would review any and all changes made
by the SW AT team. The SWAT team will be encouraged to make changes that are simple and
foolproof rather than elegant and complex. It must leave a complete audit trail.
The SWAT team approach stresses advance preparation. In addition to regular members of the
SDC Computing central group, there will be several experts from the diverse areas of the detector
on call. The members will be armed with good documentation, analysis tools, and a test suite.
Any fixes or changes will leave an audit trail, and will be reviewed by the SRB at the first available
opportunity.
4.4. Core Software Development Process

33

34

This section describes the process to be applied to develop the services and common utilities of the
Core software. Since Core software will be used and relied on by every user in the collaboration,
the process must be formal and rigorous, yet flexible enough to make improvements and meet
changing needs. An iterative waterfall or spiral life cycle model will probably be used, with
accommodations for rapid prototyping of the user interface. It must also be possible to take
advantage of the latest software technology during the long life of the experiment. The process
will be utilized and "owned" by the central SOC Computing Group located at the SSCL.
While the process described here may seem stringent by traditional HEP community standards, it
has been driven by several factors. The Core software is important to the entire collaboration. The
software will be utilized and relied upon by all SOC users. Because of its size, early schedule, and
several functionalities, the Core software will require multiple developers. In such an
environment, a properly managed process must be used to ensure quality of the software.
The Core software development process described in this section promotes early detection of
errors, resulting in long-term cost and time savings to the SOC. A well-defined process and
methodology for developing software also results in easier maintenance after the code is
developed.

4.4.1. New Development
For each major version of the Core software (Le., the first version and major upgrades), the
development process will consist of the following phases:

planning
requirements analysis
design
coding
integration ,
verification and testing
build and delivery/installation.
4.4.1.1 Planning

The process will start with a Planning phase, which consists of three basic tasks. Risks and
dependencies will be identified and assessed for severity, and mitigation plans will be established.
A schedule will be developed, reflecting dependencies and mitigation plans for risks. Finally, a
development plan will be defined to guide and coordinate software development across the group.

4.4.1.2 Requirements Analysis
~uring this phase, the functionality of the software will be partitioned into manageable, and
therefore implementable, components. Detailed requirements for the entire software system, its
components, and their interfaces will be defined and documented in one or more specifications.
How users will interact and operate the system will be defined. This effort may also involve rapid
prototyping of the user interface, to obtain user feedback into the requirements.
A structured methodology such as object-oriented analysis will likely be employed in this phase.
Tools supporting the methodology may also be used.

4.4.1.3 Design
In this phase, a design will be produced and documented. That design must fit within the SOC
physics analysis architecture presented in this document. The various components of the software
may be developed from scratch or acquired from already existing code. The decision whether to
make or buy should be based on trade studies. Such studies are conducted to select the appropriate
commercial or other existing products that satisfy component requirements. Language(s) and other
supporting tools to be used in the coding phase will be determined.

A structured methodology compatible with that used in the Requirements Analysis phase (e.g.,
object oriented design) may be employed. Tools supporting the methodology may also be used.

4.4.1.4 Coding
Software modules will be coded (or modified), debugged and individually tested by the developers
during this phase. Necessary maintenance and user documentation will also be produced.
Supporting tools which exploit the latest software technology (e.g., automatic code generation)
will be utilized where available and cost effective.

4.4.1.5 Integration
Newly developed or otherwise acquired software modules will be combined to form a complete
software system during the integration phase. High-level tests will ensure that the components of
the system operate well together. At the conclusion of this phase, the source and object modules
will be placed under configuration control as described in Section 4.4.4.

4.4.1.6 Verification and Testing
As the software is being designed and coded, a parallel effort will take place to defme test plans
and test cases for independent verification and test of the system. Test plans and test cases will be
placed under configuration control by the completion of the integration phase.
During the verification and testing phase, test cases will be executed against the integrated software
system. Problems encountered will be formally reported and corrected as required, in the manner
described in Section 4.4.5. Adequacy of user and maintenance documentation will also be
evaluated. The phase will be complete when all known problems have been corrected or resolved,
and all test cases have successfully executed.

4.4.1.7 Build and Delivery I Installation
At the start of this phase, the software system will have been determined to be ready for SDC
users. Executable and other modules will be built or packaged onto fixed media located at the
SSCL and/or distributable media for distribution to SDC regional centers and user institutions.
Installation instructions for the appropriate platforms will be included. Telephone support for
remote installation will be provided by the central SDC computing group located at the SSCL.
Different "packages" may be distributed, depending on the type of user. For instance, different
packages may be distributed to:

Regional centers, requiring data base and data services software, among other modules.
Common tool developers, Le., physicists developing code for the entire collaboration,
which will require special SOC Developer's Toolkit(s) to integrate into the SDC Offline
System.
Typical physicists, developing private application code to support their physics analyses.
4.4.2. Inspections

Selected members of the central SDC Computing Group will hold inspections during the
Requirements Analysis, Design and Coding phases. A small group of related artifacts (whose type
depend on the development phase) will normally be inspected. Issues identified at inspections will
be tracked as action items which must be resolved before that software can move to the next phase
of development

4.4.3. Reviews
To provide users with timely visibility and input into SDC offline software as it is being
developed, one or two collaboration-wide reviews will be held. A RequirementslDesign Review
will take place at the end of the Design phase. A System Verification Complete Review will be
scheduled at the end of the Verification/Testing phase. These reviews will cover the entire SDC

35

36

offline software system in detail. Action items from the reviews will be tracked to resolution, and
every attempt will be made to resolve them before moving to the next phase of development

4.4.4. Configuration Management
To accomplish configuration management of the core software and other software managed by the
central SDC Computing Group, a Software Review Board (SRB) will be formed. Membership of
the board will include representatives from the central SOC Computing Group at the SSCL and
other appropriate representatives from the SSCL and the SDC.
The SRB will be responsible for establishing and maintaining baselines for the following Core
software artifacts (by version):

Source/object/executable modules
Documentation
Test case scripts.

Therefore, the SRB must also plan and oversee management of the actual source and libraries.
Source/object/executable modules for a given version of the Core software will first be placed
under configuration control at the end of the integration phase, that is, just before the start of
verification/testing. Test case scripts for that version will also be placed under configuration
control then. From this point forward, the SRB will assess and classify problem reports and
schedule fixes to both modules and test cases. Problem reports will come from the verification
team at first, from users later.
At the end of the verification/testing phase, the documentation will be placed under configuration
control. When the build packages have been completed and installation instructions written (Le.,
the software is ready for delivery), a coordinated baseline of build package(s),
source/object/executable modules, documentation, and test cases will be established for that
version of the Core software. "Owners" of each component of the baseline will also be assigned
for maintenance. From that point forward, the SRB will manage all changes to the baseline and its
contents.

4.4.5. Maintenance
The maintenance phase for a given version of the Core software begins after delivery to users.
During this phase, the central SDC Computing Group at the SSCL will provide a fIrst level of user
support through a telephone help desk. The help desk will support users of the Core software in
resolving usage problems. If a user suspects a bug or desires an enhancement to the Core
software, the help desk will provide aid in completing a Problem Report or Change Request form,
as appropriate.
Most of the activity in the maintenance phase consists of handling Problem Reports and Change
Requests, under the auspices of the SRB. Typical scenarios for the handling of a Problem Report
and Change Request are given in Section 4.4.5.1 and Section 4.4.5.2, respectively. The SRB will
perform its configuration management responsibilities by controlling the Core software baseline(s).
The SRB will:

assess and classify Problem Reports
assess and classify Change Requests
schedule fixes and changes.

The SRB will also oversee management of the source and other libraries.
Note that these mechanisms are not intended to put any artificial barriers between users and code
maintainers. Most problems will be dealt with efficiently electronically, without requiring any
physical meetings of the SRB.

4.4.5.1 Problem Report Scenario

This section describes a typical scenario for handling a Problem Report (PR) by the SRB and the
central SDC Computing Group at the SSCL.
A user (perhaps with the aid of the help desk) submits a Problem Report that describes the problem
encountered, the software components involved (if known), and the circumstances of the problem.
The Software Review Board (or an authority which it has designated) assigns a priority to the
Problem Report. A typical priority scheme might have three levels, such as:

Work in progress cannot continue; many users may be affected. No solution has been
identified.
Work in progress is severely impacted, or a significant number of users is adversely
affected. A degraded or tedious solution may be available.
There is minor impact to work in progress and few users are involved. A solution is
probably available.

The SRB or its designated authority assigns the appropriate owner(s) of the software involved to
investigate. The maintainer provides a solution or workaround, if possible.
The Software Review Board classifies the Problem Report based on results of the investigation. If
a fix is not necessary, the Problem Report is returned to the submitter with an explanation. There
may be reference to a planned documentation update, if applicable. If a ftx is necessary, it is
scheduled.
The fix is developed and verified. Updates to documentation and test cases may also be necessary.
The fix is released. The SRB authorizes the necessary changes to the software baseline. The
Problem report is closed.

4.4.5.2 Change Request Scenario
This section describes a typical scenario for handling a Change Request (CR) by the SRB and
central SDC Computing Group at the SSCL.
A user or developer submits a Change Request (CR) describing the desired change. The Software
Review Board assigns the appropriate owner(s) of the software involved to assess the CR based
on the impact on resources necessary in order to incorporate the change and impact on the user
community.
The Software Review Board approves or rejects the CR. If rejected, the CR is returned to the
requester along with a rationale. If it is approved, the CR is assigned a priority and scheduled for
incorporation into a version of the software. A typical priority scheme might have Mandatory,
Highly Desirable and Desirabler categories. The assigned priority is used in scheduling changes.
The change is developed and verifted. This effort includes the definition of new or modified test
cases and updates to documentation. The SRB authorizes changes to the software baseline.
The change is released, often packaged with other CRs into a new version or "release". The CR is
closed.
4.5. Organization
The central SDC Computing Group will be responsible for the day-to-day execution of the
processes described in this chapter. As such, the group will serve as the "working owner" of the
processes. Other dispersed members and groups of the collaboration will have responsibilities to
ensure their operation (e.g., board members or developers of Common Physics software).
Ultimate responsibility for the processes will belong to the full SDC Computing Group as the
process "owner". The central group and others having process responsibilities will therefore be
accountable to the full SDC Computing Group.

37

38

The central SOC Computing Group will be responsible for performing several tasks. Those
include:

Developing the Core software, starting with requirements analysis through integration, test
and delivery.
Performing systems administration of the SOC offline system. This task is elaborated in
Section 4.6.
Coordinating the certification of Common Physics software, including Core common tools
and utilities, the level 3 trigger, production reconstruction, and common physics
applications or tools.
Developing (as part of the Core services) an SOC Developer's Toolkit(s) and providing
them to Common Physics software developers and Application Code developers as
required.
Managing repositories for Common Utilities, Common Tools and Community Tools, as
well as their subroutine libraries.
Building the delivery packages of Core, Level 3 Trigger and Production Reconstruction
software, and distributing to appropriate SOC users. The central SOC Computing Group
will install delivery packages for central (e.g., server) platforms at the SSCL. The group
will also provide telephone support via a help desk for remote installations.
Coordinating the maintenance of SOC offline software. The central group will be
responsible for maintaining the Core software. This responsibility includes maintaining
newly developed software, and interfacing with vendors for any commercial software. The
central group will negotiate maintenance arrangements with outside developers for
Common Physics software, and coordinate proper execution of those arrangements. The
central group will coordinate fixes or changes to the critical Production Reconstruction
software, and audit "SW A T team" fixes or changes to the Level 3 Trigger software. The
Process Owner is the Computing Group of SOC, though the Working Owner is the SOC
Computing Group at the SSCL.
Managing core and common physics software baselines (configuration and code
management).

Although the final authority belongs to the SOC Collaboration as a whole, there will be several
management controls. The Software Review Board (SRB) will approve or reject proposed
changes to the baselines. The Certification Board (which may be the same body as the SRB) will
certify that changes and additions to common physics software meet SOC certification
requirements and audits Level 3 SW AT team changes. The several support tools and systems will
aid in ensuring conformity to coding standards and requirements.
4.6. Systems Administration
Systems administration will integrate the various core software components, build and install core
software at the central facility and at the regional centers, catalog and manage common physics
applications libraries. It will be responsible for systems management and network management. It
will oversee system tuning for performance and core software maintenance, negotiate and oversee
maintenance arrangements for common physics software.
User problem support will consist of an informal help desk and more formal incoming problem
report tracking.

5. Core Software
This chapter gives more detail on the requirements and architecture choices for the core software.
Some of the introductory material from chapter 3 is repeated so this chapter is self-contained.

5.1. Description of Software

The core software consists of a number of programs, packages, and subroutine libraries used to
build ALL the standard SDC computing. Five standard shells or frameworks will be built and
maintained by a central group at the SSCL. The five supported frameworks are: Level 3 /
Production Reconstruction, Simulation, Analysis, Calibration, and User Code Development.

The average user will start up one of these standard frameworks, which will then load all the
appropiate SDC and system services along with the necessary tools, user programs and/or files. A
number of the underlying programs might be the same from one framework to the next, but their
combination will be optimized for a specific task. It will also be possible for the user to construct
his or her own framework (using the basic services, utilities and libraries discussed below).
Initially, only the five frameworks listed above will be supported. However if enough people·
request an additional framework, it will be added to the list of supported frameworks.

5.2. Software Architecture

The exact "Core" Software architecture is not known with 100% certainty; however, a very
common model known as the "Toaster Model" (shown in Fig. 2-3) will be used for discussion
purposes and to help visualize how the various parts of the SDC software work together. It is
extremely important to remember that the "Toaster Model" is only a model. It will not be used to
dictate the construction of the SDC software, but to graphically demonstrate how the software is
connected. There are a number of basic services used to build the "toaster": Graphical User
Interface, Process Control, Communication Services, and Data Services.

There is one common Graphical User Interface, and all interaction with the user is done through
this one interface. Through this interface the user talks to the Process Control Service, which
controls when and if a specific tool will be loaded and run. This "picking" of specific tools is
what customizes each run of a job/toaster. The various shells or frameworks dicussed above are
available in control files that specify which combination of tools (and possibly customized
services) are to be used.

All communication among the various Tools and services are done only through the
"Communication Service".

Access to the data, such as the raw event data, reconstructed event data, calibration data, etc., is all
done by the Data Services.

The Tools in this model are user written applications. Examples of Tools are track
reconstruction processes, Vertex finding routines, and Calorimeter reconstruction. One single
Tool can even be a collection of tools with well defined inputs and outputs (possibly put together in
the same way a "Toaster" is) as they meet all the requirements of a normal Tool.

Along with the user tools there are also a number of "Core" common utilities and other common
tools and libraries supported by the central group at the SSCL.

5.3. User Interface.
S.3.t Scope

39

40

The purpose of this section is to describe the Users Interface and includes both the Graphical
interface and the "batch" interface. There must be a standard non-graphical interface to the "Core"
program such that the user is able to run the program from a standard "dumb" terminal, or in batch
mode. It must be possible to duplicate all commands in either "batch" mode or graphical interace
mode.

The user must be able to set up the Process Control map and then execute the program
interactively. The user interface will be able to interact with the running program for the purposes
of debugging and to modify the control map interactively. The graphical interface will be used to
monitor the status of the program and will animate the process of the job.

5.3.2 Requirements

The "batch" and graphical interfaces have a number of specific requirements which are outlined
below.

1. The graphical interface will include a ''point and click" feature.

2. The graphical interface to Process control will provide a display to indicate the
status of a run in progress.

Information available to be shown by the status display will include:

The overall flow map.
The status of each tool (active, dormant, absent).
The current event id for any active tool.
The list of write-authorized regions of the data structure associated with each frame.
The decision algorithm associated with each node.
The list of signals in each link buffer.

3. The layout and/or display must be tailorable by the user.

4. There will be a graphical interface to the Communication Service.

5. The user must be able to control the program using command line.

It must be be possible for a user to interact with the program (Process Control) using a simple
script language which can be entered from a "dumb" terminal being used in line mode. This also
implies that the user can write a simple script file which will control the loading and running of the
various tools of the Core Program. Since the program can be run using a simple scrit file this
implies the ability to run the program in batch mode.

6. The interface must be switchable between "batch" mode and interactive mode
"on the fly".

5.4. Process Control Service
5.4.1 Scope

The purpose of this section is to define the requirements for Process Control. We also discuss the
user interface to Process Control but many details such as the "look and feel" of this interface are
left open. We also do not address how data is passed between process control and the tools and
between the tools and the data structure.

Implicit in the defmition of process control is the existence of a data structure which contains both
global and event data. Here an event is a "physics event" which begins as the data read from the
detector in a triggered crossing. Subsequent physics analysis adds to the data in each event with
the goal of eventually determining the physics processes underlying the event. It is important to
note that events are independent in the sense that data within any event is not directly built from that
in any other event. Global data includes geometry, calibration and other data which serves as input
to multiple events. (The structure of and modes of accessing this data are not defined here.)
Reconstruction, analysis and other modifications of the global and event data are organized into
tools which are directed by the process control.

A tool is defmed by the action it takes on the data structure. There are three liD streams available to
a tool:

1. Control Data. Process control provides a small amount of information when a tool is
initiated or activated. Typically this would include an event id (run and record numer) and
flags to indicate which action(s) to take if the tool is mUlti-purpose. The tool will return an
error status when it completes its task.

2. Event Data. Most of the data flow is typically from and to the data structure. Tools should
include error checking to verify that the input from the data structure is sensible. Authority to
write particular parts of the data structure is provided by process control.

3. External Data. The tool may read from or write to external files including user display
channels. The assignments of these external units are made by the process control. Note that
this path of communication is intended to allow the user to view or directly modify data or
actions of the program. It is not used to pass data from one tool to another.

There is no communication directly between tools. Intermediate stages of data are passed through
the data structure. Any tool can be run successfully by itself, and may not assume that any other
tool is active. A tool may and generally will require that the data structure be in a certain state, but
must return an error code if it is not.

Process control is responsible for initiating and activating tools along one or more ordered paths
specified by the user. Tools are contained in frames which are connected to nodes via links. A
frame activates its tool when a signal appears on its input link. Mter the tool completes its task, the
frame puts a signal on the output link. The links buffer the signals storing the control data
associated with each signal. The nodes direct the flow providing event loops, parallel processing
and filtering by selectively producing output signals based on their inputs. Multiple tools and
copies of tools may be active at one time on one or multiple platforms.

The flow of signals (and hence of execution) is determined by the user-supplied process control
map. This map may be provided through a script me and may be built or modified using graphical
interface tools. The components of this control map are the frames which support the tools, the
nodes which direct the flow between frames and the links which connect frames and nodes. These
components and their requirements are described in more detail in the next section.

5.4.2 Requirements

GENERAL

41

42

Process control flow is expressed in terms of signals. A signal is typically associated with a
physics event but may have a more global meaning. There is a small set of control data associated
with each event and will flow among the various components of the program. This data can
include:

Eventld
Error status from a tool or frame.
Filter status from a tool.

Some of the general requirements of the Process Control are:

1. The simultaneous flow of multiple signals is supported.

2. Dynamic user intervention is supported.

The user must be able to dynamically carry out the following functions:

Modify the control map during a job.
Suspend or halt execution of any tool.
Attach a debugger to any tool.
Put breakpoints in any links.
Examine and modify control data on any link.

3. The parallel and sequential modes of the program must be identical.

Only one version of the program exists and it can be run in either sequential or parallel mode.
There will not be a seperate version to be run in sequential mode or parallel mode. The sequential
mode will simply be the parallel mode run on a single node/computer.

The three components of the Process Control are the Links, Frames, and Nodes which are
discussed in more detail below.

LINK

1. A link may connect a node to a frame, a frame to a node or one node to another
node.

2. A link contains signal information.

Each link contains of list of signals that have been passed from the preceding node or frame. This
list includes the control data for each signal. Signals are removed from this list when they are
processed by the following node or frame.

FRAME

3. A frame has one input link and one output link.

4. Each frame is assigned a particular tool and parameters which specify what
action the tool should take.

5. The overhead to install or activate a tool should be negligible.

A tool may be absent, dormant or active. The overhead required to install a tool (go from absent to
dormant or active) should be negligible compared to the time for a run. The time required to

activate a tool (go from donnant to active) should be small compared to that required to process an
event.

6. A frame should be able to install multiple copies of a tool.

The frame will activate (or install) a copy of its tool for each signal in the input buffer. The frame
may install multiple copies of the tool simultaneously on one or more platfonns. The list of
platfonns and the maximum allowed number of copies on each are all parameters associated with
the frame. A signal is removed from the input link buffer when the tool is run for that event.

7. A frame specifies which regions of the data structure can be modified by a
tool.

A tool may read from any part of the data structure but may only write to those regions specified by
the frame supporting the tool.

8. Tools return a status code when finished.

Mter a tool completes its task, it returns an error status and possibly a filter status to the frame and
then becomes donnant or is removed.

9. The Frame will assign an error status and take .the appropiate action if
necessary.

Process control will recognize when an error has occurred which prevents the tool from exiting
gracefully and returning an error status. In this case, the frame will assign an error status.

If there is no error or a non-severe error, the frame will pass the signal and associated control to its
output link.

The frame may take special actions depending on the error status. These include:

Stopping or pausing the run.
Rerunning the tool.
Reinstalling and rerunning the tool.
Signaling the user.

10. Frames must maintain a history.

The frame should maintain a history including the input and output control data for each processed
signal.

NODE

11. A node has one or more input links and one or more output links.

The node will search its input link signals for particular control data patterns and, when found,
remove the input link signals and set associated ouput link signals. The required input pattern and
its associated output signals define the logic of the node. This logic should be easily programmed
and very flexible, allowing the following capabilities:

12. A node should be able to act as a filter or a switch.

43

44

A node can act as a filter by directing flow based on the filter or error status. The node can act as a
switch by requiring a second input be present in order for the first input to generate the output.

13. A node will support looping.

The node can initiate an event loop by generating multiple output signals with different event
numbers for a single input. The node can terminate an event loop by requiring that a set of input
signals with specified event numbers be present before generating an output signal.

14. A node will allow parallel processing.

The node can initiate the parallel processing of an event by generating multiple output signals with
the same event number. The node can terminate the parallel processing of an event by requiring
signals with the same event number be present on multiple inputs.

5.5. Communication Service
5.5.1 Scope

The Communication Service provides two way communications between components (e.g. tools
and services or two services; recall that direct tool-to-tool communicatino is not allowed) of the
SDC off-line system. This service supports a distributed heterogeneous environment

The client's view of the communication service is via an application programming interface,
supported by an interface defmition language, which hides implementation details of the underlying
communication services. (1be communication service itself might be replaced transparently to the
client's knowledge)

One (or more) of the following communications mechanisms are supported:

Messages: Operations on messages include, for example, create, delete, update, send,
receive, acknowledge, reply and ignore. There may also be registration and de-registration
operations if a multicast delivery service is used. It is with this operation that a tool or service
indicates what kind of messages in which it is or is not interested (e.g., all messages
referring to my objects).

Process Invocation (e.g. exec, fork, invoke and spawn).

Remote procedure calls.

For the strategic (long term) concepts the Communication Services should use Common Object
Request Broker Architecture (CORBA) which could become an industry standard. The Object
Request Broker (ORB) will provide the communication service The clients (e.g. tools) see Objects
only through the perspective of a interface definition language. Clients have no knowledge of the
implementation of the Object, where it is, or which ORB is used to access it.

Object implementation refers to the methods and data associated with the object. Various
implementations include separate servers, libraries, a program per method, an encapsulated
application, an object oriented data base, etc. Objects must register with the ORB. An interface
repository is used to keep these interface definitions

At present CORBA is not an industry standard and so for the short term some possible solutions
are to use OSF Distributed Computing Environment (DCE) or Remote Procedure Calls (RPC).
These have the advantage that they are like a normal subroutine call and already include an Interface

Definition Language (IDL). These systems already take care of the data translation across
heterogeneous systems. They are server location transparent (server registration with naming
service, client binding service) and give concurrency via threads.

Another possible solution is to use somthing like WorkbenchlSoftbench Broadcast Message
Service (BMS). A tool registers with BMS indicating events about which it wants to be posted.
The client then sends messages to a tool via BMS without knowledge of the tool's location or
detailed function. The tools are encapsulated via C++ or an Event Description Language (EDL).

5.5.2 Requirements

1. The Communication Service require a number of tools.

The following tools must be made available:
Placement Management Tools
Interface Definition Tools
Communication Tool Output

2. Must be location independent and have location brokering

3. A presentation service must be available.

A presentation service ensures that data is always presented in the same manner to all tools
regardless of how it originated. This implies that the Communication system is able to do data
conversion.

4. Must have error handling and reporting failities.

5. Must include Security.

The Communication system must have the capability to do peer-to-peer authentication and
authorization. It must be able to check that a given tool has the authority to modify a specific data
structure.

6. Both the client and server must have concurrency.

7. Must be possible to have asynchronous access.

8. The initiator and responder roles must be decoupled from the client and server
roles

9. The Communication API must look like standard call.

10. Easy to use Interface Definition Language (IDL).

The communication APIs should should consist of an easy to use IDL which will hide underlying
service from the average user.
5.6. Data Services

5.6.1 Scope

The SDC Data Services actually consist of a set of related software tools that work together to
provide services to the collaboration physicists and programmers relating to data description,

45

46

access and manipulation. These tools have traditionally been provided by home-made add-ons to
the FORTRAN language (such as ZEBRA and YBOS), and were primarily motivated by
deficiencies (in data structure defmition and memory management capabilities) of FORmAN. It is
hoped that for SDC these tools will be better integrated into the overall programming environment
as well as being commercially supported. The tools are used by a variety of types of users,
including software "core" designers, physics algorithm software designers, and physics data
analysts. Furthermore, the tools are used in various stages of the software development cycle,
including at design time (where the tools are used in defining data structures), at coding time
(where the tools are used in writing actual physics reconstruction and analysis code), and at run
time (where the tools provide access to the data and allow the user to manipulate, store and retrieve
data).

This section of the document provides broad requirements on the set of data services that meet the
needs of each category of users at each of the stages in the software life cycle. Several different
potential audiences have been identified for this section:

The developers of the Data Services
The "core" software developer
The user-developer
The general collaboration audience.

The activities of users acting in these various roles are described in Section 2.3.
5.6.2 Requirements

The requirements on the data services system fall into several distinct categories. First are general
requirements on the overall data services system. Next are requirements on how the system
performs at each of the three major stages in the software development process:

Design time, when data structures are defined. The data services system should provide
user-friendly graphical tools to define data schemas and to save these schemas for use by
others.

Coding time, when the data structures are used in the preparation of application
programs. The system should provide easy ways of making use of previously defmed data
structures, and should automatically update a user's code if the definitions of the data
structures changes.

Run time, when the actual data is retrieved and stored in the data repository, guided by
the previously defined structures. The data services system must handle memory
management and I/O in a transparent manner.

(Alternatively, these three groups of requirements can be thought of as specifications on three of
the major components of Data Services: the data modeling tool, the application programming
interface (API) to the data repository, and the run-time interface to the data.)

Finally, there are requirements on the actual data repository itself.
5.6.2.1. General Requirements

Data Model and Data Repository are the two important aspects of Data Services. The Data Model is
the conceptual level of the Data Repository, while the Data Repository is the physical realization of
the Data model. The Data model describes the conceptual items to be stored and the connections
between them. It does not involve any physical realization of the data in any form; it is an abstract
layout of the data. The Data Repository contains the schema, the data itself, and all the instances of
the data classes.

General requirements are organized according to implementation independent requirements, global
constraints, and desirables, which should be incorporated resource permitting. Independent
requirements specify what the tool must do regardless of how it is implemented, while global
constraints gives implementation specific constraints which are of global importance and are,
therefore, not considered reviewable as design options. A further level of decomposition shows the
requirements applicable either at design-time, coding-time or run-time (Sections 5.6.2.2-5.6.2.4).
(Please note that we use the term design-time rather than the more conventional analysis-time for
the initial stage of the software development process so as to avoid confusion with physics data
analysis; see glossary of Appendix B.)

Independent requirements

The Data Modeling Tool aids in representing the abstract Data Model graphically and aids in
translating it into a physical realization in the Data Repository. It has a human interface, the GUI,
for describing the Data Model and a machine interface, the output, which makes table creation
code, class definitions, etc., for laying out the physical storage in the Data Repository. Activities
such as browsing the schema in the repository or browsing the data in the repository are, strictly
speaking, supported by the Data Repository API, although the GUI presented for these functions
should be very similar to that of the Data Modeling Tool to present a coherent picture to the user-
developers.

Global constraints

Global constraints are applicable to all levels of requirement

1. UNIX based

POSIX where applicable, UNIX where necessary. UNIX-specific elements should be localized as
much as possible.

More appropriately, POSIX and DCE would probably do with out specifying the operating system
particularly. Porting all the components described here can be an enormous sink of resources and
should be avoided even at considerable cost. The advantage of building on standards such as
POSIX and DCE is that the restrictions may be looser than one expects.

2. Inexpensive for individual users to acquire commercial components.

3. Machine independent.

4. Data Services tools must be compatible with the Core architecture

Data Services tools must be compatible with the layered architecture described in Section 2.3.

Desirables

5. Reverse engineering capability for existing code.

6. Ability to import data model representations.

The capability must be provided to import data model representations from existing C++ classes or
Zebra banks, YBOS, flat files, etc.

7. Optimization tool for data model structuring.

47

48

8. Migrate data from one DBMS to another.
5.6.2.2. Design-Time (Preparing the Data Model)

Data models are analyzed and designed by using tools that provide means to support a selected
methodology and automatically generate schema for the data repository .

1. The data model must support an object-oriented approach.

This should include such concepts as object classes and object instances, class hierarchies and
inheritance, instance hierarchies and objects as attributes of other objects, methods, etc. Note that
the object-oriented approach is a superset of Extended ER and traditional relational approaches.
People who choose to use one of these modeling styles should be able to do so. Note also that an
object-oriented Data Model does not necessarily imply an object-oriented implementation.

Use of the object oriented paradigm allows user-developers to concentrate on the differences
between the currently existing object and the new one he wants to develop. If a user, for example,
wanted to include a new datum into the definition of a jet, he/she would only need worry about
how this new datum affects jet analysis, not about any other code or relationships already
embodied by the current definition of the jet object.

2. Standard data modeling methodology.

We probably are not really competent to invent our own. Besides, using a standard methodology
opens the opportunity to purchase the Data Modeling Tool.

3. Heterogeneous mix of machine architectures.

The Data Modeling Tool must run on and produce output for a heterogeneous mix of machine
architectures.

4. User defined data types.

The Data Modeling Tool must provide natural support for users to define pre-compiled, user-
defined data types. These may be types of relationships, object types, attribute types or value
types. The data modeling tool should also support hierarchies of types.

The domain-specific data classes developed by the core-developers for use by user- developers will
make use of this ability.

5. Plain data structures.

The structures of data and relationships should map simply onto real world physics data.

6. There should be user-defined lifetimes for types of data.

Data modeling should support the concept of validity intervals, for example, sequences of time
stamped events or events satisfying certain criteria.

7. Certain Data Model classes should be "built in".

Certain Data Model classes should be "built in" as primitives for the applications developed within
this problem domain. (Probably, supplying developers and users with an SDC/SSC standard
library of classes would do.) These basic classes should include events and event related data, and

"slow" data, i.e., data which varies slowly with respect to inter-event intervals and is not related to
any event in particular. Examples are high voltages, temperatures, gas gains, calibration
"constants" etc. These domain-specific classes are developed by core-developers for use by user-
developers. Their existence, for user-developers, at the Data Model level implies their realization at
lower levels, for instance as Data Definition Language files at the Data Modeling Tool output level
or as schema in the Data Repository. For user-developers, these domain specific classes appear as
primitives in the Data Modeling Tool Graphical user Interface.

8. Event type and cross-event type are built-in types.

The library and/or data repository knows what an event is.

9. Schema available to application at design-time.

Users must be able to use a browser to get object or type definitions. This includes browsing run
conditions, an event or a collection of events.

10. Edit or browse classes and dictionary interactively.

User-developers should be able to make their own versions without affecting group versions. The
user might wish to try a new value for the placement of a particular electronic channel in space. The
effected value would only be accessible locally while the production values would be unaffected.

11. Schema evolution historylversioning accessible from repository.

User-developers should be able to design database on the fly, and access pre-defined relationships
in a repository. For schema evolution to be handled smoothly, the Data Modeling Tool must be
aware of past versions and do what is necessary to the Data Repository to defme new versions.

12. Cardinality between objects must be defined in relationships.

The Data Model should include the notion of cardinality for object connections (relations). One-to-
Many, Many-to-One, and Many-to-Many mappings of relationships are required. Physics data
includes all of the possible mappings. Electronic channels to spatial locations provides an example
of a One-to-One mapping; tracks to points on a track and its inverse are examples of One-to-Many
and Many-to-One mappings respectively; and overlapping showers in a calorimeter provides an
example of a Many-to-Many mapping.

13. Data modeling operations on objects or. collections of objects.

This means that collections or sets should be a primitive in the class library. These collections are
objects on which one can do queries. This is of utmost importance. A user may, for instance,
examine data from one event with a high transverse energy electron or a set of events with such
electrons. This user should be able to acquire and perform data queries on the set of events with
equal ease as that of the case of the solitary event.

14. Alignment of structures.

There will have to be requirements about alignment of structures, both in generated code and in
assistance provided through the Data Modeling Tool interface. 128 bits will be the preferred natural
unit by CPU architectures at tum on (the DEC Alpha architecture, for example, suggests a penalty
of 30x for misaligned data), but padding in large event samples will be very expensive in storage.
RISC wants alignment. With IEEE Standard Floating, the primary machine representation
differences will be big- vs. little-endian and alignment requirements.

49

50

15. Direct manipulation interface style.

The Data Modeling Tool GUI must support a direct manipulation interface style, that is, drawing of
lines to make various connections, click for select, etc. This interface should be extensible so that
domain-specific classes can be smoothly integrated into the GUI. An extensible set of graphical
templates should be available, for example, where double-clicking on an object icon might bring up
a form for defining the attributes of the object.

16. Direct manipulation of graphical objects.

Users must be able to draw lines to make various connections and manipulate objects, through
point, click, drag, etc.

17. On-line help.

The Data Modeling Tool GUI should provide an extensible on-line help system so that help
specific to the domain-specific data classes can be smoothly integrated.

18. Leveling mechanism for the overall model.

In the face of very complex data models, it would be helpful if at least the Data Modeling Tool GUI
provided a leveling mechanism for the overall model. The user must be able to zoom in and out of
graphical schema thereby varying the level of detail displayed of the data model

19. Must have text interface as well as Graphical User Interface (GUI)

We may wish to require that the Data Modeling tool work from a textual representation of the Data
Model as some people may prefer to work that way. It may also be useful to import Data Model
representations from pre-existing code, such as C++ classes or Zebra bank defmitions.

20. Same look and feel from the browser as from the rest of the tool.

Must have the ability for multi-user presentations.

21. Error reporting during design.

This should be provided as a consistency check for adherence to the methodology. Failure to
adhere strictly to the methodology should cause informational errors to be generated.

22. Optimization tools should be available for the data structures.

For predictive cases, where costs can be estimated purely on the basis of the structure itself and not
on its actual usage, such as the alignment issues, the Data Modeling Tool should provide automatic
and/or advisory optimizations.

It would also be desirable if it could use information obtained from usage metrics in the Data
Repository to at least suggest optimizations based on usage patterns.

23. No significant performance penalty, regardless of the amount of data.

There should be no significant performance penalty for the tool regardless of data amount. Since
this tool only deals with the data types, it should function well in the face of very complex types,
such as complicated events.

24. Report generation capability for meta-data.

The capability to generate reports for meta-data, e.g., schema, data dictionary from the browser,
must be provided.

25. DCE IRPC Interface Definition Language support, a long term strategy.

Assuming that DCE or some other form of Remote Procedure Call system is used as the
communications layer for at least some distributable applications, the Data Modeling Tool Output
should be available in the Interface Definition Language of that RPC system. (This requirement
should be part of our long term strategy as it is unlikely to be met by any currently available tool.
In that light, the most promising output language to be on the lookout for is the IDL of the Object
Management Group's Common Object Request Broker Architecture. This language is designed
explicitly to be independent of the communications layer.)

5.6.2.3. Coding-time

The Application Programming Interface describes the Data Repository from the point of view of
user-developed and core-developed programs. It does not necessarily reflect the actual
implementation of the Data Repository; the differences are made up by the glue routines that map
API calls to actual Data Repository operations.

The major requirement is to avoid the complex navigational code involved in fetching a field of a
bank in something like YBOS or ZEBRA. The language C, C++ and FORTRAN90 all allow the
direct access of fields of structured data and pointers. Offsets to particular fields are determined at
compilation time; hence, both the overhead and complexity of accessing data fields is reduced.
Program maintainability is also improved.

1. The Data Repository API must support an object-oriented approach.

This means that queries and data navigation can be coded by developers according to the Data
Model with out directly worrying about the physical representation in the Data Repository itself.
This API may have to hide the fact that the Data Repository does not directly support the object-
oriented approach.

2. Generate machine independent code for objects, templates, include files.

In particular, table creation code, class definition code, or physical storage layout code must be
generated.

3. Data access method independent of media.

The API should not require the user-developer to worry about the particular media involved; it
should be media transparent. However, to the core-developer, it may be helpful if media dependent
access is possible for optimization purposes. The ability to inquire if a data set to be used shortly is
on tape and request that it be pre-fetched to disk comes to mind.

4. Simple access to complex types.

This requirement is intended to avoid the complex navigational code involved in fetching a field of
a bank in something like YBOS or Zebra. Rather, attributes of objects (or fields of structures as
they may appear here) should be accessible in a manner natural to the language of the API. This
should be fairly simple in C, C++ or FORTRAN90, but more difficult in FORTRAN77.

51

52

5. Interactive as well as programmatic interface to Data Repository.

There should be an interactive interface to the Data Repository as well as a programmatic one. The
interactive GUI should be a seamless match to the GUI of the Data Modeling Tool. The interactive
interface must allow the user to examine object classes and object instances stored in the Data
Repository. The interactive interface should also allow suitably authorized users to create and
modify classes and instances in the Data Repository. (The programmatic API amounts to a
compiled use of the Data Repository. Like compiled language systems, it is optimized for run time
efficiency. In the process of doing this, it loses the ability to deal with data base definition changes
and data type definitions applied after the code is compiled. The interactive API is more like an
interpreted language system. It is very flexible and can discover type changes and new defmitions
at run time. However, its run time performance is likely to be worse than that of the compiled
version. A data browser, by definition, should show you what is in the database regardless of
when the schema was created; browsers must use the interactive API. The main reconstruction
program, however, will be frozen for months at a time; it can use the programmatic API for the
sake of performance.

6. Interactive and programmatic APls must support user-defined data types.

If neither the API language nor the underlying Data Repository support such types, much more
work is required. Native support in both cases is highly desirable.

7. Programmatic API access to schema information.

The programmatic interface should provide access to read the data schema information to any
user. It should provide access to create/modify schema information only to suitably authorized
users.

8. Programmatic API access to performance metrics.

At least the programmatic API must provide access to the performance metrics kept by the Data
Repository so that they can be extracted and analyzed for optimization purposes.

9. Access data by name at run time.

This is pretty much equivalent to Item 7. However, there may also be the requirement to store
name/object identifier associations in the Data Repository. While it may not make too much sense
to name individual electrons, it does make sense to name standard analysis datasets, e.g., "High
Pt muon candidates", in which case this is a joint requirement on the Data Repository and its API.

10. Must be able to refer to objects or types via relationships (pointers).

11. Access to data by name (not pointers) at coding-time.

12. Error reporting during coding.

13. Full functionality from C, C++, FORTRAN77, FORTRAN90.

That is, there should be complete programmatic APIs for at least these languages. FORTRAN77 is
the most problematical.

14. Access data from a six line FORTRAN program.

This has two parts, first that the Data Repository have a FORTRAN callable API, and second, that
the API be simple to use.

15. Access from any existing program.

This seems to mean that a Data Repository API should be provided to adapt the Data Repository
to the APIs already in use, for example Zebra or YBOS. If one can map the in-memory structure
delivered by the Data Repository to the in-memory structure expected by the legacy code, this
might be possible. Presumably, it would be more efficient in the long run to migrate the code to
the new APIs.

16. Package must include a make-like facility.

17. No significant performance penalty, regardless of amount of data.

For the programmatic and interactive API's there should not be any data scaling penalties beyond
that of the Data Repository itself.

18. Data Interface to OODB or RDBMS.

The Data Repository API should either be the API or interface to the API of standard Object-
oriented or Relational Databases.

5.6.2.4. Run-time

1. Report generation capability for physics data.

2. Interactive data query language.

User-developers can try ideas for physics data definitions out interactively before committing them
to code.

3. Schema must be available to application at run time.

4. Interactive as well as programmatic interface to tool.

As with Interactive data query language, this allows user-developers to try out ideas interactively
before writing code. Most of our time as programmers is spent developing algorithms. These two
requirements are aimed at improving development time. Only for production might it prove
imperative to translate the interactive vision into compilable code.

5. Error reporting during run-time.

6. Data access method independent of media.

7. Application and machine independent data structures.

8. No significant performance penalty, regardless of the amount of data.

Use of a tool should not present any data scaling penalties beyond that of the data repository itself.

9. Data Repository should keep database of data access patterns.

53

54

The Data Repository should keep a database of data access patterns to support future design and
optimization efforts.

10. Data interface to OO-DBMS or R-DBMS.

The interface should not pin one down to one or the other.
5.6.2.5. Requirements on Data Repository

In traditional physics analysis systems, data repository has been little more than the normal file
system augmented by data tapes. The dominant feature of the SDC Data Repository will be its
enormous size. In order to improve liD efficiency and data management tasks, we expect the SOC
Data Repository to apply many of the ideas of a database system.

1. The Data Repository must handle a variety of media.

In particular, we expect the repository to use a tertiary data store of optical disks or tapes based on
the IEEE Mass Storage Model.

2. The Data Repository mayor may not directly support an object-oriented
approach.

The appearance of an object-oriented system can be provided through the Data Modeling Tool and
the Data Repository API. Of course, this is likely to involve a whole lot less work if the Data
Repository handles the objects directly. For example, it will simplify schema creation and query
optimization greatly if the Data Repository supports user defmed complex types directly. Most pure
Relational database systems do not support user defmed types, while most object oriented database
systems do.

3. Machine independent data structures.

The Data Repository must run on and supply data to a heterogeneous mix of machines. Given
this ability, and the "self-describing" features mentioned above, all explicit machine dependencies
of the various Data Modeling components will be removed.

4. The data should be self describing.

This is actually trying to hit a couple of issues. One has to do with the transmission of data over a
wire between potentially heterogeneous machine architectures. In the OSI model, this is known
as negotiating a presentation syntax. The other issue is decoding the memory representation of an
object in order to make sense of its fields. The first case turns out to be handled in the RPC
systems by making use of the information contained in the Interface Definition Language
modules; DCE will just do this for us using as the DCE Transfer Syntax either the Network Data
Representation or ISO's Abstract Syntax Notation I/Basic Encoding Rules specification.
(ASN.IIBES is a very complete and standardized version of what we normally think of as self-
describing data.) The second issue can be handled easily if the Data Repository stores the data
schema, or class memory layouts, within itself and provides a) a type tag on each object instance,
and b) programmatic access to the schema representations. Enough information would then be
available to make very generic code, capable of working with dynamically defined types.

5. Data Repository should keep database of data access patterns.

The Data Repository should keep measures, either at the option of the Data Repository
Administrator or continuously, of access patterns and performance to be used for optimization
purposes.

6. Manageable schema evolution.

Schema (data base definitions) evolution will be a fact of life. Handling it is not a simple matter.
The Data Repository will have to manage some parts of the solution, such as storing schema, or
class, versions. There is a major problem of what to do in the face of old data whose schema is
being updated. Due to the sheer volume of data concerned, it will not be practical to dump the
data base and rebuild it to the new form. Instead, some form of lazy update, where the data is
converted to the new format only when someone explicitly asks for it, may be the way to go.
Since a particular object instance may be several versions behind, composability of the updates is
an issue. Furthermore, some applications may actually require the old form to run successfully.
This means that the application should be able to specify the data/schema version it requires
(through the Data Repository API). Changing calibration schemes to account for previously
ignored effects comes to mind. Too much of this sort of thing will overwhelm the physical
storage system.

7. Standard management features.

The Data Repository should have the standard management features of database systems such as:

- Data recovery in the face of a system, disk or tape crash.

- Concurrency control to properly control attempts at simultaneous writes to the Repository.

- The ability to transparently distribute and redistribute the data across multiple machines, disks and
tapes.

- Referential integrity support, i.e., automatically preventing dangling pointers. Given the shear
size of the Repository, this feature will have to be used circumspectly.

There have been several references to the notion of "suitably authorized users". These references
imply that the system as whole supports at least the notions of user authentication, to verify that
they are who they claim to be, and user authorization, to check that they are permitted to do what
they want to do.

8. No significant performance penalty, regardless of amount of data.

This is a bit optimistic for the Data Repository as a whole. However, power law behavior will be
disastrously bad. Log behavior, more or less, will probably be required overall to be practical.
Most interactions and queries had better deal with small subsets of the data actually stored; the
speed of these data accesses should not depend significantly on the amount of other data stored.

55

56

6. Application Software
6.1. Private Code

6.1.1 Scope

Private code writen for use by a single person (or a few people) does not have any real
requirements, aside from the fact that it is able to interface with a frame of the process control.
Generally a Private Tool must meet certain minimum requirements in order for it to be used in Core
Program. It must have well defmed input and output interfaces with a Process Control Frame, and
must be completely independent of other tools. There are no "rules" specifying how a Private Tool
must be written, although it is recommended that the user follow the guideline for a Common Tool.
It is assumed that Private Tools will evolve into Community Tools, and the Common Tools, and
so it would simplify the migration process if a Private tool already meets the Common Tool
requirement.

A number of programs/packaages will be made available to the Private Code developers to help
them meet the Common Tool standards. Some error checking code will be made avalaible but it is
up to the individual user to ensure that Private Code is "bug free", independent (does not depend
on other tools), and does not attempt to write to non allocated sections of the data structure.

6.1.2 Requirements

1. Does not depend on other tools.

2. Well defined inputs and outputs to the frame.

6.2. Community Subroutine Libraries
6.2.1 Scope

The Community Subroutine Library is a collection of subroutines that is maintained by some group
outside the SDC Central Computing Group. It is distributed by the Central Group, but will
generally not be maintained by them. Subroutines in this library must meet certain minimum
standards which are not as stringent as those for the Common Subroutine Libraries.

Examples of subroutines that might fall in this category are:
Multiple scattering calculations.
Calorimeter showering routines.

The CERN Program Library is a special case of a Community Subroutine Library. This is a library
mainatained by a group outside SDC, and does not meet all the Common Software requirements,
but it is still a widely used and depended on library. For most Community Subroutine Libraries the
authors of a routine will be responsible for its' maintenance, however for the CERN Program
Library the SOC Central Computing group will also take some responsibility for its' maintenance.

6.2.2 Requirements

1. Subroutines are accessible from Fortran90 and C++.

2. Well defined set of inputs and outputs.

3. Usable on any POS1X compliant machines.

Since it's impossible to guarentee that a subroutine will run on any POSIX machine, the practical
requirement is that a subroutine be able to run on a limited number of machines "supported" by the
SOC Central Computing group. At present this list of machines includes HPUX, OECstations,
SGI, SUN, IBMRT, and VAXes.

4. Used only by tools. Libraries for other services are not included.

5. Fully documented.

6. Test suites avaialble.

6.3. Community Tools
6.3.1 Scope

Examples of Community Tools

An event generator tool
A detector simulation tool
An event fIltering tool
An electron ID tool
A muon ID tool

6.3.2 Requirements

1. Must meet the same requirements as for a Community Subroutine.

6.4. Common Subroutine Libraries
6.4.1 Scope

Program facilities commonly used both by code developers and general users can be divided into
two categories:

Tools which can be used in combination with other stand alone tools to form a toaster,

Libraries which have a pool of subroutines used mostly by code developers to make a tool.

A few Common Utilities plus their libraries are provided as "standards" in the Core kernel
services. Two other classes, Common Tools! Libraries and Community Tools! Libraries, are
projected to be used by physicists for analysis and reconstruction (see Section 2.1). The latter two
classes of tools !libraries will be certified for incorporation into the SOC baseline (see Section 3).
The central SOC Computing Group located at the SSCL will also negotiate maintenance with the
developers and distribute the tools/libraries to the collaboration.

Mathematical routines (matrices, vectors, linear algebra, fitting, etc)
High level graphic routines (like HIGZ)
Random number generators
30 Geometry handling routines (distance between a plane and a line, etc)
Sorting routines
Histograming routines

6.4.2 Requirements

57

58

6.5. Common Utility Tools
6.5.1 Scope

An event display tool
A histogram display tool
A performance evaluation tool
An error-handling tool
A calibration tool
An YO tool

6.5.2 Requirements

1. Satisfies all normal requirements of a tool.

2. Fully documented.

A GLOSSARY
A.I. General
Application Software - SDC offline software involved in performing physics computing tasks,
consisting of standalone packages, called tools in this document, and libraries of subroutines (not
standalone) used by the tools. This software will use the general services provided by Core
software. Application software will largely be provided by appropriate SDC subsystem groups
and/or users.
Core Software - SDC offline software which provides the structure within which all SOC
offline software operates, plus the general services needed by the Application software. Core
software consists of the following services:

System Services, or Operating System
Communication Service
Process Control
User Interface
Data Services

which are equivalent in the "toaster" architectural model to the framework of the toaster. A few
tools called Common Utilities intended as "standards" for the collaboration will also be included.
Core software will be developed (andlor acquired), integrated and maintained by a central SOC
Computing Group located at the SSCL.
Task (Computing) - One of five areas of SDC offline computing identified in this document
having different software environments. The five SDC offline computing tasks are:

Physics Analysis
User Code Development
Level 3 Trigger and Production Reconstruction
Simulation
Calibration

and are described in Section 1.3.

A.2. Software Architecture
Common Utilities - Tools being provided and supported by the central SDC computing group
for the common use of the collaboration at large. These tools will be adopted as "standards" and
included in Core kernel services because of a common need for the capabilities throughout the HEP
community.
Library - A collection of subroutines used by tools, accounted for in one catalog for common use.
Service - Process/program/package of capabilities needed by and provided for all other parts of
the SDC offline software system, belonging to the Core software. In the "toaster" model, Process
Control, Communication, Data Services, User Interface and System Services are services.
Therefore, the services complete the "toaster" for the tools (pieces of toast) loaded into it.
Subroutine - A small sub-portion of a tool which is not standalone, dependent on the tool for
external data access and communication. A given subroutine may be used by more than one tool.
The "toaster" model analogy is that of a crumb in the piece of toast, or jam on the piece of toast.
Toast - A synonym for tool, within the "toaster" architectural model of the SDC offline software.
Toaster - Name of the architectural model of the SOC offline software depicted in Fig. 2-3 and
described in Section 2.3.

59

60

Tool - A completely stand alone process/program/package which can be started by the Process
Control and gets all inputs and sends all outputs to the Data Access Service. All communication to
services and other tools is done through the Communication Service.

A.3. Process
Common Physics Software - Software developed by physicists outside the central SDC
Computing Group which undergoes a technical "certification" process to be incorporated into the
SDC baseline. Included are the following types of software (as described in this document):

Physics Analysis Applications
Common tools
Common subroutine libraries
Community tools
Community subroutine libraries

Production Reconstruction
Level 3 Trigger

Artifact - A software product which undergoes inspection and/or review. Artifacts may include
software requirements specifications, design specifications and descriptions, and source modules.

A.4. Process Control
Control map - The user-specified path or paths through which a physics analysis job flows.
Frame - The part of process control which supports a tool.
Link - Component of process control that connects tool frames and nodes.
Process Control - The overall procedure which carrys out the physics analysis job by activating
tools as directed by the control map.
Node - The component of module control which directs flows between frames based on the
control data of signals.
Signal - The flags circulated by process control. Each signal is typically associated with an event
but may alternatively represent a more global action such as a component of initialization. There is
a set of control data associated with each signal.

A.S. Data Services
Design-time - Those features of Data Services which support data modelling, i.e., developing
the logical defmitions and associations among the data (e.g., as is done in Entity Relationship
modelling). (Note that this is what in conventionally referred to as the analysis stage of the
software development process; we use the term design-time to avoid confusion with physics
analysis.)
Coding-time - Those features of Data Services which support the physicist writing code.
Core-developer - Someone developing a portion of the Core software which will support user-
developers.
Data Model - The conceptual level of the data repository. It describes the conceptual items to be
stored and the connections between them. It does not involve any physical realization of the data in
any form; it is mostly a logical layout of the data.
Meta-data - Data concerning the relationships among, format, organization or graphical
representation of the physics data.
Physics data - Raw detector data, reconstructed data, processed data, calibration and detector
state data, etc., acquired or generated as part of physics research and stored in database(s).

