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1 . INTRODUCTION 
This document is addressed to two audiences of readers, hence its purpose is twofold. The first 
three chapters are addressed to the collaboration physicist outside the SOC Computing Group. 
These introductory chapters are intended to introduce the collaboration to SOC off-line software 
ideas and to the ways in which the average collaboration physicist will interact with the software to 
perform analysis. 

Chapter 1 provides an overview of SOC off-line computing and software systems, describes the 
goals of the software system, and discusses the scope of this document. Chapter 2 focuses on 
organization of the software physicists will use and how the software systems will be used. Of 
particular emphasis are the services of the "core" software supporting the entire SOC off-line 
system, and the common tools physicists will use. Chapter 2 thus discusses what software and 
services will be provided by a central SOC Computing Group and what software is written by 
individual physicists. Finally, chapter 3 provides a summary of requirements and preliminary 
architectural choices that have been made in three major software areas: the core software itself, 
data modeling systems, and software development systems. 

The later chapters are directed at members of the SOC Computing Group. These chapters should 
be considered as appendices to the first three chapters. They document the results to date of the 
following working groups in specifying SOC off-line software concepts: 

SOC Data Modeling Working Group 
SOC Core Software Working Group 
SOC Software Process and Methodology Working Group 

Chapter 4 describes the processes to be used in developing, integrating and maintaining SOC off-
line software. Included is a process for "certifying" software written outside a central SOC 
computing group at the SSCL and incorporating it into the SOC baseline. Chapter 5 defines 
preliminary requirements for the "core" software. Requirements for the Data Services, 
Communication, and Process Control components are contained there. Chapter 6 defines 
preliminary requirements for the common tools and libraries to be integrated and maintained by a 
central SOC Computing Group at the SSCL. 

A glossary and references are provided as appendices. 

1.1. SDC Off-line Computing System Overview 

The SOC off-line computing system will provide the capabilities needed by: (1) physicists for 
production, analysis, and simulation; (2) developers for software design, coding, testing, 
integration, and maintenance; and (3) system administrators for management and control of the 
system configuration, change/update management, problem response and system recovery. Given 
the data rates, event size, and number of physicists expected in the SOC, the system must handle 
raw data rates and supply processing capability, storage capacity, and data access that are two to 
three orders of magnitude greater than corresponding systems for detectors now in operation. The 
size and geographical distribution of the SOC require extensive network connectivity and high 
speed data transfer capability. These capabilities can be provided by a combination of the SOC 
computing system located at the SSCL, some number of geographically separated regional 
computing centers and local centers at users' locations. Analysis capabilities provided to remote 
users should be essentially the same as those provided to users at the SSCL. A diagram of the 
conceptual architecture for SOC computing is shown in Fig. 1-1. 
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Figure 1-1 Conceptual Archit '''Jre Diagram for SDC Computing 



One of the most critical system requirements is that events be reconstructed at a rate that keeps pace 
with the recording of experimental data. The 100 Hz trigger rate and a 1 Mbyte maximum event 
size require a system sized for raw data sets of up to 101"5-bytes per SSC year. Providing storage 
and access for this amount of data drives the planning of the computing system much more than 
does satisfying the CPU power requirements. 

A major computing facility for SDC production reconstruction will be located at the SSCL. It will 
use processors that probably will be chosen from commercial RISC offerings. The output of the 
production reconstruction will be divided into physics oriented data sets from which physicists will 
draw samples of data for analysis. 

Following production reconstruction, the data, or a description of the data, will be put into a 
database format to facilitate searches for events matching physics criteria. The ability to construct a 
database with the required capabilities can be inferred from present operational and developmental 
database systems. Continued collaboration with the computing industry and academic community 
will be needed to be sure that SDC needs are met in this regard. 

The off-line system will provide data management services for the raw event data, reconstructed 
and derived physics data, and data sets generated by Monte Carlo simulation. Access to data will 
be via a standardized query interface. 

Separate computing systems that emphasize interactive capabilities will be needed for later stages of 
data analysis. Methods must be defined for distributing processed data and providing access for 
physicists doing analysis. It is likely that both networks and physical transport of storage media 
will be used to supply data to a number of SDC regional computing centers. The regional centers 
will be located within the US, Japan, and Europe at geographically convenient places and will be 
repositories of intermediate size data samples. 

It is assumed that the individual workstation, within a distributed system, will be the standard 
desktop device that a physicist will use. The workstation will be used both for local processing 
and for access to computing facilities at regional centers or at the SSC Laboratory. 

Further details about the proposed hardware architecture for SDC offline computing and of the 
hardware requirements are given in the SDC Technical Design Report. Note that this document 
does not address these hardware issues, although we do recognize the critical nature of, in 
particular, the ability to access efficiently vast quantities of data. Several other efforts, especially 
the PASS (petabyte Access and Storage Solutions) Collaboration, are working on these problems, 
and the SDC computing group will address hardware issues more fully in subsequent documents. 

1.2. SDC Off-line Computing Software: Goals and Overview 

The primary goal for SDC offline software systems is to provide a robust yet user-friendly 
environment for collaboration physicists to accomplish their computing tasks. These tasks include 
simulation, code development and testing, production reconstruction, calibration and monitoring, 
and data analysis. The software systems must make it easy for all collaboration physicists to 
participate in software development and data analysis, while at the same time providing 
mechanisms to ensure that production code is fully tested and certified. The software system 
should present a uniform environment for the variety of computing tasks, and should facilitate 
porting of application code from one task to another. 

SDC software will in part be written by collaboration physicists and in part by a central (yet 
geographically dispersed) SDC computing group. In addition, the central computing group will 
provide certain services (such as code distribution, integration and testing, and code maintenance) 
for software originally written by individual physicists. Thus, one of the major purposes of this 
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document is to describe the relationship between the central computing group and the remainder of 
the collaboration. 

Software for SDC off-line computing will consist of "core" and "application" software. Core 
software will provide the structure within which all SOC off-line software operates, plus the 
general services needed by all parts of the system. Thus, as described below, the core consists of 
both the outer layers (frameworks or shells) within which applications run, and the inner layers of 
kernel services on which all applications rely. The core will be the responsibility of the central 
SDC computing group located primarily at the SSCL. 

Application software consists of standalone processes/packages called tools in this document, and 
libraries of subroutines (not standalone) used by tools. This software is expected to use general 
services provided by the core. Application software will largely be provided by appropriate SDC 
subsystem groups and/or users. 

The SDC computing group will provide development systems and some tools, defme standards, 
and organize code management and distribution. The group will also establish a certification 
process to incorporate software developed outside the group into the SDC core, common tools and 
production systems. Code management and library management will be the responsibility of the 
SDC computing group, assisted by software development and maintenance programs. These 
programs will assure access by the user to the appropriate current software libraries, and will be 
organized for distribution of libraries and tools. 

Software implementation will make effective use of then-available technologies. Key areas are data 
management (database utilization, data location transparency), user/system interaction, and 
software development (methodologies, CASE tools). Software engineering methods are expected 
to be used in core software development. The SDC will rely on publicly available and commercial 
software where possible. Standards defined by the computing industry will be relied on heavily to 
allow replacement and upgrading of software with new versions, either commercially produced or 
written by the SDC. The extended time scale, both before and after detector tum-on, dictates the 
maximum possible use of standards to minimize obsolescence. 

Development of prototype versions of most of the core must occur before the subsystem groups 
and other users begin writing detector specific software. Thus, development of the first release of 
core software must parallel hardware design and development, starting in FY1993. Writing of 
much of the detector specific software will begin after first release of the core. Later versions of 
the core will preserve the look and feel of the frrst releases while providing additional functionality 
(such as parallel processing support and optimization for different computing environments), 
allowing early developed application software to remain in use. Chapter 3 below suggests a 
schedule for production of the first versions of core and other SDC software. Note that although 
the TOR assumes that the initial production versions of SDC application software should be 
complete by the end of FY1998, it is recognized that development of this application software is 
already taking place, and so every effort will be made to provide prototype core, data modeling and 
software development systems as soon as possible. 

1.3. Computing Tasks of SDC Off-line Software 

The SDC software system must support several different computing tasks. While the various 
software tasks need to be optimized for their specific requirements, they should share commOn 
features and have a common "look and feel" for users to be able to move from one task to another. 
The architectural model of the SDC off-line software system for supporting the tasks is shown in 
Fig. 1-2, which also shows the relationship between the core and application software. The core 
consists of both the outer shell or framework for each of the computing tasks (simulation, 
production reconstruction, physics analysis, calibration and monitoring, and application code 



development) together with the inner layer of kernel services. Physics applications (common tools 
and libraries, community tools and libraries, and private code) reside in the middle layer in Fig. 
1-2, where they are invoked by the outer frameworks, and can make use of inner kernel services. 

Fig. 1-2. SDC Off-line Software Architectural Model 
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Core software provides the structure within which other SOC off-line software tasks are 
perfonned. If necessary, different frameworks with a common look and feel and different kernel 
services will be provided for different computing tasks. The inner layer of kernel services includes 
system services, data modeling and access services, communication among software layers, user 
interface, process control of software execution, and common utilities such as histogramming, 
plotting, fitting and event displays. 

SOC off-line computing tasks are briefly described below. 
1.3. 1. Physics Analysis 

This task requires software involved with the selection of events and/or pieces of events, and with 
cataloging the data samples for later use, in addition to physics analysis tools and programs (both 
commonly used and individually written) which execute on the data samples. Convenient access to 
large amounts of data must also be provided. 

1.3.2. Application Code Development 

This task utilitzes tools for analysis, design, coding, testing and debugging of software. Tools are 
provided both for the "professionals" to develop core software and common tools, and for the 
physicist to write private application code. The application code can be written in FORTRAN or 
C++. 

1.3.3. Simulation 
Software for this task must provide an accurate model of the actual detector and physics processes 
under study, and must generate simulated events that are capable of passing through all subsequent 
stages of analysis. 

1. 3. 4. Calibration 

This task is involved with reading large amounts of raw data for specialized analysis of particular 
subsystems to detennine calibration constants and monitor detector perfonnance. The task must 
provide easy and straightforward access to user-chosen data samples and ways to incorporate 
personal code into the application. 

1.3.5. Level 3 Trigger and Production Reconstruction 

This task requires software programs which execute against all events, "reconstructing" the raw 
data into physically meaningful quantities that can be used in later stages of physics analysis. In 
particular, the Level 3 trigger programs cause events to be discarded. The software will require 
considerable computing power, and typically will not be repeated. Therefore, it must meet the 
highest standards of software engineering to ensure its functionality and correctness. 
1.4. Scope of Document 

This document describes the proposed relationship between collaboration physicts and the central 
SOC computing group, the relationship between centrally provided core software and physicist 
written application software, and the additional services that will be provided by the central group. 
It gives requirements as well as preliminary architectural choices for several key components of the 
core software, including data modeling, communications, process control, and user interface. It 
discusses the various categories of SOC software and gives early suggestions for the rules 
governing the software development process for these categories. It discusses some of the 
centrally provided software tools and libraries. Finally, it gives proposed schedules for 
implementation of prototypes for the "core" software system. 



This document specifically addresses processes and requirements to develop (and/or acquire) Core 
and Common Tools software for the Physics Analysis and Application Code Development tasks. 
Processes for specification, development, certification and maintenance of the various classes of 
such software are highlighted in Chapter 4. Because Level 3 Trigger and Production 
Reconstruction software is common across the SOC system and must meet high standards, 
processes to incorporate it into the SDC baseline are also documented there. However, its 
software requirements are not addressed in this document. Chapters 5 and 6 present requirements 
for core services and common utilities that will be used in all SDC computing tasks. Processes and 
requirements for: (1) Simulation and (2) Calibration are not yet addressed in this document. 
Another Computing Group task force is studying the needs for SDC simulation systems and will 
issue a report in a separate document. 

The present document also does not concern itself with hardware architectures, which will be 
studied separately. In particular, the PASS collaboration is studying the problems of storage and 
access of petabyte (10**15 byte) size data samples and developing prototype systems to test out 
their ideas, and the computing group maintains close contact with them. 

Finally, the reader will recognize the preliminary nature of much of the planning described here. 
This document is written with a major purpose of provoking thoughtful comments and suggestions 
from the collaboration at large. Please do your part! 
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2. SDC SOFTWARE ORGANIZATION 
In this chapter we describe the different classes of software to be considered in this document, and 
give some scenarios showing how physicists will interact with the software systems as they 
perform various computing tasks. We also discuss the other services to be provided by the central 
computing group. 
2. 1. Classes of Software 
soc software is divided into the centrally provided core software (section 2.1.1), and the physicist 
provided application software (section 2.1.2). In addition there is software that supports 
application code development (section 2.1.3). 

2. 1. 1. Core Software 
SDC Core Software consists of kernel services (Sections 2.1.1.1-2.1.1.6) and shells or 
frameworks (Section 2.1.1.7) for the different computing tasks. 

2.1.1.1. System Services 
System Services include basic operating system functions of system and resource management, 110 
management, system administration support, and access control. Other management functions 
belong to this class. Components include: 
1. Operating system 
2. System management services 
3. Network operating system/management 
4. Code management 
5. Metrics collector 

2.1.1.2. Communication Services 
Communication Services effect the flow of communications among the other classes of SDC off-
line software in a heterogeneous environment. Components include: 
1. Distributed message service 
2. Distributed remote procedure call 
3. Communications application program interface (API) 

2. 1.1. 3. Process Control 
Process Control supports the definition of a "control map" (a graphical representation of the 
collection of software modules and their relationships) for execution of software tools/programs to 
accomplish a physics analysis task or other defined tasks. It also initiates and controls activation of 
tools/programs along the control map through completion of the task. Components include: 
1. Process defmition 
2. Process enactment 
3. Module execution. 

2. 1. 1.4. Graphical User Interface 
A single Graphical User Interface (GUI) provides the facilities for a friendly, consistent "look and 
feel" interface to people using the SDC off-line system. Components include: 
1. User interface (UI) builder 
2. Presentation service 
3. GUI application program interface (API) 

2.1.1.5. Data Services 
Data Services provide the facilities for: (1) definition of data structures (data modeling); (2) 
program access to the data (data repository API); and (3) efficient storage, retrieval and 
manipulation of the data (data repository I manager). Components include: 



1. Data modeling 
a. Graphical user interface 
b. Data base defInition 

2. Data repository 
a. Data base defInitions 
b. File/object catalog 
c. EffIcient data query/extraction 
d. Evolution of data base defmitions 

3. Data repository API 
a. Complex data structure support 
b. FORTRAN and C(++) support 
2.1.1.6. Common Utilities 

The fInal component of the kernel services is a collection of commonly used utilities, collected into 
stand-alone packages (utility tools) and utility libraries of independently callable routines (utility 
subroutines). Examples of such utilities are histogramming packages, fitting packages, and 
graphics routines. 

2.1.1. 7. Shells 
An important component of the core software is the set of shells or frameworks that will be 
provided for the different SDC computing tasks. Five separate tasks have been identifIed: 
1. Level 3 TriggerlProduction Reconstruction 
2. Physics Analysis 
3. Calibration 
4. Simulation 
5. Application Code Development 
These computing tasks differ in the degree of interactive control necessary and in their 110 
requirements. Production reconstruction is batch oriented, with minimal interactive requirements. 
The task accesses large amounts of data serially for both input and output, and must take advantage 
of parallel processing systems. Simulation is batch oriented with no input and serial output. 
Physics analysis is somewhat more interactive and requires random access to input events. 
Application Code development is extremely interactive, with full access to debugging tools and 
symbol tables, but needing only small numbers of events. 
Users must be able to run the same physics application code for any of these tasks. Thus, the core 
software must provide a set of frameworks, optimized differen,t1y for the differing needs of the 
separate computing tasks, with a common look and feel and a common interface that allows 
physics software to move easily from one task to another. 

2. 1.2 . Application Software 
Physicist provided application software is divided into several categories on the basis of: 
1) whether the software is a complete stand-alone package (a tool), or a collection of callable 
routines (a subroutine library); 
2) how widely used is the software. There is a hierarchy ranging from common software (used by 
the entire collaboration and maintained by the central computing group), to community software 
(used by, for example, a subsystem group and made available to the collaboration), and private 
code. Common and community software have stricter testing and certifIcation requirements than 
private code, as described more fully in chapters 3 and 4. 
Some of the most widely used common and community tools and subroutines may be written by 
the central computing group or be imported from outside the collaboration (eg, CERNLm). 
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This application software will most likely be written in a variety of programming languages. While 
it is anticipated that core software will probably be written in C++, it is expected that physicists 
will continue to make heavy use of both FORTRAN 90 and FORTRAN 77. 

2.1.2.1. Common Tools 
It is anticipated that a suite of common tools will be integrated and maintained at the SSCL by the 
SDC Computing Group, intended to be widely used throughout the collaboration. Approximately 
10 - 15 physics tools might be included, such as a jet cluster finding package, an event display 
package, and an electron identification package. These tools are self contained stand-alone 
packages. 

2. 1.2.2. Common Subroutine Libraries 
In addition to the Common Tools, standard libraries of subroutines, used by these tools and 
others, will be integrated and maintained by the central SDC Computing Group. These libraries 
can be used one routine at a time. 

2.1. 2.3. Community Tools 
There are other widely used physics tools which will not be supported by the central SDC 
Computing Group. However, these applications will be cataloged and made available to the 
collaboration "as is". 

2 .1.2.4. Community Subroutine Libraries 
Other widely used libraries of subroutines also exist, which will not be supported by the central 
SDC Computing Group. As with the Community Tools, these libraries will be cataloged and made 
available to the collaboration "as is". 

2.1.2.5. Private Code 
As has always been the case, typical physicists will often be creating their own code for physics 
analysis. This code may take the form of: 

a) Tools I subroutines written using SDC common tools and standards such as those in the 
SDC Developer's Toolkits (see Section 2.1.3.1), to minimize complexity and maximize 
efficiency: 
b) "Roll your own" tools I subroutines. 

Use of SDC common tools and standards will be highly encouraged when accessing SDC data. 
2.1. 3. Application Code Development Software 

Besides the core software itself, the SDC Computing Group will also provide tools and 
methodologies for development of the different classes of SDC software. Chapter 4 discusses in 
detail the processes to be used for software development, including procedures for code 
certification and migration of code from one level to another. 

2.1. 3.1. Software Development Tools 
Software development tools for SDC Core developers and physicists will be packaged into one or 
more SDC Developer's Toolkits. Both commercial and HEP community "standard" development 
tools are likely to be included. Typical components are: 
1. Editor(s), compiler(s), debugger(s) 
2. Data access and other API programming conventions 
3. User's and Style Guides 
4. Checklist(s) 
Core developer and other selected developer toolkits might optionally contain process control 
and/or code management clients. 



2.2. Other Centrally Provided Services 
Section 2.1 identified three separate functions that the central computing group will provide: 
1) "Ownership" of the core software: the central group will specify, design, code, test and maintain 
the core software (subject to review and critique from the collaboration); 
2) Providing software development tools, procedures and environments for various classes of 
software for use by both the central group and the collaboration at large; and 
3) Maintenance of common tools and libraries, and ownership of certain of these toolsllibraries. 
In addition, the central group will provide software support services to the collaboration at large. 
(This is independent of any hardware support services such as system design, procurement, and 
system management which are outside the scope of this document.) These support services do not 
form part of the offline software architecture, but they are important in understanding the proposed 
relationship between the collaboration and the central computing group, so they are listed here. 
In general, these support activities have to do with testing, integrating and certifying code, 
packaging physicist code into "release versions" for distribution to the collaboration, porting code 
to different hardware platforms, and maintaining and documenting code beyond what is done by 
the code authors. The central group will supply a standard uniform tool for accessing and 
maintaining software documentation. The code authors are still responsible for fixing bugs in the 
code as they are discovered, but the central group provides a clearing house for packaging and 
distributing software tools and subroutine libraries. Code is "delivered" to the central group by the 
code authors, whereupon the central group takes on some of the testing and code maintenance 
activities. These relationships are described more fully in chapter 4 where the software processes 
for different categories of code are defined. 
Finally. note that while the central computing group is primarily located at the SSCL, it is also 
composed of additional collaboration physicists and computer specialists located at remote 
locations who work in close conjunction with the portion of the group at SSCL. 
2.3. User Interaction With SDC Software 
This section gives some examples of how users will interact with the various classes of software 
defined in Section 2.1. User roles and typical usage scenarios are described. 

2.3. 1. User Roles: Data Services 
The purpose of this section is to define who will produce and use the Data Services and how 
production and use is envisioned to occur. There are different groups of data tools (or data tool-
kits) for different activities, and it is envisioned that there will be different people involved in the 
various stages of data service production and use. Therefore, the roles which follow describe the 
different types of people involved and how they might be involved in data service production 
and/or use. 
There are two general types of people involved in data service production and use: (1) the SOC 
Computing Group (Core-Developer group) primarily at the SSCL; and (2) the User-Developer or 
typical physicist at a local institution, regional center or at the SSCL. These groups of people are 
further defined as follows: 
1. Core-Developers 

a. Generic Data Tool-Kit Provider 
Typical Skills : Physicists and Professional Software Engineers 
Tasks : 

Specifies, designs and makes or buys the data tool-kits which are not physics 
specific. Typically these would include a Data Modeling Tool-Kit with a Graphical 
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User Interface (GUI) to be used at analysis/design time and a Data Repository Tool-
Kit with a GUI and Application Program Interface (API) to be used at code and 
run-time. 
Integrates the above generic data tool-kits within the overall Core software 
architectural framework. Within the Core architecture these generic tool-kits are 
part of data "services". 

b. Global Physics Data Tool-Kit Provider 
Typical Skills : Physicists and Professional Software Engineers 
Tasks : 

Uses the generic data modeling tool-kit to analyze, design and develop the global 
physics data definitions (data dictionary or metadata) for the general use data bases. 
This might include, for example, the calibration data base anellor the top level 
hierarchy of the production reconstruction data base. 
As part of the above activity implements "built in" types (classes) of common use 
data structures for subsequent inclusion in unique physics code developed by the 
User-Developers described below. The "built in" types depend on the 
implementation, but might take the form of C++ structures or FORTRAN 90 
TYPEs. (See below for further discussion. These built-in types may be compiled in 
or interpreted at run-time.) 
Designs and develops any FORTRAN 90 or FORTRAN to C++ "bridge" or API 
code as needed to access the underlying data transparently. 
Documents guidelines for use of the global data definitions. These guidelines are 
used by the User-Developer described below. They include such things as on-line 
help, programming style guide, descriptions on how to use the APIs, how to use 
the GUI to search through the data definitions on-line, etc. 
Provides a tool as needed to import any existing Zebra bank or other data structures 
and store within the global data defmitions described above. 
Maintains and refines the global data definitions using the data modeling tool to 
check consistency and using run-time tools to tune performance. The toolkit 
provider is responsible for overall data base integrity and efficiency. 

2. User-Developer 
Typical Skills: Physicists & part-time programmers 
Tasks : 

Uses the global data definitions (built-in types, etc.), APIs, data repository tool-kit, 
and documentation provided by the Core-Developers to access physics data in the 
development of physics analysis code. It is envisioned that physics data will be 
accessed via built-in types or user defined types. A type in this context refers to a 
named structure consisting of named elements which are also typed. Access to 
elements of a structure would normally be direct and compiled in, e.g., in C++ one 
would code "structure.element" or in FORTRAN 90 one would code 
"structure%element" . This would avoid the need for navigational code. 
Optionally, generic code could be written to access the definitions and interpret it at 
run time. 
Optionally, builds private user defined types. This would normally be done by 
designing the user defined type using the generic data modeling tool-kit and 
automatically generating the code from the definitions. (The code would be in the 



fonn of a C++ structure or a FORTRAN 90 TYPE.) It would probably be a policy 
to encourage sub-class definition on existing built-in types. 
At any time browses the definitions and data on-line using the data repository tool-
kit. User-Developers granted write authority by the data administrator (SDC 
Computing Group) would be able to update data on-line. 

2.3.2. User Scenarios 
Since the SDC Computing Group prepares to produce the SDC software system which will be 
used by all SDC physicists doing analysis, it is important to create understanding with the eventual 
users of this system at an early stage. This section outlines conceptual examples of how physicists 
would interact with that system when doing analysis of SDC data and software development. 

2.3.2.1. Analysis Scenario 
After logging on to a workstation, the user can choose to analyse some existing data using existing 
software supported by the appropriate experts (tracking, ... ) and/or private software. A screen 
similar to the one shown in Fig. 2-1 would present itself so that the user could build an executable 
program, give it input data, and run it, solely with mouse drag-and-click operations. Visualization 
tools could include histogram displays, event displays, etc. 
A repository of reconstruction and analysis packages would be available. An executable program 
could be fonned by dragging the desired packages into the programming window and joining them 
together. Another window would contain a list of existing datasets (stored in a database) which 
can be dragged into the input package to start the execution of the program. New reduced datasets 
could be created and histograms viewed within a PAW-like environment 

2.3.2.2. Development Scenario 
When a user wants to develop a package for personal use or to provide new tools to the 
collaboration, it is important to have development tools to make this process easier and as error-
proof as possible. Fig. 2-2 shows what the code development environment might look like. 
VariOllS tools such as editors, debuggers and compilers would be integrated within one screen. An 
important part would also be a "Package Builder" utility that would help the developer to make sure 
that code satisfies whatever requirements are needed to ensure that it works within the underlying 
"Core" framework. 
A menu of possible operations would be presented to the user who intends to write a new package 
(for personal or eventual SDC-wide use). For example, these operations could invoke an editor, a 
debugger, or a package-builder utility to interface the code to the standard Core programming 
scheme. 
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Fig. 2-1. Example User Analysis Screen 
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Fig. 2-2. Example Application Code Development Screen 
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2.4. Architecture of Core I Application Software 
An architecture is needed to implement the SDC Corel Application software system for each 
computing task to meet criteria such as supportability, upgradeability, etc. The SDC Computing 
Group has adapted an architectural reference model for software engineering environments of the 
European Computer Manufacturers Association (ECMA) and National Institute of Standards and 
Technology (NIST). This model is sometimes called the "toaster" model because of a vague 
geometrical resemblance; its adaptation as the SDC architectural model is shown in Fig. 2-3. 
As can be seen in the figure, the elements of the Core services form the structure of the "toaster". 
Each of the blocks of the structure: 

Operating system; 
User interface; 
Communications; 
Shell; 
Process control; and 
Data services 

support (common and user) tools as "pieces of toast". Because of the design of the structure, tools 
can easily be inserted and removed as desired. Similarly, each block of the structure has clean 
interfaces with other blocks and the tools, so it can be easily upgraded or replaced. 
Each tool is therefore a standalone process accessing data, communicating and being controlled, as 
an entity. The tool may invoke (common or user) subroutines (in a library or elsewhere) whose 
execution depends on the tool, i.e., they are not standalone. 
A group of tools related to a Core service or a related group of physics tools may be packaged into 
a toolkit. Though each constituent tool may perform functions complementary to the others, each 
tool must conform to the requirements of the architectural model as a standalone process. Hence, 
"pieces of toast" may have functional relationships, but they still can be easily upgraded or 
replaced. ' 
The SDC Computing Group has adopted the toaster model architecture for both Physics Analysis 
and Application Code development functions. However, the reader should be warned that these 
will likely two separate toasters. The Physics Analysis toaster is the one shown in Fig. 2-3, where 
the pieces of toast correspond to different physics or service packages. The Application Code 
Development toaster, on the other hand, might contain individual CASE tools, editors and 
debuggers, and code management tools. (Note that in this Application Development toaster the 
various software development tools communicate directly with one another as in traditional toaster 
models, unlike the Physics Analysis toaster where we have chosen to forbid direct tool-to-tool 
communication.) Moreover, it is recognized there may even need to be separate toasters for each 
of the different of SDC computing tasks described in Section 2.l.l.7, i.e., components of the 
Core may be different depending on whether Production Reconstruction or Physics Analysis is 
being supported. Nevertheless, the SDC Computing Group has established a design goal of 
having common components between toasters wherever possible. In particular, it is hoped that the 
shells or frameworks for the different computing tasks can be implemented as different scripts 
driving the process control tool, rather than as totally separate "oasters. 
In summary, the key features of our adaptation of the Physics Analysis toaster model are: 
1) Modularity and replace ability of software components; 
2) No direct interaction between software components; all interaction is either through control 
messages sent through process control, or through data structures in the data services software 
component; and 
3) A clean well defmed environment in which physicists can embed application code. 
The architectural model of Fig. 2-3 underlies the statements and descriptions of the chapters which 
follow, and is referenced throughout. 
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3. SOFTWARE COMPONENTS: Summary and schedule 
This chapter introduces some of the new concepts of the SOC software system. Summaries are 
provided of the processes to be used in developing and maintaining SOC software (3.1) and of the 
services and operation of the Core Software (3.2). In the longer version of the document, details 
of the Computing Working Groups plans for SOC software are expanded in Sections 4, 5, and 6. 
In addition, a proposed schedule for implementation of prototypes of the SOC software system is 
given in section 3.3. 

3.1 Software Development Processes 

The SOC Computing Group will defme the processes to be used for developing, maintaining and 
distributing code for different classes of SOC software. The different classes of software, 
introduced in Sect. 2.1, affect the reliability of the overall software system and of the data and 
physics analysis to vastly different degrees. Accordingly, the processes to be used will be defined 
with differing degrees of strictness. At one extreme, private code (see Sect. 2.1.2.5) used for a 
short time by a single individual need have no required processes, but may still benefit from 
process support tools provided centrally. At the other extreme, essentially all of the Core Software 
(see Sect. 2.1.1) affects the reliability and stability of the whole SOC Offline system. Its 
development cycle will need to be rigidly controlled, as will fixes and upgrades to it that are made 
from time to time. 

The SOC Computing Group has begun to defme the controls that will be exercised over the more 
critical parts of the software and to identify which sets of controls will be applied to which classes 
of software. Organizations to implement the certification process have also been tentatively 
identified. It is envisioned that there would be a Software Review Board (SRB) to provide 
oversight for the integration and interoperability of the SOC Software and a Certification Board 
(CB) to determine that software has met the minimum standards defmed for it. It may also be that 
there is only one board for these two functions. 

Particular attention is paid here to certification of software where a formal procedure is needed. In 
general, physics application software has less need of certification and other formal procedures 
than does the core software. But there is significant overlap of the two classes: application 
software for the level 3 trigger needs certification at least as stringent as that applied to any of the 
core software. 

3.1.1 Application Software Processes 
This section describes the hierarchy of different classes of application software, and briefly outline 
the processes that will apply to these different classes. 

3.1.1.1 Certification Hierarchy 

Fig. 4-2 shows the several classes of physics application code arranged according to criticality and 
stringency of certification requirements. The figure summarizes a number of considerations 
affecting the software hierarchy. One important point to note is that code often starts in a low-
impact category but migrates up the ladder as it is found to be useful by more than the original 
creator. Additional levels of certification will be needed as software is used in more critical ways. 
Clearly, developers would be well-advised to use high standards in developing all code to avoid 
substantial work in bringing code up to the standards of higher levels. 

3.1.1.2 Common Physics Software Certification 

Certification assumes that common physics software has been developed outside the formal 
processes of the SOC Computing Group. The software may be a candidate for a common tool or 



community tool; for production reconstruction; or for level 3 trigger. The software must undergo a 
technical certification process in order to be incorporated into the SDC baseline. 

Certification means verification that software meets SDC requirements and standards for 
robustness, documentation, and maintenance. Robustness requires that regression tests be 
performed and analyzed either by the SOC Computing Group, or submitted by the developer / 
submitter and reviewed by the Certification Board. Minimal acceptable documentation includes a 
requirements / design specification and a user's guide. There must also be a maintenance 
arrangement. 

The appropriate board will evaluate robustness of the software by reviewing tests and 
documentation provided by the developers, and conducting a suite of regression tests of the 
software after it has been incorporated into the SDC baseline. Those tests will verify the 
operational readiness of the software within the system (i.e., that the software has not "regressed" 
upon being integrated). 

Documentation will consist of a user's guide and a requirements/design specification. The latter 
document will be particularly important for maintenance and testing. Documents may also be 
required to meet standards for their content. 

3.1.1.3 Private Code Development Process 

Private code includes personal code and tools perhaps developed external to the SDC formal 
software process and outside the scope of the SDC certification process. Users (or their 
organizations) are solely responsible for the development, testing, maintenance, configuration 
control, and documentation of private code. There must be safeguards against damage by private 
code to the SDC database, network manager, etc. 

The SDC Computing Group will provide SDC Code Developer's Toolkit(s) to SDC users. The 
SOC Computing Group will also provide problem support on the toolkit(s). Private applications 
written with the SDC Developer's toolkit(s) can more easily be added to the SDC common physics 
software baseline, though in that case they must still undergo a certification process. 

3.1.1.4 Community Tools Development Process 

Community tools are tools widely used by SDC physicists but developed external to the SDC 
software system. These will be provided "as is." Nevertheless, community tools must undergo a 
certification and integration process. The certification requirements will be less stringent than those 
for production reconstruction, Level 3 trigger, and common tools. The testing burden will be on 
the developer/submitter. The community tool will be integrated into a repository by the SDC 
Computing Group with support from the developer/submitter, if that is available. The repository 
of community tools will be available for general use. 

3.1.1.5 Common Tools Development Process 

Common tools are large and integrated pieces of code generally used by every member of the 
collaboration. Common subroutine libraries contain routines used by the tools. Because of its 
widespread use, common tool software must undergo a certification / integration / build process. 
Certification requirements will be less stringent than those for production reconstruction and the 
Level 3 trigger, but more demanding than those for community tools. The testing burden will be 
on the developer/submitter. 

Integration of common tools into the SOC process control framework will be done by the SOC 
Computing Group with support from the developer/submitter. The SDC Computing Group will 
build and release the upgraded process control framework to SDC users. 
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3.1.1.6 Production Reconstruction Development Process 

Production reconstruction code is critical to every physics analysis and study in the collaboration, 
though it is expected to change relatively infrequently. Therefore, it will undergo a rigorous and 
complete certification, integration, and build process. The process will include testing, change 
control, and well-defined maintenance. Certification will be held to stringent standards. The 
testing burden will be shared by the SDC Computing Group and the developer/submitter. 
Integration and build will be done by the SDC Computing Group only. There will be a mandatory, 
pre-defined test suite. 

3.1.1.7 Level 3 Trigger Development Process 
The Level 3 trigger code is closest to the data and also the most critical. When errors are found they 
must be fixed quickly but safely, and there must be an understandable and repeatable audit trail of 
changes made. There will be an extremely rigorous initial certification, integration, and build 
process. A fast action group of experts analogous to a "SWAT team" will accommodate quick 
changes and maintenance. The expedited process will give the SWAT team enough authority to 
make decisions without first consulting the Software Review Board, although the SRB will review 
any and all changes made by the SWAT team. The SWAT team will be encouraged to make 
changes that are simple and foolproof rather than elegant and complex. It must leave a complete 
audit trail. 
The SWAT team approach stresses advanced preparation. In addition to regular members of the 
SDC Computing central group, there will be several experts from the diverse areas of the detector 
on call. The members will be armed with good documentation, analysis tools, and a test suite. 
Any fixes or changes will leave an audit trail, and will be reviewed by the SRB at the first available 
opportunity. 

3.1.2 Core Software Development Process 

Since Core software will be used and relied on by every user in the collaboration, the process must 
be formal and rigorous, yet flexible enough to make improvements and meet changing needs. An 
iterative software life cycle model will probably be used, with accommodations for rapid 
prototyping of the user interface. It must also be possible to take advantage of the latest software 
technology during the long life of the experiment The process will be utilized and "owned" by the 
central SDC Computing Group located at the SSCL. 

While the process described here may seem stringent by traditional HEP community standards, it 
has been driven by several factors. The Core software is important to the entire collaboration. The 
software will be utilized and relied upon by all SOC users. Because of its size, early schedule, and 
several functionalities, the Core software will require multiple developers. In such an 
environment, a properly managed process must be used to ensure quality of the software. 

The Core software development process described in this section promotes early detection of 
errors, resulting in long-term cost and time savings to the SDC. A well-defined process and 
methodology for developing software also results in easier maintenance after the code is 
developed. 

For each major version of the Core software (Le., the first version and major upgrades), the 
development process will consist of the following phases: 

1) Planning (risks and dependencies analysis, schedule, development plan) 
2) Requirements analysis (functionality, user interactions; use of structured 

methodology) 
3) Design (make or buy studies, languages and other tools to be employed) 
4) RequirementslDesign Review 



5) Coding (automatic code generation where possible) 
6) Integration (generation of complete software system, high level tests; beginning of 

configuration control) 
7) Verification and testing (use of test cases; formal reporting and documentation of 

corrections) 
8) System Verification Complete Review 
9) Build and delivery/Installation (Production versions made available; documentation 

available; support begun) 
3.1.3 Software Review Board 

To accomplish configuration management of the core software and other software managed by the 
central SDC Computing Group, a Software Review Board (SRB) will be formed. Membership of 
the board will include representatives from the central SOC Computing Group at the SSCL and 
other appropriate representatives from the SSCL and the SDC. 

The SRB will be responsible for establishing and maintaining baselines for the following Core 
software artifacts (by version): 

Source/object/executable modules 
Documentation 
Test case scripts. 

Therefore, the SRB must also plan and oversee management of the actual source and libraries. 

Source/object/executable modules for a given version of the Core software will first be placed 
under configuration control at the end of the integration phase, that is, just before the start of 
verification/testing. Test case scripts for that version will also be placed under configuration 
control then. From this point forward, the SRB will assess and classify problem reports and 
schedule fixes to both modules and test cases. Problem reports will come from the verification 
team at first, from users later. 

3.1.4 Organization 

The central SDC Computing Group will be responsible for performing several tasks. These 
include: 

1) Developing the Core software, starting with requirements analysis through integration, 
test and delivery. 

2) Performing systems administration of the SDC offline system. 
3) Coordinating the certification of Common Physics software, including common and 

community tools, the level 3 trigger, production reconstruction, and common 
physics applications or tools. 

4) Developing (as part of the Core services) an SOC Developer's Toolkit(s) and providing 
it to Common Physics software developers and User Code developers as required. 

5) Managing repositories for Common Utilities, Common Tools and Community Tools, as 
well as their subroutine libraries. 

6) Building the delivery packages of Core, Level 3 Trigger and Production Reconstruction 
software, and distributing to appropriate SOC users. The central SDC Computing 
Group will install delivery packages for central (e.g., server) platforms at the 
SSCL. The group will also provide telephone support via a help desk for remote 
installations. 

7) Coordinating the maintenance of SDC offline software. 
8) Managing core and common physics software baselines (configuration and code 

management). 
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Although the final authority belongs to the SDC Collaboration as a whole, there will be several 
management controls. The SRB will approve or reject proposed changes to the baselines. The CB 
(which may be the same body as the SRB) will certify that changes and additions to common 
physics software meet SOC certification requirements, and audit Level 3 SW AT team changes. 
Several support tools and systems will aid in ensuring conformity to coding standards and 
requirements. 

3.2 Core Software 

The core software consists of a number of programs, packages, and subroutine libraries used to 
build ALL the standard SDC computing. It is envisioned that five standard shells or frameworks 
will be built and maintained by a central group at the SSCL. The five identified supported 
frameworks are: Level 3/ Production Reconstruction, Simulation, Analysis, Calibration, and User 
Code Development 

The typical user will start up one of these standard frameworks, which will then load all the 
appropriate SOC and system services along with the necessary tools, user programs and/or fIles. 
A number of the underlying programs might be the same from one framework to the next, but their 
combination will be optimized for a specific task. It will also be possible for the user to construct 
his or her own framework (using the basic services, utilities and libraries discussed below). 
Initially, only the five frameworks listed above will be supported. However if enough people 
request an additional framework, it will be added to the list of supported frameworks. 

3.2.1 Core Software Architecture 

There is one common Graphical User Interface, and all interaction with the user is done through 
this one interface. Through this interface the user talks to the Process Control Service, which 
controls when and if a specific tool will be loaded and run. This "picking" of sp~cific tools is 
what customizes each run of a job/toaster. The various shells or frameworks dicussed above are 
basically the control files that specify which combination of tools (and possibly customized 
services) are to be used. 

All communication among the various services is done only through the "Communication 
Service". Access to the data, such as the raw event data, reconstructed event data, calibration 
data, etc., are all done through Data Services. 

The Tools in this model are user written applications. Examples of Tools are track reconstruction 
processes, Vertex finding routines, and Calorimeter reconstruction. One single Tool can ev~n be a 
"Toaster" with a collection of Tools as long as it meets all the requirements for a normal Tool. 

Along with user tools there are also a number of "Core" common utilities and other common tools 
and libraries supported by the central group at the SSCL. 

Some of the general requirements of the "Core" Software are: 
A "nice" Graphical User Interface 

Able to control program flow using "point and click" 
Able to control program using command line 
Sessions tailorable by user 

Program can be run in "batch mode" 
Able to switch between "batch" mode and interactive mode "on the fly" 

Possible to do dynamic linking of program 
"Core" program completely modular 

Able to replace all parts of core program 
Parallel and sequential modes identical 



Only one version of program exists and it can be run in either sequential or parallel 
mode (Le., sequential mode = parallel mode run on a single node). 

3.2.2 Core Software Services 
The major components of the core software are the user interface, process control services, 
communication services, and data services. 

3.2.2.1 User Interface 

The Core Software User Interface includes both the Graphical interface and the "batch" interface. 
There must be a standard non-graphical interface to the "Core" program such that the user is able to 
run the program from a standard "dumb" terminal, or in batch mode. It must be possible to 
duplicate all commands in either "batch" mode or graphical interace mode. 

The user must be able to set up the Process Control map and then execute the program 
interactively. The user interface will be able to interact with the running program for the purposes 
of debugging and to modify the control map interactively. The graphical interface will be used to 
monitor the status of the program and will animate the process of the job. 

3.2.2.2 Process control service 

Process control is responsible for initiating and activating tools along one or more 
ordered paths specified by the user. Tools are contained in frames which are connected to 
nodes via links. A frame activates its tool when a signal appears on its input link. After 
the tool completes its task, the frame puts a signal on the output link. The links buffer the signals 
storing the control data associated with each signal. The nodes direct the flow providing event 
loops, parallel processing and filtering by selectively producing output signals based on their 
inputs. Multiple tools and copies of tools may be active at one time on one or multiple platforms. 

3.2.2.3 Communications service 

. The Communication Service provides two way. communications between components (e.g. tools 
and services or two services; recall that direct tool-to-tool communication is not allowed) of the 
SDC off-line system. This service supports a distributed heterogeneous environment 

The client's view of the communication service is via an application programming interface, 
supported by an interface defmition language, which hides implementation details of the underlying 
communication services. (The communication service itself might be replaced transparently to the 
client's knowledge) 

One (or more) of the following communications mechanisms are supported: 

1. Messages: Operations on messages include, for example, create, delete, update, send, receive, 
acknowledge, reply and ignore. There may also be registration and de-registration operations if a 
multicast delivery service is used. It is with this operation that a tool or service indicates what kind 
of messages in which it is or is not interested (e.g., all messages referring to my objects). 

2. Process Invocation (e.g. exec, fork, invoke and spawn). 

3. Remote procedure calls. 
3.2.2.4 Data Service 

The SDC Data Service consists of a set of related software tools that work together to provide 
services to the collaboration physicists and programmers relating to data description, access and 
manipulation. These functions have traditionally been provided by home-made add-ons to the 
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FORTRAN language (such as ZEBRA and YBOS), and were primarily motivated by deficiencies 
(in data structure definition and memory management capabilities) of FORTRAN. It is hoped that 
for SDC these tools will be better integrated into the overall programming environment and 
commercially supported. The tools are used by a variety of types of users, including software 
"core" designers, physics algorithm software designers, and physics data analysts. Furthermore, 
the tools are used in various stages of the software development cycle, including at design time 
(where the tools are used in defining data structures), at coding time (where the tools are used in 
writing actual physics reconstruction and analysis code), and at run time (where the tools provide 
access to the data and allow the user to manipulate, store and retrieve data). 

Data Model and Data Repository are two comlementary aspects of the Data Service. The Data 
Model is the conceptual level of the Data Repository, while the Data Repository is the physical 
realization of the Data ModeL The Data Model describes the conceptual items to be stored and the 
connections between them. It does not involve any physical realization of the data in any form; it is 
an abstract layout of the data. The Data Repository contains the schema (data structures and 
defmitions), the data itself, and all the instances of the data classes (ie, the actual data). 

The Data Modeling Tool aids in representing the abstract Data Model graphically and aids in 
translating it into a physical realization in the Data Repository. It has a human interface, the GUI, 
for describing the Data Model and a machine interface, the output, which makes table creation 
code, class definitions, etc., for laying out the physical storage in the Data Repository. Activities 
such as browsing the schema in the repository or browsing the data in the repository are, strictly 
speaking, supported by the Data Repository API, although the GUI presented for these functions 
should be very similar to that of the Data Modeling Tool to present a coherent picture to the user-
developers. 

Most work on the Data Service so far has involved identifying requirements appropriate to three 
different phases of software development: 

Design time, when data structures are defined; 
Coding time, when the data structures are used in the preparation of application programs; 
Run time, when the actual data are retrieved and stored in the data repository, guided by the 

previously defined structures. 

The full set of detailed requirements for data services can be found in Chapter 5. 



3.3 Proposed Schedule 

Various components of the SDC software system need to be in place as soon as possible to allow 
application software development to proceed. The current proposed schedule plans on providing 
limited functionality prototypes of various software components as soon as feasible to allow 
collaboration physicists to begin using and evaluating the software. The proposed near-term 
schedule for delivery of these prototype components is: 

Selection of prototype data modeling 
methodology and first version 
of corresponding tools 

Version 1.0 of core SW (frameworks 
and primitive kernel services) 

Selection of SW Development 
methodology 

First version of SW development 
tools/developers guide 

Evaluation of and feedback on initial 
prototypes 

Preliminary fully functional version 
of core software provided for use in 
application code development 

Dec., 1992 

Feb., 1993 

Mar., 1993 

June, 1993 

Apr.-Sept., 1993 

Sept., 1994 

The core prototype will include versions of data modeling software (based on ZEBRA), process 
control, communication and user interface (using public domain tools). Version 1.0 will be simple 
and easy to use while providing the basic core functionality. The separate prototype data modeling 
package will make use of the commercial OMTool package to model some already existing SDC 
data structures. 

Later versions of the various software system components will follow, based on user experiences 
with the early versions. 
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Note that the following chapters contain detailed technical 
material and computer jargon and are mainly intended 
for the computing group task force members. 

Read further at your own risk! ! 



4. PROCESSES 
This section addresses processes for the development and control of software specific to SDC 
Offline Computing. However, using these processes to meet SDC Online Computing needs as 
well is not precluded. The software processes will be established so that support can be automated 
to the maximum extent practical. Processes described here assume the existence of a central SOC 
Computing Group located mainly at the SSCL. Some of the introductory material from chapter 3 
is repeated so this chapter is self contained. 

Throughout this section, references are made to the SDC offline computing tasks defined in 
Section l.3, and the classes of software defmed in Section 2.l. 
4.1. Process-Related Terminology 
SDC offline software must support several SDC computing tasks: (1) Physics Analysis; 
(2) Application Code Development; (3) Simulation; (4) Calibration; and (5) Level 3 
TriggerlProduction Reconstruction. Code for each task consists of Core and Physics 
Applications. Different SDC computing tasks will have different core and physics 
applications, but common code will be used wherever possible. Fig. 1-2 shows the relation 
between software and the tasks. 

Core software is comprised of a kernel of services and a shell, or framework, for the 
user to control job setup and execution. Core software is central to the operation of the SDC 
computing system. Some tools belonging to the core, called Common Utilities, may be used for 
several tasks. Core software must be robust and reliable. The central SOC Computing Group will 
develop (or acquire), integrate and maintain core software. 

Physics applications consist of standalone processes/packages called tools in this document, and 
libraries of subroutines (not standalone) used by tools. This software is expected to use general 
services provided by the core. Production reconstruction and Level 3 trigger software have a 
special importance to the experiment; they must be as free of error as possible and very well 
documented. Physics applications will largely be provided by appropriate SDC subsystem groups 
and/or users. 
In this chapter, Common Physics Software means physics application software 
developed by physicists outside the central SOC Computing Group which undergoes a technical 
certification process in order to be incorporated into the SDC baseline. Common physics software 
includes: 

Physics Analysis Applications (Section 2.l.2): 
Common tools 
Common subroutine libraries 
Community tools 
Community subroutine libraries 

Production Reconstruction 
Level 3 Trigger. 

Fig. 4-1 shows Core and Common Physics Software within the context of our toaster architectural 
model. 
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4.2. Process Considerations for SDC Software 
4.2.1. Physics Applications 
4.2.1.1 Certification 

A number of tools as well as subroutines used by tools will be developed outside the central SOC 
Computing Group located at the SSCL, but will be intended for use throughout the collaboration. 
These may include common tools, subroutines in common subroutine libraries, community tools, 
or subroutines in community subroutine librarie:;. In addition, production reconstruction and Level 
3 trigger software will be developed by dispersed groups of experts outside the SDC Computing 
Group at the SSCL. 
Because such software is so critical and/or has impact on many users, its quality must be assured. 
A technical certification process, tailored to the impact of the specific software to the SOC, will be 
used to incorporate the software into the SOC baseline. Certification will ensure the software 
meets standards for robustness, documentation, and maintenance and that appropriate test criteria 
have been established 

The several classes of code have different levels of criticality and impact on users; therefore, there 
are several levels of certification. Each level includes different requirements for testing, 
documentation, and maintenance. Fig. 4-2 shows the several classes of code arranged according 
to criticality and stringency of certification requirements. 

4.2.1.2 Physics Analysis Application Software 
A significant portion of Physics Analysis Application software will be application code written by 
physicists. Application code consists both of tools and subroutines written using SDC common 
tools and standards such as those in the SDC Developer's Toolkit(s) and "roll your own" tools and 
subroutines. The user (or the user's organization) will be solely responsible for controlling 
development, incorporation into the baseline, and maintenance of application code. However, the 
SDC offline system must provide safeguards to ensure that application code cannot damage the 
database or the process control framework. 
There are Community Tools and Community Subroutine Libraries widely used by physicists 
which must be made available to the SDC. A less stringent certification process will be applied to 
incorporate them into the SOC baseline and make them available "as is" in a repository. 
Maintenance will be the responsibility of the owning groups, with updates and upgrades to be 
coordinated by the central SDC Computing Group. 
The Common Tools and Common Subroutine Libraries to be made available as "standards" 
throughout the collaboration will likely be newly developed, though some reuse is possible. Some 
(or all) such packages may be developed by small, dispersed groups outside the central SDC 
Computing Group. However, a stringent certification process will be applied to incorporate these 
tools into the SOC baseline. The SDC Computing Group will integrate tools under strict control. 
The SDC Computing and developer groups together will maintain the code, under control of the 
SDC Computing Group. 

4.2.1.3 Production Reconstruction Application Software 
Production Reconstruction software is expected to be a combination of new and reused code 
developed by dispersed groups, outside the central SDC Computing Group. An external technical 
"czar" will integrate the software and verify its robustness. Because production reconstruction is 
so critical, a formal, rigorous certification process will qualify the code before it is incorporated 
into the baseline. Since the code is not expected to be changed frequently, formal version and 
change control processes will be applied. 
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Fig. 4-1. Core and Common Physics Software in the Toaster Model 
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4.2.1.4 Level 3 Trigger Application Software 
Level 3 Trigger software is also expected to be a combination of new and reused code developed 
by dispersed groups, outside the central SOC Computing Group. An external technical "czar" will 
integrate the software and verify its robustness. A formal, rigorous certification process will 
qualify this critical code before it is incorporated into the baseline. However, because the Level 3 
Trigger will be tuned rather frequently, flexible control processes will be needed ... Therefore, the 
level 3 trigger code will be maintained through a "SW AT team" approach. The "SW AT team" will 
necessarily leave an audit trail of its actions. 

4.2.1.5 Application Code Development Software 
Software development tools for SOC Core developers and physicists will be packaged into one or 
more SOC Developer's Toolkits. Both commercial and HEP community "standard" tools will 
likely be included. Development, integration and maintenance of these Toolkits will be strictly 
controlled by the central SOC Computing Group. 

4.2.2. Core Software 
Core software consists of kernel software and shell software. The kernel contains the user 
interface, process control, communication services, data services, common utilities, and, 
implicitly, system services. The shell controls job execution. 
System Services software, which is principally the native and network operating systems, will be 
mostly commercial. Similarly, the User Interface software, with a graphical orientation and 
compliance to standards (e.g., Motif), will be mostly commercial. Custom screens for the user 
will be newly developed, probably using commercial tools. 
Process Control software may have a commercial component, particularly for high-level process 
defmition and enactment, Likewise, Communication Services will probably be a mix of 
commercial and newly developed (particularly at the tool level) software. 
Data Services will likely utilize commercial products for data modeling and database management. 
However, data access mechanisms from physics code may be newly developed. 
Common Utilities will have a mixture of specialty and commercial tools and will contain at least the 
following: 

event display 
histogrammer 
plotter 
fitter 

The Shell to control task execution for physics analysis and other tasks will most likely be newly 
developed. 
Since every user in the collaboration will depend on the services and utilities of the Core, this 
software will be developed (or acquired). integrated, and maintained by the central SOC 
Computing Group. Because the Core is critical, the SOC Computing Group must exercise 
rigorous control over its development and maintenance. 
4.3. Physics Application Software Processes 

4.3.1. Common Physics Software Certification 
Certification assumes that common physics software has been developed outside the formal 
processes of the SOC Computing Group. The software may be a candidate for a common tool or 
community tool; for production reconstruction; or for level 3 trigger. The software must undergo a 
technical certification process in order to be incorporated into the SOC baseline. 
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Certification means verification that software meets SDC requirements and standards for 
robustness, documentation, and maintenance. Robustness requires that regression tests be 
performed and analyzed either by the SOC Computing Group, or submitted by the developer / 
submitter and reviewed by the SOC Computing Group. Minimal acceptable documentation 
includes requirements and design specifications and a user's guide. There must also be a 
maintenance arrangement 
The SDC Computing Group will evaluate robustness of the software by reviewing tests and 
documentation provided by the developers, and conducting a suite of regression tests of the 
software after it has been incorporated into the SDC baseline. Those tests will verify the 
operational readiness of the software within the system (Le., the software has not "regressed" 
upon being integrated), as well as compliance with its requirements and design specifications. 
Documentation will consist of a user's guide and a requirements/design specification. The latter 
document will be particularly important for maintenance and testing. Documents may also be 
required to meet standards for their content. 
Negotiation of a maintenance arrangement between the developer(s) and the central SOC 
Computing Group is a key part of the certification process. The arrangement defines the 
responsibilities of both developer(s) and the SOC Computing Group after its integration into the 
SDC offline system. It governs creation of fixes and upgrades to the subject software under the 
coordination of the SDC Computing Group. Any fixes or upgrades not done in accordance with 
the maintenance arrangement will subject the software to recertification. Since the SOC Computing 
Group cannot have expertise in all SOC offline software, maintenance arrangements will be 
necessary to ensure quality and timely support to SDC users. 
Certification Scenario 
Below is the scenario for certifying common physics software for incorporation into the SDC 
baseline. The scenario assumes the existence of a Certification Board (which may be the same as 
the Software Review Board, in practice). 

1. The developer/submitter submits a Change Request (CR) to incorporate software into the SOC 
baseline. 

2. The Software Review Board assigns the Certification Board to assess and assign a priority to 
the CR. 

3. The developer/submitter furnishes documentation proving that the application meets SOC 
certification requirements, including a negotiated maintenance arrangement 

4. The Certification Board "certifies" the software and recommends a disposition of the CR to the 
Software Review Board. 

5. The Software Review Board accepts or rejects the CR. 

6. If the CR is approved, the application is incorporated into the SOC baseline applications 
repository, the application is cataloged, and made available for SOC use. 

7. If the CR is rejected, feedback with reasons is provided to the author. 
4.3.2. Private Code Process 

User code includes personal code and tools perhaps developed external to the SDC formal software 
process and outside the scope of the SOC certification process. Users (or their organizations) are 
solely responsible for the development, testing, maintenance, configuration control, and 



documentation of application code. There must be safeguards against damage to the SOC 
database, the network manager, and so on. 
The SDC Computing Group will, however, provide SOC Code Developer's Toolkit(s} to SOC 
users. The SDC Computing Group will provide problem support on the toolkit(s}. User 
applications written with the SOC Developer's toolkit(s} can more easily be added to the SOC 
common physics software baseline, though they must still undergo a certification process. 

4.3.3. Community Tools Process 
Community tools are tools widely used by SOC physicists but developed external to the SOC 
software system. These will be provided "as is." Nevertheless, community tools must undergo a 
certification and integration process. The certification requirements will be less stringent than those 
for production reconstruction, Level 3 trigger, and common tools. The testing burden will be on 
the developer/submitter. The community tool will be integrated into a repository by the SOC 
Computing Group with support from the developer/submitter, if that is available. The repository 
of community tools will be available for general use. 

4.3.4. Common Tools Process 
Common tools are large and integrated pieces of code generally used by every member of the 
collaboration. Common subroutine libraries contain routines used by the tools. Because of its 
widespread use, common software must undergo a certification / integration / build process .. 
Common tool certification requirements will be less stringent than those for production 
reconstruction and the Level 3 trigger, but more demanding than those for community tools. The 
testing burden will be on the developer/submitter. 
Integration of common tools into the SDC process control framework will be by the SDC 
Computing Group with support from the developer/submitter. Build and release of the upgraded 
process control framework to SDC users will be by the SDC Computing Group. 

4.3.5. Production Reconstruction Process 
Production reconstruction code is critical to every physics analysis and study in the collaboration. 
It is expected to change slowly. Therefore, it must undergo a rigorous and complete certification. 
integration, and build process. The process will include testing, change control, and well-defined 
maintenance. Certification will be held to stringent standards. The testing burden will be shared by 
the SDC Computing Group and the developer/submitter. Integration and build will be by the SOC 
Computing Group only. There will be a mandatory, pre-defined test suite. 

4.3.6. Level 3 Trigger Process 
The Level 3 trigger code is the closest to the data and also the most critical. When errors are found 
they must be fixed quickly but safely, and there must be an understandable and repeatable audit 
trail of changes made. There will be an extremely rigorous initial certification, integration, and 
build process. A " SWAT team" approach will accommodate quick changes and maintenance. The 
expedited process will give the SW AT team enough authority to make decisions without first 
consulting the Software Review Board, although the SRB would review any and all changes made 
by the SW AT team. The SWAT team will be encouraged to make changes that are simple and 
foolproof rather than elegant and complex. It must leave a complete audit trail. 
The SWAT team approach stresses advance preparation. In addition to regular members of the 
SDC Computing central group, there will be several experts from the diverse areas of the detector 
on call. The members will be armed with good documentation, analysis tools, and a test suite. 
Any fixes or changes will leave an audit trail, and will be reviewed by the SRB at the first available 
opportunity. 
4.4. Core Software Development Process 
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This section describes the process to be applied to develop the services and common utilities of the 
Core software. Since Core software will be used and relied on by every user in the collaboration, 
the process must be formal and rigorous, yet flexible enough to make improvements and meet 
changing needs. An iterative waterfall or spiral life cycle model will probably be used, with 
accommodations for rapid prototyping of the user interface. It must also be possible to take 
advantage of the latest software technology during the long life of the experiment. The process 
will be utilized and "owned" by the central SOC Computing Group located at the SSCL. 
While the process described here may seem stringent by traditional HEP community standards, it 
has been driven by several factors. The Core software is important to the entire collaboration. The 
software will be utilized and relied upon by all SOC users. Because of its size, early schedule, and 
several functionalities, the Core software will require multiple developers. In such an 
environment, a properly managed process must be used to ensure quality of the software. 
The Core software development process described in this section promotes early detection of 
errors, resulting in long-term cost and time savings to the SOC. A well-defined process and 
methodology for developing software also results in easier maintenance after the code is 
developed. 

4.4.1. New Development 
For each major version of the Core software (Le., the first version and major upgrades), the 
development process will consist of the following phases: 

planning 
requirements analysis 
design 
coding 
integration , 
verification and testing 
build and delivery/installation. 
4.4.1.1 Planning 

The process will start with a Planning phase, which consists of three basic tasks. Risks and 
dependencies will be identified and assessed for severity, and mitigation plans will be established. 
A schedule will be developed, reflecting dependencies and mitigation plans for risks. Finally, a 
development plan will be defined to guide and coordinate software development across the group. 

4.4.1.2 Requirements Analysis 
~uring this phase, the functionality of the software will be partitioned into manageable, and 
therefore implementable, components. Detailed requirements for the entire software system, its 
components, and their interfaces will be defined and documented in one or more specifications. 
How users will interact and operate the system will be defined. This effort may also involve rapid 
prototyping of the user interface, to obtain user feedback into the requirements. 
A structured methodology such as object-oriented analysis will likely be employed in this phase. 
Tools supporting the methodology may also be used. 

4.4.1.3 Design 
In this phase, a design will be produced and documented. That design must fit within the SOC 
physics analysis architecture presented in this document. The various components of the software 
may be developed from scratch or acquired from already existing code. The decision whether to 
make or buy should be based on trade studies. Such studies are conducted to select the appropriate 
commercial or other existing products that satisfy component requirements. Language(s) and other 
supporting tools to be used in the coding phase will be determined. 



A structured methodology compatible with that used in the Requirements Analysis phase (e.g., 
object oriented design) may be employed. Tools supporting the methodology may also be used. 

4.4.1.4 Coding 
Software modules will be coded (or modified), debugged and individually tested by the developers 
during this phase. Necessary maintenance and user documentation will also be produced. 
Supporting tools which exploit the latest software technology (e.g., automatic code generation) 
will be utilized where available and cost effective. 

4.4.1.5 Integration 
Newly developed or otherwise acquired software modules will be combined to form a complete 
software system during the integration phase. High-level tests will ensure that the components of 
the system operate well together. At the conclusion of this phase, the source and object modules 
will be placed under configuration control as described in Section 4.4.4. 

4.4.1.6 Verification and Testing 
As the software is being designed and coded, a parallel effort will take place to defme test plans 
and test cases for independent verification and test of the system. Test plans and test cases will be 
placed under configuration control by the completion of the integration phase. 
During the verification and testing phase, test cases will be executed against the integrated software 
system. Problems encountered will be formally reported and corrected as required, in the manner 
described in Section 4.4.5. Adequacy of user and maintenance documentation will also be 
evaluated. The phase will be complete when all known problems have been corrected or resolved, 
and all test cases have successfully executed. 

4.4.1.7 Build and Delivery I Installation 
At the start of this phase, the software system will have been determined to be ready for SDC 
users. Executable and other modules will be built or packaged onto fixed media located at the 
SSCL and/or distributable media for distribution to SDC regional centers and user institutions. 
Installation instructions for the appropriate platforms will be included. Telephone support for 
remote installation will be provided by the central SDC computing group located at the SSCL. 
Different "packages" may be distributed, depending on the type of user. For instance, different 
packages may be distributed to: 

Regional centers, requiring data base and data services software, among other modules. 
Common tool developers, Le., physicists developing code for the entire collaboration, 
which will require special SOC Developer's Toolkit(s) to integrate into the SDC Offline 
System. 
Typical physicists, developing private application code to support their physics analyses. 
4.4.2. Inspections 

Selected members of the central SDC Computing Group will hold inspections during the 
Requirements Analysis, Design and Coding phases. A small group of related artifacts (whose type 
depend on the development phase) will normally be inspected. Issues identified at inspections will 
be tracked as action items which must be resolved before that software can move to the next phase 
of development 

4.4.3. Reviews 
To provide users with timely visibility and input into SDC offline software as it is being 
developed, one or two collaboration-wide reviews will be held. A RequirementslDesign Review 
will take place at the end of the Design phase. A System Verification Complete Review will be 
scheduled at the end of the Verification/Testing phase. These reviews will cover the entire SDC 
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offline software system in detail. Action items from the reviews will be tracked to resolution, and 
every attempt will be made to resolve them before moving to the next phase of development 

4.4.4. Configuration Management 
To accomplish configuration management of the core software and other software managed by the 
central SDC Computing Group, a Software Review Board (SRB) will be formed. Membership of 
the board will include representatives from the central SOC Computing Group at the SSCL and 
other appropriate representatives from the SSCL and the SDC. 
The SRB will be responsible for establishing and maintaining baselines for the following Core 
software artifacts (by version): 

Source/object/executable modules 
Documentation 
Test case scripts. 

Therefore, the SRB must also plan and oversee management of the actual source and libraries. 
Source/object/executable modules for a given version of the Core software will first be placed 
under configuration control at the end of the integration phase, that is, just before the start of 
verification/testing. Test case scripts for that version will also be placed under configuration 
control then. From this point forward, the SRB will assess and classify problem reports and 
schedule fixes to both modules and test cases. Problem reports will come from the verification 
team at first, from users later. 
At the end of the verification/testing phase, the documentation will be placed under configuration 
control. When the build packages have been completed and installation instructions written (Le., 
the software is ready for delivery), a coordinated baseline of build package(s), 
source/object/executable modules, documentation, and test cases will be established for that 
version of the Core software. "Owners" of each component of the baseline will also be assigned 
for maintenance. From that point forward, the SRB will manage all changes to the baseline and its 
contents. 

4.4.5. Maintenance 
The maintenance phase for a given version of the Core software begins after delivery to users. 
During this phase, the central SDC Computing Group at the SSCL will provide a fIrst level of user 
support through a telephone help desk. The help desk will support users of the Core software in 
resolving usage problems. If a user suspects a bug or desires an enhancement to the Core 
software, the help desk will provide aid in completing a Problem Report or Change Request form, 
as appropriate. 
Most of the activity in the maintenance phase consists of handling Problem Reports and Change 
Requests, under the auspices of the SRB. Typical scenarios for the handling of a Problem Report 
and Change Request are given in Section 4.4.5.1 and Section 4.4.5.2, respectively. The SRB will 
perform its configuration management responsibilities by controlling the Core software baseline(s). 
The SRB will: 

assess and classify Problem Reports 
assess and classify Change Requests 
schedule fixes and changes. 

The SRB will also oversee management of the source and other libraries. 
Note that these mechanisms are not intended to put any artificial barriers between users and code 
maintainers. Most problems will be dealt with efficiently electronically, without requiring any 
physical meetings of the SRB. 

4.4.5.1 Problem Report Scenario 



This section describes a typical scenario for handling a Problem Report (PR) by the SRB and the 
central SDC Computing Group at the SSCL. 
A user (perhaps with the aid of the help desk) submits a Problem Report that describes the problem 
encountered, the software components involved (if known), and the circumstances of the problem. 
The Software Review Board (or an authority which it has designated) assigns a priority to the 
Problem Report. A typical priority scheme might have three levels, such as: 

Work in progress cannot continue; many users may be affected. No solution has been 
identified. 
Work in progress is severely impacted, or a significant number of users is adversely 
affected. A degraded or tedious solution may be available. 
There is minor impact to work in progress and few users are involved. A solution is 
probably available. 

The SRB or its designated authority assigns the appropriate owner(s) of the software involved to 
investigate. The maintainer provides a solution or workaround, if possible. 
The Software Review Board classifies the Problem Report based on results of the investigation. If 
a fix is not necessary, the Problem Report is returned to the submitter with an explanation. There 
may be reference to a planned documentation update, if applicable. If a ftx is necessary, it is 
scheduled. 
The fix is developed and verified. Updates to documentation and test cases may also be necessary. 
The fix is released. The SRB authorizes the necessary changes to the software baseline. The 
Problem report is closed. 

4.4.5.2 Change Request Scenario 
This section describes a typical scenario for handling a Change Request (CR) by the SRB and 
central SDC Computing Group at the SSCL. 
A user or developer submits a Change Request (CR) describing the desired change. The Software 
Review Board assigns the appropriate owner(s) of the software involved to assess the CR based 
on the impact on resources necessary in order to incorporate the change and impact on the user 
community. 
The Software Review Board approves or rejects the CR. If rejected, the CR is returned to the 
requester along with a rationale. If it is approved, the CR is assigned a priority and scheduled for 
incorporation into a version of the software. A typical priority scheme might have Mandatory, 
Highly Desirable and Desirabler categories. The assigned priority is used in scheduling changes. 
The change is developed and verifted. This effort includes the definition of new or modified test 
cases and updates to documentation. The SRB authorizes changes to the software baseline. 
The change is released, often packaged with other CRs into a new version or "release". The CR is 
closed. 
4.5. Organization 
The central SDC Computing Group will be responsible for the day-to-day execution of the 
processes described in this chapter. As such, the group will serve as the "working owner" of the 
processes. Other dispersed members and groups of the collaboration will have responsibilities to 
ensure their operation (e.g., board members or developers of Common Physics software). 
Ultimate responsibility for the processes will belong to the full SDC Computing Group as the 
process "owner". The central group and others having process responsibilities will therefore be 
accountable to the full SDC Computing Group. 
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The central SOC Computing Group will be responsible for performing several tasks. Those 
include: 

Developing the Core software, starting with requirements analysis through integration, test 
and delivery. 
Performing systems administration of the SOC offline system. This task is elaborated in 
Section 4.6. 
Coordinating the certification of Common Physics software, including Core common tools 
and utilities, the level 3 trigger, production reconstruction, and common physics 
applications or tools. 
Developing (as part of the Core services) an SOC Developer's Toolkit(s) and providing 
them to Common Physics software developers and Application Code developers as 
required. 
Managing repositories for Common Utilities, Common Tools and Community Tools, as 
well as their subroutine libraries. 
Building the delivery packages of Core, Level 3 Trigger and Production Reconstruction 
software, and distributing to appropriate SOC users. The central SOC Computing Group 
will install delivery packages for central (e.g., server) platforms at the SSCL. The group 
will also provide telephone support via a help desk for remote installations. 
Coordinating the maintenance of SOC offline software. The central group will be 
responsible for maintaining the Core software. This responsibility includes maintaining 
newly developed software, and interfacing with vendors for any commercial software. The 
central group will negotiate maintenance arrangements with outside developers for 
Common Physics software, and coordinate proper execution of those arrangements. The 
central group will coordinate fixes or changes to the critical Production Reconstruction 
software, and audit "SW A T team" fixes or changes to the Level 3 Trigger software. The 
Process Owner is the Computing Group of SOC, though the Working Owner is the SOC 
Computing Group at the SSCL. 
Managing core and common physics software baselines (configuration and code 
management). 

Although the final authority belongs to the SOC Collaboration as a whole, there will be several 
management controls. The Software Review Board (SRB) will approve or reject proposed 
changes to the baselines. The Certification Board (which may be the same body as the SRB) will 
certify that changes and additions to common physics software meet SOC certification 
requirements and audits Level 3 SW AT team changes. The several support tools and systems will 
aid in ensuring conformity to coding standards and requirements. 
4.6. Systems Administration 
Systems administration will integrate the various core software components, build and install core 
software at the central facility and at the regional centers, catalog and manage common physics 
applications libraries. It will be responsible for systems management and network management. It 
will oversee system tuning for performance and core software maintenance, negotiate and oversee 
maintenance arrangements for common physics software. 
User problem support will consist of an informal help desk and more formal incoming problem 
report tracking. 



5. Core Software 
This chapter gives more detail on the requirements and architecture choices for the core software. 
Some of the introductory material from chapter 3 is repeated so this chapter is self-contained. 

5.1. Description of Software 

The core software consists of a number of programs, packages, and subroutine libraries used to 
build ALL the standard SDC computing. Five standard shells or frameworks will be built and 
maintained by a central group at the SSCL. The five supported frameworks are: Level 3 / 
Production Reconstruction, Simulation, Analysis, Calibration, and User Code Development. 

The average user will start up one of these standard frameworks, which will then load all the 
appropiate SDC and system services along with the necessary tools, user programs and/or files. A 
number of the underlying programs might be the same from one framework to the next, but their 
combination will be optimized for a specific task. It will also be possible for the user to construct 
his or her own framework (using the basic services, utilities and libraries discussed below). 
Initially, only the five frameworks listed above will be supported. However if enough people· 
request an additional framework, it will be added to the list of supported frameworks. 

5.2. Software Architecture 

The exact "Core" Software architecture is not known with 100% certainty; however, a very 
common model known as the "Toaster Model" (shown in Fig. 2-3) will be used for discussion 
purposes and to help visualize how the various parts of the SDC software work together. It is 
extremely important to remember that the "Toaster Model" is only a model. It will not be used to 
dictate the construction of the SDC software, but to graphically demonstrate how the software is 
connected. There are a number of basic services used to build the "toaster": Graphical User 
Interface, Process Control, Communication Services, and Data Services. 

There is one common Graphical User Interface, and all interaction with the user is done through 
this one interface. Through this interface the user talks to the Process Control Service, which 
controls when and if a specific tool will be loaded and run. This "picking" of specific tools is 
what customizes each run of a job/toaster. The various shells or frameworks dicussed above are 
available in control files that specify which combination of tools (and possibly customized 
services) are to be used. 

All communication among the various Tools and services are done only through the 
"Communication Service". 

Access to the data, such as the raw event data, reconstructed event data, calibration data, etc., is all 
done by the Data Services. 

The Tools in this model are user written applications. Examples of Tools are track 
reconstruction processes, Vertex finding routines, and Calorimeter reconstruction. One single 
Tool can even be a collection of tools with well defined inputs and outputs (possibly put together in 
the same way a "Toaster" is) as they meet all the requirements of a normal Tool. 

Along with the user tools there are also a number of "Core" common utilities and other common 
tools and libraries supported by the central group at the SSCL. 

5.3. User Interface. 
S.3.t Scope 
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The purpose of this section is to describe the Users Interface and includes both the Graphical 
interface and the "batch" interface. There must be a standard non-graphical interface to the "Core" 
program such that the user is able to run the program from a standard "dumb" terminal, or in batch 
mode. It must be possible to duplicate all commands in either "batch" mode or graphical interace 
mode. 

The user must be able to set up the Process Control map and then execute the program 
interactively. The user interface will be able to interact with the running program for the purposes 
of debugging and to modify the control map interactively. The graphical interface will be used to 
monitor the status of the program and will animate the process of the job. 

5.3.2 Requirements 

The "batch" and graphical interfaces have a number of specific requirements which are outlined 
below. 

1. The graphical interface will include a ''point and click" feature. 

2. The graphical interface to Process control will provide a display to indicate the 
status of a run in progress. 

Information available to be shown by the status display will include: 

The overall flow map. 
The status of each tool (active, dormant, absent). 
The current event id for any active tool. 
The list of write-authorized regions of the data structure associated with each frame. 
The decision algorithm associated with each node. 
The list of signals in each link buffer. 

3. The layout and/or display must be tailorable by the user. 

4. There will be a graphical interface to the Communication Service. 

5. The user must be able to control the program using command line. 

It must be be possible for a user to interact with the program (Process Control) using a simple 
script language which can be entered from a "dumb" terminal being used in line mode. This also 
implies that the user can write a simple script file which will control the loading and running of the 
various tools of the Core Program. Since the program can be run using a simple scrit file this 
implies the ability to run the program in batch mode. 

6. The interface must be switchable between "batch" mode and interactive mode 
"on the fly". 

5.4. Process Control Service 
5.4.1 Scope 

The purpose of this section is to define the requirements for Process Control. We also discuss the 
user interface to Process Control but many details such as the "look and feel" of this interface are 
left open. We also do not address how data is passed between process control and the tools and 
between the tools and the data structure. 



Implicit in the defmition of process control is the existence of a data structure which contains both 
global and event data. Here an event is a "physics event" which begins as the data read from the 
detector in a triggered crossing. Subsequent physics analysis adds to the data in each event with 
the goal of eventually determining the physics processes underlying the event. It is important to 
note that events are independent in the sense that data within any event is not directly built from that 
in any other event. Global data includes geometry, calibration and other data which serves as input 
to multiple events. (The structure of and modes of accessing this data are not defined here.) 
Reconstruction, analysis and other modifications of the global and event data are organized into 
tools which are directed by the process control. 

A tool is defmed by the action it takes on the data structure. There are three liD streams available to 
a tool: 

1. Control Data. Process control provides a small amount of information when a tool is 
initiated or activated. Typically this would include an event id (run and record numer) and 
flags to indicate which action(s) to take if the tool is mUlti-purpose. The tool will return an 
error status when it completes its task. 

2. Event Data. Most of the data flow is typically from and to the data structure. Tools should 
include error checking to verify that the input from the data structure is sensible. Authority to 
write particular parts of the data structure is provided by process control. 

3. External Data. The tool may read from or write to external files including user display 
channels. The assignments of these external units are made by the process control. Note that 
this path of communication is intended to allow the user to view or directly modify data or 
actions of the program. It is not used to pass data from one tool to another. 

There is no communication directly between tools. Intermediate stages of data are passed through 
the data structure. Any tool can be run successfully by itself, and may not assume that any other 
tool is active. A tool may and generally will require that the data structure be in a certain state, but 
must return an error code if it is not. 

Process control is responsible for initiating and activating tools along one or more ordered paths 
specified by the user. Tools are contained in frames which are connected to nodes via links. A 
frame activates its tool when a signal appears on its input link. Mter the tool completes its task, the 
frame puts a signal on the output link. The links buffer the signals storing the control data 
associated with each signal. The nodes direct the flow providing event loops, parallel processing 
and filtering by selectively producing output signals based on their inputs. Multiple tools and 
copies of tools may be active at one time on one or multiple platforms. 

The flow of signals (and hence of execution) is determined by the user-supplied process control 
map. This map may be provided through a script me and may be built or modified using graphical 
interface tools. The components of this control map are the frames which support the tools, the 
nodes which direct the flow between frames and the links which connect frames and nodes. These 
components and their requirements are described in more detail in the next section. 

5.4.2 Requirements 

GENERAL 
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Process control flow is expressed in terms of signals. A signal is typically associated with a 
physics event but may have a more global meaning. There is a small set of control data associated 
with each event and will flow among the various components of the program. This data can 
include: 

Eventld 
Error status from a tool or frame. 
Filter status from a tool. 

Some of the general requirements of the Process Control are: 

1. The simultaneous flow of multiple signals is supported. 

2. Dynamic user intervention is supported. 

The user must be able to dynamically carry out the following functions: 

Modify the control map during a job. 
Suspend or halt execution of any tool. 
Attach a debugger to any tool. 
Put breakpoints in any links. 
Examine and modify control data on any link. 

3. The parallel and sequential modes of the program must be identical. 

Only one version of the program exists and it can be run in either sequential or parallel mode. 
There will not be a seperate version to be run in sequential mode or parallel mode. The sequential 
mode will simply be the parallel mode run on a single node/computer. 

The three components of the Process Control are the Links, Frames, and Nodes which are 
discussed in more detail below. 

LINK 

1. A link may connect a node to a frame, a frame to a node or one node to another 
node. 

2. A link contains signal information. 

Each link contains of list of signals that have been passed from the preceding node or frame. This 
list includes the control data for each signal. Signals are removed from this list when they are 
processed by the following node or frame. 

FRAME 

3. A frame has one input link and one output link. 

4. Each frame is assigned a particular tool and parameters which specify what 
action the tool should take. 

5. The overhead to install or activate a tool should be negligible. 

A tool may be absent, dormant or active. The overhead required to install a tool (go from absent to 
dormant or active) should be negligible compared to the time for a run. The time required to 



activate a tool (go from donnant to active) should be small compared to that required to process an 
event. 

6. A frame should be able to install multiple copies of a tool. 

The frame will activate (or install) a copy of its tool for each signal in the input buffer. The frame 
may install multiple copies of the tool simultaneously on one or more platfonns. The list of 
platfonns and the maximum allowed number of copies on each are all parameters associated with 
the frame. A signal is removed from the input link buffer when the tool is run for that event. 

7. A frame specifies which regions of the data structure can be modified by a 
tool. 

A tool may read from any part of the data structure but may only write to those regions specified by 
the frame supporting the tool. 

8. Tools return a status code when finished. 

Mter a tool completes its task, it returns an error status and possibly a filter status to the frame and 
then becomes donnant or is removed. 

9. The Frame will assign an error status and take .the appropiate action if 
necessary. 

Process control will recognize when an error has occurred which prevents the tool from exiting 
gracefully and returning an error status. In this case, the frame will assign an error status. 

If there is no error or a non-severe error, the frame will pass the signal and associated control to its 
output link. 

The frame may take special actions depending on the error status. These include: 

Stopping or pausing the run. 
Rerunning the tool. 
Reinstalling and rerunning the tool. 
Signaling the user. 

10. Frames must maintain a history. 

The frame should maintain a history including the input and output control data for each processed 
signal. 

NODE 

11. A node has one or more input links and one or more output links. 

The node will search its input link signals for particular control data patterns and, when found, 
remove the input link signals and set associated ouput link signals. The required input pattern and 
its associated output signals define the logic of the node. This logic should be easily programmed 
and very flexible, allowing the following capabilities: 

12. A node should be able to act as a filter or a switch. 
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A node can act as a filter by directing flow based on the filter or error status. The node can act as a 
switch by requiring a second input be present in order for the first input to generate the output. 

13. A node will support looping. 

The node can initiate an event loop by generating multiple output signals with different event 
numbers for a single input. The node can terminate an event loop by requiring that a set of input 
signals with specified event numbers be present before generating an output signal. 

14. A node will allow parallel processing. 

The node can initiate the parallel processing of an event by generating multiple output signals with 
the same event number. The node can terminate the parallel processing of an event by requiring 
signals with the same event number be present on multiple inputs. 

5.5. Communication Service 
5.5.1 Scope 

The Communication Service provides two way communications between components (e.g. tools 
and services or two services; recall that direct tool-to-tool communicatino is not allowed) of the 
SDC off-line system. This service supports a distributed heterogeneous environment 

The client's view of the communication service is via an application programming interface, 
supported by an interface defmition language, which hides implementation details of the underlying 
communication services. (1be communication service itself might be replaced transparently to the 
client's knowledge) 

One (or more) of the following communications mechanisms are supported: 

Messages: Operations on messages include, for example, create, delete, update, send, 
receive, acknowledge, reply and ignore. There may also be registration and de-registration 
operations if a multicast delivery service is used. It is with this operation that a tool or service 
indicates what kind of messages in which it is or is not interested (e.g., all messages 
referring to my objects). 

Process Invocation (e.g. exec, fork, invoke and spawn). 

Remote procedure calls. 

For the strategic (long term) concepts the Communication Services should use Common Object 
Request Broker Architecture (CORBA) which could become an industry standard. The Object 
Request Broker (ORB) will provide the communication service The clients (e.g. tools) see Objects 
only through the perspective of a interface definition language. Clients have no knowledge of the 
implementation of the Object, where it is, or which ORB is used to access it. 

Object implementation refers to the methods and data associated with the object. Various 
implementations include separate servers, libraries, a program per method, an encapsulated 
application, an object oriented data base, etc. Objects must register with the ORB. An interface 
repository is used to keep these interface definitions 

At present CORBA is not an industry standard and so for the short term some possible solutions 
are to use OSF Distributed Computing Environment (DCE) or Remote Procedure Calls (RPC). 
These have the advantage that they are like a normal subroutine call and already include an Interface 



Definition Language (IDL). These systems already take care of the data translation across 
heterogeneous systems. They are server location transparent (server registration with naming 
service, client binding service) and give concurrency via threads. 

Another possible solution is to use somthing like WorkbenchlSoftbench Broadcast Message 
Service (BMS). A tool registers with BMS indicating events about which it wants to be posted. 
The client then sends messages to a tool via BMS without knowledge of the tool's location or 
detailed function. The tools are encapsulated via C++ or an Event Description Language (EDL). 

5.5.2 Requirements 

1. The Communication Service require a number of tools. 

The following tools must be made available: 
Placement Management Tools 
Interface Definition Tools 
Communication Tool Output 

2. Must be location independent and have location brokering 

3. A presentation service must be available. 

A presentation service ensures that data is always presented in the same manner to all tools 
regardless of how it originated. This implies that the Communication system is able to do data 
conversion. 

4. Must have error handling and reporting failities. 

5. Must include Security. 

The Communication system must have the capability to do peer-to-peer authentication and 
authorization. It must be able to check that a given tool has the authority to modify a specific data 
structure. 

6. Both the client and server must have concurrency. 

7. Must be possible to have asynchronous access. 

8. The initiator and responder roles must be decoupled from the client and server 
roles 

9. The Communication API must look like standard call. 

10. Easy to use Interface Definition Language (IDL). 

The communication APIs should should consist of an easy to use IDL which will hide underlying 
service from the average user. 
5.6. Data Services 

5.6.1 Scope 

The SDC Data Services actually consist of a set of related software tools that work together to 
provide services to the collaboration physicists and programmers relating to data description, 
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access and manipulation. These tools have traditionally been provided by home-made add-ons to 
the FORTRAN language (such as ZEBRA and YBOS), and were primarily motivated by 
deficiencies (in data structure defmition and memory management capabilities) of FORmAN. It is 
hoped that for SDC these tools will be better integrated into the overall programming environment 
as well as being commercially supported. The tools are used by a variety of types of users, 
including software "core" designers, physics algorithm software designers, and physics data 
analysts. Furthermore, the tools are used in various stages of the software development cycle, 
including at design time (where the tools are used in defining data structures), at coding time 
(where the tools are used in writing actual physics reconstruction and analysis code), and at run 
time (where the tools provide access to the data and allow the user to manipulate, store and retrieve 
data). 

This section of the document provides broad requirements on the set of data services that meet the 
needs of each category of users at each of the stages in the software life cycle. Several different 
potential audiences have been identified for this section: 

The developers of the Data Services 
The "core" software developer 
The user-developer 
The general collaboration audience. 

The activities of users acting in these various roles are described in Section 2.3. 
5.6.2 Requirements 

The requirements on the data services system fall into several distinct categories. First are general 
requirements on the overall data services system. Next are requirements on how the system 
performs at each of the three major stages in the software development process: 

Design time, when data structures are defined. The data services system should provide 
user-friendly graphical tools to define data schemas and to save these schemas for use by 
others. 

Coding time, when the data structures are used in the preparation of application 
programs. The system should provide easy ways of making use of previously defmed data 
structures, and should automatically update a user's code if the definitions of the data 
structures changes. 

Run time, when the actual data is retrieved and stored in the data repository, guided by 
the previously defined structures. The data services system must handle memory 
management and I/O in a transparent manner. 

(Alternatively, these three groups of requirements can be thought of as specifications on three of 
the major components of Data Services: the data modeling tool, the application programming 
interface (API) to the data repository, and the run-time interface to the data.) 

Finally, there are requirements on the actual data repository itself. 
5.6.2.1. General Requirements 

Data Model and Data Repository are the two important aspects of Data Services. The Data Model is 
the conceptual level of the Data Repository, while the Data Repository is the physical realization of 
the Data model. The Data model describes the conceptual items to be stored and the connections 
between them. It does not involve any physical realization of the data in any form; it is an abstract 
layout of the data. The Data Repository contains the schema, the data itself, and all the instances of 
the data classes. 



General requirements are organized according to implementation independent requirements, global 
constraints, and desirables, which should be incorporated resource permitting. Independent 
requirements specify what the tool must do regardless of how it is implemented, while global 
constraints gives implementation specific constraints which are of global importance and are, 
therefore, not considered reviewable as design options. A further level of decomposition shows the 
requirements applicable either at design-time, coding-time or run-time (Sections 5.6.2.2-5.6.2.4). 
(Please note that we use the term design-time rather than the more conventional analysis-time for 
the initial stage of the software development process so as to avoid confusion with physics data 
analysis; see glossary of Appendix B.) 

Independent requirements 

The Data Modeling Tool aids in representing the abstract Data Model graphically and aids in 
translating it into a physical realization in the Data Repository. It has a human interface, the GUI, 
for describing the Data Model and a machine interface, the output, which makes table creation 
code, class definitions, etc., for laying out the physical storage in the Data Repository. Activities 
such as browsing the schema in the repository or browsing the data in the repository are, strictly 
speaking, supported by the Data Repository API, although the GUI presented for these functions 
should be very similar to that of the Data Modeling Tool to present a coherent picture to the user-
developers. 

Global constraints 

Global constraints are applicable to all levels of requirement 

1. UNIX based 

POSIX where applicable, UNIX where necessary. UNIX-specific elements should be localized as 
much as possible. 

More appropriately, POSIX and DCE would probably do with out specifying the operating system 
particularly. Porting all the components described here can be an enormous sink of resources and 
should be avoided even at considerable cost. The advantage of building on standards such as 
POSIX and DCE is that the restrictions may be looser than one expects. 

2. Inexpensive for individual users to acquire commercial components. 

3. Machine independent. 

4. Data Services tools must be compatible with the Core architecture 

Data Services tools must be compatible with the layered architecture described in Section 2.3. 

Desirables 

5. Reverse engineering capability for existing code. 

6. Ability to import data model representations. 

The capability must be provided to import data model representations from existing C++ classes or 
Zebra banks, YBOS, flat files, etc. 

7. Optimization tool for data model structuring. 
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8. Migrate data from one DBMS to another. 
5.6.2.2. Design-Time (Preparing the Data Model) 

Data models are analyzed and designed by using tools that provide means to support a selected 
methodology and automatically generate schema for the data repository . 

1. The data model must support an object-oriented approach. 

This should include such concepts as object classes and object instances, class hierarchies and 
inheritance, instance hierarchies and objects as attributes of other objects, methods, etc. Note that 
the object-oriented approach is a superset of Extended ER and traditional relational approaches. 
People who choose to use one of these modeling styles should be able to do so. Note also that an 
object-oriented Data Model does not necessarily imply an object-oriented implementation. 

Use of the object oriented paradigm allows user-developers to concentrate on the differences 
between the currently existing object and the new one he wants to develop. If a user, for example, 
wanted to include a new datum into the definition of a jet, he/she would only need worry about 
how this new datum affects jet analysis, not about any other code or relationships already 
embodied by the current definition of the jet object. 

2. Standard data modeling methodology. 

We probably are not really competent to invent our own. Besides, using a standard methodology 
opens the opportunity to purchase the Data Modeling Tool. 

3. Heterogeneous mix of machine architectures. 

The Data Modeling Tool must run on and produce output for a heterogeneous mix of machine 
architectures. 

4. User defined data types. 

The Data Modeling Tool must provide natural support for users to define pre-compiled, user-
defined data types. These may be types of relationships, object types, attribute types or value 
types. The data modeling tool should also support hierarchies of types. 

The domain-specific data classes developed by the core-developers for use by user- developers will 
make use of this ability. 

5. Plain data structures. 

The structures of data and relationships should map simply onto real world physics data. 

6. There should be user-defined lifetimes for types of data. 

Data modeling should support the concept of validity intervals, for example, sequences of time 
stamped events or events satisfying certain criteria. 

7. Certain Data Model classes should be "built in". 

Certain Data Model classes should be "built in" as primitives for the applications developed within 
this problem domain. (Probably, supplying developers and users with an SDC/SSC standard 
library of classes would do.) These basic classes should include events and event related data, and 



"slow" data, i.e., data which varies slowly with respect to inter-event intervals and is not related to 
any event in particular. Examples are high voltages, temperatures, gas gains, calibration 
"constants" etc. These domain-specific classes are developed by core-developers for use by user-
developers. Their existence, for user-developers, at the Data Model level implies their realization at 
lower levels, for instance as Data Definition Language files at the Data Modeling Tool output level 
or as schema in the Data Repository. For user-developers, these domain specific classes appear as 
primitives in the Data Modeling Tool Graphical user Interface. 

8. Event type and cross-event type are built-in types. 

The library and/or data repository knows what an event is. 

9. Schema available to application at design-time. 

Users must be able to use a browser to get object or type definitions. This includes browsing run 
conditions, an event or a collection of events. 

10. Edit or browse classes and dictionary interactively. 

User-developers should be able to make their own versions without affecting group versions. The 
user might wish to try a new value for the placement of a particular electronic channel in space. The 
effected value would only be accessible locally while the production values would be unaffected. 

11. Schema evolution historylversioning accessible from repository. 

User-developers should be able to design database on the fly, and access pre-defined relationships 
in a repository. For schema evolution to be handled smoothly, the Data Modeling Tool must be 
aware of past versions and do what is necessary to the Data Repository to defme new versions. 

12. Cardinality between objects must be defined in relationships. 

The Data Model should include the notion of cardinality for object connections (relations). One-to-
Many, Many-to-One, and Many-to-Many mappings of relationships are required. Physics data 
includes all of the possible mappings. Electronic channels to spatial locations provides an example 
of a One-to-One mapping; tracks to points on a track and its inverse are examples of One-to-Many 
and Many-to-One mappings respectively; and overlapping showers in a calorimeter provides an 
example of a Many-to-Many mapping. 

13. Data modeling operations on objects or. collections of objects. 

This means that collections or sets should be a primitive in the class library. These collections are 
objects on which one can do queries. This is of utmost importance. A user may, for instance, 
examine data from one event with a high transverse energy electron or a set of events with such 
electrons. This user should be able to acquire and perform data queries on the set of events with 
equal ease as that of the case of the solitary event. 

14. Alignment of structures. 

There will have to be requirements about alignment of structures, both in generated code and in 
assistance provided through the Data Modeling Tool interface. 128 bits will be the preferred natural 
unit by CPU architectures at tum on (the DEC Alpha architecture, for example, suggests a penalty 
of 30x for misaligned data), but padding in large event samples will be very expensive in storage. 
RISC wants alignment. With IEEE Standard Floating, the primary machine representation 
differences will be big- vs. little-endian and alignment requirements. 
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15. Direct manipulation interface style. 

The Data Modeling Tool GUI must support a direct manipulation interface style, that is, drawing of 
lines to make various connections, click for select, etc. This interface should be extensible so that 
domain-specific classes can be smoothly integrated into the GUI. An extensible set of graphical 
templates should be available, for example, where double-clicking on an object icon might bring up 
a form for defining the attributes of the object. 

16. Direct manipulation of graphical objects. 

Users must be able to draw lines to make various connections and manipulate objects, through 
point, click, drag, etc. 

17. On-line help. 

The Data Modeling Tool GUI should provide an extensible on-line help system so that help 
specific to the domain-specific data classes can be smoothly integrated. 

18. Leveling mechanism for the overall model. 

In the face of very complex data models, it would be helpful if at least the Data Modeling Tool GUI 
provided a leveling mechanism for the overall model. The user must be able to zoom in and out of 
graphical schema thereby varying the level of detail displayed of the data model 

19. Must have text interface as well as Graphical User Interface (GUI) 

We may wish to require that the Data Modeling tool work from a textual representation of the Data 
Model as some people may prefer to work that way. It may also be useful to import Data Model 
representations from pre-existing code, such as C++ classes or Zebra bank defmitions. 

20. Same look and feel from the browser as from the rest of the tool. 

Must have the ability for multi-user presentations. 

21. Error reporting during design. 

This should be provided as a consistency check for adherence to the methodology. Failure to 
adhere strictly to the methodology should cause informational errors to be generated. 

22. Optimization tools should be available for the data structures. 

For predictive cases, where costs can be estimated purely on the basis of the structure itself and not 
on its actual usage, such as the alignment issues, the Data Modeling Tool should provide automatic 
and/or advisory optimizations. 

It would also be desirable if it could use information obtained from usage metrics in the Data 
Repository to at least suggest optimizations based on usage patterns. 

23. No significant performance penalty, regardless of the amount of data. 

There should be no significant performance penalty for the tool regardless of data amount. Since 
this tool only deals with the data types, it should function well in the face of very complex types, 
such as complicated events. 



24. Report generation capability for meta-data. 

The capability to generate reports for meta-data, e.g., schema, data dictionary from the browser, 
must be provided. 

25. DCE IRPC Interface Definition Language support, a long term strategy. 

Assuming that DCE or some other form of Remote Procedure Call system is used as the 
communications layer for at least some distributable applications, the Data Modeling Tool Output 
should be available in the Interface Definition Language of that RPC system. (This requirement 
should be part of our long term strategy as it is unlikely to be met by any currently available tool. 
In that light, the most promising output language to be on the lookout for is the IDL of the Object 
Management Group's Common Object Request Broker Architecture. This language is designed 
explicitly to be independent of the communications layer.) 

5.6.2.3. Coding-time 

The Application Programming Interface describes the Data Repository from the point of view of 
user-developed and core-developed programs. It does not necessarily reflect the actual 
implementation of the Data Repository; the differences are made up by the glue routines that map 
API calls to actual Data Repository operations. 

The major requirement is to avoid the complex navigational code involved in fetching a field of a 
bank in something like YBOS or ZEBRA. The language C, C++ and FORTRAN90 all allow the 
direct access of fields of structured data and pointers. Offsets to particular fields are determined at 
compilation time; hence, both the overhead and complexity of accessing data fields is reduced. 
Program maintainability is also improved. 

1. The Data Repository API must support an object-oriented approach. 

This means that queries and data navigation can be coded by developers according to the Data 
Model with out directly worrying about the physical representation in the Data Repository itself. 
This API may have to hide the fact that the Data Repository does not directly support the object-
oriented approach. 

2. Generate machine independent code for objects, templates, include files. 

In particular, table creation code, class definition code, or physical storage layout code must be 
generated. 

3. Data access method independent of media. 

The API should not require the user-developer to worry about the particular media involved; it 
should be media transparent. However, to the core-developer, it may be helpful if media dependent 
access is possible for optimization purposes. The ability to inquire if a data set to be used shortly is 
on tape and request that it be pre-fetched to disk comes to mind. 

4. Simple access to complex types. 

This requirement is intended to avoid the complex navigational code involved in fetching a field of 
a bank in something like YBOS or Zebra. Rather, attributes of objects (or fields of structures as 
they may appear here) should be accessible in a manner natural to the language of the API. This 
should be fairly simple in C, C++ or FORTRAN90, but more difficult in FORTRAN77. 
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5. Interactive as well as programmatic interface to Data Repository. 

There should be an interactive interface to the Data Repository as well as a programmatic one. The 
interactive GUI should be a seamless match to the GUI of the Data Modeling Tool. The interactive 
interface must allow the user to examine object classes and object instances stored in the Data 
Repository. The interactive interface should also allow suitably authorized users to create and 
modify classes and instances in the Data Repository. (The programmatic API amounts to a 
compiled use of the Data Repository. Like compiled language systems, it is optimized for run time 
efficiency. In the process of doing this, it loses the ability to deal with data base definition changes 
and data type definitions applied after the code is compiled. The interactive API is more like an 
interpreted language system. It is very flexible and can discover type changes and new defmitions 
at run time. However, its run time performance is likely to be worse than that of the compiled 
version. A data browser, by definition, should show you what is in the database regardless of 
when the schema was created; browsers must use the interactive API. The main reconstruction 
program, however, will be frozen for months at a time; it can use the programmatic API for the 
sake of performance. 

6. Interactive and programmatic APls must support user-defined data types. 

If neither the API language nor the underlying Data Repository support such types, much more 
work is required. Native support in both cases is highly desirable. 

7. Programmatic API access to schema information. 

The programmatic interface should provide access to read the data schema information to any 
user. It should provide access to create/modify schema information only to suitably authorized 
users. 

8. Programmatic API access to performance metrics. 

At least the programmatic API must provide access to the performance metrics kept by the Data 
Repository so that they can be extracted and analyzed for optimization purposes. 

9. Access data by name at run time. 

This is pretty much equivalent to Item 7. However, there may also be the requirement to store 
name/object identifier associations in the Data Repository. While it may not make too much sense 
to name individual electrons, it does make sense to name standard analysis datasets, e.g., "High 
Pt muon candidates", in which case this is a joint requirement on the Data Repository and its API. 

10. Must be able to refer to objects or types via relationships (pointers). 

11. Access to data by name (not pointers) at coding-time. 

12. Error reporting during coding. 

13. Full functionality from C, C++, FORTRAN77, FORTRAN90. 

That is, there should be complete programmatic APIs for at least these languages. FORTRAN77 is 
the most problematical. 

14. Access data from a six line FORTRAN program. 



This has two parts, first that the Data Repository have a FORTRAN callable API, and second, that 
the API be simple to use. 

15. Access from any existing program. 

This seems to mean that a Data Repository API should be provided to adapt the Data Repository 
to the APIs already in use, for example Zebra or YBOS. If one can map the in-memory structure 
delivered by the Data Repository to the in-memory structure expected by the legacy code, this 
might be possible. Presumably, it would be more efficient in the long run to migrate the code to 
the new APIs. 

16. Package must include a make-like facility. 

17. No significant performance penalty, regardless of amount of data. 

For the programmatic and interactive API's there should not be any data scaling penalties beyond 
that of the Data Repository itself. 

18. Data Interface to OODB or RDBMS. 

The Data Repository API should either be the API or interface to the API of standard Object-
oriented or Relational Databases. 

5.6.2.4. Run-time 

1. Report generation capability for physics data. 

2. Interactive data query language. 

User-developers can try ideas for physics data definitions out interactively before committing them 
to code. 

3. Schema must be available to application at run time. 

4. Interactive as well as programmatic interface to tool. 

As with Interactive data query language, this allows user-developers to try out ideas interactively 
before writing code. Most of our time as programmers is spent developing algorithms. These two 
requirements are aimed at improving development time. Only for production might it prove 
imperative to translate the interactive vision into compilable code. 

5. Error reporting during run-time. 

6. Data access method independent of media. 

7. Application and machine independent data structures. 

8. No significant performance penalty, regardless of the amount of data. 

Use of a tool should not present any data scaling penalties beyond that of the data repository itself. 

9. Data Repository should keep database of data access patterns. 
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The Data Repository should keep a database of data access patterns to support future design and 
optimization efforts. 

10. Data interface to OO-DBMS or R-DBMS. 

The interface should not pin one down to one or the other. 
5.6.2.5. Requirements on Data Repository 

In traditional physics analysis systems, data repository has been little more than the normal file 
system augmented by data tapes. The dominant feature of the SDC Data Repository will be its 
enormous size. In order to improve liD efficiency and data management tasks, we expect the SOC 
Data Repository to apply many of the ideas of a database system. 

1. The Data Repository must handle a variety of media. 

In particular, we expect the repository to use a tertiary data store of optical disks or tapes based on 
the IEEE Mass Storage Model. 

2. The Data Repository mayor may not directly support an object-oriented 
approach. 

The appearance of an object-oriented system can be provided through the Data Modeling Tool and 
the Data Repository API. Of course, this is likely to involve a whole lot less work if the Data 
Repository handles the objects directly. For example, it will simplify schema creation and query 
optimization greatly if the Data Repository supports user defmed complex types directly. Most pure 
Relational database systems do not support user defmed types, while most object oriented database 
systems do. 

3. Machine independent data structures. 

The Data Repository must run on and supply data to a heterogeneous mix of machines. Given 
this ability, and the "self-describing" features mentioned above, all explicit machine dependencies 
of the various Data Modeling components will be removed. 

4. The data should be self describing. 

This is actually trying to hit a couple of issues. One has to do with the transmission of data over a 
wire between potentially heterogeneous machine architectures. In the OSI model, this is known 
as negotiating a presentation syntax. The other issue is decoding the memory representation of an 
object in order to make sense of its fields. The first case turns out to be handled in the RPC 
systems by making use of the information contained in the Interface Definition Language 
modules; DCE will just do this for us using as the DCE Transfer Syntax either the Network Data 
Representation or ISO's Abstract Syntax Notation I/Basic Encoding Rules specification. 
(ASN.IIBES is a very complete and standardized version of what we normally think of as self-
describing data.) The second issue can be handled easily if the Data Repository stores the data 
schema, or class memory layouts, within itself and provides a) a type tag on each object instance, 
and b) programmatic access to the schema representations. Enough information would then be 
available to make very generic code, capable of working with dynamically defined types. 

5. Data Repository should keep database of data access patterns. 



The Data Repository should keep measures, either at the option of the Data Repository 
Administrator or continuously, of access patterns and performance to be used for optimization 
purposes. 

6. Manageable schema evolution. 

Schema (data base definitions) evolution will be a fact of life. Handling it is not a simple matter. 
The Data Repository will have to manage some parts of the solution, such as storing schema, or 
class, versions. There is a major problem of what to do in the face of old data whose schema is 
being updated. Due to the sheer volume of data concerned, it will not be practical to dump the 
data base and rebuild it to the new form. Instead, some form of lazy update, where the data is 
converted to the new format only when someone explicitly asks for it, may be the way to go. 
Since a particular object instance may be several versions behind, composability of the updates is 
an issue. Furthermore, some applications may actually require the old form to run successfully. 
This means that the application should be able to specify the data/schema version it requires 
(through the Data Repository API). Changing calibration schemes to account for previously 
ignored effects comes to mind. Too much of this sort of thing will overwhelm the physical 
storage system. 

7. Standard management features. 

The Data Repository should have the standard management features of database systems such as: 

- Data recovery in the face of a system, disk or tape crash. 

- Concurrency control to properly control attempts at simultaneous writes to the Repository. 

- The ability to transparently distribute and redistribute the data across multiple machines, disks and 
tapes. 

- Referential integrity support, i.e., automatically preventing dangling pointers. Given the shear 
size of the Repository, this feature will have to be used circumspectly. 

There have been several references to the notion of "suitably authorized users". These references 
imply that the system as whole supports at least the notions of user authentication, to verify that 
they are who they claim to be, and user authorization, to check that they are permitted to do what 
they want to do. 

8. No significant performance penalty, regardless of amount of data. 

This is a bit optimistic for the Data Repository as a whole. However, power law behavior will be 
disastrously bad. Log behavior, more or less, will probably be required overall to be practical. 
Most interactions and queries had better deal with small subsets of the data actually stored; the 
speed of these data accesses should not depend significantly on the amount of other data stored. 
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6. Application Software 
6.1. Private Code 

6.1.1 Scope 

Private code writen for use by a single person (or a few people) does not have any real 
requirements, aside from the fact that it is able to interface with a frame of the process control. 
Generally a Private Tool must meet certain minimum requirements in order for it to be used in Core 
Program. It must have well defmed input and output interfaces with a Process Control Frame, and 
must be completely independent of other tools. There are no "rules" specifying how a Private Tool 
must be written, although it is recommended that the user follow the guideline for a Common Tool. 
It is assumed that Private Tools will evolve into Community Tools, and the Common Tools, and 
so it would simplify the migration process if a Private tool already meets the Common Tool 
requirement. 

A number of programs/packaages will be made available to the Private Code developers to help 
them meet the Common Tool standards. Some error checking code will be made avalaible but it is 
up to the individual user to ensure that Private Code is "bug free", independent (does not depend 
on other tools), and does not attempt to write to non allocated sections of the data structure. 

6.1.2 Requirements 

1. Does not depend on other tools. 

2. Well defined inputs and outputs to the frame. 

6.2. Community Subroutine Libraries 
6.2.1 Scope 

The Community Subroutine Library is a collection of subroutines that is maintained by some group 
outside the SDC Central Computing Group. It is distributed by the Central Group, but will 
generally not be maintained by them. Subroutines in this library must meet certain minimum 
standards which are not as stringent as those for the Common Subroutine Libraries. 

Examples of subroutines that might fall in this category are: 
Multiple scattering calculations. 
Calorimeter showering routines. 

The CERN Program Library is a special case of a Community Subroutine Library. This is a library 
mainatained by a group outside SDC, and does not meet all the Common Software requirements, 
but it is still a widely used and depended on library. For most Community Subroutine Libraries the 
authors of a routine will be responsible for its' maintenance, however for the CERN Program 
Library the SOC Central Computing group will also take some responsibility for its' maintenance. 

6.2.2 Requirements 

1. Subroutines are accessible from Fortran90 and C++. 

2. Well defined set of inputs and outputs. 

3. Usable on any POS1X compliant machines. 



Since it's impossible to guarentee that a subroutine will run on any POSIX machine, the practical 
requirement is that a subroutine be able to run on a limited number of machines "supported" by the 
SOC Central Computing group. At present this list of machines includes HPUX, OECstations, 
SGI, SUN, IBMRT, and VAXes. 

4. Used only by tools. Libraries for other services are not included. 

5. Fully documented. 

6. Test suites avaialble. 

6.3. Community Tools 
6.3.1 Scope 

Examples of Community Tools 

An event generator tool 
A detector simulation tool 
An event fIltering tool 
An electron ID tool 
A muon ID tool 

6.3.2 Requirements 

1. Must meet the same requirements as for a Community Subroutine. 

6.4. Common Subroutine Libraries 
6.4.1 Scope 

Program facilities commonly used both by code developers and general users can be divided into 
two categories: 

Tools which can be used in combination with other stand alone tools to form a toaster, 

Libraries which have a pool of subroutines used mostly by code developers to make a tool. 

A few Common Utilities plus their libraries are provided as "standards" in the Core kernel 
services. Two other classes, Common Tools! Libraries and Community Tools! Libraries, are 
projected to be used by physicists for analysis and reconstruction (see Section 2.1). The latter two 
classes of tools !libraries will be certified for incorporation into the SOC baseline (see Section 3). 
The central SOC Computing Group located at the SSCL will also negotiate maintenance with the 
developers and distribute the tools/libraries to the collaboration. 

Mathematical routines (matrices, vectors, linear algebra, fitting, etc) 
High level graphic routines (like HIGZ) 
Random number generators 
30 Geometry handling routines (distance between a plane and a line, etc) 
Sorting routines 
Histograming routines 

6.4.2 Requirements 
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6.5. Common Utility Tools 
6.5.1 Scope 

An event display tool 
A histogram display tool 
A performance evaluation tool 
An error-handling tool 
A calibration tool 
An YO tool 

6.5.2 Requirements 

1. Satisfies all normal requirements of a tool. 

2. Fully documented. 



A GLOSSARY 
A.I. General 
Application Software - SDC offline software involved in performing physics computing tasks, 
consisting of standalone packages, called tools in this document, and libraries of subroutines (not 
standalone) used by the tools. This software will use the general services provided by Core 
software. Application software will largely be provided by appropriate SDC subsystem groups 
and/or users. 
Core Software - SDC offline software which provides the structure within which all SOC 
offline software operates, plus the general services needed by the Application software. Core 
software consists of the following services: 

System Services, or Operating System 
Communication Service 
Process Control 
User Interface 
Data Services 

which are equivalent in the "toaster" architectural model to the framework of the toaster. A few 
tools called Common Utilities intended as "standards" for the collaboration will also be included. 
Core software will be developed (andlor acquired), integrated and maintained by a central SOC 
Computing Group located at the SSCL. 
Task (Computing) - One of five areas of SDC offline computing identified in this document 
having different software environments. The five SDC offline computing tasks are: 

Physics Analysis 
User Code Development 
Level 3 Trigger and Production Reconstruction 
Simulation 
Calibration 

and are described in Section 1.3. 

A.2. Software Architecture 
Common Utilities - Tools being provided and supported by the central SDC computing group 
for the common use of the collaboration at large. These tools will be adopted as "standards" and 
included in Core kernel services because of a common need for the capabilities throughout the HEP 
community. 
Library - A collection of subroutines used by tools, accounted for in one catalog for common use. 
Service - Process/program/package of capabilities needed by and provided for all other parts of 
the SDC offline software system, belonging to the Core software. In the "toaster" model, Process 
Control, Communication, Data Services, User Interface and System Services are services. 
Therefore, the services complete the "toaster" for the tools (pieces of toast) loaded into it. 
Subroutine - A small sub-portion of a tool which is not standalone, dependent on the tool for 
external data access and communication. A given subroutine may be used by more than one tool. 
The "toaster" model analogy is that of a crumb in the piece of toast, or jam on the piece of toast. 
Toast - A synonym for tool, within the "toaster" architectural model of the SDC offline software. 
Toaster - Name of the architectural model of the SOC offline software depicted in Fig. 2-3 and 
described in Section 2.3. 
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Tool - A completely stand alone process/program/package which can be started by the Process 
Control and gets all inputs and sends all outputs to the Data Access Service. All communication to 
services and other tools is done through the Communication Service. 

A.3. Process 
Common Physics Software - Software developed by physicists outside the central SDC 
Computing Group which undergoes a technical "certification" process to be incorporated into the 
SDC baseline. Included are the following types of software (as described in this document): 

Physics Analysis Applications 
Common tools 
Common subroutine libraries 
Community tools 
Community subroutine libraries 

Production Reconstruction 
Level 3 Trigger 

Artifact - A software product which undergoes inspection and/or review. Artifacts may include 
software requirements specifications, design specifications and descriptions, and source modules. 

A.4. Process Control 
Control map - The user-specified path or paths through which a physics analysis job flows. 
Frame - The part of process control which supports a tool. 
Link - Component of process control that connects tool frames and nodes. 
Process Control - The overall procedure which carrys out the physics analysis job by activating 
tools as directed by the control map. 
Node - The component of module control which directs flows between frames based on the 
control data of signals. 
Signal - The flags circulated by process control. Each signal is typically associated with an event 
but may alternatively represent a more global action such as a component of initialization. There is 
a set of control data associated with each signal. 

A.S. Data Services 
Design-time - Those features of Data Services which support data modelling, i.e., developing 
the logical defmitions and associations among the data (e.g., as is done in Entity Relationship 
modelling). (Note that this is what in conventionally referred to as the analysis stage of the 
software development process; we use the term design-time to avoid confusion with physics 
analysis.) 
Coding-time - Those features of Data Services which support the physicist writing code. 
Core-developer - Someone developing a portion of the Core software which will support user-
developers. 
Data Model - The conceptual level of the data repository. It describes the conceptual items to be 
stored and the connections between them. It does not involve any physical realization of the data in 
any form; it is mostly a logical layout of the data. 
Meta-data - Data concerning the relationships among, format, organization or graphical 
representation of the physics data. 
Physics data - Raw detector data, reconstructed data, processed data, calibration and detector 
state data, etc., acquired or generated as part of physics research and stored in database(s). 


