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Abstract 

This paper summarizes the current state of our research in developing and applying artificial neural 
network (ANN) algorithms to reconstruct charged particle tracks from tracking chamber data. The 

ANN algorithm described here is based on a crude model of the retina. It takes as input the 
coordinates of each charged particle's interaction point ("hit") in the tracking chamber. The 
algorithm's output is a set of vectors pointing to other hits that most likely to fonn a track. 

1. Introduction 

Two general observations can be made about tracking problems: algorithms to achieve 
global solutions are non-polynomial (NP) in complexity and it is a two stage process. 

The global solution to the tracking problem is NP-Hard. The complexity of an optimal 
tracking algorithm scales as a polynorr:ial of order n, where n represents the number of 
measured points (e.g., measured points may represent hits in a central tracking chamber). 
These classes of problems are intractable in general for large n. 

To illustrate the tracking problem's complexity, note that three or more labels can be attached 
to a measured point: the point is a new detection (ND), the point could be a false detection 
(FD), or the point could be a member of an existing track (Ti). The 32 is the minimum 
cardianlity of a hypothesis set for two measurement points. The cardinality of a hypothesis set 
for n points is of order 3n (see Ref. [1] for a full discussion of hypothesis trees). Clearly, the 
growth of the hypothesis tree must be limited and pruned A wealth of literature exists (see 
Ref. [1]) on techniques to do this. However, these methods require large computers and are 
not suitable for triggers in detector systems. 

Artificial Neural Network (ANN) paradigms are completely parallel algorithms that do 
not require large computers to implement; they can be implemented in VLSI or optical 
processing circuits. Thus, ANN tracking algorithms offer the potential to be incorporated into 
detector trigger systems. This is part of the motivation behind the research reported in this 
paper. 

The solution to the tracking problem is a two stage process. In the first stage, the 
hypothesis set is pruned according to some heuristics (Le., Kalman Filtering, tracks form 
trajectories of constant curvature, etc.). The second stage assigns a score (usually a 
probability measure) to each surviving hypotheses and selects the highest scoring hypothesis 
as the solution to the tracking problem. 

ANN tracking algorithms also require two stages to provide tracking solutions. To 
date, most of the published ANN tracking algorithms [Ref. 2] have concentrated on the second 
stage; selecting a high scoring hypothesis. These algorithms start with an a priori set of 
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segments and link: the segments according to a set of constraints to form a set of tracks. First, 
the hypothesis space is reduced by combining points into a segment according to some good 
heuristics such as locality - two points form a segment if they are 'near' each other, and if the 
segment they form points away from the collision vertex. This preprocessing is essentially a 
sequential operation and not easily amenable to hardware. Next, the ANN algorithm assigns 
segments from this set to a set of tracks until some optimality conditions is satisfied, such as 
the ANN's energy is minimized. 

This paper reports the status of our research to find a completely parallel ANN 
algorithm that is amenable to hardware that will prune the hypothesis space. This should 
provide a fIrst stage to an ANN tracking trigger. 

2. Retinal Tracking Algorithm 

To reduce the hypothesis space an ANN tracking algorithm must incotporate locality 
and direction constraints. The ANN algorithm used in this research is based on a crude model 
of the retina and its implementation to multi-target tracking by Kuczewski[3]. 

The retina incotporates locality and direction through oriented receptive fields. In a 
highly simplified view, one can view the retina as several layers of direction sensitive neurons. 
Neurons within a layer form a field of oriented neurons. Neurons in this oriented fIeld are 
sensitive to motion in one particular direction. We can represent this oriented fIeld as a vector 
field where each neuron has a unit vector pointing in the direction of its orientation. If an 
object is moving with a sufficiently large velocity component in the direction of the field's 
orientation vector then the neuron will fIre. Its firing rate or the magnitude of its output will 
be some function of the dot product between the object's velocity and the neuron's orienting 
vector. Overlaying this fIeld are several other layers of oriented fIelds. No two layers are 
sensitive to motion in the same direction. Thus, two differently oriented neurons will produce 
equal magnitude outputs if an object's velocity bisects two neuron's orienting vectors. By 
projecting these oriented vector fields on a plane, one can picture the retina as a fmite set of 
unit vectors located at each point in a plane (see Fig. 1). 

Locality is established by allowing neurons in a fInite size neighborhood to affect the 
neuron centered in the neighborhood. Consider the ith neuron located at a given coordinate 
that is sensitive to motion in the J.1 direction (J.1 = north, say). The neighborhood NJ.1 for this 
neuron is shown in Figure 1. The input to the neuron from the other neurons in the 
neighborhood can be expressed by 

HI' 

Ir(t) = L W;~ v [xf(t)]· (1) 
k 

where Wi k is a weighting function, x(t) is the neuron's state at time t, and v(· ) is neuron's 
output and is taken to be a sigmoid function. The form of the weighting function is taken from 
Kuczewski[3] as 

where r is the vector connecting neuron i and k, and e is the angle between r and ith neuron's 
oriented unit vector. A neuron remains active as long as its neighbors remain active. In 
addition, the state of each neuron is affected by its countetp:ut V(XiV ) in the other layers. This 
competition can be expressed as 
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Ci (t) = - 2. W;7 V [xJ(t)] (2) 
v .. ~ 

The competition tends to reduce a neuron's output v(x!'). As a consequence, the neuron with 
the largest output, V(XiP). > V(XiV); J.1 * v, will shutdown the other oriented neurons at a given 
point on the plane. Thus, we perceive an object moving in only one direction. 

Every neuron's state XiJl is affected by the output of its neighbors within a layer and its 
counterparts in other layers. The equation describing the evolution the neuron's state is given 
by 

if(t) = -axf(t) + bIf(t) + cCi (t). (3) 

The equation of motion for the neuron's state is obtained by integrating (3). 

This ANN tracking algorithm was applied to the charged particle tracking problem for 
central tracking chambers. A set of oriented neurons was associated with straw tube in small 
region of the chamber (see Fig. 1). A value of 1.0 was assigned initially to all oriented 
neurons associated with straw tube that contained a hit. All other neurons were assigned 0.0. 
A straw tube was then picked at random and equation (3) was integrated for all associated 
neurons. This cycle was repeated until the outputs of all neurons stabilized (asynchronous 
updating). All vectors shown in Fig. 2 represent the output from oriented neurons. The 
vector's length is proportional to the neuron's output and it points in the direction of the 
oriented neuron's unit vector. This vector forms a segment. Other ANN tracking algorithms 
can use this set of segments to form charged particle tracks. 
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