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Abstract 

We have developed a compact data acquisition system on RISC/UNIX workstation. SUN™ 
SPARCstation™ IPC was used, in which extension bus ''SBus™ " was linked to VMEbus. The 
transfer rate achieved was better than 7 Mbyte/sec between VMEbus and SUN. A device driver 
for CAMAC was developed in order to realize an interruptive feature in UNIX. In addition, the list 
processing of CAMAC function has been incorporated in order to keep the high priority of the data 
handling process in UNIX. The successful developments of both device driver and list processing 
have made it possible to realize the good real-time feature on RISC/UNIX system. Based on this 
architecture, a portable and versatile data taking system has been developed, which consists of 
graphical user interface, I/O handler, user analysis process, process manager and CAMAC device 
driver. 

1 Introduction 

UNIX workstation combined with RISC architecture has advanced to such a level that its performance 

has become as good as or even better than a main frame computer. In addition, the cost performance has 

been decreased drastically. Due to this high performance, RISC/UNIX has been widely used in the high 

energy physics community as a personal workbench for off-line analysis instead of main frames. However, 

RISC/UNIX has not been adopted yet to an on-line data acquisition as an interruptive processor, except 

as a monitoring computer, since UNIX does not provide good real-time features required for a data 

acquisition system in contrast to VAXTM /VMS™ . Although a few attempts have been reported 

toward that direction, none of them seemed to have established real-time feature required for data 

acquisitions.[l] The high performance of RISC processor, however, may make it possible to realize the 

"quasi-real-time" performance on UNIX system. Furthermore, the direct link between the data bus of 

front-end electronics and the high speed extension bus of RISC processor, for example SBus of SPARC 

or TURBOchannel™ of DECstation™ , will provide high performance of the data transfer rate up to 
more than 10 Mbyte/sec. It will open a new stage of ultra high speed data acquisition. 

UNIX Operating System (OS) has two process regions; one is the User mode region in which users 

can access and execute processes, and the other is the Kernel mode region in which only process for the 

system management is the executed by the OS. "System call"s are the only way for users to execute a 

process in the Kernel mode. A process in the Kernel mode is assigned higher priority than that in the 

User mode. In UNIX, the priority of a process is not fixed. It is automatically changed by UNIX OS 

depending on the CPU time consumption. For example, a process that has spent a lot of CPU time 

moves to the waiting queue. One cannot control the priority of the processes. This is a serious problem 
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for a data acquisition system where the data handling process should always be kept at the highest 

priority. The only process that is executed in the Kernel mode can be kept at higher priority than those 

in the User mode and thus prevented itselffrom waiting. It naturally leads to the development of device 

drivers, because one can put the process in the Kernel mode. 
Handling the interruption in the UNIX OS is another crucial problem in realizing the real-time feature 

on UNIX. An interruption starts the interrupt handler in the Kernel mode. Then, the handler wakes up 

and activates the user routine. This sequence depends on when the interrupt happened. There are two 

cases in Fig.l. When a process is being executed in the User mode, the interrupt handler of the Kernel 

mode is immediately executed. On the contrary, when a process is executed in the Kernel mode, the 

interrupt handler must wait for finishing the current Kernel process. In the latter case, the latency of 

the interruption depends on the execution time of the running process in the Kernel mode. A "quasi­

real-time" feature can be realized on UNIX if the length of this duration is kept within the allowable 

limit. 

In this paper, we present the development and performance of our real-time data acquisition system 

on SUN SPARC RISC/UNIX workstation (SPARC station IPC 15.8 Mips) connecting to CAMAC, 

where VMEbus mediates between SBus of SUN and CAMAC. The relevant software utilities were also 

developed. They provide a convenient environment in applying the high performance of RISC/UNIX 

to data acquisition. They consist of CAMAC device driver, I/O process, monitoring process, and man­

machine interface on the X Window System™ . 

2 System Setup 

Figure 2 shows the block diagram of our data acquisition system. Our portable data acquisition system 
consists of a RISC/UNIX workstation (SUN SPARC IPC), a VMEbus extender and an interfaces between 

VME and front-end electronics system like CAMAC. In this system, SUN accesses to VME through SBus 

via VME extender "SFVME-I00" of Solftower Co. Ltd. SFVME-I00 provides a lot of useful functions; 

(1) VMEbus Master for accessing VME address space mapped to SUN, (2) SBus DVMA (Direct Virtual 

Memory Access) Master for 20 Mbyte/sec fast data transfer, and (3) software compatibility with standard 

SUN4 device driver.[2] Kinetic model 2917 is a VME to CAMAC interface, which provides the VMEbus 

master function.[3] A combined system of the RISC/UNIX workstation and VMEbus makes it possible 

not only to connect to many front-end systems like CAMAC, FASTBUS, and GPIB through VME 

interface but also to do fast data transfer between other computer systems through optical links which 

are in general developed on VMEbus (Fig.3). We can make the DMA transfer possible between SPARC 
memory and CAMAC Crate Controller (K3922) by assigning K2917 and SFVME as a VMEbus master 

and a VMEbus slave/SBus DVMA master respectively. CAMAC data are transferred into the memory 
space of the process in the User mode on SUN without intermediate software. The transfer rate is limited 

only by the ability of hardware in this case. 

A device driver for CAMAC was developed on SPARC in order to preserve the priority of the CAMAC 

handling process. The ability offast interruption was also realized by this architecture. Using this device 

driver on the basis, a library of CAMAC access functions CAMLIB was made. The CAMLIB makes it 

easy to fully utilize the CAMAC device driver. Table 1 shows some CAMLIB functions. The CAMLIB 

was written in the same style as that developed by the KEK on-line group for VAX/VMS, VME/0S-9 

and PC98/MS-DOSTM for the software compatibility.[4] One common feature of those CAMLIBs is the 
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SYSTEM CALL 

Function Description 

CAMOPN Open CAMAC device driver 

CAMCLS Close CAMAC device driver 

CSETCR Set crate number 

CGENZ Generate CAMAC Z 
CAMAC CAMAC single action with a 32-bit word transfer 

CAMACW CAMAC single action with a 16-bit word transfer 
CDMAL CAMAC block transfer action with 32-bit words 

CDMAW CAMAC block transfer action with 16-bit words 
CWLAM Wait CAMAC LAM interrupt 

CEWAI Execute CAMAC list in device driver and wait its termination-

LIST PROCESSING 

Function Description 

READ Read CAMAC data with single action 
WRITE Write data to CAMAC module with single action 
NDT Execute CAMAC single action with no data transfer 
IGQ Execute Ignore-Q CAMAC block transfer 

WAITEVENT Wait CAMAC LAM interrupt 

Table 1: Some CAMAC functions in CAMLIB on Sun SPARC. These functions have good compatibility 

with those on pVAX II/VMS. 
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SYSTEM CALL 

Function Unit SPARC IPC pVAX II/VMS 

CAMACWread psec 180 1100 

CDMAWoverhead psec 1160 2000 
CDMAW read Kbyte/sec 690 800 
CDMAW write Kbyte/sec 790 

CWLAM psec 230 1000 

CEWAI overhead psec 190 3200 

LIST PROCESSING 

Function Unit SPARC IPC " pVAX II/VMS 

READ (to user space) psec 36 158 
NDT psec 21 26 

IGQ overhead psec 750 400 

IGQ read Kbyte/sec 690 800 

IGQ read (DB) Kbyte/sec 960 1200 

WAITEVENT psec 180 160-190 

Table 2: Performance of CAMLIB functions. 

list processing, which was ~eveloped to reduce the non-negligible overhead for calling the device drivers. 

Figure 4( a) schematically shows the CPU transaction during the sequence of single CAMAC actions. For" 

every CAMAC action the processing comes back from the device driver (system call) to the user level. 

A single CAMAC action corresponds to one system call. Thus the overhead for system call is required 
at every CAMAC action resulting a considerable overhead for the data acquisition. It is noteworthy 
that the overhead of one system call for VAX/VMS takes about 1 msec.[4] Using the list processing, a 
sequence of CAMAC actions in one list processing can be transacted in one system call as indicated in 

Fig.4(b). One list processing corresponds to one system call. As far as fast data handling is concerned, 

the list processing is definitely effective in decreasing the overhead. Furthermore, the list processing has 

another advantage in the case of the RISC/UNIX. It keeps the priority of the data handling process 

highest during the transaction of the CAMAC sequence. 

All libraries for CAMAC functions can be used in both FORTRAN and C. It is easy to transplant 
these software to other UNIX workstation, because they are all written in C. 

3 Performance 

The performance of the present data acquisition system has been examined and compared to that 
of pVAX II/VMS data acquisition system. The later was developed at KEK and used in a lot of high 

energy experiments.[4] Table 2 shows the summary of the performance of typical CAMAC functions and 
list processing functions on SPARC IPC as well as on pVAX II/VMS. In this section, we give a de­
tailed account of these measurements. Following measurements were carried out under the simultaneous 
operation of network management process and window system. 
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SYSTEM CALL 

Function Data Counts Mean Execution Time R.M.S. 

(",sec) (",sec) 
CAMAC read 2000 179 22 

CAMAC write 2000 178 31 

CAMACW read 2000 178 20 

CAMACW write 2000 179 23 

CAMACWndt 2000 171 29 

LIST PROCESSING 

Function Data Counts Mean Execution Time R.M.S. 

(",sec) (",sec) 
READ 2000 28.6 4.3 

WRITE 2000 28.8 3.9 

NDT 2000 20.9 3.4 

Table 3: Performance of CAMAC single action functions. 

The measured execution time for ,typical CAMAC single action functions are presented in Table 3. All 

CAMAC single actions in the list processing were observed to be much faster than those in the system 

~all. The overhead was measured to be about 150 ",sec for each system call. It is, however, 7 times 

faster than that of ",VAX/VMS, which is 1 msec. The list processing has faster mean execution time and 

narrower R.M.S than the system call. Figure 5 shows the distributions of the execution time for both 

CAMAC word read/write function (CAMACW) in the system call and CAMAC read function in the 

list processing (READ). The execution time of READ is concentrated between 25 to 35 ",sec. Less than 

1 % of READ executions is found to be delayed as much as 50 ",sec. This long delay is considered to be 

caused by the Kernel processing like the clock interruption. The narrowness of R.M.S. of list processing 

is considered to be because of the high process priority of the Kernel mode. 

In Table 4, the performance of the block transfer functions is given, where list processing provides 

only CAMAC read functions. IGQ (IGnore Q-response) was achieved to be 0.96 Mbyte/sec. This 

performance is close to the limit of the hardware ability of K2917 (1.14Mbyte/sec). Figure 6 indicates 

the good linearity between the transfer time and the data size. CAMAC crate controller K3922 has two 

data transfer mode. The transfer speed of IGQ in double buffer mode was 1.4 times faster than that in 

non-double buffer mode. 

The latency of interruption generated by CAMAC LAM request is shown in Fig. 7. The latency of 
the WAITEVENT function in the list processing was measured to be 180 ",sec on average with R.M.S. 

of 23 ",sec. More than 99.9% of the interruption was found to be generated within 500 ",sec. 

The ability of the data acquisition under various environments of background processes is another 

thing to be studied. The execution time of the CAMLIB function may depend on the processes which 

are executed simultaneous to the CAMLIB function. We measured the CAM LIB performance on simul­

taneous execution of two kinds of processes. One is a CPU consuming process (CPU-CONSUMER). 

The other is I/O consuming process (I/O-CONSUMER). 
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SYSTEM CALL 

Function Data Counts Overhead Transfer Time Transfer Speed 
(psec) (psec/cycle) (K6yte/sec) 

CDMAL write 899 1023 5.47 548 
CDMAWwrite 899 1044 2.52 794 
CDMAL read 899 978 4.67 642 
CDMAW read 899 1160 2.88 694 

LIST PROCESSING 

Function Data Counts Overhead Transfer Time Transfer Speed 
(psec) (psec/ cycle) (K6yte/sec) 

IGQ read 899 746 2.91 687 

IGQ read (DB) 899 736 2.09 957 

DB: Double Buffer mode of CAMAC Crate Controller K3922 

Table 4: Performance of CAMAC block transfer functions. 

The CAMAC block transfer time was examined on the various environments (Figs. 8). The transfer 

time was linear to the data size on the environment with no background processes. Figs. 8(a),(c),(d) 

show the result with two I/O-CONSUMERs. Fig.8(b) shows that with three CPU-CONSUMERs. Figs. 
8(a),(b);(c) show the performance of the CAMAC block transfer in system call. Fig.8(d) shows that of 
the list processing. It was noticed that IO-CONSUMERs made crucial effects on the CAMAC block 
transfer system call functions. Some of data transfers are delayed by the CPU-CONSUMER. This 
unfavorable effect, however, was avoided by using the block transfer in list processing as shown in 
Fig.8(d) or decreased by means of assigning high priority to the block transfer process ("nice" system 

call) as shown in Fig.8(c). 

The latency of the LAM interruption was examined on those environments. UNIX does not guarantee 
the maximum latency of the interruption. Figure 9 shows the response time of the list processing function 

measured under three CPU-CONSUMERs (a) or two I/O-CONSUMERs (b). From Fig.9(b), it is found 
that I/O-CONSUMERs cause a considerable latency, even though we use list processing functions in the 
Kernel mode. However, such an extreme condition may not happen in the realistic data acquisition. 

4 Portable Data Acquisition System (PDAQ) 

Using the CAMAC device driver, a portable data acquisition system (PDAQ) including utilities has 
been developed on SunOS 4.1.2. The PDAQ is divided into two parts, the "User program" and "Core pro­

gram", as shown in Fig.lO. The "Core program" is an ensemble of processes for the management of data 

handling with higher priority assignment. It includes CAMAC device driver, "Collector", "Recorder", 
and "Manager", in which only CAMAC device driver is executed in the Kernel mode. In this system, 
"Core program" looks like a black box for users. 

The" User program" is an ensemble of processes for monitoring data and man-machine interface, called 
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I Data Size (word / event) I 10 I 100 I 1000 I 2000 I 
I Max. Acquisition rate (Hz) I 360 I 300 I 120 I 60 I 

Table 5: Performance of PDAQ. 

"Monitor" and "Panel" respectively. Data transfer between CAMAC and SUN is done by "Collector". 

"Recorder" writes data on the disk or other mass storage device like an 8 mm tape. Data transfer 

between processes is done through "Data buffer" which is in the UNIX shared memory. The data is at 

first transferred from CAMAC to the "Data buffer" by "Collector". Then "Recorder" writes the data 

on "Data buffer" to a mass storage. "Monitor" is allowed to analyze data on "Data buffer". "Panel" is 

written by using OpenLook ™ utilities. We can control the data acquisition processes by clicking the 

button on "Panel". Almost all the utilities supported by both SunOS and XlI Window System can be 

used with the PDAQ simultaneously. When users develop on-line programs on this system, both C and 

FORTRAN languages are supported. 

We measured the total performance of the PDAQ system. The experimental data were taken from 

CAMAC with the list processing and saved to a hard disk. Table 5 gives the maximum acquisition rate 

measured with the PDAQ. The performance indicates that the PDAQ has enough power to be adopted 

for various small experiments. The PDAQ system is not fully optimized in the present stage. It seems 

to be possible to achieve higher ra~e data acquisition with SPARe IPC. 
We used the PDAQ for a beam test of CsI calorimeter being developed for the J apane~e B factory 

project. No serious trouble occurred during the continuous running of two weeks. In parallel with the 

data acquisition, high level analysis was done by using PAW. Although PAW requires quite large memory 

area, no noticeable effect on the data handling was observed. PAW is not an I/O consuming process. 

Therefore, it does not affect the data acquisition so much. 

Network capability of UNIX operating system makes it possible to add more CPU power to the data 

analysis. Another RISC/UNIX workstation was used to analyze experimental data simultaneously by 
means of NFSTM (Network File System). 

5 Conclusion 

We have developed a portable data acquisition system using RISC/UNIX workstation. It enables us 

to use both the high performance of RISC processor and the good utilities of UNIX. Comparing with 

p.VAX II/VMS, higher performance of data acquisition was achieved by a very compact and inexpensive 

SUN workstation combined with SBus-VME extender. The system is as small as a personal computer. 
In particular, PAW can be used in parallel with the data acquisition process on a small workstation. 

The quasi-real-time data acquisition on UNIX OS (SunOS) was realized by developing a device driver 
which is processed in the Kernel mode. This method was found to provide the good performance of 

response time of interruption and execution time of data transfer on RISC/UNIX workstation. 

The measurements of the basic performance verified that an online system based on RISC/UNIX 

will not only satisfy above requirements but also open a new stage in global data acquisition. For 

instance, UNIX provides a good environment of network so that the boundary between on-line and off-
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line may vanish. Hierarchy of the on-line processors may possibly disappear, since the portability and 
inexpensiveness of RISC/UNIX workstation will enable us to use the same software and hardware from 

small test bench experiments to large coIlider experiments. 
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