
SDC-92-397

SDC
SOLENOIDAL DETECTOR NOTES

DEVELOPMENT OF DATA ACQUISITION SYSTEM USING
RISC/UNIXTM WORKSTATION

February 16, 1993

Y. Takeuchi and T. Tanimori
Tokyo Institute of Technology

Y. Yasu
KEK

Development of Data Acquisition System using
RISC/UNIX™ workstation.

Y.TAKEUCHI and T.TANIMORI
Department 01 Physics, Tokyo Institute 01 Technology, Meguro, Tokyo 1St, Japan

Y.YASU
National Laboratory lor High Energy Physics, Tsukuba, Ibamki 90S, Japan

Abstract

We have developed a compact data acquisition system on RISC/UNIX workstation. SUN™
SPARCstation™ IPC was used, in which extension bus ''SBus™ " was linked to VMEbus. The
transfer rate achieved was better than 7 Mbyte/sec between VMEbus and SUN. A device driver
for CAMAC was developed in order to realize an interruptive feature in UNIX. In addition, the list
processing of CAMAC function has been incorporated in order to keep the high priority of the data
handling process in UNIX. The successful developments of both device driver and list processing
have made it possible to realize the good real-time feature on RISC/UNIX system. Based on this
architecture, a portable and versatile data taking system has been developed, which consists of
graphical user interface, I/O handler, user analysis process, process manager and CAMAC device
driver.

1 Introduction

UNIX workstation combined with RISC architecture has advanced to such a level that its performance

has become as good as or even better than a main frame computer. In addition, the cost performance has

been decreased drastically. Due to this high performance, RISC/UNIX has been widely used in the high

energy physics community as a personal workbench for off-line analysis instead of main frames. However,

RISC/UNIX has not been adopted yet to an on-line data acquisition as an interruptive processor, except

as a monitoring computer, since UNIX does not provide good real-time features required for a data

acquisition system in contrast to VAXTM /VMS™ . Although a few attempts have been reported

toward that direction, none of them seemed to have established real-time feature required for data

acquisitions.[l] The high performance of RISC processor, however, may make it possible to realize the

"quasi-real-time" performance on UNIX system. Furthermore, the direct link between the data bus of

front-end electronics and the high speed extension bus of RISC processor, for example SBus of SPARC

or TURBOchannel™ of DECstation™ , will provide high performance of the data transfer rate up to
more than 10 Mbyte/sec. It will open a new stage of ultra high speed data acquisition.

UNIX Operating System (OS) has two process regions; one is the User mode region in which users

can access and execute processes, and the other is the Kernel mode region in which only process for the

system management is the executed by the OS. "System call"s are the only way for users to execute a

process in the Kernel mode. A process in the Kernel mode is assigned higher priority than that in the

User mode. In UNIX, the priority of a process is not fixed. It is automatically changed by UNIX OS

depending on the CPU time consumption. For example, a process that has spent a lot of CPU time

moves to the waiting queue. One cannot control the priority of the processes. This is a serious problem

1

for a data acquisition system where the data handling process should always be kept at the highest

priority. The only process that is executed in the Kernel mode can be kept at higher priority than those

in the User mode and thus prevented itselffrom waiting. It naturally leads to the development of device

drivers, because one can put the process in the Kernel mode.
Handling the interruption in the UNIX OS is another crucial problem in realizing the real-time feature

on UNIX. An interruption starts the interrupt handler in the Kernel mode. Then, the handler wakes up

and activates the user routine. This sequence depends on when the interrupt happened. There are two

cases in Fig.l. When a process is being executed in the User mode, the interrupt handler of the Kernel

mode is immediately executed. On the contrary, when a process is executed in the Kernel mode, the

interrupt handler must wait for finishing the current Kernel process. In the latter case, the latency of

the interruption depends on the execution time of the running process in the Kernel mode. A "quasi­

real-time" feature can be realized on UNIX if the length of this duration is kept within the allowable

limit.

In this paper, we present the development and performance of our real-time data acquisition system

on SUN SPARC RISC/UNIX workstation (SPARC station IPC 15.8 Mips) connecting to CAMAC,

where VMEbus mediates between SBus of SUN and CAMAC. The relevant software utilities were also

developed. They provide a convenient environment in applying the high performance of RISC/UNIX

to data acquisition. They consist of CAMAC device driver, I/O process, monitoring process, and man­

machine interface on the X Window System™ .

2 System Setup

Figure 2 shows the block diagram of our data acquisition system. Our portable data acquisition system
consists of a RISC/UNIX workstation (SUN SPARC IPC), a VMEbus extender and an interfaces between

VME and front-end electronics system like CAMAC. In this system, SUN accesses to VME through SBus

via VME extender "SFVME-I00" of Solftower Co. Ltd. SFVME-I00 provides a lot of useful functions;

(1) VMEbus Master for accessing VME address space mapped to SUN, (2) SBus DVMA (Direct Virtual

Memory Access) Master for 20 Mbyte/sec fast data transfer, and (3) software compatibility with standard

SUN4 device driver.[2] Kinetic model 2917 is a VME to CAMAC interface, which provides the VMEbus

master function.[3] A combined system of the RISC/UNIX workstation and VMEbus makes it possible

not only to connect to many front-end systems like CAMAC, FASTBUS, and GPIB through VME

interface but also to do fast data transfer between other computer systems through optical links which

are in general developed on VMEbus (Fig.3). We can make the DMA transfer possible between SPARC
memory and CAMAC Crate Controller (K3922) by assigning K2917 and SFVME as a VMEbus master

and a VMEbus slave/SBus DVMA master respectively. CAMAC data are transferred into the memory
space of the process in the User mode on SUN without intermediate software. The transfer rate is limited

only by the ability of hardware in this case.

A device driver for CAMAC was developed on SPARC in order to preserve the priority of the CAMAC

handling process. The ability offast interruption was also realized by this architecture. Using this device

driver on the basis, a library of CAMAC access functions CAMLIB was made. The CAMLIB makes it

easy to fully utilize the CAMAC device driver. Table 1 shows some CAMLIB functions. The CAMLIB

was written in the same style as that developed by the KEK on-line group for VAX/VMS, VME/0S-9

and PC98/MS-DOSTM for the software compatibility.[4] One common feature of those CAMLIBs is the

2

SYSTEM CALL

Function Description

CAMOPN Open CAMAC device driver

CAMCLS Close CAMAC device driver

CSETCR Set crate number

CGENZ Generate CAMAC Z
CAMAC CAMAC single action with a 32-bit word transfer

CAMACW CAMAC single action with a 16-bit word transfer
CDMAL CAMAC block transfer action with 32-bit words

CDMAW CAMAC block transfer action with 16-bit words
CWLAM Wait CAMAC LAM interrupt

CEWAI Execute CAMAC list in device driver and wait its termination-

LIST PROCESSING

Function Description

READ Read CAMAC data with single action
WRITE Write data to CAMAC module with single action
NDT Execute CAMAC single action with no data transfer
IGQ Execute Ignore-Q CAMAC block transfer

WAITEVENT Wait CAMAC LAM interrupt

Table 1: Some CAMAC functions in CAMLIB on Sun SPARC. These functions have good compatibility

with those on pVAX II/VMS.

3

SYSTEM CALL

Function Unit SPARC IPC pVAX II/VMS

CAMACWread psec 180 1100

CDMAWoverhead psec 1160 2000
CDMAW read Kbyte/sec 690 800
CDMAW write Kbyte/sec 790

CWLAM psec 230 1000

CEWAI overhead psec 190 3200

LIST PROCESSING

Function Unit SPARC IPC " pVAX II/VMS

READ (to user space) psec 36 158
NDT psec 21 26

IGQ overhead psec 750 400

IGQ read Kbyte/sec 690 800

IGQ read (DB) Kbyte/sec 960 1200

WAITEVENT psec 180 160-190

Table 2: Performance of CAMLIB functions.

list processing, which was ~eveloped to reduce the non-negligible overhead for calling the device drivers.

Figure 4(a) schematically shows the CPU transaction during the sequence of single CAMAC actions. For"

every CAMAC action the processing comes back from the device driver (system call) to the user level.

A single CAMAC action corresponds to one system call. Thus the overhead for system call is required
at every CAMAC action resulting a considerable overhead for the data acquisition. It is noteworthy
that the overhead of one system call for VAX/VMS takes about 1 msec.[4] Using the list processing, a
sequence of CAMAC actions in one list processing can be transacted in one system call as indicated in

Fig.4(b). One list processing corresponds to one system call. As far as fast data handling is concerned,

the list processing is definitely effective in decreasing the overhead. Furthermore, the list processing has

another advantage in the case of the RISC/UNIX. It keeps the priority of the data handling process

highest during the transaction of the CAMAC sequence.

All libraries for CAMAC functions can be used in both FORTRAN and C. It is easy to transplant
these software to other UNIX workstation, because they are all written in C.

3 Performance

The performance of the present data acquisition system has been examined and compared to that
of pVAX II/VMS data acquisition system. The later was developed at KEK and used in a lot of high

energy experiments.[4] Table 2 shows the summary of the performance of typical CAMAC functions and
list processing functions on SPARC IPC as well as on pVAX II/VMS. In this section, we give a de­
tailed account of these measurements. Following measurements were carried out under the simultaneous
operation of network management process and window system.

4

SYSTEM CALL

Function Data Counts Mean Execution Time R.M.S.

(",sec) (",sec)
CAMAC read 2000 179 22

CAMAC write 2000 178 31

CAMACW read 2000 178 20

CAMACW write 2000 179 23

CAMACWndt 2000 171 29

LIST PROCESSING

Function Data Counts Mean Execution Time R.M.S.

(",sec) (",sec)
READ 2000 28.6 4.3

WRITE 2000 28.8 3.9

NDT 2000 20.9 3.4

Table 3: Performance of CAMAC single action functions.

The measured execution time for ,typical CAMAC single action functions are presented in Table 3. All

CAMAC single actions in the list processing were observed to be much faster than those in the system

~all. The overhead was measured to be about 150 ",sec for each system call. It is, however, 7 times

faster than that of ",VAX/VMS, which is 1 msec. The list processing has faster mean execution time and

narrower R.M.S than the system call. Figure 5 shows the distributions of the execution time for both

CAMAC word read/write function (CAMACW) in the system call and CAMAC read function in the

list processing (READ). The execution time of READ is concentrated between 25 to 35 ",sec. Less than

1 % of READ executions is found to be delayed as much as 50 ",sec. This long delay is considered to be

caused by the Kernel processing like the clock interruption. The narrowness of R.M.S. of list processing

is considered to be because of the high process priority of the Kernel mode.

In Table 4, the performance of the block transfer functions is given, where list processing provides

only CAMAC read functions. IGQ (IGnore Q-response) was achieved to be 0.96 Mbyte/sec. This

performance is close to the limit of the hardware ability of K2917 (1.14Mbyte/sec). Figure 6 indicates

the good linearity between the transfer time and the data size. CAMAC crate controller K3922 has two

data transfer mode. The transfer speed of IGQ in double buffer mode was 1.4 times faster than that in

non-double buffer mode.

The latency of interruption generated by CAMAC LAM request is shown in Fig. 7. The latency of
the WAITEVENT function in the list processing was measured to be 180 ",sec on average with R.M.S.

of 23 ",sec. More than 99.9% of the interruption was found to be generated within 500 ",sec.

The ability of the data acquisition under various environments of background processes is another

thing to be studied. The execution time of the CAMLIB function may depend on the processes which

are executed simultaneous to the CAMLIB function. We measured the CAM LIB performance on simul­

taneous execution of two kinds of processes. One is a CPU consuming process (CPU-CONSUMER).

The other is I/O consuming process (I/O-CONSUMER).

5

SYSTEM CALL

Function Data Counts Overhead Transfer Time Transfer Speed
(psec) (psec/cycle) (K6yte/sec)

CDMAL write 899 1023 5.47 548
CDMAWwrite 899 1044 2.52 794
CDMAL read 899 978 4.67 642
CDMAW read 899 1160 2.88 694

LIST PROCESSING

Function Data Counts Overhead Transfer Time Transfer Speed
(psec) (psec/ cycle) (K6yte/sec)

IGQ read 899 746 2.91 687

IGQ read (DB) 899 736 2.09 957

DB: Double Buffer mode of CAMAC Crate Controller K3922

Table 4: Performance of CAMAC block transfer functions.

The CAMAC block transfer time was examined on the various environments (Figs. 8). The transfer

time was linear to the data size on the environment with no background processes. Figs. 8(a),(c),(d)

show the result with two I/O-CONSUMERs. Fig.8(b) shows that with three CPU-CONSUMERs. Figs.
8(a),(b);(c) show the performance of the CAMAC block transfer in system call. Fig.8(d) shows that of
the list processing. It was noticed that IO-CONSUMERs made crucial effects on the CAMAC block
transfer system call functions. Some of data transfers are delayed by the CPU-CONSUMER. This
unfavorable effect, however, was avoided by using the block transfer in list processing as shown in
Fig.8(d) or decreased by means of assigning high priority to the block transfer process ("nice" system

call) as shown in Fig.8(c).

The latency of the LAM interruption was examined on those environments. UNIX does not guarantee
the maximum latency of the interruption. Figure 9 shows the response time of the list processing function

measured under three CPU-CONSUMERs (a) or two I/O-CONSUMERs (b). From Fig.9(b), it is found
that I/O-CONSUMERs cause a considerable latency, even though we use list processing functions in the
Kernel mode. However, such an extreme condition may not happen in the realistic data acquisition.

4 Portable Data Acquisition System (PDAQ)

Using the CAMAC device driver, a portable data acquisition system (PDAQ) including utilities has
been developed on SunOS 4.1.2. The PDAQ is divided into two parts, the "User program" and "Core pro­

gram", as shown in Fig.lO. The "Core program" is an ensemble of processes for the management of data

handling with higher priority assignment. It includes CAMAC device driver, "Collector", "Recorder",
and "Manager", in which only CAMAC device driver is executed in the Kernel mode. In this system,
"Core program" looks like a black box for users.

The" User program" is an ensemble of processes for monitoring data and man-machine interface, called

6

I Data Size (word / event) I 10 I 100 I 1000 I 2000 I
I Max. Acquisition rate (Hz) I 360 I 300 I 120 I 60 I

Table 5: Performance of PDAQ.

"Monitor" and "Panel" respectively. Data transfer between CAMAC and SUN is done by "Collector".

"Recorder" writes data on the disk or other mass storage device like an 8 mm tape. Data transfer

between processes is done through "Data buffer" which is in the UNIX shared memory. The data is at

first transferred from CAMAC to the "Data buffer" by "Collector". Then "Recorder" writes the data

on "Data buffer" to a mass storage. "Monitor" is allowed to analyze data on "Data buffer". "Panel" is

written by using OpenLook ™ utilities. We can control the data acquisition processes by clicking the

button on "Panel". Almost all the utilities supported by both SunOS and XlI Window System can be

used with the PDAQ simultaneously. When users develop on-line programs on this system, both C and

FORTRAN languages are supported.

We measured the total performance of the PDAQ system. The experimental data were taken from

CAMAC with the list processing and saved to a hard disk. Table 5 gives the maximum acquisition rate

measured with the PDAQ. The performance indicates that the PDAQ has enough power to be adopted

for various small experiments. The PDAQ system is not fully optimized in the present stage. It seems

to be possible to achieve higher ra~e data acquisition with SPARe IPC.
We used the PDAQ for a beam test of CsI calorimeter being developed for the J apane~e B factory

project. No serious trouble occurred during the continuous running of two weeks. In parallel with the

data acquisition, high level analysis was done by using PAW. Although PAW requires quite large memory

area, no noticeable effect on the data handling was observed. PAW is not an I/O consuming process.

Therefore, it does not affect the data acquisition so much.

Network capability of UNIX operating system makes it possible to add more CPU power to the data

analysis. Another RISC/UNIX workstation was used to analyze experimental data simultaneously by
means of NFSTM (Network File System).

5 Conclusion

We have developed a portable data acquisition system using RISC/UNIX workstation. It enables us

to use both the high performance of RISC processor and the good utilities of UNIX. Comparing with

p.VAX II/VMS, higher performance of data acquisition was achieved by a very compact and inexpensive

SUN workstation combined with SBus-VME extender. The system is as small as a personal computer.
In particular, PAW can be used in parallel with the data acquisition process on a small workstation.

The quasi-real-time data acquisition on UNIX OS (SunOS) was realized by developing a device driver
which is processed in the Kernel mode. This method was found to provide the good performance of

response time of interruption and execution time of data transfer on RISC/UNIX workstation.

The measurements of the basic performance verified that an online system based on RISC/UNIX

will not only satisfy above requirements but also open a new stage in global data acquisition. For

instance, UNIX provides a good environment of network so that the boundary between on-line and off-

7

line may vanish. Hierarchy of the on-line processors may possibly disappear, since the portability and
inexpensiveness of RISC/UNIX workstation will enable us to use the same software and hardware from

small test bench experiments to large coIlider experiments.

6 Acknowledgement

We are grateful to KEK on-line group for their continuous support and the presentation of the data
of VAX/VMS system. In particular, we thank Dr.Nomachi for his fruitful discussion and cordial encour­

agement. This work was partially supported by the Tokyo Institute of Technology Research Fund and

by the Grant-in-Aid For Scientific Research by the Ministry of Education, Culture, and Science, Japan.

References

[1] M.Nomachi et al., Proceedings of the "Computing in High Energy Physics 1991", edited

by Y.Watase and F.Abe, Universal Academy Press, p681 (1991)

[2] "SFVME SERIES USER'S MANUAL and INSTALLATION GUIDE", Solflower Com­
puter, Inc.

[3] "Model 2911-Z1A VMEbus Interface w/DMA INSTRUCTION MANUAL", Kinetic Sys­
tems, Inc.

[4] Y.Yasu and M.Nomachi, KEK internal 90-2 (1990)

8

(a)

Process IT 7 1 7

t
Process I 2 .4 3 2 ~

f j~

access I access

Interuupt t interrupt
handler

Hardware ..
executing

(b)
additional delay
~ ~

Process II 7---1 2

t ----- j

2

Process I 2---t .. ~4 I
j

Hardware

Interruptt interrupt
handler

~

Process status 1: executing in User mode
2: executing in Kernel mode
3, 7: waiting
4: sleeping

Figure 1:

10

-7---..
f
2---1

Time ...

1.14 Mbyte!sec

CAMAC
modules

RAM

Figure 2:

11

CPU

SPARC

VME

CAMAC

VME

VME

Mass storage

Figure 3:

12

Optical
---link

I
I
I
I
I
I
I
I
I
I
I

~
I
I
I
I
I
I
I
I
I
I
I
I
I
I

---. Optical
link

(a) SYSTEM CALL

Imsec * N ..
Imsec

------- User level

----------- Device driver

------------- CAMAC access

(b) LIST PROCESSING

... 3msec + 30l-lsec * N

- - User level

...--"""- - - - - - Device driver

----------- CAMAC access

N: number of CAMAC accesses

Figure 4:

13

(a) CAMACW

~ ffi 1500
> w

~ 1000
a:
w m
~ 500
::> z

°o-~~~~~~~~~~~~
100 200 300 400

EXECUTION TIME (j.1Sec)

(b) READ

(f)

ffi 1050

iii
~ 700
a:
w m
~ 350
::> z

°0~~~~25~~~5~0~~~LLwWl00
EXECUTION TIME (rsec)

Figure 5:

(a) CDMAW (b) IGQ (double buffer mode)
41~~~~-r~~~~-r~~~ 410~~-r~~-r~~~~~ __ ~

01if~~~~~~~~~~~~ o 2500 5000 7500 10000
01if~~~~~~~~~~~~ o 2500 5000 7500 10000

DATA LENGTH (word) DATA LENGTH (werd)

Figure 6:

(a) CWLAM

~ z
~
w
~ 3000
0:
W m
~
::> z

(b) W AITEVENT

Figure 7:

14

(f)

!z 4500
w
iii
~ 3000
a:
w m
~ 1500
::> z

(a) CDMA W with I/O
41~~~~~~~~~-r~~~

. .

. .. .
': ' ..

." -. ,,!..-: .;a • •• • •• ' I .. :. -. J' .:. .:.": . ::)". ~."
-;! •• _. • .. •• ,:,.-...)11.
"~";; ... ~ .. " . ::~."~'~.,.

":,.- .
.to-

01~~~~~~~~~~~~~ o 2500 5000 7500 10000

DATA LENGTH (word)

(c) CDMA W with I/O, nice -20
4104~~~rT~TO-r~~~~~ .

..;

•
_ , : -I

" .
" . • =r\ . " " / .. -.' .:.;.,;r . .,."..

0100~~~~~~~~~~~~
o 2500 5000 7500 10000

DAT.A LENGTH (word)

(b) CDMA W with CPU
41~~~~~~~~-r-~~~~

"U
G.I

:£. 3104

W
:::E
t= 2104

cr:
W u. en
z 1104

<
f=
01~~~~~~~~~~~~~ o 2500 10000

DATA LENGTH (word)

(d) IGQ with I/O
41~~-r~~-r~\~~~~~~

7500 10000
DATA LENGTH (word)

Figure 8:

(a) W AlTEVENT with CPU

10000 f'"""T'".,..,.-.-=--r-r.,....,,...,-T""T".....--r-r-,......,..

~ 7500
g!
UJ

~ 5000
cr:
UJ
CD 5 2500
z

°0~~~2~2~5~~4~50~~~67L5~~9~00
RESPONSE TIME (Ilsec)

(b) W AITEVENT with I/O

en ffi 750
iii
~ 500
ffi
CD 5 250
z

Figure 9:

15

Figure 10:

16

