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EXECUTIVE SUMMARY (by W.L. Pope, LBL, 8/3/92)

The attached report by Marc C. Rodamaker of MCR Associates, Inc.
describes recent FEA progress on the structural simulation of the SDC's
Monolithic Hadronic Endplug (Plug). This work was performed by MCR
during June-July 1992 under contract to LBL (PO#3512000)

Because of 3 recent design changes, the current Plug design appears
to meet all Physics and structural requirements with relative ease using
conventional materials and a conservative set of assumptions. The

changes were:

1) assume 35 mm dia Hac1 tie-rods, and 50 mm Hac2 tie-rods,

2) increase the thickness of the very last Hac2 absorber plate
from 42 mm to 84 mm,

3) slot-weld simulation of the outer edge of all wedge plates
to the outer edge of their adjacent absorber plates.

Change 3) above dramatically reduced previous peak tie-rod loads &
stresses and stiffened the structure in transverse shear.

The conservative simplifying assumptions were:

1) assume zero tensile preload in all tie-rods, which might
occur from differential thermal expansion during post weld
cool-down,

2) assume zero friction between adjacent plates throughout
the absorber stack.



Rodamaker shows, through plastic simulation techniques, that
although there is a very small inelastic zone (yielding) in the tie-rod weld
region at modest external loads (due to an unavoidable stress concen-
tration at the bottom of the "V-weld"), this zone remains localized and
stable for external loads beyond about 1.4 times design conditions (see
Fig. 28 & Fig. 41) with change 1) above, only.

With changes 1) and 2) above, the situation gets slightly worse,
because tie-rod loads increase. The system is stable to only about 1.2
times design conditions (see Fig. 60). The forgoing alone, however, does
not suggest that change 2) is undesirable.

With all 3 of the above changes, peak tie-rod forces go down about a
factor of 10 to 16, as the slot welds contribute significantly to both axial
and lateral strengthening (compare peak tie-rod loads in tables on pg. 8
with those on page 10). Here the slot-welds are carrying about 78% of the
hac2 axial loads, but they are stressed to roughly half that of the tie-rods.

Because of the forgoing, we can conservatively conclude that the
very small inelastic zone in the tie-rod welds in the current design will
be localized and stable to external loads to well beyond 2 times design
conditions, even though Rodamaker has yet to “run" this case.

Future efforts will address design parameter refinements which
would reduce Plug fabrication costs and insure reliability--for example:

a.) Find better tie-rod radial locations which would reduce the peak
load and load variations within given regions (front of Haci,
Hac1/Hac2 interface, and back of Hac2) allowing smaller rod
diameters,

b.) Provide a more detailed local slot-weld characterization (= 6mm
wide x = 5 mm dp) to verify that critical stability conditions do not
simply shift to these welds.
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INTRODUCTION

This report presents the finite element analysis results of a
removable hadronic absorber plug for the SDC calorimeter. The models
utilized in this report were constructed and run using the ANSYS® finite
element program. A preliminary report was presented on 5/29/92 which
described a number of different models that were used to investigate the
stress behavior of the system. This analysis is very difficult because the
overall system has many components and the maximum stress tends to
occur in a localized region within the tierods which are a relatively small
piece of the system and there are a very large number of tierods. In
addition, the absorber and wedge plates can interact in a nonlinear manner
since they are initially in contact but may slide relative to each other
under various loadings. The first report described a number of different
approaches -- some of which were relatively unsuccessful. This report is
much more concise. Only the models and techniques that are considered
accurate and valid are presented. Discussion of attempted techniques
which produced questionable results are omitted.

ANALYSIS APPROACH

It is computationally impossible to include the detailed
characterization of each or even one tierod within a global system model.
Consequently, it is necessary to use a local tierod model which can
predict accurate flexibility and stresses due to applied forces of a tierod
in conjunction with one or more system models which model the tierods
using a simple approach such as beam theory. The tierod model may be
used to adjust the beam properties of the tierods and also to predict
accurate stresses in the tierods produced by the loadings predicted by the
system model(s).

THREE-DIMENSIONAL ELASTIC TIEROD MODEL (TR3D)

A three-dimensional tierod model was created. A file is included
with this report, named TR3D, that builds and runs this model. Figure 1 is
a plot of the model with boundary conditions included. Figure 2 is a
similar plot except the boundary conditions are removed which makes the
elements more visible. The geometry is described parametrically and the
values of the parameters are dimensioned on Figure 2. The nodes around
the upper absorber plate are fixed in all directions. The nodes where the
model would intersect into the lower absorber plate are all coupled
together in the X and Y directions. Only half of the model is constructed
so symmetry boundary conditions are placed at Z=0. The diameter of the



tierod is set to 50 mm for this case. The overall height of the tierod is
TP2 + TP2T + TW2 which have the values of 42 mm, 84 mm and 6 mm
respectively for the top row evaluation in which the top absorber plate is
twice the thickness of the other HAC2 absorber plates. For the other rows
of tierods, TP2T is set to 42 mm. The radial gap between the tierod and
the through-hole is 1 mm. Where every tierod is welded, there is always a
wedge plate. The wedge plate is absent from this model since it would
not touch the tierod. Its effect is included in the model by the
displacement and coupling boundary conditions placed on the absorber
plates. This model contains slightly over 2,000 eight-node brick elements
and 3,000 nodes. The total number of degrees of freedom is, therefore,
slightly under 9,000. Runs were made for the top row with TP2T = 84 mm
and for the other rows with TP2T = 42 mm.

Two different unit load cases are run. For the first case, the lower
absorber plate is pulled down with a force of 1 Ib. Figure 3 is a contour
plot of the Y displacements for this case for TP2T = 42 mm. It is seen
that the largest displacement is 8E-8". The second unit load case
consists of a force of 1 Ib. applied in the X direction. A contour plot of the
X displacement for this case is shown on Figure 4 also for the TP2T = 42
mm case. The applied forces are actually both .5 Ibs. due to the half
symmetry condition. ‘ .

In the system model, one beam will be used to approximate each
tierod. A finite element beam behaves identically to simple beam theory.
Therefore, it is possible to adjust the input properties for the system
model based on the predicted flexibilities or stiffness from the tierod
model. The calculation in Appendix 1 shows how this adjustment is made.

The area and moment of inertia adjustments calculated in
Appendix 1 were applied to a one element beam model and the unit loads
were applied. This model duplicated exactly the flexibilities produced by
the TR3D model as expected.

Even though it is very tempting to use beam theory for a tierod, it
should be understood that beam theory is usually only considered accurate
for beams having L/D of 10 or greater. This ratio is approximately two
for a tierod so significant shear deformation will occur. In addition,
local deformation in the weld region will occur. Beam theory would
neglect both of these effects. Consequently, the area and moment of
inertia to be used in the system model would be expected to be
significantly less than uncorrected beam theory. The previous hand
calculation indicated that very significant reductions, especially in the
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moment of inertia, are in order. A one element ANSYS beam model was
also run with the corrected beam properties applied which exactly
duplicated the expected displacements. Therefore, these adjusted
properties were incorporated into the system model. The TR3D model was
also run with a 35 mm tierod, 18 mm absorber plates and 6 mm wedge
plates which is the condition for HAC1. Figure 5 is a contour plot of Y
displacement for the 1 Ib. of vertical force case. L/D is even more
extreme for HAC1 than for HAC2. This is primarily because the absorber
plates are so much thinner.

"HAC2

A system model representing the important characteristics of HAC2
was created. This model explicitly represents the top 4 rows of absorber
plates. Figure 6 is a plot of the entire model showing the boundary
conditions. A half-model was constructed with symmetry boundary
conditions at Z=0. A close-up of one of the corners of the model is shown
on Figure 7. The lower blue elements and upper blue 3D solid elements
represent a 3D solid representation of all of HAC2 below the explicitly
modelled absorber and wedge plates and a 3D solid representation of the
bolting flange plate. The very top row of absorber plates has twice the
thickness of the other absorber plates. The wedge plates are
appropriately placed between the absorber plates and the wedge plates
stop every 22 1/2 degrees and then start again 22.5° later. Beam
elements, pipe elements and gap interface elements connect the different
layers together. At each location, where a tierod would exist, a single
beam element is connected from an absorber plate to the absorber plate
below it. This element passes through the wedge plate but does not
interact with it since it shares no common nodes. For elements in the
vicinity of each tierod, groups of pipe and gap interface elements are
placed which model the assumed frictionless contact between the
different layers. Typically, a pipe element is placed from an absorber
plate up to a wedge plate and then a gap interface element is placed from
the wedge plate up to the next absorber plate. It is unwise and
unnecessary to model both conditions with gap interface elements because
there is a possibility that both of them will be open in any given iteration
which would lead to convergence difficulties. The pipe elements
effectively attach the wedge plate to the absorber plate but do not allow
any significant load to be carried other than a pure compression load.

Figure 8 is a plot of the shell elements representing the absorber
and wedge plates over the first 22.5° of the model. The upper row of blue -
elements is the upper row tierods. The red vertical elements are the



other rows of tierods. The coefficient of friction for the gap interface
elements was set to zero which represents frictionless contact. This
assumption will overestimate the shear force carried through the tierods.
In the vertical direction, gaps have an initial interference of zero which
indicates no initial interference or axial preload is being assumed in the
tierods. The very top row gaps connect from the top absorber plate to the
flange. This row was given an initial interference of .010" which will
produce some initial stretch in the bolts which are modelled with pipe
elements.

Three different loading conditions were modelled in succession. For
the first load case, only bolt preload was considered. It is important to
analyze the structure sequentially since a converged solution will
typically occur in a minimum number of iterations using this approach.
Even so, this model required approximately eight hours on a DECStation
5000 which is a relatively fast workstation. For the second load case, 1 g
of gravity in the -X direction was added to the previously specified bolt
preload. In the third load case, 90 psi of negative pressure was applied to
the front face of the plug as depicted by the pressure boundary condition
shown on Figure 6. This load simulates the magnetic attraction force
produced by the physics experiment.

Figures 9 through 12 are stress contour plots for the bolt preload
only case. Figure 9 shows SIGE, the Von Mises equivalent stress, in the 3D
solid elements. The maximum stress is 14.1 ksi and occurs at a bolt
location. This stress is actually too high since the bolt properties were
not adjusted at the symmetry plane. In the lower portion of HAC2, the
preload only stresses were almost zero. Figure 10 shows SIGE in the top
surface of all of the shell elements which are the absorber and wedge
plates. The maximum stress of 5.8 ksi is occurring near a bolt. Figure 11
shows the direct or tensile stress in the pipe elements. Almost all of the
bolts are at a constant stress of 31.6 ksi and the other pipes which
connect the absorber plates to the wedge plates have almost no stress on
them. Figure 12 shows maximum equivalent beam stress in the tierods.
The- maximum stress is occurring on the top row and the stress value is
5.1 ksi. It is. important to recall that, while the beam properties were
adjusted for appropriate stiffness, these properties will not necessarily
predict accurate stresses. It is necessary to extract the element forces
from the system model and apply these forces to the tierod model to
predict accurate tierod stresses.

The model was next rerun with preload plus gravity. Figures 13
through 16 are the same result plots as shown for the preload only case.
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Figure 17 is a plot of UX which is the X displacement due to this load case.
A significant amount of sliding is occurring in the top absorber plate and
the bolt flange ring. This is due to the zero friction assumption. Some
relative motion can also be seen between successive absorber plates. A
close-up view of the absorber plates with the X displacement labeled in
mils is shown on Figure 18. A relative motion of 5 mils occurs between
the top plate and the next plate while the relative motion is only 2 mils
for subsequent plates. This is probably due to the longer length of the
upper row of tierods. For the third load case, the magnetic attraction
force was included. Figures 19 through 22 are the stress result plots for
this case. Figure 23 shows UX and Figure 24 shows UY.

The basic stresses calculated for each of the load cases is well
within the allowable limits for steel although tierod stresses cannot be
evaluated directly using this model. The following table summarizes
some the results extracted from the HAC2 system model.

Table 1
HAC2 Model
Load Case | Preload Only Preload & Preload & Gravity
Gravity & Magnetic

ZFyx 0 .130E6 .13E6

ZFy -0 0 .332E6
Tierod Loads:
Top Row:

Flateral = V66872 +2089% = 7006#
F axial = 39,310#
Next Row Down:

Flateral = V82852 + 5822 =8305#

F axial = 41,360#
TIEROD STRESS CALCULATION (TR3DPL)

The forces calculated in the previous section were applied to the 3D
tierod model for both the top row and next row down. Interestingly, the
top row has slightly lower lateral and axial forces than the next row
down. It is assumed that the thicker top plate is producing a more even
spread of the system forces so that the maximum forces in the top row
are not quite as severe as in the other rows. Unfortunately, the top row
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also has longer tierods which can handle less lateral force. This trade-off
will be evaluated in a later section.

The previous tierod model, which had been used to determine the
flexibilities of the tierods, was modified to include both axial and lateral
loads at the same time and the actual forces predicted by the HAC2 model
were applied. Actually, twice the predicted force was applied since it is
considered necessary to study the behavior of the tierods at loads
somewhat above those predicted to occur.

It is considered overly conservative to require that the tierods
remain totally linear elastic. The exact profile of the weld is unknown
and if a square corner occurs, a small amount of local yielding will occur
even at very small loads. The steel chosen for the absorber plates and
tierods (assumed to be S1015) is a very ductile material and can absorb
significant local yielding without any danger of cracking or structural
failure. Steel properties were extracted from the ASM Metals Reference
book and S1015 was found to yield at 45.5 ksi. The ultimate tensile
strength is 61.0 ksi which occurs at 39% elongation. A bilinear stress-
strain curve was constructed which behaved linearly to 45.5 ksi and then
changed to a slope of 40 ksi above the yield point. This curve would pass
through 61 ksi at 39% strain. The stress strain curve is actually very
conservative since the actual curve would have a significantly higher
slope for strain values just above yield. The rational for analyzing the
system with plasticity is that very localized yielding will occur at
moderate force values but the overall behavior of the system will be quite
linear until a significant plastic zone is reached. It is possible to apply
the loading incrementally and examine overall system response versus
supplied load.

The TR3D file was copied, modified and renamed TR3DPL. The “PL”
suffix stands for plasticity. The loads determined from the HAC2 model
were doubled and both the axial and lateral loads were applied over 40
iterations to twice the predicted loads. This process was performed for
both the top row and the next row down. Figure 25 is a plot of the X and Y
displacements versus the load factor. A load factor of 1.0 corresponds to
the predicted forces from the HAC2 model. It is seen that the system is
very linear out to a load factor of approximately 1.2. Between 1.4 and 1.6,
the system becomes somewhat unstable and quite large deflections occur
at load factors above 1.6. Load factors as high as 1.6 could probably be
tolerated since other tierods would still be acting linearly and would pick
up a higher fraction of the load than initially. Figure 26 is a contour plot
of SIGE at half of the predicted maximum load or .5 load factor. It is seen
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that the system is close to yielding but the high stress region is very
small. Figure 27 is shown at a load factor of 1.0. The plasticity zone is
still quite small. The model was then rerun for the next row down. This
tierod is shorter but the loads are somewhat higher. It is seen that this is
actually a slightly less severe case by the displacement vs. load factor
plot in Figure 28. Figures 29 and 30 show SIGE at load factors of .5 and
1.0. There is not a large difference in performance between the two
systems.

HAC1

A similar model to the HAC2 system model was created except this
model! is for HAC1. Figure 31 is a plot of the overall model. As before,
four absorber plates are explicitly modelled along with the wedge plates
between the absorber plates. Below the bottom absorber plate, the model
is assumed to be solid steel. The top absorber plate is fully fixed in all
directions representing the support from the HAC2 region. Figure 32 is a
close-up view of one corner showing the absorber plates, wedge plates
and pipe and gap elements. As before, a pipe element is attached from an
absorber plate up to a wedge plate followed by a gap interface element
from that wedge to the absorber plate above it. These elements are only
placed in the vicinity of tierods where contact might be expected. Figure
33 is similar to Figure 32 except the plates are shown only with the
tierods which are represented by the vertical blue elements. Figure 34
shows the boundary conditions. Z=0 is a symmetry plane. The top
absorber plate is fixed in all directions. The flange bolts are far from
HAC1 so a preload case is not considered. Gravity is applied in the -X
direction for the first load case followed by an additional load case with
90 psi of negative pressure used to simulate the magnetic attraction
force.

Figure 35 shows SIGE in the solid elements for the gravity only case.
The maximum stress is very low. Figure 36 shows SIGE in all of the shell
elements for the same loading. This stress is also quite low. Figure 37
shows the beam stress in the tierods for the gravity only case. The
stresses are much lower than in HAC2 since HAC1 must support much less
weight. Figure 38 shows the stresses in the 3D solids for the gravity +
magnetic attraction force. Figure 39 shows the shell stresses for the
same condition. Figure 40 shows the beam stress in the tierods for the
combined loading case. This stress is much higher than before but still
significantly less than for HAC2. The following table describes the beam
nodal forces extracted from the tierod having the highest stress from the
HAC1 model. These forces are significantly less than for HAC2 but the
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tierods are 35 mm versus 50 mm so their load capability would be
expected to be less. These forces were applied as loading to the TR3DPL
model which was also adjusted for 35 mm diameter and 18 mm absorber
plates. Figure 41 is a plot showing displacements versus load factor for
this condition. Figures 42 and 43 show SIGE at 0.6 and 1.0 load factors.

HACI1 Tierod Forces

FX = 1518
FY = 26150 - Axial
FZ = 222.5

Lateral = v1518% +222.5% =1534#
HAC2A

The top absorber plate in the HAC2 section was made 84 mm thick
to, hopefully, more evenly spread the load among the tierods. It was
noticed in the previous HAC2 section that both the axial and the lateral
forces in the top row of tierods were somewhat less than for the tierods
below the top row. However, the thicker absorber plate produces a longer
tierod which is less capable of supporting a lateral force. To investigate
this condition, the HAC2 model was rerun with TP2T set to 42 mm.
Otherwise, this model is identical to the previous HAC2 model. This
model is renamed HAC2A. Figures 44 through 47 are the results for the
preload only case. These results are very similar to HAC2. Figures 48
through 51 are for the preload + gravity case. Figures 52 and 53 show UX.
The offset between absorber plates is seen to be 2 mils on Figure 53
which verifies that it is the tierod flexibility causing this offset.

Finally, the magnetic attraction force was added to the preload plus
gravity. Figures 54 through 57 are the stress contour results for this load
case. Figures 58 and 59 show UX and UY displacements.

The highest stressed tierod nodal forces were extracted and are
listed below.

HAC2A Tierod Forces
FX = 13090 |
FY = 48450 - Axial
FZ = 7655

Lateral = V13090% +7655% =15164#



These forces were applied to the TR3DPL model with the appropriate
geometry. Figure 60 shows the displacements versus load factor. The
system is going somewhat unstable at a load factor of approximately 1.3
which is not as good as for the original HAC2 model. Figure 61 shows SIGE
at load factor = .6 and Figure 62 shows SIGE at load factor = 1.0. A
relatively large plastic zone has already developed at the HAC2A predicted
load levels. Also, the maximum stress has shifted from the weld radius to
the top surface of the tierod.

CALCULATION OF TOTAL SYSTEM DEFORMATION

Both the HAC1 and HAC2 models only explicitly modelled the top four
absorber plates. Lateral shifts of the absorber plates were noted due to
tierod deflection. For the region that was modelled as solid elements,
this deformation would not be predicted since the shear modulus is
effectively very high. It is possible to estimate the total lateral
deflection from the results predicted by the HAC1 and HAC2 models. It is
assumed that, in HAC2, each absorber plate shifts .002" from the absorber
plate above it. For the HAC1 model, a lateral offset per absorber plate
was found to be 0.6 mils. The following calculation shows that the total
plug is estimated to shift laterally by .0662". ’

Ux = (.002 x 22) + (.0006 x 37) = .0662"

This calculation ignores bending effects of the entire plug which are
probably negligible. Conversely, the calculation is probably very
conservative because it assumes frictionless behavior. Any significant
initial tensile stresses in the tierods would produce restraining shear
forces which would reduce the lateral sway to almost zero. It is difficult
to take advantage of the initial tensile stresses since it is difficult to
quantify them at this time.

HAC2 WITH WELDED OUTER SURFACE

- In the previous sections, all of the shear force between successive
absorber plates was carried by tierods. It was found that the tierods had
to be made very large (50 mm in HAC2 and 35 mm in HAC1) and still some
plasticity would occur under normal operational loads. It is possible to
weld the absorber plates to the wedge plates on the outer surface thereby
producing more shear area. To investigate the effect of welding on the
outer surface, the HAC2 model was adjusted by adding shell elements
between the outer edge of absorber and wedge plates. The added shells
were assumed to be .5 inches thick. Since the absorber and wedge plates



were modelled with shells, the nodes are present at their centerlines.
Consequently, the weld elements span from the centerline of a wedge
plate to the centerline of an absorber plate and are somewhat too soft. It
would be very difficult to produce an extremely accurate representation
of this condition without having modelled the wedge and absorber plates
with 3D solids. Nevertheless, the current approach is considered quite
accurate. Figure 63 is a plot showing the additional elements over the
first 22.5 degrees of HAC2. The dark blue elements are the additional
weld elements which were added. Figure 64 is a plot of the entire model
with the weld elements once again shown as dark blue.

The model was run with the same three load cases as before.
Figures 65 through 69 are stress contour plots for the preload only case.
Figures 70 through 74 are for the preload plus gravity and Figures 75
through 79 are for the preload plus gravity plus magnetic attraction force.
An extra plot was included in each of these cases which is the stress in
the weld elements. Figure 67 shows the preload case where the stresses
are very low. Figure 72 is the preload + gravity case where some
significant stresses are notice indicating that the weld elements are
carrying some load. Figure 77 shows the preload plus gravity plus
magnetic attraction stresses in the weld elements. Figure 80 shows the
lateral displacement of the four absorber plates with the displacements
labeled in microinches. Figure 80 is at the inner radius of the absorber
plates and Figure 81 is the same plot only shown at the outer radius. The
difference in displacement between rows represents the lateral shear
which will accumulate down the length of HAC2.

The following forces were found to act on the highest stressed
tierod. :

HAC2.WLD Tierod Forces
FX = 1289

FY = 2963 - Axial

FZ = 144

Lateral = 412892 + 1447 =1297#

These forces are much smaller than for the previous HAC2 cases.
Also, it is interesting that the maximum tierod force occurs in the middle
row of tierods as opposed to the outer row since much of the shear force
in the outer row is now being carried by the weld elements.
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ANSYS INPUT FILES

Two floppy disks are included with this report which contain the
input files to run additional cases of the models discussed in this report.
The following is a summary of the six files included.

TR3D-

HAC2-

HAC1-

TR3DPL-

HAC2.WLD-

HAC1.WLD-

The tierod 3D half-symmetry model that was used to

‘determine equivalent tierod flexibilities.

The 3D system model with the top four absorber plates of
HAC2 explicitly modelled.

The 3D system model for HAC1 with the top four absorber
plates modelled.

The tierod plasticity model in which the actual predicted
tierod forces from HAC1 or HAC2 are applied. This file
performs a plasticity analysis.

A slightly modified version of HAC2 in which the outer
absorber plates are welded together by elements of .5"
thickness. :

A slightly modified version of HAC1 in which the outer
absorber and wedge plates are welded together with .5” shell
elements.

These files are provided on a Macintosh double-sided, high-density
floppy as well as on a double-sided, double density 5.25” PC floppy disk.
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Figure 45

HAC2A Model
Preload Only
SIGE in Shells
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Figure 46

HAC2A Model

Preload Only
Axial Stress in Pipes
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Figure 47

HAC2A Model
Preload Only
Beam Stress in Tierods
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Figure 48

HAC2A Model
Preload + Gravity
SIGE in Solids

w1l hace” with no tristion



o d

&
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Figure 49
HAC2A Model

Preload + Gravity
SIGE in Shells
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Figure 50

HAC2A Model
Preload + Gravity
Axial Stress in Pipes
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Figure 51
HAC2A Model
Preload + Gravity
Beam Stress in Tierods

ol with no triction
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Figure 52

HAC2A Model
Preload + Gravity
ux

moed=1 hacl with no ftriction
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Figure 53
HAC2A Model
Preload + G-~ "
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Figure 54
HAC2A Model

Preload + Gravity + Magnetic

SIGE in Solids
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Figure 55
HAC2A Model
Preload + Gravity + Magnetic

" .
) - . SIGE in Shells
o de ac? with no triction
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Figure 56

HAC2A Model
Preload + Gravity + Magnetic
Axial Stress in Pipes

model hac? with no friction
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Figure 57

HAC2A Model
Preload + Gravity + Magnetic
Beam Stress in Tierods

1 sz with o triction
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Figure 58
HAC2A Model!
Preload + Gravity + Magnetic
UXx

m>d=1l hao? with no friction
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acz with no friction

Figure 59

HAC2A Model
Preload + Gravity + Magnetic
uy
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tr3dpl - case ©
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>r hacZ top row with tpZt=42 mm
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Figure 60

TR3DPL Model
Displacement vs. Load Factor
HAC2A



tr:

case
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or hacZ top row with tp2t=4

Figure 61
TR3DPL Model
SIGE @ .5 Load Factor
HAC2A
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Figure 62
TR3DPL Model
SIGE @ 1.0 Load Factor
HAC2A

tr3dpl - case for hacZ top row with tp2t=42 mm
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Figure 63
HAC2.WLD Model

mode]l hac? with no friction — outer asurtace welded
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HAC2.WLD Model

modd a0 with no friction — outer surfac slded
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Figure 65 13338
HAC2.WLD Model 14123

Preload Only
SIGE in Solids

madel hacl with no friction - cuter zuarface welded
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Figure 66

HAC2.WLD Model
Preload Only
SIGE in Shells
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model hac2 with no friction - outer surface welded

Figure 67

HAC2.WLD Model
Preload Only
SIGE in Outer Weld
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Figure 68

HAC2.WLD Model
Preload Only
SDIR in Pipes

o e with no friction - outer zurtac e
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~ Figure 69
HAC2.WLD Model

Preload Only
Beam Stress in Tierods

model hac? with no friction — outer surtface wealded
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Figure 70

HAC2.WLD Model
Preload + Gravity
SIGE in Solids
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model hac2 with no friction — outesr surface welded

Figure 71

HAC2.WLD Model
Preload + Gravity
SIGE in Shells
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Figure 72 —— 6052
HAC2.WLD Model e 6388
Preload + Gravity . €724

SIGE in Outer Weld

N , _ . - L PR
moe nacy with no friction - outer surfac elded
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model hacZ with no friction - outsr surtface weldsd

Figure 73

HAC2.WLD Model
Preload + Gravity
SDIR in Pipes
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iacZ with no friction - outer

surfac

E

Figure 74

HAC2.WLD Model
Preload + Gravity
Beam Stress in Tierods

21lded
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Figure 75 13241
HAC2.WLD Model 14068
Preload + Gravity + Magnetic 14894
SIGE in Solids

model hacZ with no friction - outer =zurface welded
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Figure 76
HAC2.WLD Model
Preload + Gravity + Magnetic
SIGE in Shells
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mod iac? with no friction - outer surfac zlded
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Figure 77 19581
HAC2.WLD Model [ | 50561
Preload + Gravity + Magnetic “
SIGE in Outer Weld
model hac2 with no friction - outer surface welded
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iac2 with no friction — outer surfac

Figure 78

HAC2.WLD Model
Preload + Gravity + Magnetic
SDIR in Pipes

2lded
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Figure 79
HAC2.WLD Model
Preload + Gravity + Magnetic
Beam Stress in Tierods

model hac2 with no friction — outer surface welded
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HAC2.WLD Model
Preload + Gravity + Magnetic
UX in Absorber Plates

model hac2 with no friction - outer surtace welded
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Figure 82
HAC1.WLD Model

hanzl - outer surface iz welded i
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HAC1.WLD Model
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Figure 84
HAC1.WLD Model
Gravity
SIGE in Solids

hacl - outer surface iz welded
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Figure 85
HAC1.WLD Model
Gravity
SIGE in Shells

hac - pouter surface iz welded
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Figure 86

HAC1.WLD Model
Gravity

SDIR in Pipes

hacl ~ outer surtace iz welded
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Figure 87
HAC1.WLD Model
Gravity
SIGE in Solids

hac - outer surface iz weldead
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Figure 88

HAC1.WLD Model
Gravity + Magnetic
SIGE in Shells

hacl - outer surface iz welded
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Figure 89

HAC1.WLD Model
Gravity + Magnetic

SIGE in Outer Weld
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Figure 90
HAC1.WLD Model
Gravity + Magnetic

Beam Stress in Tierods

hacl - outer surface is welded
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Figure 91
HAC1.WLD Model
Gravity + Magnetic

UX in Absorber Plates

- outer surface is welded
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Figure 92
HAC1.WLD Model
Gravity + Magnetic

UX in Absorber Plates
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Figure 93
HAC1.WLD Model
Gravity + Magnetic

UX in Absorber Plates
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