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1 Introduction 
The influence of tile-to-tile nonuniformity on the tile calorimeter response is 
studied using two different approaches: analytical and Monte-Carlo. Both 
methods rely on the removing of the stochastic fluctuations by an averaging 
procedure (in Monte-Carlo approach), or by considering a parametrisation of 
the mean longitudinal profile of the electromagnetic shower (in the analytical 
approach). The tiles' nonuniformity was considered as gaussian distributed, 
the degree of nonuniformity being characterised by the value of the standard 
deviation UftDft. This approach has a justification in the case when the in-
dividual tile characteristics are not measured and calorimeter's towers are 
assembled without any selection of tiles. 

2 Tile-to-tile nonuniformity: Monte-Carlo ap-
proach 

We investigated the systematic error connected to tile-to-tile nonuniformity 
for the case of a sandwich tile calorimeter. For this purpose we did some 
simulations of a calorimeter block which consisted of (Ntow = 9) towers 
(structure 3x3). The tower dimensions were 10x10x25.6 cm3 and it con-
sisted of (Nt;,l" = 32) tiles interleaved with lead layers. The full number of 
tiles (NJull = Ntow x Nt;,l,,) in the calorimeter block was 288. The thickness 
of the tile and lead layer was 4 mm for each. The characteristics of the 
calorimeter building elements were chosen according to [1]. We simulated 
this calorimeter for incident electrons with the energy 5, 20, 50 and 100 GeV 
by the use of the program GEANT [2]. The centre of the central tower was 
taken as a point of incidence, because the systematic error is supposed to be 
the largest there. 
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For clarity of further explanation we need to define some basic concepts. 
Tile signal. The tile signal is defined as follows: 

(1) 

where 

• E;c:i is the energy released in ith tile; 

• Co is the response coefficient of ith. tile characterizing the tile's efficiency 
for conversion of deposited energy into light signal. 

In our case coefficients Co are defined as: 

C, = 1 + O"non r, (2) 

where: 

• i( = 1, .. , N/uu ) is the tile sequence number; 

• r, -a set of random numbers distributed according to a Gaussian dis-
tribution of mean value zero and the standard deviation equal to one; 

• 0"_ - the response standard deviation characterizing the size of nonuni-
formity or the quality of the tile set. 

Such a definition of C, corresponds to the normalization of the full calorime-
ter signal to the full energy deposition in active medium (tiles). 
Calorimeter signal. The calorimeter signal is defined as follows: 

NI_II 

SJull = L: E;e'C, (3) 
,=1 

Sampling /raction. The sampling fraction ( i.4",P ) is defined in an usual way: 

NI_II 

i.4",P = L: E;C' / E,= (4) 
,=1 

where: 

• ~1_11 E;c:i is full energy deposition in active medium; 
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• Einc is the energy of incident particle. 

In our calculation we have used the fact that the tile signal is a product 
of two statisticaly independent quantities (E;ei and Ci ). For each simulated 
event (an electromagnetic shower induced by an incident particle of given 
energy) the set of the tile energy depositions ({ EtO, i = l..NJull }) had been 
saved and used later for creation of the" real" tile signals corresponding to a 
concrete arrangement of the tiles in the calorimeter block, characterised by 
their response coefficients Ci . In the following we will call a " configuration" 
the set of Ci coefficients ({ Ci, i = l..NJull }) characterising the response of 
a calorimeter block. Using the same set of events and generating various 
configurations we can reconstruct the calorimeter response for any event and 
for any configuration just using the equ.(1). So one simulated event can be 
"projected" into many configurations and there is no need to simulatea set 
of events for each configuration. In our case we reconstructed the same set 
of events in 2500 different configurations. The configurations are divided 
into 5 groups for 500 ones each. The groups differ each other by the size 
of nonuniformity (CTnon ). The calculations were carried out for the following 
values of CTnon: 5%, 10%, 15%, 20% and 30%. The same set of configurations 
was applied at all energies. 

Practically, the different configurations can be interpreted as the differ-
ent points of beam incidence distributed over the calorimeter surface with a 
discrete and constant step, with the incidence points of the beam only on 
the center ofthe towers. Each configuration group (500 configurations) char-
acterized by a given nonuniformity CTnon corresponds to a calorimeter with 
given quality of tiles. 

The nonuniformity and systematic error. Before presenting the results 
concernig to tile-to-tile nonuniformity we will shortly discuss the nature of 
the error connected to non uniformi ty. As a rule, the resolution (CT E) of an 
electromagnetic calorimeter (Ee) is expressed as: 

where: 

CTE a 
-=-EBb 
E VE (5) 

• a corresponds to the sampling fluctuations and the fluctuations con-
nected to photoelectron conversion; 
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• b is the constant term describing the fluctuations connected to energy 
leakage and light attenuation as well as to the non-stochastic sources 
of fluctuations such as the non-uniformity of tile response. 

• the electronics noise is not taken into account. 

The constant term b can be expressed as a quadratic sum of the stochastic 
part (bI ) and non-stochastic (systematic) one (b2 ) (see below). IT there are 
only the stochastic sources of fluctuations (b2 = 0) then the relative error of 
reconstructed shower energy (E) is: 

CT~ r;:;2 -= -+b2 
EEl (6) 

Taking into account the Poisson-like fluctuations (a, bt), the error (~ .. J for 
an average energy (EQu) over a large sample of Neuent ~vents : 

IS 

1 
EQU = ---

Neuent 

CT~ 
CT

d 
- --;:;'#= E •• - ";N. euent 

It means that CT~ •• vanishes if Neuent is getting larger. Now let us suppose 
that the non-stochastic sources of fluctuations (the tile nonuniformity in our 
case) are switched on. In this case, if Nt!Uent is large, we have CT~ •• = 0 but 
the non-stochastic part of error is non-zero: 

(7) 

It is very important to know how to add b, term with a and bI terms in 
equ.(5). This addition must be quadratic if the distribution of EQU over the 
calorimeter surface can be approximated by a Gaussian function. Such an 
approximation is valid at least for a sample of the reconstructed energies (E) 
uniformly distributed over the calorimeter surface. In this case the energy 
distribution G(Einc, CTE; E) corresponding to the incident energy Einc can be 
expressed as follows: 

G(Einc, CTE; E) = J g(Einc, CTE:; Eau) g(O, CT~; E - EQu ) dEau (8) 
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where g(A, 0"; z) is a Gaussian distribution function of x with the mean value 
A and the standard deviation 0". 

The first Gaussian function in (8) describes the distribution of the average 
reconstructed energy E4V over the surface of calorimeter from one tower to 
another. E4V depends on the position of the place of incidence. The second 
one describes the local reconstructed energy (E) distribution around the E4V ' 

It means that a and b1 define the width (O"~) of the local energy distribution 
at fixed place of incidence, while b2 characterizes the size of variation (O"E:) 
of E4V if the place of incidence is changing over the calorimeter surface. The 
resulting probability function G(Einc, O"E; E) is again Gaussian function with 
the standard deviation: 

as can be seen by direct integration of (8) or using the rules for convolution 
of two Gaussian functions. 

Now let us suppose that we have a sample of Nevent simulated events with 
the incident energy Einc and a set of Ncon/(=500) configurations. For each 
configuration we can reconstruct the energy E coresponding to an event: 

Ne_ 

E = L: SjOW K; (9) 
;=1 

where Si defined by: 
Neile 

Si = L: E;ci Ci (10) 
i=1 

represents the signal from the jt" tower and (K;,j = 1, .. Ntow ) is the set of 
calibration coefficients. 

The calibration coefficient (constant) of the jth tower K; is defined as: 

(11) 

where: 

• Cp4rt represents the percentage of the energy released in a tower if the 
incident particle hits on its center; 

5 



• S~ow is the jt" tower signal averaged over the whole sample of events; 

• Ef:!: - the energy at which the calibration is done. 

The reconstructed energy can be expressed as follows: 

(12) 

where B is a random variable with the mean value equal to one and the 
standard deviation 

(l'E 
(l'B = -E 

If instead of E (reconstructed energy of one event) we will take Ea.u, then 
(l'B will represent the systematic error. In each configuration we can con-
struct Ea.u for all incident energies Eone (5, 20, 50 and 100 GeV) and use 
linear fit (Ea.u = B Eone) to define B for this configuration. Finding B for all 
configurations we will finaly obtain the distributions of B for 5 sets (groups) 
of configurations with different size of nonuniformity (O"non)' 

3 Tile-to-tile nonuniformity: analytical ap-
proach 

It is possible to obtain some analytical results concerning the magnitude of 
the tile-to-tile nonuniformity contribution to the energy resolution. 

In equ. (3) is given the expression for the calorimetric signal in the 
presence oftile-to-tile non-uniformities for a given configuration. Its averaged 
value over the full set of configurations is: 

N
I
_

II 

S full = L Etci (13) 
0=1 

because Co = 1. 
The variance of the S full is: 

N
I

_
II 

var(Sfull ) = O"!on L (E;ci)2 (14) 
0=1 

6 



One can notice that as the incident energy will increase, more tiles will con-
tribu te to the signal and the variance is expected to have a slow increase. 

The contribution of tiles nonuniformity to the energy resolution (i. e. the 
b2 term) will be: 

(15) 

This equation may be used to obtain an upper bound for the magnitude of 
the ~ term. It is very easy to observe that the maximum value, which will be 
denoted by b~ is attained when all E;o are equal (E;ci = f.a.m.pEiN:!/neff, 
where nell is. the number of tiles which contribute effectively to the signal): 

bm.G.:a _ O"non 

2 - Jneff 
(16) 

Because both var(Sfull ) and Sfull will increase with neff and nell is sup-
posed to increase slowly with the incident energy (as In(EiN:!)) one can expect 
a very weak decrease of this upper bound with the energy (as (In(EiN:!))-1/2) 
for a very long calorimeter and for a finite calorimeter, to approach a con-
stant value at higher energies. One can notice the linear dependence of b;--
on O"non, a result obtained also by simulation. 

A better estimate for tile nonuniformity contribution to the dispersion 
of the calorimeter response can be obtained if a more realistic assumption 
about E~ in r.h.s. of equ. (15) is made. 

It consists from the use of the well known parametrisation by a gamma-
distribution [3] for the average longitudinal shower profile: 

dE = E- --.L(f.lt)O-l -(3t 
dt Inc r( 0:) fJ e (17) 

with 
(18) 

The parameters 0:,(3 contain energy dependence of shower profile. For in-
stance, for electron induced showers, one takes [3]: 

(3 ~ 0.5; 0: - 1 = In Einc _ 0.5 
(3 Ec 

(19) 
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where Ee is critical energy for the averaged material ofthe calorimeter. For Ee 
the parametrisation given in [3] was used in the subsequent calculations. The 
depth inside shower is considered relative to the front edge of the calorimeter, 
and is expressed in radiation lengths Xo of the averaged material. The use 
of averaged medium is legitimate for a sufficiently high sampling frequency, 
of course. 

For further calculations a few more assumptions will be made: 

• the shower is totally contained in a single tower (i.e. longitudinal and 
transverse dimensions of tower are sufficient in the considered energy 
range) 

• the tower has a full depth of T radiation lengths, being a stack of NUle 

identical sections, each consisting of a tile and an absorber plate. 

Under these assumptions, in the equ. (18) we can replace the integral by 
a rectangle-method quadrature over N tile intervals. Multiplying afterwar ds 
wi th Ei -= we get 

NtSl" 
Ei-= = E E;ep (20) 

i=l 

where: 
E'f'!P = E. {3At {{3t.)Ia.-l -{Jti I I-=r(a) I e (21) 

is the total energy deposited in the i-th section of tower and At=T/Ntile 

, ti = (i - 0.5)At . The energy deposited in the active part of section is 
E;ei = f.a.m.pE~, with f.a.m.p as defined in (4). The signal produced in this 
section is Si = CiE;ei ,where Ci was defined earlier. 

So, according to (9), the reconstructed energy is: 

(22) 

In other words, the reconstructed energy is a weighted sum of N tile inde-
pendent random quantities Ci distributed by the same law. This treatment 
implies that all tiles are manufactured by using the same technology, so C, 
obey to a unique distribution law. 
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Assuming the distribution (2) for Gi , a straightforward calculation gives 

CT1 = [Eine {3ilt ]2CT!....1: .. ({3ti)2(a-l)e-2t'lt; (23) 
f.arnpr{a) i=1 

Making use of relation (18) and after some algebra we get: 

{CTE)2 = (3ilt r{ a + 0.5) CT2 
E y'i"{2a - 1) r{a) non 

(24) 

A further simplification can be made, by using the explicit form for a and 
{3 (see (19» and the Stirling asimptotics for r (:z:) , valid at energies higher 
than say, 10 GeV. Finally we get 

(25) 

that reveals a very slow decrease with energy of CTE/ E, which is proportional 
with CTnon however. For instance at energies of, respectively 10, 100, 1000, 
10000 GeV the coefficient multiplying CTnon in relation (25) changes as 0.23, 
0.22, 0.21, 0.20 respectively. For the range of Eine at which GEANT simu-
lations were performed one can take the value 0.23 . This agrees fairly well 
with figures from Table 2, obtained with GEANT for several values of CTnon ' 

4 Results 
The results of our investigations are summarized in the following tables and 
figures. 

In Table 1 and on Fig.1 are summarized the simulation statistics and the 
energy resolution for the ideal case ( Gi = 1): 

Table 1: Energy Resolution in Ideal Case 
energy (Ge V) 5 20 50 100 
N r. of events 900 500 265 125 
E.ei (MeV) 401.9 1600.5 3989.1 7956.8 
CT.ei (MeV) 22.48 47.87 71.28 112.5 
Resolution (%) 5.56 2.99 1.79 1.41 
Fit a G) b/VE : (0.56 ± 0.25) G) {12.6 ± 0.34)/..fE 
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where: 

• E.ei is the full energy deposition in tiles of calorimeter; 

• fT.ei is the standard deviation of E.ei. 

The values of E.ei and fT.ei are the results of a fitting procedure applied to 
the corresponding energy deposition distributions. 

We suppose that, in the ideal case, the energy leakage is responsible for 
the presence of a non-zero constant term. 

To investigate the manifestation of the tile response nonuniformity we car-
ried out calculations of local energy resolutions (the resolutions for individual 
towers) for given values of non uniformity fTn,an (= 5%,10%,15%, 20%and30%). 
It means that the energy resolution was obtained for various beam incidence 
places (corresponding to different configurations) of 5 different calorimeters, 
each being characterized by corresponding value of nonuniformity fTn,an. In 
each incident place the energy resolution was obtained for 4 incident energies 
(5,20,50and100 GeV) and fitted to obtain the energy resolution parameters 
a and b. 

In Table 2 is presented the dependence of average values a and b and 
standard deviations of the energy resolution parameters a and b on the tile 
nonuniformity. The distribution of parameters a. and b and their standard 
deviations for various values of nonuniformity are shown on Fig.2 and 3. For 
illustration on Fig. 4 are shown analoguos distributions (as on Fig. 2 and 
3) but for the energy resolution at incident energy 50 GeV. The results 
presented in Table 2 and Fig. 2-4 can be treated as a general characteristics 
of calorimeter with a given quality of tiles and correspond to the case when 
each calorimeter tower is calibrated at 4 energies. 

Table 2: The resolution coefficients (average values and 
standard deviations) vs. tile nonuniformity 

fTnon. (%) 5 10 15 20 30 
a (%) GEANT 12.63 12.73 12.92 13.18 13.88 
fT~ (%) 0.09 0.16 0.31 0.48 0.93 
b (%) GEANT 0.85 0.90 0.95 1.05 1.29 
fTb (%) 0.17 0.30 0.42 0.52 0.70 

From Table 2 we see that the increasing tile non uniformity leads to some 
deterioration of the energy resolution but this dependence is not very strong. 
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From the increase of the energy resolution parameters (Ci, b) with tTnDn we 
Infer that tile nonuniformity strengthens stochastic sources of fluctuations 
(sampling fluctuations). 

So far we treated the energy resolution for individual towers of a calorime-
ter with given tile nonuniformity tTnDn • This treatment corresponded to the 
situation where each calorimeter tower was separately irradiated by a beam 
with 4 different energies. To characterize the dependence of energy resolution 
on tile nonuniformity we also present the global energy resolution of calorime-
ter. In our case this resolution responds to the case when the calorimeter 
surface is uniformly irradiated and the whole calorimeter is characterized by 
one pair (agl

, bI") of energy resolution coefficients and not each tower. To 
obtain the global energy resolution we need to choose a calibration proce-
dure. For this purpose two different calibrations were treated: the global 
calibration and the "tower-by-tower" one. 

4.1 Global Calibration. 
In the case of global calibration all calibration coefficients K; of the individual 
towers were replaced by a unique average coefficient K, which was defined 
as: 

1 
K= - (26) /.a.m.p 

The dependence of coeficients alii and bI" on tTnDn is presented in Table 3 and 
on Fig.5. In Table 3 there are also the results concerning the non-stochastic 
part (~') of the constant term calculated by Monte Carlo [2] as well as 
analytically (25). As we have already mentioned the constant term b can be 
expressed as a quadratic sum of the stochastic (b1 ) and non-stochastic part 
(b2 ). To investigate the role of ~' we used averaging procedure described 
above (see discusion after eq. 12). Reconstructing the linear dependence 
Eav = BEine for different places of incidence (different configurations) and 
fitting the distribution of B by a Gaussian function we have obtained the 
standard deviation of parameter B, which essentialy is equal to b~' as the 
coefficients all' and bf' are turned to zero for Eav. 
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Table 3: The global resolution coefficients vs. 
tile nonuniformity in global calibration 

Unan (%) 5 10 15 20 30 
a.1I' (%) GEANT 12.60 12.56 12.78 13.20 14.08 
li" (%) GEANT 1.46 2.52 3.59 4.66 6.97 
~' (%) GEANT 1.15 2.30 3.44 4.60 6.90 
~' (%) equ.(25) 1.15 2.30 3.45 4.60 6.90 

From Table 3 it can be concluded that in the global calibration the de-
pendence of energy resolution on Unan. is strong and manifests itself especially 
by a rapid increase of the constant term (li") with UnDn • On the other hand 
comparing b2 with ~' we can conclude that the origin of this increase is in 
non-stochastic sources of fluctuations. It means that the increase is con-
nected to the fact that various towers have different average responses on the 
same incident impulse. 

4.2 Tower-by-tower Calibration. 
A similar procedure was carried out for the case when the calibration coeffi-
cients K j were known for all towers of the calorimeter treated. We assumed 
that the calibration was done at E:! = 50 GeV and calibration coeficients 
were calculated according to the equ.(ll). 

The results for this case of calibration are summarized in Table 4 and in 
figs. 6 and 7. 

Table 4: The global resolution coefficients vs. 
tile nonuniformity in tower-by-tower calibration 

UnDn (%) 5 10 15 20 30 
hline a.1I1 (%) GEANT 12.57 12.78 13.18 13.74 15.12 

li" (%) GEANT 0.93 0.99 1.06 1.18 1.44 
b;' (%) GEANT 0.04 0.09 0.13 0.17 0.26 

In the case of tower-by-tower calibration, as is demonstrated by Table 
4 and the Fig. 6 and 7, the deterioration of the energy resolution with in-
creasing nonuniformity exibits a similar dependence as in the "ideal" case 
(Table 2). Confronting bil' with b;' as well as with b (Table 2) we see that in 
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this calibration unlike of the global one the non-stochastic sources of fluctua-
tions play minor role here i.e. b1 component dominates in the constant term 
b. Practically it means that reconstructed energy spectrum is made slightly 
wider with increasing tTnon but the average value of the reconstructed energy 
is not displaced when moving from one tower to the another. 

5 Conclusions 
The influence of the tile-to-tile nonuniformity on the energy resolution of a 
sandwich tile calorimeter was investigated. The main results of this work are 
the following: 

• The tile nonuniformity leads to a deterioration of energy resolution 
and manifests itself in both the sampling (coeficient a) and the con-
stant terms (coefficient b). It was proved that this deterioration is 
not significant if the tile nonuniformity tTnon is less than 10% and each 
calorimeter tower is calibrated (tower-by-tower calibration). 

• An original method was proposed to separate the systematic effects (b2 ) 

induced by the tile-to-tile nonuniformity from those of stochastic origin 
(~) in the energy resolution by removing the stochastic term through 
the use of an averaging procedure. 

• It was proved that this systematic error (b2 ) due to nonuniformity can 
be substantialy reduced by the use of the tower-by-tower calibration. 
So, it looks that there isn't a severe requirement for a high uniformity 
of tiles. 

• A very good agreement is observed between the results obtained in 
Monte-Carlo and analytical approaches of the problem. 
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Figure Captions 
Fig.1 The energy resolution of a sandwich tile calorimeter in the "ideal" 

case (O'non = 0%); 

Fig.2 The distribution of the values of b (the constant coefficient in the 
energy resolution) over the calorimeter surface for different values of 
nonuniformity; 

Fig.3 The distribution of the values of a (the scaling coefficient in the 
energy resolution) over the calorimeter surface for different values of 
nonuniformity; 

Fig.4 The energy resolution of the sandwich tile calorimeter at E = 50GeV 
over the calorimeter surface for different values of nonuniformitYi 

Fig.5 The variation of the energy resolution vs. incident energy in the case 
of global calibration; 

Fig.6 The variation of the energy resolution vs. incident energy in the case 
of tower-by-tower calibration. 
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energy res. at 50 GeV / c for different configurations 
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