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INTRODUCTION 

The use of trained feed-forward neural networks has the promise of providing a novel approach 
to performing extremely fast pattern recognition which could be incorporated into a first-level trigger. 
Extensive Monte Carlo simulations specifically written for high energy particle physics, in addition to 
neural network simulator programs, are being used at UfO and at the sse Laboratory to train and test 
the accuracy, efficiency, and speed of these networks. The final goal 0 fthi s research is to determine the 
optimum architecture, training process and most cost efficient method of hardware implementation. 

SDe TRIGGER REQUIREMENTS 

The critical process of separating the proverbial 'needle inahaystack' is planned to be accomplished 
by performing different levels of event triggering. The most significant of these levels is the one that 
is directly related to this research, first-level triggering or L 1. It is here that the largest reduction (or 
discarding) of events is planned. Currently, the L1 trigger rejection factor is 10" to 10", and it is expected 
for the trigger to return a decision every 16 nsec with a 2-4 JJ.sec latency. This latency time is provided 
by large FIFO (First In First Out) memory buffers that will temporarily hold an event's data while the 
triggermakes its decision. The next level of triggering is the second-level triggering or L2. At this level, 
there will be a rejection factor of only 10-' to 10-2 and \0 msec of decision time. This is a reduction in 
events that is 1 ootimes smallerthan L I, and it has about 1000 times more timeto make its decision. These 
conditions allow for the L2 trigger to use a more precise algorithm and apply larger amounts of scrutiny 
on the events that are passed to it. BeyondL2 is the third-level trigger farm or L3 Farm which is actually 
a parallel array of computers all running the same triggering algorithm. This trigger will have 
approximately the same reduction rates as L2 but will apply even further scrutiny to the less than 1000 
events/sec passed to it and try to reduce the number of events that are actually written to tape to about 
10 to 100 events per second.[Sm9l] 

Now focusing attention to the L I trigger in the central tracking volume, the basic requirementsthat 
are stipulated by the sse can be examined. First and foremost, the L1 trigger has to 'flag' events when 
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and only when a programmable number (or more) of charged particles of transverse momentum, 
pL::O: 10 GeV/c, pass through the tracking chamber. Secondly, it must be able to tell the position ofatrack 
with at least the same resolution as the calorimetry system and return an accurate estimate of the energy 
(or p) of the particle. Lastly, it must be very fast inorderto keep up with the decision rate as mentioned 
above. In any triggering algorithm, the efficiency is usually degraded by false and missed triggers. 
Combinations oflow p L tracks that coincidentallymimic the trackof a high p Lparticle are the usual CUlprit 
and a good example of a false trigger. 
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Figure 1. Schematic quadrant view of the scintillating fiber detector. It should be noted that the tracker configwa­
tion used in actual simulations is continuously being updated to match the most current design adopted hy the Fiber 
Tracking Group (FrG). 

NEURAL NE1WORKS 

Neural networks (neural nets) are a massively parallel and intricately connected collection of 
relatively simple processors. Basedon the same basic design upon which the human brain operates, they 
are usually started in a random state and trained into responding correctly for problems which no one 
good solution algorithm is present. For the purposes of triggering in the SDC detector one particular 
type of network, the feed-forward neural net, is preferred due to it's fast parall el processing capability. 
The processors (or neurons) contained in layers above the input layer begin by summing all of the 
products of the input values and the synaptic weights which the input values travel on toreach the neuron. 
Then a threshold value, unique to that neuron, is then subtracted from this sum. The remainder then 
becomes the argument for a Heaviside step function. If the remainder is larger than zero (0), then that 
neuron will pass on the value of one (I) to all neurons above it and pass on zero (0) otherwise.[Figure 2] 
Once the general architecture is determined for the application, a set of preferably non-redundant input 
patterns, or vectors, that cover the entire range and scope of the input phase space that is to be learned 
is compiled. These input examples must also beaccornpanied by the desired output vector or value. The 
training process is primarily comprised of repetitive presentations of input patterns and a comparative 
analysis of the networks output to the desired output. For each incorrect response, the synaptic weights 
and thresholds are slightly adjusted to better facilitate the correct output for that input pattern on the next 
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presentation. This process continues until convergence, error = 0, or some maximum number of attempts 
has been reached. A non-convergence situation is usually the result of one or both of the following 
problems: I.) The capacity of the network is too small. In other words, there are not enough neurons 
and synapses to properly 'map' all of the input vectors to the desired output vectors. 2.) The training 
set has two ormoreconflictingpattems. An exampleofthis would beifonepattern were to inadvertently 
put into the training set twice with different output vectors. It is quite easy to see how this second case 
would be a non-converging network. Once training is completed, the network can operate in an 
extremely fast recall mode as would be needed for an L I trigger. 
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Figure 2. Generic feed-forward neural network with 8 inputs, 3 hidden neurons and I output neuron. 

GOALS AND APPROACHES 

Input 
I or 0 

The main goals of this research work are to: I.) perfonn an unbiased investigation into finding the 
best pattern recognition neural network for detecting stiff tracks in a cylindrical scintillating fiber 
tracking chamber and be able to makequantitati ve classifications, such as transverse momentum of those 
found, and 2.) Find the most accurate and cost-effective method for hardware implementation of this 
neural network. 

The planned method for attaining these goals is to use a repetitive 'train and test' process of the 
neural networks until the optimum perfonnance is obtained. These networks will be trained with data 
that will be generated by SOCSIM (a.k.a. the SHELL). This program was created (and is constantly 
being modified) by simulation experts within the SOC to most realistically simUlate the perfonnance 
of the detector as a whole. The neural network simulator being used is JETNET v2.0.[Lu91] The 
majority of the intensive computations will be perfonned on the sse's Physics Detector Simulation 
Facilities (PDSF). 
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GENERAL DESCRIPTION 

In order to meet the planned reduction factor of! 0-3, the first-level trigger for the scintillating fiber 
tracker has to quickly identify the small fraction events that contain highly energetic decay products. 
These decay products pass through the 2 Tesla magnetic field with very little deviation from straight 
radial lines when viewed end on. This prominent feature intuitively makes the division of each half of 
the barrel into a wedge-type geometry, the best candidate forparallelization. As an initial configuration, 
contiguous wedges (20020 angular displacement in CP) will have no overlap, but at a later date an 
optimization study will be performed in order to determine the overlap, if any. A copy of the digital, 
binary signals from every Z-axis scintillating fiber of the innermost superlayers in a given wedge is sent 
through a two stage triggering process [Figure 3]. [Sd92] 

In the first stage, a4: I data compression, referred to as clustering, performs an 8 bit boolean function 
·on contiguous fibers and returns a TRUE (or + I) output, if the hit combination could have been caused 
by a particle with a Pl.2: I o GeV/c and a FALSE ( orO) otherwise. The preprocessor outputs now become 
the inputs to a much larger second stage neural network. It will basically be a pyramid-style of 

End-On Vi_ of soc Central Blow-Up Vi_ of Sup .... aysr Conslruction 
with Clustering Bill Pl!dlem end Schematic 

Figure 3. Schematic diagram of the proposed neural network triggering system. Current simulations have each half 
of the banel detector divided into 320 triggering wedges in <1>. 

Page 4 



architecture with 4 bitsofp L output at the top and a yet undetermined numberofhidden layers and neurons 
per hidden layer. All of the non-zero transverse momenta and corresponding wedge locations will then 
be sent to a programmable track/shower max trigger processor that wiU use this information to determine 
if this event should be passed onto the global (all component) LI trigger. At this point it is important 
that it be noted that the scope of this research does not include the design of the above mentioned 
programmable 'total tracking volume' trigger processor nor the global LI trigger.[Sm91] 

TRAINING, TESTING AND OPTIMIZATION 

Being One of the most important aspects of this research project, integration into the framework 
of the SHELL allows for the most realistic, raw data to be generated for training and will also serve as 

. a standardized platform from which the algorithm can be benchmarked for comparisons in accuracy and 
efficiency to all other triggering algorithms. The SHELL can basically be described as a compilable and 
executablecollectionoflargeprograrns. PYTHIA, ISAJET and HERWIG, which are event generators; 
and GEANT, a detector simulator, make up the majority of the SHELL with the remainder being 
subroutines for SDC-specific initialization and code management. 

Testing of the full triggering algorithm will be done in two phases. The first and most recently 
completed phase consists of sending single particles of varying p L through wedges in order to measure 
the efficiency of the clustering network as a function of p L [Figure 4]. The second and larger phase 
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Figure 4 Clustering efficiency vs. transverse momentum for quadruplet superlayer configuration using 8-bit cluster 
paItem (inset). Each data point based on approximately 750 cluster candidates generated by SDCSIM. 
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consists of using full detailed events to see how well a trained neural net can distinguish between wedges 
containing high P.l tracks and those that do not, in order to provide a benchmark quantity which will take 
both efficiency and false trigger rates into account and give an overall performance rating to the trigger's 
performance. 

In order to get a crude approximation of the performance of the second (linking) stage, a very course 
simulation was constructed which utilized I em, rather than I mm, fibers. The result was a wedge that 
had only 16 possible clusters in four superlayers. Single particles were then shot through the wedge and 
the hits with their corresponding transverse momentum were trained on a 16 input - I output neural 
network. After training on single track events, randomly generated events were triggered yielding -95% 
accuracy. When a second, lower P.l 'noise' particle was added (for which the network had not yet been 
trained to recognize), the accuracy level dropped to -77% [Figure 5]. These very course tests showed 
a definite capacity for neural nets to perform pattern recognition in this type of detector geometry. 
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Figure S. Trigger acceptance vs. transverse momeutwn. Squares represent single particle eveuts and triangles 
represent two particle eveuts with the first at the designated transverse momenta and the second at some randomly 
chosen transverse momeuta lower than the first. Each data point is based on 500 events passed through a triggering 
wedge with I em fibers (16 fibers total, see inset). 
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At the present status of this research, there are three optimization studies that need to be performed. 
The first, which is currently under way, is to determine the optimum architecture of the second stage 
(linking) network needed to provide triggering with acceptable momentum resolution. The second 
optimization study deals with determining the overlap, if any, needed to have the best probability of 
catching any given high Pol track ina wedge. The third optimization, which will takeplaceaftertraining 
and testing are complete, involves the minimization of the network's size by removing non-essential 
neurons and synapses in order to facilitate easier hardware implementation. 

Two basic detector configurations will be used as a final test-bed for this research work. The first 
will consistof using the most recently adopted configuration with superlayers consisting of dual-doublets 
separated by a 1.6 em Rohacel spacer, as currently adopted by the FrG.[Sd92] The second configuration 
will differ from the first only in that the Z-axis fibers of the superlayers will be comprised of a single 
quadruplet (as depicted in Figure 3). 

CONCLUSION - ADVANTAGES OF NEURAL NETWORKS 

By far, the most predominant advantage to using neural networks is their very fast parallel 
processing speed over any type of serial processor. Another advantage of neural networks operating in 
an SDC environment is their high degree of error resistivity. Unlike serial computers that may 
completely fail if one bit or a single instruction is incorrect, it usually takes a sizable fraction of the 
network to fail before a degradation in performance is noticeable [Nn90]. Lastly, it is hopeful that results 
from this proposed research will be able to show that neural networks are also an economical advantage 
that may not necessarily come only in the form oflow cost neural network hardware implementation 
but more possibly in the form of peripheral savings such as smaller FIFO buffer space. 

Hopefully this work will be the first step of a best case scenario in which research would lead to 
further testing, prototyping, production and SOC trigger implementation by the year 2000. 
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