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INTRODUCTION

The use of trained feed-forward neural networks has the promise of providing a novel approach
to performing extremely fast pattern recognition which could be incorporated into a first-level trigger.
Extensive Monte Carlo simulations specifically written for high energy particle physics, in addition to
neural network simulator programs, are being used at UTD and at the SSC Laboratory to train and test
the accuracy, efficiency, and speed of these networks. The final goal of this research is to determine the
optimum architecture, training process and most cost efficient method of hardware implementation.

SDC TRIGGER REQUIREMENTS

The critical process of separating the proverbial ‘needle inahaystack’ is planned to be accomplished
by performing different levels of event triggering. The most significant of these levels is the one that
is directly related to this research, first-level triggering or L1. It is here that the largest reduction (or
discarding) of eventsis planned. Currently, the L1 trigger rejection factoris 102 to 104, and it is expected
for the trigger to return a decision every 16 nsec with a 24 jisec latency. This latency time is provided
by large FIFO (First In First Out) memory buffers that will temporarily hold an event’s data while the
triggermakes its decision. Thenextlevel of triggering is the second-level triggeringor L2. Atthislevel,
there will be a rejection factor of only 10" to 107 and 10 msec of decision time. Thisis a reduction in
eventsthatis 100 times smallerthan L1, andithas about 1000 times more timeto makeits decision. These
conditions allow for the L2 trigger to use a more precise algorithm and apply larger amounts of scrutiny
on the events that are passed to it. Beyond L2 is the third-level trigger farmor L3 Farm which is actually
a parallel array of computers all running the same triggering algorithm. This trigger will have
approximately the same reduction rates as L2 but will apply even further scrutiny to the less than 1000
events/sec passed to it and try to reduce the number of events that are actually written to tape to about
10 to 100 events per second.[Sm91]

Now focusing attention to the L 1 trigger in the central tracking volume, the basic requirementsthat
are stipulated by the SSC can be examined. Firstand foremost, the L1 trigger has to ‘flag’ events when
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and only when a programmable number {or more) of charged particles of transverse momentum,
p, = 10 GeV/c, pass through the tracking chamber. Secondly, it must be able to tell the position ofa track
with at least the same resolution as the calorimetry system and return an accurate estimate of the energy
{or p) of the particle. Lastly, it must be very fast in order to keep up with the decision rate as mentioned
above. In any triggering algorithm, the efficiency is usually degraded by false and missed triggers.
Combinations oflow p, tracksthat coincidentallymimic the trackof a high p, particlearethe usual culprit
and a good example of a false trigger.
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Figure 1. Schematic quadrant view of the scintillating fiber detector. It should be noted that the tracker configura-
tion used in actual simulations is continuously being updated to match the most current design adopted hy the Fiber
Tracking Group (FTG).

NEURAL NETWORKS

Neural networks (neural nets) are a massively parallel and intricately connected collection of
relatively simple processors. Based onthe same basic design upon which the human brain operates, they
are usually started in a random state and trained into responding correctly for problems which no one
good solution algorithm is present. For the purposes of triggering in the SDC detector one particular
type of network, the feed-forward neural net, is preferred due to it’s fast parallel processing capability.
The processors (or neurons) contained in layers above the input layer begin by summing all of the
products of the input values and the synaptic weights which the input values travel ontoreach the neuron.
Then a threshold value, unique to that neuron, is then subtracted from this sum. The remainder then
becomes the argument for a Heaviside step function. If the remainder is larger than zero (0), then that
neuron will pass on the value of one (1) to all neurons above it and pass on zero (0) otherwise.[Figure 2]
Once the general architecture is determined for the application, a set of preferably non-redundant input
patterns, or vectors, that cover the entire range and scope of the input phase space that is to be learned
is compiled. These input examples must also be accompanied by the desired output vector or value. The
training process is primarily comprised of repetitive presentations of input patterns and a comparative
analysis of the networks output to the desired output. For each incorrect response, the synaptic weights
and thresholds are slightly adjusted to better facilitate the correct output for that input pattern on the next
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presentation. This process continuesuntil convergence, error=0, or some maximum nurnberof attempts
has been reached. A non-convergence situation is usuatly the result of one or both of the following
problems: 1.) The capacity of the network is too small. In other words, there are not enough neurons
and synapses to properly ‘map’ all of the input vectors to the desired output vectors. 2.) The traimng
sethastwo ormore conflicting patterns. Anexampleofthis would beifone pattern wereto inadvertently
putinto the training set twice with different output vectors. It is quite easy to see how this second case
would be a non-converging network. Once training is completed, the network can operate in an
extremely fast recall mode as would be needed for an L1 trigger.
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Figure 2. Generic feed-forward neural network with 8 inputs, 3 hidden neurons and 1 output neuron.

GOALS AND APPROACHES

The main goals of this research work areto: 1.) perform an unbiased investigation into finding the
best pattern recognition neural network for detecting stff tracks in a cylindrical scintillating fiber
tracking chamber andbe abie to makequantitative classifications, such as transverse momentum of those
found, and 2.) Find the most accurate and cost-effective method for hardware implementation of this
neural network.

The planned method for attaining these goals is to use a repetitive ‘train and test’ process of the
neural networks until the optimum performance is obtained. These networks will be trained with data
that will be generated by SDCSIM (a.k.a. the SHELL). This program was created (and is constantly
being modified) by simulation experts within the SDC to most realistically simulate the performance
of the detector as a whole. The neural network simulator being used is JETNET v2.0.[Lu91] The

majority of the intensive computations will be performed on the SSC’s Physics Detector Simulation
Facilities (PDSF).
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GENERAL DESCRIPTION

In order to meet the planned reduction factor of 107, the first-level trigger for the scintillating fiber
tracker has to quickly identify the small fraction events that contain highly energetic decay products.
These decay products pass through the 2 Tesla magnetic field with very little deviation from straight
radial lines when viewed end on. This prominent feature intuitively makes the division of each half of
the barrel into a wedge-type geometry, the best candidate for parallelization. As an initial configuration,
contiguous wedges (2I1/320 angular displacement in ¢) will have no overlap, but at a later date an
optimization study will be performed in order to determine the overlap, if any. A copy of the digital,
binary signals from every Z-axis scintillating fiber of the inner most superlayers in a given wedge is sent
through a two stage triggering process [Figure 3]. {Sd92]

In the firststage, a4: 1 data compression, referred to as clustering, performs an 8 bitboolean function

-on contiguous fibers and returns a TRUE (or +1) output, if the hit combination could have been caused
by aparticlewitha p, > 10GeV/c and a FALSE (or 0) otherwise. The preprocessor outputsnow become
the inputs to a much larger second stage neural network. It will basically be a pyramid-style of

End-On View of SDC Central Blow-Up View ol Superiayer Construction
Tracker w/ Triggering Wadga with Clustering Bin Pattern and Schematic
of Trigger Signal Processing
U2,
4f8
2x4 Y7
1
Y
VLPC
Visibie Lipht
- Choton Losgmen,
I Pre-Amp
First in First Ot Amplifier
Event Buffer vzl
-] Acce -
- i
-~ N Sr.'hlmallc Blow-l.:p of Rejoct )
—— Trigoes
/4" e | o g
"’ \" \ R Some Conmecons
[ | 1 Avade) Ommited For
Clarily
-
45 ﬂ ﬁ 45 4 299
\ Rl \ SN e \\
\..’\....f....'\...' -
ibniskesebiicdind 1BRH

Figure 3. Schematic diagram of the proposed neural network triggering system. Current simulations have each half
of the barrel detector divided into 320 triggering wedges in ¢.
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architecture with4 bitsof p output atthetopand a yet undetermined numberofhidden layersand neurons
per hidden layer. All of the non-zero transverse momenta and corresponding wedge locations will then
be sentto a programmable track/shower max trigger processor that will use this information to determine
if this event should be passed onto the global (all component) L} trigger. At this point it is important
that it be noted that the scope of this research does not include the design of the above mentioned
programmable ‘total tracking volume’ trigger processor nor the global L1 trigger.[Sm91]

TRAINING, TESTING AND OPTIMIZATION

Being one of the most important aspects of this research project, integration into the framework
of the SHELL allows for the most realistic, raw data to be generated for training and will also serve as
-a standardized platform from which the algorithm can be benchmarked for comparisons in accuracy and
efficiency to all other triggering algorithms. The SHELL can basically be described asa compilable and
executable collectionof large programs. PYTHIA, ISAJET and HERWIG, which are event generators,
and GEANT, a detector simulator, make up the majority of the SHELL with the remainder being
subroutines for SDC-specific initialization and code management.
Testing of the full triggering algorithm will be done in two phases. The first and most recently
completed phase consists of sending single particles of varying p, through wedges in order to measure
the efficiency of the clustering network as a function of p, [Figure 4]. The second and larger phase
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Figure 4 Clustering efficiency vs. transverse momentumn for quadruplet superlayer configuration using 8-bit cluster
pattern (inset). Each data point based on approximately 750 cluster candidates generated by SDCSIM.
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consists of using full detailed events to see how wella trained neural netcan distinguish between wedges
containing high p, tracks and those that do not, in order to provide a benchmark quantity which will take
both efficiency and false trigger rates into account and give an o verall performance rating to the trigger’s
performance.

In order to geta crudeapproximation of the performance of the second (linking) stage, a very course
simulation was constructed which utilized 1 cm, rather than | mm, fibers. The result was a wedge that
had only 16 possible clusters in four superlayers. Single particles were then shot through the wedge and
the hits with their corresponding transverse momentum were trained on a 16 input - 1 output neural
network. After training on single track events, randomly generated events weretriggered yielding ~95%
accuracy. When a second, lower p, ‘noise’ particle was added (for which the network had not yet been
trained to recognize)}, the accuracy level dropped to ~77% [Figure 5]. These very course tests showed
a definite capacity for neural nets to perform pattem recognition in this type of detector geometry.
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Figure 5. Trigger acceptance vs. transverse momentum. Squares represent single particle events and triangles
represent two particle events with the first at the designated transverse momenta and the second at some randomly
chosen transverse momenta lower than the first. Each data point is based on 500 events passed through a triggering
wedge with 1 cm fibers (16 fibers total, see inset).
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Atthe present status of this research, there are three optimization studies that need to be performed.
The first, which is currently under way, is to determine the optimum architecture of the second stage
(linking) network needed to provide triggering with acceptable momentum resolution. The second
optimization study deals with determining the overlap, if any, needed to have the best probability of
catching any given high p, track ina wedge. The third optimization, which will take place after training
and testing are complete, involves the minimization of the network’s size by removing non-essential
neurons and synapses in order to facilitate easier hardware implementation.

Two basic detector configurations will be used as a final test-bed for this research work. The first
will consistof using the mostrecently adopted configuration with superlayers consisting of dual-doublets
separated by a 1.6 cm Rohacel spacer, as currently adopted by the FT'G.[Sd92] The second configuration
will differ from the first only in that the Z-axis fibers of the superlayers will be comprised of a single
quadruplet {as depicted in Figure 3).

CONCLUSION — ADVANTAGES OF NEURAL NETWORKS

By far, the most predominant advantage to using neural networks is their very fast parallel
processing speed over any type of serial processor. Another advantage of neural networks operating in
an SDC environment is their high degree of ermror resistivity. Unlike serial computers that may
completely fail if one bit or a single instruction is incorrect, it usually takes a sizable fraction of the
network to fail before a degradation in performanceis noticeable [Nn90]. Lastly, itis hopeful that results
from this proposed research will be able to show that neural networks are also an economical advantage
that may not necessarily come only in the form of low cost neural network hardware implementation
but more possibly in the form of peripheral savings such as smaller FIFO buffer space.

Hopefully this work will be the first step of a best case scenario in which research would lead to
further testing, prototyping, production and SDC trigger implementation by the year 2000.
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