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We present here the details of the algorithm used for the fitting of muon tracks 

in the SDC detector. The method is based on the Kalman filter mechanism which 

is modified to avoid the inversion of matrices. This allows for the quick fitting 

of found tracks. This work is associated with the GEANT based simulation of 

the tracks. The reconstruction results do not include the effects due to lost or 

misassociated -hits. We present the resulting resolution of the measured tracks and 

discuss the CPU time needed to fit a given track in the SDC detector. 

1. THE SOLUTION TO THE EQUATIONS OF MOTION 

---+ 
The motion of a charged particle with energy E and P in a magnetic field is 

described by the equations 

---+ 
dP q --+ --+ -=-(v x B) dt c 

dE =0 
dt 

--+ 
Using the relation P = I'm It we can rewrite these equations in the form 

where 

dlt ---+ ---+ -- = v X kB 
dt 

These equations can be written in matrix form 

where A and V are the matrices 

dV 
-=AV dt 

2 

(1) 
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The solution of this system of linear differential equations has the form 

R = Ro + A -1(eA(t-to) - I)Vo (4) 

where R, V, Ro, and Vo are column matrices describing the position, velocity, 

initial position, and initial velocity components. The choice of parameters one uses 

to describe the motion varies. For example, in some cases it is advantageous to 

use the 5 parameters liP, fJ, 4>, xl., Zl.. We choose the 6 cartesian components 

because given the various magnetic fields in the full detector system, it leads to 

the simplest structure in the calculations and hence speeds up the fit. 

Because kz,x,y( t-to) are < < I for most of the particle momenta that we are 

detecting we can expand these expressions in the form 

V = [I + A(t - to)]Vo (5) 

(t - to)2 
R=Ro+Vo(t-to)+AVo 2 (6) 

Expressions (5) and (6) are the ones used in our fitting procedure. To justify 

the approximation we note 

qB qB 5s qB 
kz(t - to) = -(t - to) ~ -- = -Os 

,mc ,mc vo cPo 

where os ~ 2 meters represents the radial region where there is a magnetic field. 

For the solenoid B=1.8 Tesla, and Po=5 Gev/c we have kz (t-to),,=,O.2. In cases 
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where we want to fit lower momentum tracks which are present in the central 

tracker we can use small sections of the track and connect them by using the track 

merging methods based on the Kalman filtering technique being used in our global 

fit techniques. 

In order to use the track merging methods for track fitting and to do pattern 

recognition we will need the 6 x 6 transport matrix. The matrix is defined by the 

relation 

Q = (~) 

The transport matrix becomes 

T 
I(t - to) + A (t-;o)' ) 

1+ A(t - to) 
(7) 

These equations form the basis of our fitting procedure. In this process we 

choose to = 0 but will calculate the minimum of the X2 and the error matrix 

at shifted values to improve the accuracy in the calculations as discussed in the 

appendix. 

2. THE GLOBAL FITTING PROCEDURE 

We carry out the fitting process in two separate steps. We first do a regional 

fit in those sections of the detector where multiple scattering can be neglected in 

comparison to the effect of the spatial resolution. Including multiple scattering in 

those sections is straightforward but has not been carried out in this work. Then 

we use the progressive track matching procedure using the Kalman filter method 

to connect these regional fits and carry out a global fit with multiple scattering 

included. 
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The Regional Fits 

For the SDC detector the natural subdivision where we can carry out the 

localized fit with multiple scattering neglected are: 

1. The inner tracker that consists of the silicon and the straw or scintillating 

fibers systems. 

2. The first tracking of the muon system (BWI for the barrel and FWl, FW2 

in the forward direction). 

3. The outer layers of muon tracking (BW2, BW3 for the barrel, FW4, FW5 in 

the forward direction, and BI3, BI4 in the intermediate region). 

The best fit in each of these sub detectors is carried out by minimizing the 

Chi-Square. Since one neglects the multiple scattering in each of these initial fits, 

the associated covariant error matrix is simple and the fits are very fast. The fit 

minimizes the expression 

2 ~(ri-rfit(a,ti»2 
X = L.. 2 <y. 

i=l ' 
(8) 

where "a" represents the parameters one fits to; these parameters describe the 

position and direction of the track at some initial point, namely 

a = (xo,VOx,YO,VOy,ZO,VQz) 

<Yi is the measurement error for the ith point; and r describes the trajectory of the 

track in each of the subdetectors. 

The regional fits are carried out to get the best initial estimates of the track 

parameter "a" and the error (covariance) matrix at a specific point in each region. 

This specific point is so chosen to make the calculations simpler. The details of 

this procedure and the calculations are presented in the Appendix. 
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We then use a transport matrix, presented in the Appendix, to calculate the 

position and direction of the track, and the associated error matrix at the following 

six well defined locations: 

1. The coordinates and direction at the interaction point and at the entrance 

to the solenoid. 

2. Similarly the position and direction of the track at the exit to the calorimeter 

and the entrance to the iron toroid. 

3. The position and direction of the track at the exit of the iron toroid and the 

last point in BW3 for the barrel tracking, BI2 for the intermediate tracker, 

and BF5 for the forward tracking. 

Hence, the results of the regional fits give us the initial estimate for the regional 

track parameters (3 position and 3 directions or momentum components) at the 

i th location 

Qi = (~:) 
and the associated error (covariance) matrix 

(9) 

where R o, Vo, and Eo are the parameters and errors in the parameters at the best 

location discussed above and TO_i is the appropriate transport matrix to the ith 

point. 

The Connection of the Regional Fits. The Overall Fit. 

We now proceed to describe the progressive track fitting techniquei'lusing the 

Kalman filter i2l method. This leads to the complete solution. Within the framework 

of the filter theory, the progressive track fitting method can be considered as an 
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extended Kalman filter, and the smoothing (discussed below) part of the procedure 

makes the method more powerful and flexible. 

There are three types of operations to be performed in the fitting algorithm: 

1. The Prediction This is the estimation of the track position and direction at 

the point l(i-I). We make two estimates; the first uses the fitted parameters 

from the position measurements at times;::: li, initially from the local fits 

associated with these times, constructs the transport matrix, and projects the 

track position and direction at time li to that at time l(i-I). The second uses 

the local fit associated with the measurements at times < l(i-I), constructs 

its transport matrix, and generates the track position and direction at time 

l(i_I). 

2. The Filtering This is the estimation of the optimal parameters at the point 

l(i-I), by means of a Chi-Square minimization process using the two predic­

tions of the track position and direction at that point, based on the calcula­

tions discussed above. 

3. The Smoothing This is the recalculation of the track parameters that describe 

the track position and direction at the points lk (k = i-I, i, i + 1, ... ) using 

the new best fit. These new parameters are then used for more accurate 

future projections towards the collision point. 

We should point out that one of the drawbacks of the Kalman filter process, 

namely the lack of an error matrix at the start of the process, is avoided here by the 

local fits that generate this matrix. In addition, the local fits give us the param­

eters necessary for the initial Kalman filter state vector (including the curvature 

of the trajectory). As a result we avoid the calculations with the "measurement 

t . II {2J rna fiX . 

We start with the parameters of the track and its corresponding error matrix 

(as obtained from the local fit) at the track location just outside the toroid and 

transport the solution at this point to the solution at a point just inside the toroid 

using the present knowledge of the momentum and the field map inside the toroid. 
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To carry this out we use the transport matrix in eq. 7 and we include the effects of 

multiple scattering described by eqs. 38-41. The predicted positions and directions 

become: 

In addition we have the track position and direction for the (i-i) point from 

the local solution using the BWi measurements. Call these solutions Qh-I) and 

its associated error matrix Eh-l). We then form a Chi-Square 

x' = (Q~':.l) - Q~-l)lw~':.l)(Q~':.l) - Q~-l»)+(Qh-l) - Q~-l)lwh-l)(Qh-l) - Q~-l») 
(10) 

where W = E-1 and Qt-I) is the functional form of the track trajectory. We 

minimize with respect to the parameters in the equation for Qt-I). The solution. 

to the minimization is 

(11 ) 

where K is the Kalman gain matrix given by 

K Epr (El Epr )-1 (i-I) = (i-I) (i-I) + (i-I) 

This gives the new more accurate fits of the track using both the information 

from BWi and BW2-BW3. These become our new track parameters. Their new 

associated error matrix becomes 
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(12) 

Now, with these new parameters, we carry out the same process between the 

outside of the calorimeter and the inside of the calorimeter using these fits and the 

local solution ·of the central tracker. The final process is then the transport to the 

vertex point. 

Finally we would like to mention that by the process of smoothing we constantly 

gain an improved set of track parameters in the muon part of the system. This 

then becomes a powerful tool for matching the tracks between the muon system 

and the inner detector by looking for convergence in the final solution of the match. 

3. RESULTS 

We have done a study of the resolution achieved and the time needed to fit 

a given track by following the process described here. We present the achieved 

resolution in the three tables and the associated graphs. We found that we needed 

.02 CPU sec. on the VAX 8800 to fit a given track that was generated with 

PRTGUN. This time is only the time needed for the fit; it does not include the 

time needed for the generation of the track using GEANT which of course takes 

much longer. 
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APPENDIX 

Determination of the Parameters and the Error Matrix 

Here we derive the solution for the values of the parameters and the error 

matrix for both types of trajectories we encounter in the SDC detector. These are 

the trajectories in the muon chambers where the magnetic field is zero, and the 

trajectories in the central tracker. We also show some techniques that simplify and 

improve the accuracy of the solutions. 

A.I. SOLUTIONS OF THE TRAJECTORIES IN THE MUON TRACKERS 

The equation of motion (eq. 6), for to = 0 can be written as 3 equations: 

Y = Yo + VOyty 

z = zo + vo.t. 

The X2 function which we want to minimize is given by 

N. 
X2 = L {Xi - lxo + Voxtxi]}2Wi + y term + z term 

i=1 

where Nx is the number of x measurements, and Wi = -J, and ai is the error in the <T, 

Xi measurement. Wi is known as the weight of the Xi measurement. 

We show the detailed calculation for the x term. The solution for the y and z 

terms are identical. The solution to these equations are best expressed in matrix 

notation. We proceed by defining the four matrices 
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w= 

x= 

I/a~ 
o 
o 

o 
I/a~ 
o 

p = (::) 

The X2 equation can now be written 

o o 

I/ai 

(A.I) 

The equations for the y and z trajectories can be incorporated either by in­

creasing the sizes of the matrices appropriately or by carriying out the solutions 

separately if there are no error correlations between them. The minimization con­

dition is given by the equations 

leading to the matrix equation 

which can be solved for the parameters. Noting that the second term is the trans­

pose of the first, we get in matrix notation 
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(A.2) 

where the matrix terms are 

(A.3) 

(A.4) 

The inverse of HTWH is obtained by calculating the co-factor of each term and 

dividing by the determinant. Once this is obtained the solution for the parameters 

xo, vox is straightforward. 

The error matrix consists of the following terms 

( ...... 6xo6vo. 6xo6yo 6xo6voy 6xo6zo .... ," 1 
6vo:&6xQ ';vD:&6vD:& 6vo.6yo 6vos6vQy 6vo.6zo 6vo.6vo, 

Ep = . 

6voz6xQ 6voz 6vQ:& 6voz6yo 6voz6vQy 6voz OZQ Dvo.: OVo z 

The calculation of each term follows assuming that we can consider the x,y and 

z motion separately. This is an approximation at the moment and can be improved 

on. 

Ep =< (P - Pave)(P - P ave{ > 

Using eq. A.2 this becomes 
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Since 

< (X - Xave)(X - Xave)T >= Emeas. = W- 1 

we get 

These equations lead to the following results: 

(A.6) 

where 

N3: N3: NI 

Det. = L t;iWi L Wi - (L t xiWi)2 
i=l i=l i= 1 

These lead to the following equations for the parameters 
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1 N~ N~ N~ N~ 

Xo = D~t. (L t;iwi L XiWi - L txiwi L XitxiW;) 
:=1 1=1 1=1 1=1 

(A.7) 

1. N~ N~ N~ N~ 

VOx = Det. (L XitxiWi L Wi - L txiwi L XiWi) 
1=1 1=1 1=1 1=1 

(A.S) 

From a theoretical standpoint these equations give the solutions for the pa­

rameters of the trajectory and the corresponding error matrix. Nevertheless, in 

practice, the elements of the matrix are the result of differences of large numbers 

and hence are sensitive to round off errors in the intermediate calculations. This 

leads to inaccuracies in the final fits to the parameters of the tracks. 

The solution to this problem is achieved by making a transformation In the 

value of Xo, Yo, Zo to a location where the calculation of the error matrix is simple. 

We show the procedure for the x component of the solution. We redefine xo as 

follows: 

I Xo = Xo + voxtxo 

leading to the new equation of motion 

x = x~ + vox(t x - txo) 

We have the freedom to choose the location x~ by defining txo. The following 

definition 

(A.9) 

is useful because the error matrix E of the parameters is diagonal when calculated 

in this manner. This location is the "weighted mean" of all the measurement 

14 



locations. This method of finding a special set of locations in which to calculate the 

parameters that simplies the calculation and hence improves the accuracy of the 

parameters and the error matrix is called in the literature "the alternative linear 

regression method". Once the values are solved for in these particular locations we 

can the find the values anywhere else by means of the transport matrix. 

We show this new solution process. The matrices now become 

w= 

x= 

l/u? 
o 
o 

o 
l/ui 
o 

p_ 0 ( ",' ) 
vox 

o o 

H= 
[ 

1 trl - iro 1 
1 t:r:2 - t xo 

; txN. '- t xo 

The equivalent relations to eq. A.3 and A.4 now become 

T ( "2:~1 X;W; ) H WX= N 
"2:;':1 X;( tx; - txo )W; 

Because of our definition of txo in eq. A.9 simplifies to 

(A.IO) 

(A.ll) 

(A.12) 

The inversion of this new matrix is simpler and does not depend on differences 

of large numbers leading to more accurate results. The error matrix becomes 
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( A.13) 

The solution to the parameters becomes 

I Xo = (A.14) 

(A.15 ) 

The equations A.1O-A.13 are simpler and therefore the calculations lead to 

more accurate results. 

To calculate the parameters and the error matrix at any other location repre­

sented by tx (for example the time of the arrival at the outer layer of the toroid 

for a track in BW2, BW3) we write the transport matrix 

and solve for the parameters and the error matrix at the new location 

The resultant error matrix for tx=O is the same as eq. A.6. 

Our procedure to obtain the values of the parameters and the error matrix are 

based on this alternative linear regression method. 
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A.2. DETERMINATION OF THE ERROR MATRIX FOR THE QUADRATIC EQUA­

TIONS OF MOTION 

Using eq. 6, for to = 0, we get the three components of the trajectory 

t 2 

Y = Yo + VOyty + (kxvo z - kzvox); (A.16) 

These equations are very coupled and hence difficult to minimize. This is a 

problem faced by all such equations. We proceed by making an approximation by 

writing 

(A .17) 

and minimizing assuming the equations are decoupled. 

To carry out the X2 minimization, we proceed in the same manner as in the 

prevIOus case. We define the 4 matrices 
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W= 

1/17; 
o 
o 

o 
1/17~ 

o 

The minimization equations are now 

o 

1/17§ 

These lead to the same equation as eq. A.2 

where now the matrix terms are 

o 

(A. IS) 

(A.19) 

The inverse of HTWH is obtained by calculating the co-factor of each term and 

dividing by the determinant. Once this is obtained the solution for the parameters 

18 



XO, VOx, and f3x and the error matrix is, in principle, straightforward. Nevertheless, 

for the same reasons as before, these solutions suffer from round-off errors and 
. . 
maccuracles. 

To reduce these inaccuracies we proceed by redefining the function we are 

fitting in such a way that some of the elements of this matrix are zero. This 

procedure is again "the alternative linear regression method". We can choose one 

of two methods each one more accurate than the other. 

The first method is to redefine the value of txo as we did in eq. A.9, namely 

Using this condition makes the 1-2 and 2-1 elements of the matrix in eq. A.19 

zero. Hence it reduces the number of terms in the inversion process and improves 

the accuracy of the procedure. 

The most accurate method, which is the one we are usmg, IS to proceed as 

follows (we describe the method for the x component only): 

We rewrite eq. A.17 in the form 

I - 2 2) x = Xo + vox(tx - t x ) + f3x(tx - tx (A.20) 

where the various terms are 

(A.21) 

We then proceed to solve for the parameters x~, vox, and f3x. The matrices W, 
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P, H, HTWX, and HTWH for this new definition of the parameters become 

x{~l 

W= 

1/17? 
o 
o 

o 
1/ 17~ 
o 

o o 

[ XOI ) 

p= ;: Ho [j 

2:f':1 (tzi - 4)wi 
"N. ( 2 --) L....i=l txi - t:c t,,; Wi 

L~;l (t~i - t; t;)Wi 

td - t:c t;l - t~ 

t:r2 - tx; <:, - <, 1 
txN~ - t:c t~Nz - ti 

Given the conditions specified in eq. A.21, the last matrix becomes 

(
2:1'::1 Wi 

HTWH= 0 

o 

The solution for the parameters and the error matrix become 

20 
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I Xo = 

/3 - - ~f,:, (t~i - II t;;)W' ~[':, X,(t.i - WWi + ~[':, (t~i - t;; t;;)Wi ~f,:, X,(t;i - II)Wi 
.- ~n. 

where 

(A.24) 

-[~f;, (t~i -:; t.)WiJ! Den.) 
"N. 2 --[L'~l (t •• - t. t. )w;)/ Den. 

N~ N~ N~ 

_" 2 -- "4 " . "3 ,- .2 Den. - ~(t •• - t. t.)w, ~(t., - t. t.)w. - [~(t.i - t. t.)w.] (A.25) 

To find the solution for the parameters and the error matrix at a different 

location in the track, for example, the trajectory at the end of the central tracking 

region as defined by a value of t x , we use the transport matrix 

and get 

1 

o 
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Pt. = TpP(tt2) ••• 

A.3. THE CONTRIBUTION TO THE ERROR MATRIX DUE TO MULTIPLE SCAT­

TERING 

When using the progressive track matching by means of the Kalman filter 

method to carry out the global fit we need to include the effect of multiple scat­

tering. In this work we only include the multiple scattering due to the toroids and 

due to the calorimeter. 

Since we are only projecting between the entrance and exit points of the scat­

tering material we need to consider only the scattering errors at the surface of the 

scatterer. 

The scattering angle due to a thickness "dx" of the material is 

2 0.014 2 dx < d(O ) >= (-p ) -X == OtMsdx 
rad 

The angular and displacement errors (in 1 dimension) at the end of the scatterer 

of length "I" can be determined by integrating over the effect due to an element 

"dx". We obtain 

I 

< 02 >= J d(02) = OtMsi 
o 

I 

< x 2 >= J x 2d(02) = Ot~si3 
o 
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I 

J 2 aMsI2 
< xO >= xd(O) = 2 

o 

These equations can be extended to 3 dimensions fJ1
• The equivalence of 

< d(02) > is 

( A.26) 

The other two terms become 

12 
< OX;OXj >= '3 < OV;OVj > (A.27) 

1 < OX;OVj >= 2 < OV;OVj > ( A.28) 

These are the values we use in the multiple scattering error matrix 

ox6z ) (A.29) 

A.4. THE SEQUENTIAL ALGORITHM FOR FAST MATRIX INVERSION 

We discuss here the algorithm used to avoid the lengthy computations needed 

to determine the inverse of a matrix. The direct calculation of the inverse of a 

real, symmetric N x N matrix requires at least a factor of N more operations than 

the algorithm presented here. This method is known as the "orthogonal reduction 

method". 
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We describe the algorithm using as an example our calculation of the param­

eters. We use eqs. A.2-A.6 for the linear trajectories or eqs. A.19-A.23 for the 

quadratic case. We want to solve the equation 

which we rewrite 

AP=B 

with solution 

The matrix A is a real symmetric NxN matrix. In our case N=2 for each of 

the components (x,y,z) of the linear trajectories and N=3 for the quadratic. The 

other components are included diagonally down the matrix forming a total of N=6 

and N= 9 respectively. To find the inverse of A we proceed by constructing the 

(N+3) x (N+3) symmetric matrix (one additional for each component). For the 

linear case 

Coo bXl bx 2 0 0 0 coo CO! CON 

bXl axIl a x12 0 0 0 Clo cll clN 

bx2 a x21 a x22 0 0 0 C20 C2! c2N 

c= 0 0 0 C33 by! 0 - C30 C31 C3N 

0 0 0 bYl ayll 0 C40 C41 C4N 

0 0 0 0 0 a z22 CNO CN! CNN 

where the only new elements are COO, C33, and e66· We choose the first to be 
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2:::1 X~Wi. The other elements follow from eqs. A.3, A.4 for the linear case. If 

we consider the other components, the term C33 is 2:;::1 ylwi and the others are 

associated with the y measurements and 1:66 onwards are associated with the z 

measurements. Hence the final matrix size is 9 x 9 for the linear trajectory and 

12 x 12 for the trajectory in the magnetic field. 

We now perform the following three operations on the elements of the C matrix 

in a given sequence as follows: 

C
new _ 
kk -

1 
prevIous au 

c!,retJious 
cnew _ cnew _ --=k'cr ==-=­kr - rk - prevlou" 

aU 

k=fO 

r=fk 

c!'r ••. e>.re •. 
new _ new _ ~"retl. _ rl: r' k r,r'=fk err' - Cr'r - err' pret), 

au 

The sequence one follows is to first change all the elements of the matrix for 

k=l, then, using the new C matrix, repeat the same operation for k=2, and so on 

until the last operation for k=N. 

After these series of reductions take place one can show that 

1. COO,C33,C66 are the contribution to the total X2 for the x, y, z measurements 

respectively. 

2. COl and C02 are the solutions to the parameters xo and VxO. Similarly C34 and 

C35 for Yo and VyO; C67 and 1:68 for Zo and VzO· 

3. The other terms are the elements of the matrix A -I. The elements Cll, C12, 

C21, C22 are the terms associated with the x measurements; C44, C45, C54, C55 

with the y measurements and so on. 
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In the case of the solution of the trajectory in the magnetic field the C matrix 

IS 12 x 12 and the associated elements have the same correlation with the X2, 

the solution to the parameters (including /3z, /3y, /3%), and the associated inverse 

matrix. 

A.5. THE CALCULATION OF THE MOMENTUM USING THE FITTED PARAME-

TERS 

In all cases we can use eq. 5 that leads to the relations 

--> --> q L --> --> 
VI = Vo + --vo x B cP 

_ 0.3LBsin( O •• ,B) 
P - I" "I VI - vo 

where v is a unit vector. In the case of the determination of the momentum using 

the toroid, Vj is the velocity vector after the toroid, and VIi is the velocity vector 

before the toroid. In the case where we use the centra.! tracking region, these 

vectors are defined at the outer radius of the centra.! tracking and at the collision 

point. 

To a good approximation this leads to the equation 

p. _ 0.3Lt B 
t - I" " 1 VI - Vo 

where L t is the radial length of the magnetic field in each region. Hence we only 

need to determine the direction cosines of each velocity vector. 
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TABLE 1 
Resolution u(11 Ptl% 

Beam r,p,z = 20 J1., 1 cm 
Silicon Tracker = 15 J1. 
Straw Tracker = 150 J1. 
Muon Trackers = 250 J1. 

Cut at ±4u 

Pt(GeV Ie) O(deg.) Uinner t7muon UgJobaJ 

10 5.60 14.94 5.52 
15 9.64 13.63 9.57 
20 1.43 14.44 1.43 
25 1.25 17.97 1.25 

100 35 1.12 15.15 1.12 
45 1.10 15.16 1.10 
55 1.25 17.97 1.25 
65 1.31 16.76 1.31 
75 1.36 19.79 1.36 
85 1.26 20.04 1.26 

10 11.51 17.97 11.33 
15 21.38 13.79 13.94 
20 2.58 13.98 2.56 
25 2.10 15.41 2.08 

200 35 2.04 15.44 2.02 
45 2.19 20.30 2.18 
55 2.35 17.32 2.35 
65 2.50 19.16 2.49 
75 2.65 19.84 2.63 
85 2.57 16.71 2.56 

10 18.47 26.58 18.11 
15 28.59 13.60 13.57 
20 4.01 13.81 4.00 
25 3.09 16.51 3.01 

300 35 3.12 15.85 3.09 
45 3.12 17.71 3.09 
55 3.42 18.75 3.40 
65 3.53 20.50 3.51 
75 3.84 19.39 3.82 
85 3.76 20.80 3.74 
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CONTINUE TABLE 1 

Pt(GeV Ie) o (deg.) O'inner O'muon "'global 

10 28.67 32.51 26.57 
15 34.58 14.00 13.56 
20 6.57 14.08 6.24 
25 5.01 16.22 4.69 
26 6.54 27.15 6.48 
27 6.71 27.31 6.65 
28 6.92 32.56 6.34 

500 29 5.97 43.79 5.81 
30 6.85 34.49 6.71 
31 6.57 15.45 6.37 
35 6.94 21.64 6.80 
45 5.71 19.14 5.33 
55 6.12 24.04 6.06 
65 6.17 24.68 6.09 
75 6.53 21.21 6.45 
85 6.69 18.44 6.66 

10 39.41 51.48 35.41 
15 27.03 16.31 16.28 
20 15.42 16.75 14.84 
25 13.21 16.92 13.14 
26 13.22 26.40 12.55 
27 13.41 26.84 13.12 
28 13.40 35.45 11.86 

750 29 13.57 42.18 12.56 
30 13.47 39.29 11.39 
31 13.07 16.70 12.69 
35 11.67 20.26 11.49 
45 9.85 22.50 9.66 
55 9.83 22.71 9.77 
65 9.24 30.42 9.08 
75 9.70 22.77 9.64 
85 9.03 17.84 8.95 

10 44.57 100.66 36.24 
15 33.89 14.86 14.31 
20 18.86 16.23 15.47 
25 14.47 16.96 14.25 
26 14.51 28.86 14.23 
27 14.85 32.18 14.15 
28 14.90 37.41 12.40 

1000 29 15.12 41.95 13.67 
30 14.92 45.36 12.93 
31 14.58 18.01 13.86 
35 14.21 28.80 13.19 
45 13.15 27.91 10.94 
55 13.42 28.24 11.46 
65 13.17 27.54 11.22 
75 13.67 25.83 12.25 
85 12.86 20.80 11.43 
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CONTINUE TABLE 1 

Pt(GeV Ie) 8 (deg.) O'inner O'muon I7g1obal 

10 73.12 147.66 40.17 
15 41.82 20.99 18.76 
20 27.25 20.30 18.94 
25 25.91 22.02 20.72 
26 25.74 38.21 20.39 
27 26.12 49.61 19.40 
28 25.91 50.16 18.86 

2000 29 26.04 62.19 18.46 
30 25.94 51.98 17.93 
31 25.76 62.48 16.86 
35 26.37 39.43 17.14 
45 25.17 36.81 18.21 
55 25.78 33.22 16.84 
65 24.39 30.11 19.81 
75 24.51 31.17 19.53 
85 23.39 28.44 18.68 
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TABLE 2 

Resolution 0'(1/ Pt )% 
Beam rq"z = 20 /-I, 1 cm 
Silicon Tracker = 15 /-I 
Straw Tracker = 75 /-I 

Muon Trackers = 250 /-I 
Cut ±40' 

Pt(GeV Ie) 8(deg.) O'inner CTmuon ""global 

10 4.13 14.94 4.13 
15 8.54 13.67 8.49 
20 1.19 14.48 1.19 
25 0.92 16.91 0.92 

100 35 0.98 15.09 0.98 
45 0.96 15.16 0.96 
55 1.03 17.97 1.02 
65 1.01 19.19 1.01 
75 1.06 20.75 1.05 
85 1.02 20.12 1.02 

10 8.06 17.97 8.06 
15 17.56 13.79 13.70 
20 2.12 13.98 2.11 
25 1.60 15.58 1.60 

200 35 1.68 15.70 1.66 
45 1.61 20.30 1.61 
55 1.74 17.32 1.73 
65 1.99 20.28 1.98 
75 1.91 20.57 1.90 
85 1.89 18.12 1.89 

10 13.15 26.53 13.12 
15 24.19 13.60 13.47 
20 3.23 13.81 3.21 
25 2.48 15.71 2.47 

300 35 2.48 17.69 2.45 
45 2.51 17.77 2.50 
55 2.87 18.75 2.85 
65 2.89 20.79 2.88 
75 2.92 19.48 2.90 
85 2.93 20.57 2.91 
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CONTINUE TABLE 2 

Pt(GeV Ie) () (deg.) O"inner O"muon O"global 

10 20.09 32.29 19.94 
15 34.71 14.03 13.96 
20 5.26 14.09 5.17 
25 4.10 15.36 4.08 

500 35 5.21 20.78 5.20 
45 5.17 19.14 4.97 
55 5.64 24.04 5.51 
65 5.86 26.19 5.76 
75 5.17 22.78 5.12 
85 5.29 19.11 5.23 

10 29.27 51.56 26.17 
15 26.14 16.24 16.19 
20 7.93 16.75 7.87 
25 12.20 16.92 12.17 

750 35 11.65 20.26 10.59 
45 9.32 20.26 9.16 
55 9.21 22.70 8.80 
65 9.17 27.59 8.25 
75 9.37 27.75 9.16 
85 8.34 19.71 8.22 

10 31.69 100.65 27.54 
15 32.57 14.94 14.90 
20 11.52 16.23 10.24 
25 14.23 16.98 13.77 

1000 35 13.34 28.76 12.69 
45 10.94 27.75 10.75 
55 10.65 28.20 9.97 
65 10.83 29.54 9.97 
75 10.54 24.27 9.49 
85 10.17 20.24 9.94 
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CONTINUE TABLE 2 

Pt(GeV Ie) o (deg.) O'inner O'muon lTglobal 

10 38.46 133.85 29.16 
15 34.58 21.37 21.20 
20 22.53 20.26 18.37 
25 25.57 22.08 18.91 

2000 35 24.17 39.40 15.30 
45 24.76 37.05 16.08 
55 23.74 33.40 15.47 
65 24.61 30.25 16.61 
75 25.61 31.10 17.37 
85 24.97 24.63 15.44 
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TABLE 3 

Resolution (7{11 Pt)% 
Beam rt/>,z = 20 /1, 1 cm 
Silicon Tracker = 15 /1 
Straw Tracker = 150 /1 
Muon Trackers = 500 /1 

Cut ±4(7 

Pt{GeV Ic) O{ deg.) O'inner O"muon (7 global 

10 5.60 15.11 5.57 
15 9.57 13.69 9.52 
20 1.43 14.51 1.43 
25 1.25 14.96 1.25 

100 35 1.10 14.40 1.10 
45 1.10 15.79 1.10 
55 1.25 18.14 1.25 
65 1.31 16.76 1.30 
75 1.36 19.86 1.36 
85 1.30 20.50 1.30 

10 11.51 18.14 11.48 
15 21.38 13.83 13.83 
20 2.58 14.32 2.57 
25 2.10 15.86 2.09 

200 35 2.07 17.26 2.06 
45 2.20 17.61 2.19 
55 2.35 17.87 2.34 
65 2.50 19.28 2.48 
75 2.65 19.74 2.64 
85 2.57 18.34 2.54 

10 18.47 27.94 18.21 
15 28.59 14.00 13.94 
20 4.01 13.94 3.92 
25 3.09 16.08 3.07 

300 35 3.12 20.30 3.10 
45 3.12 22.68 3.10 
55 3.42 18.94 3.40 
65 3.53 20.74 3.50 
75 3.84 19.60 3.80 
85 3.76 21.12 3.75 
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CONTINUE TABLE 3 

Pt(GeV Ie) () (deg.) O"inner t7muon O"gJobaJ 

10 28.67 34.17 27.07 
15 34.58 15.06 15.00 
20 6.57 14.78 6.34 
25 5.07 16.82 5.05 

500 35 6.12 25.04 6.09 
45 5.71 26.91 5.56 
55 6.12 24.97 6.04 
65 6.17 25.04 6.14 
75 6.53 24.74 6.45 
85 6.69 19.57 6.62 

10 39.41 53.56 37.20 
15 27.03 18.54 18.21 
20 15.42 17.04 14.87 
25 13.21 17.85 13.04 

750 35 11.67 24.87 11.30 
45 9.85 28.97 9.47 
55 9.83 27.13 9.70 
65 9.24 28.76 9.19 
75 9.70 27.61 9.58 
85 9.03 23.76 8.94 

10 44.57 108.43 40.84 
15 33.89 18.48 18.30 
20 18.86 18.74 16.07 
25 14.47 23.46 14.12 

1000 35 14.21 38.72 13.74 
45 13.15 31.14 12.76 
55 13.42 32.61 12.71 
65 13.17 34.07 12.70 
75 13.67 32.80 12.92 
85 12.86 29.17 11.46 
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CONTINUE TABLE 3 

Pt(GeV Ie) (} (deg.) Ginner O"muon O'global 

10 73.12 209.89 62.56 
15 41.82 39.38 36.17 
20 27.25 30.51 20.24 
25 25.91 49.53 23.51 

2000 35 26.37 60.14 22.21 
45 25.17 57.56 22.94 
55 25.78 59.80 22.56 
65 24.39 60.14 22.04 
75 24.51 58.61 22.37 
85 23.39 57.64 22.41 
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