
I

SDC-92-246

SDC
SOLENOIDAL DETECTOR NOTES

USER'S GUIDE
TO CALOR89-U3G

ON PDSF

April 14, 1992

Brent R. Moore
University of Mississippi

USER'S GUIDE

TO CALOR89-U3G

ONPDSF

A description of the implementation and procedures
for running CALOR89 - Unix Version 3 in
General Geometry on the Physics Detector

Simulation Facility at the SSCL.

Brent R. Moore

University of Mississippi
Department of Physics
University, MS 38677

E-Mail: MOORE@UMSPHY

April 14, 1992

USER'S GUIDE TO CAL0R89-U3G ON PDSF

ABSTRACT

This is a general purpose user's guide for running the CALOR89
calorimetry simulation package on a Unix platform using CAL0R89 - Unix
Version 3 in General Geometry, which is used to simulate slab calorimeters.
This package is a version of the original CAL0R89 package developed at Oak
Ridge National Laboratory which we modified to run and be easy to use on
Unix platforms. In particular, the code is installed and running on PDSF at
SSCL. The manual, therefore, is of direct benefit to users of PDSF who wish
to run the code on that facility. As noted in the manual, the code runs on
Silicon Graphics, Sun, Hewlitt-Packard, and DEC station computers with
little or no modification. Suggestions are given to those who may wish to run
the code on Apollo and IBM-RISC computers as well.

TABLE OF CONTENTS

Acknowledgments. iii

Introduction to CALOR89-U3G 1

The 12 Subdirectories of the 'ca1or89' Directory..................... 1
Benchmarking and Example Problems................................... 3
Overview ofCAL0R89 - Unix Version 3................................. 5
Notes on the Names of the Input and Output Files............... 6
Information on the Input Files .. 7
Portability of the Code and Machine-Specific Problems 8

HETC ... 13

Caution Points for the HETC Input File 13
Changes in the HETC Input File .. 14
New and Deleted Subroutines ... 15
Changes ofInterest in HETC .. 16
Suggested Changes for Running HETC on mM RISC 17

SPECT.. 18

Caution Points for the SPECT Input File............................... 19
Changes in the SPECT Input File... 19
New and Deleted Subroutines... 20
Change" ofInterest in SPECT 20
Suggested Changes for Running SPECT on mM RISC......... 20

MORSE .. 22

Caution Points for the MORSE Input File 23
Changes in the MORSE Input File ... 24
New and Deleted Subroutines... 25
Changes ofInterest in MORSE ... 25
Suggested Changes for Running MORSE on mM RISC 27

EGS4 28

EGS4 Input File Format 29
Caution Points when Running EGS4 Programs..................... 29
Changes ofIn terest in EGS4 ... 30
Suggested Changes for Running EGS4 on mM RISC 31

EGSPREP .. 32

EGSPREP Input File Format 32
Changes ofInterest in EGSPREP 34
Suggested Changes for Running EGSPREP on mM RISC .,. 35

PEGS.. 36

Changes ofInterest in PEGS........ 36
Suggested Changes for Running PEGS on mM RISC 37

APPENDICES ... 38

A - List of Input and Output Files ... ,. 38
B - MORSE Cross Section Identifiers...................................... 42

i i

Acknowledgments

Unix Version 3 ofCAL0R89 in general geometry has been developed at
the University of Mississippi by Jianping Zhang, a graduate student in the
computer science department, and myself. Before I had assumed my current
postdoctoral position at the University of Mississippi, Jianping had
successfully adapted the code, which we received from Oak Ridge, to run on
an IBM 3084 mainframe at the University of Mississippi. I understand
substantial work was required to bring the code up on this particular
computer, even though the code was supposed to be designed to run on IBM
mainframes. Apparently this was because our IBM mainframe used a
different operating system.

Jianping and I brought the code up on a Silicon Graphics Personal Iris
4D/20. There were a number of routines in the IBM version that had been
written in assembly code, and Jianping was quite good at figuring out what
the assembly code was doing and writing Fortran routines to replace it. The
creation of Unix Version 1 of CALOR was a team effort between Jianping and
myself.

The original CALOR code was written on the order of 20-25 years ago by
Tony Gabriel of Oak Ridge National Laboratory. CAL0R89 is the latest
update of the CALOR code. We have kept in touch with Tony throughout the
development of the Unix versions of CALOR. The previous documentation on
the CALOR programs by now is quite outdated. While some sections, such as
the input instructions, are generally still applicable to the IBM version, not
everything one would like to know about the package is to be found in the
manuals. Tony has always tried to help when I called him while I was stuck
on some point, despite his extremely busy schedule, and he was able to
answer the vast majority of questions off the top of his head. Building the
Unix version of CALOR turned out to be more difficult than we had expected,
but would have been much more so without him. Thanks also go to Tony for
proofreading this documentation.

Tom Handler of the University of Tennessee wrote some of the auxiliary
programs that are included in this package. In particular, we got the

iii

interactive program that creates the geometry file, which we have called
slabgeom.f, from Tom. Originally, this was a Pascal program which Tom ran
on a personal computer. He then transferred the output to an IBM
mainframe. I translated the Pascal program to Fortran so that it can be used
on Unix machines that may not have a Pascal compiler, and this Fortran
version is included in the Unix Version 3 package. Without this program, one
is faced with the onerous task of creating the geometry input 'by hand' -- not
a pleasant prospect. In addition, the version of MORSE in our Unix package
is a version which Tom had taken and modified slightly.

A preliminary version, Unix Version 1, was taken to SSCL and run on
four different brands of Unix computers with the help of Lee Roberts. These
four were a Silicon Graphics, a Sun, an IBM RISC and a DECstation running
the DEC Fortran compiler. With Lee's help, we found that the code was not
as robust as it ought to be, nor as portable. In light of what was learned, a
number of changes were made to make the code more easily transportable
between Unix machines and to correct errors in Unix Version 1. As a result,
Unix Version 2 was created. More extensive modifications have been
incorporated to produce Unix Version 3. Thanks go to Lee for his help in
evaluating Unix Version 1 and for his help in getting us started using the
Physics Detector Simulation Facility computers at SSCL.

The Unix version of CALOR has also been run on an Apollo DN10000 by
Yuwu Yu at the University of Alabama under the guidance of Jerry Busenitz.
Unix Version 3 of CALOR uses a slightly modified version of the FLRAN
subroutine that was written by Jerry Busenitz. He wrote this because the
Apollo does not have a native random number generator. We both agreed it
would be better to use a standard generator such as the one from the GEANT
library ofCERNLIB than to rely on native random number generators, which
are often not very good. Jerry's and Yuwu's experiences in trying to bring up
CALOR on their Apollo have been most helpful to us in trying to make the
code more portable, and we thank them for letting us know what difficulties
they have encountered.

Thanks are also due to Judy Barnes, Lucien Cremaldi, Cherry Douglas,
James Reidy, and Sandy Harper of the University of Mississippi; P. K Job of
Argonne National Laboratory; and Barbara Bishop, Fran Alsmiller, and R.G.
Alsmi11er of Oak Ridge National Laboratory. These people have all helped us

iv

considerably in one way or another. Much thanks to the Texas National
Research Laboratory Commission and the United States Department of
Energy (DE-FG05-91ER40622) for their most appreciated financial support of
this effort. Finally, thanks go to Dorena Kay Moore, the sole member of the
Mississippi Calorimeter Simulators Support Society, a non-profit and non-
governmental institution, for her support which has manifested itself in
countless ways.

v

Brent R. Moore
University of Mississippi
April 14, 1992

Introduction to CALOR89-U3G

Unix Version 3 of CAL0R89 in general geometry has been developed at the
University of Mississippi from a version that ran on an IBM mainframe.
This particular version of CALOR89 utilizes the general geometry and has
used exclusively for slab calorimeters.

At the University of Mississippi, the program was first brought up on a
Silicon Graphics. The code has also been run on a Sun 2, an mM RISC,
DECstations running the DEC Fortran compiler, an Apollo DNlOOOO, and a
Hewlitt-Packard. The code should be reasonably transportable between
Unix machines. There are notes on some changes that need to be made to
run on certain brands of Unix computers in the documentation.

The main directory under which Unix Version 3 of CAL0R89 is stored in
'calor89-unix3'. There are three subdirectories under this main directory.
These are 'documentation', which contains documentation about specific
CALOR programs in files named after the specific program; 'calor89',
which contains the source code; and 'examples', which contains the input
files and output files for benchmarks of sampling calorimeters which use
iron, lead, and uranium as absorbers and plastic scintillator as the active
medium. The 'examples' subdirectory is a good place for beginning users
to get input files with which to practice running the code and testing it on
their machines to compare with previous results. Eventually, users will
wish to modify these input files to simulate calorimeter configurations
which are of more specific interest to them.

The 12 Subdirectories oftbe 'calor89' Direct.ory

AUXILIARY
This contains some source code to perform functions that users on some
machines may find helpful but which most users will probably have no
need for.

:ws4
This contains the source code for running EGS, MOREGS (MEGS), and
EGS with incident electromagnetic particles (EGSE). The source code is
compiled using Makefiles.

FINAL
This contains some sample programs for analyzing the output of the
CALOR programs EGS, EGSE, MOREGS, MORSE and SPECT. These
analysis routines are entirely user written and can be modified by the user
to perform the analysis as wished.

GENERAL
This contains five files. One of these is slabgeom.f, a program which is
used to generate a slab geometry file. This is to be compiled and run

1

interactively. Another file is slabid.f, a program which is used to generate
the 'id.15' file which is read by EGS, EGSE, MOREGS, MORSE and SPECT
to determine the slab number of the active media given the Z-coordinates of
an energy deposition. A file 'Assignments' also occurs in most of the
directories containing CALOR source code. It lists the input and output
files needed and generated by the accompanying program. The
'Assignments' file in this directory summarizes the input and output files
for all the CALOR programs as they are defined in Unix Version 3.

The program, edit9.f, is used to convert the binary hetc.9 history file to an
ASCII, readable format, in case anyone ever wants to do such a thing. This
reads the input file, edit9.5, in which the second number is the beginning
event number and the fourth number is the final event number to be so
converted. The resulting ASCII file, edit9.G, can take up a great deal of disk
space. If the events to be read are toward the end of the run, it can take a
long time for this program to read the hetc.9 file.

IIENMT
This program need be only run once when the package is first installed on a
particular computer. It generates two binary files containing the cross-
sections used by HETC: henmt.9 and henmt.10. If running on a Hewlitt-
Packard, use henmt.17 _hp as input instead of henmt.17 . This can be done
by renaming henmt.17 _hp to henmt.17 or by changing the open statement
for unit 17 in the henmt.f program.

HEl'C
This is the main transport program of CALOR -- the High Energy
Transport Code. This is compiled using a Makefile. Once compiled, it
should not be necessary to re-compile the code, unless one wishes to modifY
the names and/or locations of the input/output files generated. This can be
done by editing the OPENER subroutine in file opener.f. Upon re-making,
only this subroutine is re-compiled.

LIGHT
This contains the program which generates scintillator saturation
information to be used by SPECT and MORSE. A sample input file for
plastic scintillator is also included.

MORSE
This is one of three programs which reads the sometimes huge history file
generated by HETC, hetc.9. MORSE transports neutrons that have energy
below 20 MeV. This program is also compiled using a Makefile.
Information about any photons generated is written out to a file, morse.10,
which is read by MOREGS. The size of this file is generally second only to
that of the HETC history file, hetc.9.

PEGS
This generates the cross section file for the EGS4 routines, pegs. 12. The
source code is all included in one file. Generally, this is run once for each
calorimeter -- or, more specifically, once for each set of media.

2

PREP
This contains the EGSPREP source code which prepares a file to be read by
EGS and EGSE. Two Makefiles compile EGSP and EGSEP which create
files for reading by EGS and EGSE, respectively.

SPJoc;T
This contains the source code for SPECT. This reads and analyzes the
HETC history file but doesn't do any transporting of particles. This is
compiled using a Makefile.

XSEC.MORSE
This contains the program, xsbcdbin.f, which generates the cross section
file for MORSE. Like henmt.f, this only needs to be run once when the code
is first installed on a given computer. The file 'ids' gives identification
numbers for the cross sections of different media needed for the input file,
morse.5.

Benchmarking and Example Problems

Unix Version 3 has been benchmarked rather thoroughly against the IBM
version of the code from which it was developed. The results are considered
to be in reasonably good agreement with the original IBM code. The
benchmark results are under the 'examples' subdirectory in calor89-unix3.
It is advised that users first trying out the code copy one of the directories
under 'examples' and delete the output files, then run CALOR using the
input files present -- possibly changing the random number seeds. The
source code in the 'calor89' directory is set up to run the iron benchmark.
In each of the examples is a subdirectory called 'source30de' which
contains any user-written subroutines or functions that need to be changed
to run that benchmark.

The general geometry version of CALOR89 does have a problem of getting
lost in the geometry on occasion in the transporting routines. Attempts to
work around this problem have been made during the creation of Unix
Version 3. These attempts are based on throwing away the lost particle
while printing out its position and energy, so that the user may know how
much energy has been discarded. If one or more of the programs does get
lost in the geometry, it is likely that the amount of energy lost will be
insignificant. This can be checked. Anytime a particle is lost in transport,
a note to that effect is written out to a file called 'Lost.J>articles'. Two lines
for each lost particle tell what program was running, the event number
and the energy of the particle in MeV, the particle type (for HETC and the
EGS4 programs), and the final and initial position of the particle. The user
should consider the energy of the incident particles and the number of
events being run when deciding how significant the lost energy is. The
user may then wish to exclude the event when doing the FINAL analysis.

In Unix Version 3, the energy output from MORSE in some of our
benchmarks averaged about 8%-9% higher than that of the IBM version of

3

the code. This appears to be due to corrections to the high energy FLUKA87
code in RETC which were incorporated in the summer of 1991. These
corrections cause the number of neutrons generated in RETC with energy
below 20 MeV, which are subsequently read and analyzed by MORSE, to be
somewhat greater than had previously been produced. This matter has
been brought to the attention of personnel at Oak Ridge who are in charge of
maintaining the integrity of the CALOR package, and they do expect the
changes to result in an increase in the number of neutrons and thus in the
energy output of MORSE.

4

Overview of the CAL0R89 - Unix Version 3 Package

Hadronic Analysis

HETC

LIGHT betc.9 PEGS

pegs. 12

MORSE EGSP

SPECT
morse. 10 egsp.10

EGS

SPE T.7 MORSE.7 MEGS.7 EGS.7

FINAL

FINAL.6

5

Electronic
Analysis

EGSEP

eg ep.10

EGSE

EG E.7

Notes on the Names of the Input and Output Files

1. In general, input and output filenames have two parts. The first part
is the name of the program with which the file is most closely
associated. The last part is a number which represents the 110 unit
number the file has in that program. Thus, the main input and output
files for SPECT are spect.5 and spect.6, respectively. The output from
LIGHT which is read in by MORSE and SPECT is called light.17.

2. For all programs, the standard input file is denoted by having a '.5'
suffix. Likewise, all programs have a main output file associated with
them which has a '.6' suffix. Only main input and output files have
'.5' or '.6' extensions.

3. All binary output files from the EGS4 programs, MORSE, and SPECT,
which are to be read in by the FINAL analysis program, have a '.7'
extension. Further, the first part of these filenames are in uppercase
to emphasize their importance as data files to be used for the final
analysis. Thus, we have 'MORSE.7', 'MEGS.7', etc. Only these data
files have the '.7' suffix.

4. The EGS4 programs read in binary data files that tell what particles to
transport, and what their energy, location, and direction is, etc. These
are read in on unit 10. For incident electrons, this file is generated
using the EGSEP program from the 'calorS9/prep' (EGSPREP)
directory. It is called egsep.lO and is read by EGSE. For
electromagnetic particles generated as part of a hadronic cascade, the
EGSP program from 'calorS9/prep' reads the main history file, hetc.9,
and creates the egsp.lO file. This is read by EGS. Gammas created
during the transport oflow energy neutrons in MORSE are written out
to the file, morse.lO, and read by MEGS. Thus, all these EGS4 particle
information files have the '.10' suffix. There is also an output file of
PEGS which has a '.10' suffix, pegs.lO. This is not read by the EGS4
routines.

5. The geometry file is needed by all the programs which transport
particles (HETC, MORSE, and the EGS4 programs). It is called
geom.lS since all these programs read the file on unit IS. This is
created by running the slabgeom.f program in the 'calorS9/general'
subdirectory. This program is compiled using the fl7 command (xIf on
IBM RISC) and is run interactively. The user must give the explicit
name 'geom.lS' to the geometry file. (This program also gives a
general information file which summarizes the configuration of the
calorimeter. This file is not used as input for any of the CALOR
programs, however.)

6. The slab identification file is read using the ZONEID function in the
EGS4 programs, MORSE, and SPECT. This has the name id.15 and is
read in as unit 15 in all these programs. It is created using the slabid.f
program in the which is found in the subdirectory 'calorS9/general'.

6

The user should edit the slabid.f program to generate the data file
appropriate to his calorimeter. This is not hard as the program is
short and quite straightforward. There is no definition in the program
of the output filename. Users can specify it when running the
program. If the name of the executable is 'slabid', the command
'slabid > id.15' will redirect the output to a file named id.15, as desired.
If the calorimeter is complicated, in that it consists of two or more
modules with different media thicknesses, one may re-edit the
program for subsequent modules and add the latter to the file using the
command 'slabid »id.15'. The '»' appends the output to the end of
the id.15 file.

7. The main history file is generated by HETC and is called 'hetc.9'. This
is read by SPECT, MORSE, and EGSP. It is almost always the largest
output file generated. This is the only file with a '.9' extension. More
information on this file is in the documentation on the HETC program.

8. The EGS4 programs, MORSE, and SPECT write out to unit 30 a report
file. These all have the '.report' extension. Thus, we have egs.report,
spect.report, etc. These record summary information on each event.
Each line contains an event number, the number of energy depositions
in the active media for that event (one measure of how quickly the code
can be expected to run), and the energy deposited in the program for
that event. This file is written to, and the buffer flushed, at the end of
each event. Thus, as the program is running, one can monitor exactly
how many events have been completed.

9. The EGS4 programs must have cross section information from a PEGS
run. This is contained in the pegs.12 file created by PEGS, so the user
should always make sure this file is present before running an EGS4
program.

10. HETC and MORSE must also have cross section information, but this
is picked up from large data files, not generated for each set of media
one may use. The cross section files for HETC are henmt.9 and
henmt.10 and are created by running HENMT. The cross section file
for MORSE is called morse.1 and is created by running the program
xsbcdbin.f in the subdirectory 'calor89/xsec.morse'. These three cross
section files need only be created once when the CALOR package is
first installed on the machine. They may then be put into a public
directory accessible to all users wishing to run the code, though they
will have to specify the directory pathnames in the open statements in
HETC and MORSE so the programs will know where to find the files.

Information on the Input Files

Generally, it is assumed that users have access to the old HETC, MORSE,
and PEGS manuals. These describe input files for HETC, LIGHT, SPECT,

7

MORSE, and PEGS. Some modifications have been made in some of the
input files, however. These are described in the Unix Version 3
documentation for the relevant programs.

The HETC input is described in the HETC manual on page 00025.
Modifications in the format of the HETC input have been made for Unix
Version 3. These are described in the HETC documentation for Unix
Version 3.

The SPECT input is described in the HETC manual on page 00602. A
modification in the format of the SPECT input has been made and is
described in the SPECT documentation for the Unix version.

The MORSE input is described on page 4.3-1 of the MORSE manual. The
relevant sections are the Random Walk Input Instructions and the Cross
Section Input Module Instructions. Modifications are noted in the MORSE
documentation for the Unix version.

The EGS4 input is described in the EGS4 documentation for Unix Version 3.

The EGSPREP input is described in full in the PREP documentation for
Unix Version 3.

The LIGHT input is described in the HETC manual on page 00597. There,
it is called CURVES, which appears to have been the name of the program
in one of CALOR's previous manifestations.

The PEGS input is described in the PEGS manual. Some information on
the input file which may be of interest to IBM RISC users is in the PEGS
documentation for the Unix version.

Portability of the Code and Macbine.Specific Problems

1. The programs should run without alteration on Silicon Graphics,
SUN, and DEC station computers running DEC-Fortran. All that is
needed is to change the Makefiles to give the directory in which the
CERN libraries can be found, if they are being used. One should also
remove the '-static' option in the Makefiles when compiling on Suns
and on DECstations using DEC-Fortran since these compilers use
static mode by default. For IBM RISC machines, Apollos, and Hewlitt-
Packards, many of the following points explain actions that must be
taken. There is also a list of suggested changes for particular
programs for IBM RISC machines given at the end of the sections
which describe each program.

In those programs that do transport, the address location of some
variables is looked up using the 'loc(var)' command in subroutine
JOMIN. This occurs in HETC, MORSE and the EGS4 routines. This

8

intrinsic function is not available on all Unix machines (e.g., IBM
RISC). A 'C' program which was taken from CERNLm by Lee Roberts
is available to perform this function. This is in the 'calor89/auxiliary'
directory. To use it, one simply copies the loc.c file from the auxiliary
subdirectory to the directory in which HETC, MORSE and EGS4
routines are being compiled. One then needs to add 10c.o' to the list of
object files in the relevant Makefile and 'make' the code. It should not
be necessary to change the compile command to accommodate the new
function since the Fortran compilation command should pass code
through a 'C' pre-processor.

2. All random numbers that are generated are done so through the
subroutine FLRAN. Currently, FLRAN is set up to use a random
number generator from the GEANT library in CERNLm. This version
should work fine for all those users who have CERNLIB available to
them. The user would do well to use only positive random number
seeds which are LESS than 231 = 2147483648. This random number
generator uses two such random number seeds. The input files have
been changed to reflect this. The location of CERNLIB in the directory
structure must be set by the user in the Makefile using the '-L' flag.

In the 'calor89/auxiliary' subdirectory are alternative flran.f
subroutines specifically for Sun, IBM RISC, and Silicon Graphics
machines. These use random number generators which are native to
those machines. However, it is recommended that the GEANT
random number generator be used if available, as native random
number generators are generally not very good.

3. Many of the programs are set up to use HBOOK4 routines -- those that
do graphing: SPECT, MORSE, EGS4 and FINAL. These routines
must be compiled with the CERNLIB library, packlib. The command
for doing so is contained in the Makefiles, but the directory in which
CERNLIB libraries are located (denoted by the -L flag) will vary from
machine to machine and must be set by the user. If CERNLIB is
unavailable, it should be possible to obtain it from SSCL. Without
CERNLIB, one has the option of using some other graphing package or
foregoing the histograms. The HFITGA call in FINAL fits a Gaussian
to the energy histograms to provide information that may be used to
determine the resolution and e/h ratios.

4. The FLUSH command is used in some programs to force printing to
files. This is useful, for instance, for SPECT, MORSE and the EGS4
programs which write to unit 30 the '.report' files which constantly
monitor the progress of the program on an event-by-event basis. In
addition, HETC writes out information on each event to the hetc.6
output file at the end of each event, so one can monitor the progress of
HETC. Some computers (e.g., IBM RISC, Apollo, and Hewlitt-
Packard) do not have an intrinsic FLUSH command, however. In this
case, the user may wish to write a dummy FLUSH subroutine and
place 'flush.o' among the object files listed in the Makefile.

9

Alternatively, one may comment out the calls to FLUSH in the
programs. The report files will no longer provide a way to monitor the
event-by-event progress of the program in this case, but may still
provide some information useful for statistical purposes upon
completion of the program.

Besides changing the compiler command and options, this is all that
should be necessary to change when running on a Hewlitt-Packard.

5. In many routines a DATA statement is used to assign a hexadecimal
value to some variables. Generally, hexadecimal values may be
assigned on Unix machines using the format "DATA VAR
f48484848'X!' where 48484848 is the hexadecimal number and VAR is
the variable name to which this value is assigned. This may not work
on all Unix machines, however. On the Apollo, for instance, one may
assign hexadecimal values using the format "DATA VAR
116#48484848/". If IBM RISC users find the standard Unix format does
not work, they might try "DATA VAR 1Z48484848f', which is used on
IBM mainframes running CMS.

6. Some bitwise manipulation of integers is performed in subroutines
JOM5 and JOM6 of HETC, MORSE and EGS4. The intrinsic Silicon
Graphics functions used are lAND, lOR and NOT. On the Apollo, the
first two must be replaced by AND and OR, respectively. These
functions may have different names on different machines.

7. In many routines, parameter statements are used to set the number of
events being run, the number of slabs of active media in the
calorimeter, the number of time gates being used, etc. These should be
set by the user before compiling. The number of events is set by NEVT,
the number of slabs by NSLAB, and the number of time gates by
NTIME. One may also wish to set the number of radial bins if doing
radial analysis by setting a parameter, NRAD.

8. In general, the CALOR programs must be run in static mode so that
local subroutine and function variables are not lost upon exiting the
routines. This is certainly true for HETC and MORSE, but should be
unnecessary for SPECT. It is recommended that this option be used
for compiling the FINAL analysis programs. On the Silicon Graphics,
one sets up static mode by using the '-static' option in the compilation
command. Static mode is defined on the Apollo by using the '-save'
option. Some machines use static mode by default (e.g., DECstations
using the DEC Fortran compiler, IBM RISC, Sun). On Hewlitt-
Packards use '-K' to implement static mode.

9. Namelists read in from the PEGS input file, pegs.5, use dollar signs,
'$', as delimiters on most Unix computers. On IBM RISC, however,
the delimiters should be ampersands, '&'.

10

10. Here are some recommended options for compiling the Fortran code
on various machines:

SGI
'fl7' is the compiler command.
'-static' is recommended for most programs.

IBM RISC
'xlf is the Fortran compiler command.
All variables are static by default.
The '-qextname' option appends an underscore to the names of

Fortran routines and is needed for compatibility.
The '-qrndsngl' option forces all 32-bit real results to be rounded

to single precision and is needed for consistent results.

Sun
'fl7' is the compiler.
All variables are static by default.

DEC station (MIPS compiler)
'fl7' is the compiler command.
The '-static' option must be used to make programs run in

static mode.

DECstation (DEC compiler)
'fl7' is the compiler command.
The DEC compiler makes all variables static by default.

Apollo
Using the Prism compiler, the compilation command is 'fl7'.
It did not seem to be possible to use Makefiles on the Apollo at the

University of Alabama, but perhaps we just didn't know how.
The recommended option for running in static mode is '-save'.
It may be necessary to issue the command in the form '-WO,-save' in

a Makefile, should the user be able to use them on his Apollo.

Hewlitt-Packard
The 'fort77, Fortran compiler is known to work.
Always use the '+ppu' option. This appends underscores to the

names of Fortran routines and is needed for compatibility.
Static mode is implemented using the '-K' option.

11. The routines that users generally may need to change are:

HETC
opener.f

SPECl'
fugit.f hbinit.f spect.f

1 1

MORSE
hankr.f hhinit.f main.f
Oight.f - Only if entering light saturation information manually)

EGS4
egs -- ausgah.f egs.f hhinit.f
egse -- ausgah.f egse.f hhinit.f
megs -- ausgahm.f megs.f hhinitm.f

PREP
egsp.f egsep.f

FINAL
avg.f final.f timavg.f
(Use avg.f or timavg.f, depending on whether or not time gates

are used.

Generally, the only reason for changing opener.f in HETC, spect.f in
SPECT, main.f in MORSE, and egsp.f and egsep.f in PREP would he to
change the locations in the directory structure of input/output files.

12

HEfC

In modifYing the IBM version, the two large files containing the program
were divided up so that each subroutine and function was in its own file
named for the subroutine or function. A'.f suffix is necessary to append to
the name of all Fortran files in order for Unix to recognize the file as
consisting of Fortran source code. A 'Makefile' was then used to organize
the compilation of the code.

The format of the main input file for HETC has been altered to allow the
user to change initialization parameters from input without having to enter
them in the program and recompile. Once CALOR has been installed on a
computer, it should be unnecessary to re-compile HETC. The exception to
this is if a user wishes to use data from a special source, such as reading in
muon source data from a previously produced nucleon-pion history file.
This point is addressed in the HETC manual on pages 00041-00042. In this
case, the user may wish to alter subroutines SORS and OPENER.

Two input files are used for HETC. The geometry input is generated by
running the program, slabgeom.f, which has been stored in the
'calorB9/general' subdirectory. This runs interactively, and the user inputs
the various quantities that are asked for. The HETC program expects this
file to be given the name 'geom.1B'. The main HETC input file is described
in the HETC manual except for a few changes which will be described
below. HETC expects the main input file to be called 'hetc.5'. HETC also
requires two input files which are not user written but which contain cross
section information in binary format. These are obtained by running the
HENMT program. The two files created are henmt.9 and henmt.10. These
files are 297 and 39 kilobytes in size, respectively, on Silicon Graphics
machines. It is suggested that copies of these files be stored in one location
where they can be accessed by all users and that the same be done with the
executable version ofHETC after it has been compiled. The locations of the
input files are given by the directory path name assigned to them in open
statements in the 'OPENER' subroutine.

The main input file for HETC is described on page 00025 of the HETC
manual. Some changes have been made in the Unix version for the
convenience of users and due to changes in the random number generator
used.

Caution Points for the HETC Input File:

1. Make sure EMAX, at the beginning of Card D, is set at least 150 MeV
higher than the incident particle energy.

2. Make sure the random number seeds are within the appropriate range
(see changes to HETC main input, below).

13

3. Make sure MXMAT in Card D is equal to the number of Cards Hm and
that the order of the Cards Hm, which describe the media, correspond
to the numbers assigned to the media in the geometry input.

Changes in the BETC Input File:

1. Card C

The 3Z4 format for reading in a hexadecimal random number seed has
been replaced with two lines which read one decimal random number
seed each in 110 format. The random number seeds should both be 0 or
greater and less than 231 , which makes the maximum value
2147483647.

Old

C format(3Z4) ==>

2. After Card C

New

C1 format(110)
C2 format(110)

Immediately following the random number seeds come two lines
containing input which was previously 'hardwired' into the code in
subroutine SORS. The format for the first line is 5F10.0. The first
number is the particle type, as given on page 00041 of the HETC
manual (O.=proton, 1.=neutron, 2.=pi+, 3.=piO [do not use], 4.=pi-,
5.=mu+, 6.=mu-). The second number is the energy in MeV. The last
three numbers are the maximum extent of the calorimeter dimensions
in centimeters for the X, Y, and Z directions, respectively. For
example, if the calorimeter is 1m x 1m x 2.3m -- the last number being
the depth -- and if the center of the calorimeter is at X = 0.0 and Y = 0.0,
then the numbers to be entered in the HETC input file are 50.0, 50.0,
and 230.0.

The second line following the random number seed has 6F10.0 format.
The first three numbers are the initial X, Y and Z coordinates of the
incident particle. The initial Z-coordinate is usually set just slightly
greater than O. in order to avoid geometry problems. The second three
numbers are the X, Y, and Z direction cosines for the initial particle
direction. For instance, a particle incident on the face of the
calorimeter at a right angle would have 0., 0., and 1. entered here.

Old

14

New

C3 format(5F10.0)
C4 format(6F10.0)

3. After Card C

Following this is a line which is read in using an 8110 format. This
line is for indicating for which media dE/dx losses are to be written out
to the history file. To write out all dE/dx losses, one inputs 0 as the first
number in this series. It is not then necessary to include any more
input on this line. Generally, one will wish to write out dEldx losses
only to the active media. The first number is the number of media for
which dE/dx losses are to be written out. This is then followed by a list
of the numbers assigned to these media. These numbers should agree
with the numbers assigned to the media in the geometry file and with
the order in which the media appear in the list of media further down
in the main input file. Of course, the number of media numbers
included should correspond to the first number given in this line.

Writing out dE/dx losses only for the active media may cut the size of
the HETC history file by 40% to 85% or more, depending on the
complexity of the geometry. As this history file may well be hundreds
of megabytes or even a few gigabytes in size if all dE/dx losses are to be
written out, the disk space to be saved by not writing out these losses for
the passive media is considerable. One should only do this, of course,
if it is certain that energy deposition in the passive media is not going
to be analyzed and only the energy deposition in the active media is to
be examined, as must be the case in a real experimental setup. In the
case of a simulation, however, one may wish to determine the energy
deposited in the passive media as well.

Old New

C5 format(8110)

New and Deleted Subroutines

The following routines were renamed as indicated below:

BETA
BLOCK DATA (UNNAMED)
MAIN (MAIN PROGRAM)
READ

====> BETAF
====> BLKDT8
====>.HETC
====> READER.

The following are new routines which were added:

DELTAS, FLRAN, OPENER, ZEROER.

Actually, FLRAN had existed before but had been an assembly code routine.
All the assembly code routines from the IBM version have been dispensed
with. In their place have been put intrinsic functions and Fortran routines
written new or taken from a version of MORSE which had been adapted to
run on a MicroVAX. A call to the assembly code function, FLTRN, in

15

RNDM has been replaced with a call to FLRAN.

Whereas the IBM version contained well over 300 subroutines and
functions, Unix Version 3 contains 260. A number of routines which
were dummy routines, were unused, or which were associated with
tape buffering have been deleted.

Changes of Interest in HETC

1. Makefile contains a flag, -static, which is an option for the f17 compiler
on Silicon Graphics computers. It is imperative that this option be
used when using compilers that do not use static mode by default.
Running in static mode insures that upon leaving a subroutine or
function, the values of the local variables used by that routine will be
saved and used as initial values for those variables upon return to that
subroutine or function. If static mode is not used such variables may
take the value of zero or perhaps even an entirely arbitrary value.
Static mode is the default on some Unix machines, but not on Silicon
Graphics, Apollo, or Hewlitt-Packard.

It is strongly advised to anyone running this program that subscript
array checking never be used. There are numerous occasions on
which arrays are passed between routines that dimension the arrays
differently. This really should be changed but would require a huge
expenditure of time and effort which probably would not affect the
results.

2. Subroutine ERROR had been a dummy routine which did nothing.
The routine now accepts an argument and prints it, then stops
execution of the program. All calls to ERROR send a unique integer
argument so the sources of errors can be better isolated.

3. In data statements, variables whose values had been set equal to
hexadecimal numbers have the hexadecimal format set differently.
On the IBM, the format to set V AR equal to the hexadecimal number
48484848 had been "DATA VAR /Z48484848f'. This format was
changed to "DATA VAR /'48484848'X/". This seems to be fairly
standard for Unix machines, but on Apollos, the format to use is
"DATA VAR /16#48484848/".

4. When running on Apollos, the functions lAND and lOR should be
replaced with AND and OR in jom5.f and jom6.f.

5. Tape buffering has been eliminated. Subroutines and functions which
were concerned only with tape buffering have been removed.

6. In some routines, calls to FLUSH are made to flush the buffers of I/O
units and force writing to those files. These are useful for monitoring
the progress of the program. Generally, these calls to FLUSH have

16

been kept to a minimum since the intrinsic call is not available on all
Unix machines (e.g., IBM, Apollo, and Hewlitt-Packard). On these
machines, it is suggested that a dummy function be added to the code
or that the calls to FLUSH be commented out or deleted.

7. The macro, DELTAS, was defined in DRES, ENERGY and QNRG. It
seems that not all Unix machines can recognize a macro defined in
this way. Therefore, the macro definitions of DELTAS have been
removed and DELTAS is now a separate function.

S. Tom Handler's proposed changes to GOMPRP and JOM9 have been
incorporated into Unix Version 3. These changes are designed to
throwaway particles which get lost in the geometry. A file named
'Lost-particles' is created and written to if and only if one or more
particles get lost in the geometry. This file should list ALL particles
that get lost. The event number and energy for the lost particle is
printed out so that the user may make a determination whether the
loss is sufficient to throw out the entire event in subsequent analysis.

9. The statement 'PROGRAM HETC' was added to the beginning of the
main program, HETC, which is in the file, 'hetc.f.

Suggested Changes for Runnjng HETC on IBM RJSC:

One may wish to add 'flush.o' to the list of object files in the HETC macro in
the Makefile and put a dummy subroutine flush, which does nothing, in a
new file, flush.f. Otherwise, use the 'grep -i flush *.f command to find
which routines call the flush function and comment out or delete these
calls.

Makefile
Add loc.o' to the list of object files in the HETC macro.
Change the FFLAGS options from '-static' to '-qextname -qrndsngl'.

(The IBM uses static mode by default.)
Change the 'fl7' command to 'xlf.

LOC
The IBM does not have an intrinsic LOC function, so we used one from
CERNLIB. This is in the 'calorS9/auxiliary' subdirectory. It is written
in C but is Fortran callable. The active part of the routine is:

long loc_(iadr)
char *iadr;
(
return((long) iadr);
}

This is documented 'ROUTINE LOC / CERN PROGLIB #N101
LOCB.VERSION KERNFOR 4.26 910313'.

17

SPECT does not transport any particles. Its purpose is to analyze the
energy deposition of particles transported in HETC. This includes all
particles in the hadronic shower except those in the electromagnetic
component of the shower and neutrons with energy below 20 MeV.

Fairly extensive modifications have been made to SPECT to make the code
run with the default level of optimization and in automatic (dynamic) mode.
Therefore, one need not use the '_static' option when issuing the compile
command. Occasional calls to FLUSH have been inserted to force writing to
some of the output files. This is unnecessary, but generally nice, especially
for unit 30, 'spect.report'. This more thoroughly rewritten version of the
code has been tested against an older version which had been changed just
enough to allow the program to run on the Silicon Graphics in static mode
and with optimization turned off. The results given have been identical for
sampling calorimeters using scintillator, and these results in turn agree
with results from the original mM version for those same calorimeters.

The SPECT program has been divided up so that each subroutine and
function is now in its own file named for the subroutine or function. A '.f
extension is appended to the end of all Fortran routines so the compiler will
recognize the files as containing Fortran source code. A 'Makefile' is used
to organize the compilation of the code. The main program is in the file
spect.f, and the declaration 'program spect' has been placed at the top. The
open statements which tell the program where to look for input files and
where to place output files, are in this main program.

The main input file for SPECT is described on page 00602 of the HETC
manual. Some changes have been made in the Unix version for the
convenience of users and due to changes in the random number generator
used. In addition to the input file, users will wish to adapt the user-written
subroutines, fugit.f and hbinit.f, for use with the problem at hand. HBINIT
merely books HBOOK histograms and sets any desired options for those
histograms. FUGIT is the subroutine in which the user implements his
analysis.

In subroutine FUGIT, the variable KK is 1 if there is an energy deposition to
be recorded. KK is 2 when the run is completed. NUM is the event number.
MAT is the media number into which the energy deposition takes place. If
only energy deposition in the active media is to be recorded, an IF statement
specifying RETURN if MATis not equal to the number of the active media
should be placed before the analysis part of the code.

The program expects to see an input file called light.l7, which contains
saturation information on the active medium. If the program is to be run
in linear mode -- i.e., without saturation corrections, the open statement for
light.l7 can be commented out in the main program, spect.f. The program
also expects to see id.l5, a data file giving the slab number of the active

18

medium corresponding to certain Z-coordinates. If this is not to be used,
the user should comment out the corresponding open statement in spect.f
and the call to subroutine ZONEID in fugit.f.

Caution Points for the SPEC!' Input File:

1. NOZINT, the first number on line I, should ALWAYS be 2.

2. Make sure lXXX, the number of events (the second number on the first
line) is set correctly. It may be less than the number of events from the
HETC run being analyzed, but it may not be more -- otherwise, the
program will abort with a read error.

3. Make sure the Z-dimensions on line 2 are correct.

4. Make sure the random number seeds are non-negative and are both no
larger than 231 - 1 = 2147483647.

Changes in the SPECT Input File:

1. Card C

The third line should contain the media number for the active media
for which saturation corrections are to be made. The program
expects to see this even if spect is being run in linear mode (abc = O. --
no saturation corrections).

New

C format(I5)

2. Cards D and E

The random number seeds. These are read in using two lines which
each read one decimal random number seed in 110 format. The
random number seeds should both be 0 or greater and less than 231 ,
which makes the maximum value 2147483647.

19

New

D format(110)
E format(l10)

New and Deleted Subroutines

The following routines have been deleted from SPECT in creating Unix
Version 3:

AA7, AAS, BFIN, BUFIN, BUFNMT.

AA7 and AAS were dummy subroutines, and the other subroutines were
used for tape buffering, which has been removed.

New routines in SPECT are FLRAN, which had been an assembly code
routine and which is now the same FLRAN used by all the other CALOR
routines, and ZONEID, which is also used by MORSE and all the EGS4
routines to return the slab number into which energy has been deposited
given the Z-coordinate of the energy deposition.

The number of routines in Unix Version 3 of SPECT is 21, and the number
of lines in the Fortran source code is about 1300.

Chang\ls of Interest in SPEC!':

1. Subroutine ERROR had been a dummy routine which did nothing.
The routine now accepts an argument and prints it, then stops
execution of the program. All calls to ERROR send a unique integer
argument so the sources of errors can be better isolated.

2. Code has been put in place in FUGIT to monitor the energy deposited
on an event-by-event basis and write the results to a file called
spect.report on 110 unit 30. A parameter statement at the beginning of
FUGIT allows one to set the number of events and slabs.

3. In some routines, calls to FLUSH are made to flush the buffers of 110
units and force writing to those files. These are useful for monitoring
the progress of the program. These calls to the intrinsic routine,
FLUSH, are not available on all Unix machines, however (e.g., IBM
RISC, Apollo, and Hewlitt-Packard). On these machines, it is
suggested that a dummy function be added to the code or that the calls
to FLUSH be commented out or deleted.

Suggested Chang\ls for Runnjng SPEer on IBM RISe:

One may wish to add 'flush.o' to the list of object files in the SPECT macro
in the Makefile and put a dummy subroutine flush, which does nothing, in
a new file, flush.f. Otherwise, use the 'grep -i flush *.f command to find
which routines call the flush function and comment out or delete these
calls.

20

Makefile
Change the FFLAGS options to '-qextname -qrndsngl'.
Change the 'fl7' command to 'xlf.

21

MORSE

The MORSE code transports neutrons with energy below 20 MeV. These
are read in from the RETC history file, hetc.9. Any photons which are
created during the neutron cascade are written out to unit 10 (morse.lO) to
be read in by MOREGS (MEGS).

In modifying the IBM version, the files containing the program were
divided up so that each subroutine and function was in its own file named
for the subroutine or function. A'.f extension is necessary to append to the
end of all Fortran routines in order for Unix to recognize the file as
consisting of Fortran source code. A 'Makefile' is used to organize the
compilation of the code.

The main program is main.f, NOT morse.f. In the original IBM version of
the code, the code now in morse.f was in a subroutine called MORSE, and
the program structure and sequence of subroutine calls has been left
essentially intact.

The IBM version of MORSE was a little different from the IBM versions of
the other CALOR programs in that the program assumed common blocks
were stored into memory in the same order with which they were
referenced in the main program. Later in the program, differences in the
memory address locations were used to ascertain the sizes of the common
blocks. As most computers do not generally load common blocks into
memory in the order in which they appear, this feature of MORSE had to be
eliminated. The sizes of common blocks, in terms of four-byte words, are
now explicitly defined in PARAMETER statements. The LOC function is
now used only to determine the relative positions of variables within the
same common block.

One very special common block is MCOMM, which holds considerable
information, including the geometry. Under certain circumstances, the
memory allowed this common block may be too small. In this case, the
dimension of the common block may be increased quite easily using a
feature which was added to the Unix version. There is a new include file,
mcomm.h, which contains the parameter statement defining the size of
MCOMM. The parameter is called MCDIM for MComm DIMension. To
change the size of the common block, MCOMM, the user simply changes
the value of MCDIM in mcomm.h and re-makes the program. All the
Fortran programs which depend upon common block MCOMM will
automatically be re-compiled.

Information on the main input file for MORSE is provided beginning on
page 4.3-1 of the MORSE manual. A few changes have been made in the
Unix version for the convenience of users and due to changes in the
random number generator used. In addition to the input file, users will
wish to adapt the user-written subroutines, bankr.f and hbinit.f, for use
with the problem at hand. RBINIT books RBOOK histograms and sets any
desired options for those histograms. BANKR is the subroutine in which

22

the user implements his analysis.

BANKR is the subroutine in which analysis is done for MORSE. If the
variable NBNKID is -1, this is the first time through the subroutine. We go
to line 101 and initialization is done. If NBNKID is -4, we are finishing up
the run. The code goes to line 104, and some final information is printed
out. For NBNKID equal to 4, information on an electromagnetic particle
which has been generated is written out to the output file, morse.10, for
analysis by MOREGS. If NBNKID is 5, analysis is done for energy
deposition by a neutron. In this case, the subroutine should return if
NMED is not equal to the media number corresponding to the active media.
The energy deposition is calculated using momentum conservation and
possibly energy conservation as well. ANUM is the mass number of the
nuclei in the active media with which collisions take place. If scintillator is
used, assume that all collisions take place with hydrogen, as collisions with
the hydrogen nuclei will result in much greater energy loss than with
carbon nuclei due to the much lighter mass of hydrogen. Saturation effects
are taken into account by calling the LIGHT subroutine.

The program expects to see the main input file, morse.5; the geometry file,
geom.18; the cross section file, morse.1 (generated using the program
xsbcdbin.f in the 'calor89/xsec.morse' subdirectory); the slab identification
file, id.15; the scintillator saturation file, light. 17; and the HETC history
file, hetc.9. The open statements defining the names of these input files
and the directory paths in with they can be found are in main.f, the main
program.

Caution Points for the MORSE Input File:

1. Make sure the first two numbers in the fourth line (Card B in the
Random Walk Input Instructions), NSTRT and NMOST, are large. If
these are too small, the program may stop running with no indication
as to why. It is suggested that these numbers generally be set to 8000.

2. Make sure the number of events, NITS, is set correctly. It may be less
than the number of events from the HETC run being analyzed, but it
may not be more -- otherwise, the program will abort with a read error.

3. The number of media is given in two places. The first place is as
MEDIA in the Random Walk Input section of morse.5. The second
place is in the Cross Section Module Input section where it is called
NMED. These two must agree with each other; with the number of
media in HETC, read in as MXMAT; and with the number of media in
the geometry input file, geom.18.

The number of elements, NELEM, is simply the number of elements
for which cross sections are to be read. This is usually the number of
different elements making up the calorimeter.

23

The number of mixing operations, NMIX, is simply the number of
lines, XF, as specified in the Cross Section Input Module Instructions.
This is the sum over all media of the number of elements for which
cross sections are to be read in.

4. There is a file, ids, in the subdirectory, 'calor89/xsec.morse', which
contains a list of the elements for which cross section information is
stored in the cross section file, morse. 1. This can be used to find what
numbers to use for the element identifiers as specified in the Cross
Section Input Module Instructions for Card XD.

5. Make sure the random number seeds are non-negative and are both no
larger than 231 _1 = 2147483647.

Changes in the MORSE Input File:

1. After Card A (Random Walk Input)

Immediately following the title line comes a line specifying some
parameters which had been 'hardwired' into the code in the main
routine, main.f. The format for this line is 3FI0.0. The numbers
represent the maximum extent of the calorimeter dimensions in
centimeters for the X, Y, and Z directions, respectively. For example,
if the calorimeter is 1m x 1m x 2.3m -- the last number being the depth
-- and if the center of the front of the calorimeter is at X =0.0 and Y =
0.0, then the numbers to be entered in this line are 50.0, 50.0, and 230.0.
(See Changes to HETC Input, item 2.)

Old New

Al format(3FI0.0)

2. Card H (Random Walk Input)

The Z12 format for reading in a hexadecimal random number seed has
been replaced with two lines which read one decimal random number
seed each in 110 format. The random number seeds should both be 0 or
greater and less than 231 , which makes the maximum value
2147483647.

Old

H format(ZI2) ==>

24

New

HI format(1l0)
H2 format(1l0)

New aodDeJemd Subroutines

Most of the routines in MORSE which are associated with calendar or
timing information have been deleted. There are calls to the system to
execute the date function at the beginning and at the end of the run.
Routines in MORSE which were nominally associated with tape buffering
have been removed, though these were generally dummy functions
anyway. The following MORSE routines have all been removed:

BFIN, BLOCK DATA (UNNAMED - SECOND>, BNKHLP, BUFNMT,
DATE, ENDRUN, ENRGYS, FLUXST, HELP, HELPER, ICLOCK, IDATE,
IDAY, INSCOR, INSERT, INTBCD, IWEEK, SCORIN, TIMER, XSCHLP.

The following routines were renamed as indicated below:

BLOCK DATA (UNNAMED - FIRST)
BLOCK DATA (UNNAMED - THIRD)

====> BLKDTI ====> BLKDT2

The following had been assembly code routines for which Fortran
equivalents have been substituted:

AZIRN, EXPRNF, FLRAN, FLTRNF, GTISO, ICOMPA, SFLRAF.

All of these routines were taken from the Unix version of HETC except
ICOMPA and SFLRAF, which come from the VAX VMS 11/780 Version of
MORSE-CG.

The following are new routines:

INTERP, JUNKER, ZONEID.

INTERP reads the scintillator saturation corrections from the output of the
program LIGHT and does the interpolation automatically. This automatic
reading of the light. 17 file can be disabled to enter the corrections directly to
subroutine LIGHT as was done in the original version. JUNKER initializes
the variables in many common blocks, setting them equal to the variable
JUNK. This had been done in the MAIN program, but in an out-of-date
fashion using address locations (see above). Now all this is done is
JUNKER. ZONEID is called by BANKR and is also used in SPECT and all
the EGS4 programs. This function reads an input file on unit 15, id.15, and
stores the numbers into an array. (The id.15 file is created using a Fortran
program called slabid.f, which is in the directory 'calor89/general'.)
BANKR calls ZONEID to find out the number of the slab into which energy
has been deposited given the Z-coordinate of the energy deposition.

Changes oflnten!st in MORSE

1. Makefile contains a flag, -static, which is an option for the fl7 compiler
on the Silicon Graphics. It is imperative that this version of MORSE
always be run in static mode. Running in static mode insures that

25

upon leaving a subroutine or function, the values of the local variables
used by that routine will be saved and used as initial values for those
variables upon return to that subroutine or function. If static mode is
not used such variables may take the value of zero or perhaps even an
arbitrary value which could be anything. Static mode is the default on
some Unix machines, but not on Silicon Graphics, Apollo, or Hewlitt-
Packard. It is advised that subscript array checking NOT be used.

2. Those routines that access common block MCOMM now call the
include file, mcomm.h, which gives the dimension of the arrays in
MCOMM used by the routines -- MCDIM for four-byte variables,
MCHALF for eight-byte data types and MCDBL for two-byte variables.
Thus this common block is automatically made the same length in all
the routines that call it.

3. In data statements, variables whose values had been set equal to
hexadecimal numbers have the hexadecimal format set differently.
On the IBM, the format to set V AR equal to the hexadecimal number
48484848 had been "DATA VAR /Z484848481". This format was
changed to "DATA VAR 1'48484848'XI". This seems to be fairly
standard for Unix machines, but on Apollos, the format to use is
"DATA VAR /16#484848481".

4. Subroutine LIGHT has been changed to offer the choice to the user of
assigning values to the array ELIT(20}, as had been done before, or of
reading these values in from the output file of the LIGHT program,
light.17, as is done is SPECT. The variable 1ST is initialized positive
for automatic reading and negative for manual loading. Upon
subsequent returns to the subroutine its value is zero. This ELIT array
is written to the terminal output, morse.6. In case of automatic
loading, subroutine LIGHT calls INTERP, which does the actual
reading of light.17 and assigning of values to ELIT. INTERP is a
brand new subroutine. The data file, light. 17 , is read in on unit 8.

S. When running on Apollos, the functions lAND and lOR should be
replaced with AND and OR in jomS.f and jom6.f.

6. Time gate information is incorporated into BANKR and the AGE is
now one of the variables written to unit 10 to the file which is read by
MOREGS.

7. In some routines, calls to FLUSH are made to flush the buffers of 110
units and force writing to those files. These are useful for monitoring
the progress of the program. These calls to the intrinsic routine,
FLUSH, are not available on all Unix machines, however (e.g., IBM
RISC, Apollo, and Hewlitt-Packard). On these machines, it is
suggested that a dummy function be added to the code or that the calls
to FLUSH be commented out or deleted.

8. Subroutine ERROR had been a dummy routine which did nothing. The
26

routine now accepts an argument and prints it, then stops execution of
the program. All calls to ERROR send a unique integer argument so
the sources of errors can be better isolated.

9. Some changes have been made to Unix Version 3 to throwaway
particles which get lost in the geometry. A file named 'Lost..,particles'
is created and written to if and only if one or more particles get lost in
the geometry. This file should list ALL particles that get lost. The
event number and energy as well as the new and old coordinates of the
particle are printed out so that the user may make a determination
whether the loss is sufficient to throw out the entire event in
subsequent analysis.

Suggested Changes for Runnjng MORSE on IBM RISC:

One may wish to add 'flush.o' to the list of object files in the MORSE macro
in the Makefile and put a dummy subroutine flush, which does nothing, in
a new file, flush.f. Otherwise, use the 'grep -i flush *.f command to find
which routines call the flush function and comment out or delete these
calls.

Makefile
Add 'loc.o' to the list of object files in the MORSE macro.
Change the FFLAGS options from '-static' to '-qextname -qrndsngl'.

(The mM uses static mode by default.)
Change the 'f77' command to 'xlf.

LOC
The IBM does not have an intrinsic LOC function, so we used one from
CERNLm. This is in the 'calor89/auxiliary' subdirectory. It is written
in C but is Fortran callable. A copy of this routine is listed on page 17.

27

Electromagnetic showers from incident electrons and the electromagnetic
components of hadronic showers are simulated using EGS4. In CALOR,
the EGS4 code is divided into three separate programs. The program that
transports the electromagnetic component of the shower generated by
HETC is called EGS. When EGS4 is used to transport photons that have
been generated by neutron transport in MORSE, we call it MOREGS, or
more usually it is shortened to MEGS. EGSE is the name we have given to
the program when it runs for incident electromagnetic particles instead of
the electromagnetic components of hadronic showers.

Each of the EGS4 routines -- EGS, MEGS and EGSE -- are in the
'calor89/egs4' subdirectory. The main routines have been copied into three
versions - one for each of the EGS4 programs. Thus, the main routines are
egs.f, megs.f and egse.f. The three programs share all the rest of the
subroutines and functions except that MEGS uses slightly different
versions of AUSGAB, ELECTR, HBINIT, SHOWER and UPHI. These
slightly different versions are contained in the files ausgabm.f, electrm.f,
hbinitm.f, showerm.f and uphim.f -- the 'm' being appended to the
subroutine name in the filenames. The names of the subroutines
themselves have not been changed, but only the filenames in which the
MEGS versions are stored. The reason MEGS has its own versions of these
routines is that timing information from MORSE is passed through the
MORSE output file, morse.lO, to MEGS, where it may be used for time
analysis of the gammas resulting from low-energy neutron transport. The
different subroutines allow that timing information to be incorporated. The
changes made to do this are slight, but substantial enough to require using
distinct routines. Generally, the only significant difference between EGS
and EGSE is that the input and output files are defined differently in the
open statements of egs.f as opposed to egse.f.

Each of the three EGS4 .programs has its own Makefile which organizes the
compilation of its program. Thus, included are Make.egs, Make.megs, and
Make.egse. As the 'make' command would be ambiguous under these
circumstances, the various programs can be 'made' using three executable
shell scripts which make the various programs: make.egs, make.megs,
and make.egse. The subroutines FUGIT and HOWFAI were dummy
routines and were never called by any routine in EGS4. They have been
deleted. New routines are FLRAN, which had been an assembly code
routine and which is now the same FLRAN that is used in all the other
CALOR programs, and ZONEID, which is also used by MORSE and SPECT
to return the slab number into which energy has been deposited given the Z-
coordinate of the energy deposition.

Each EGS4 program reads its own main input file. EGS reads egs.5, MEGS
reads megs.5, and EGSE reads egse.5. The format of the input files is the
same for each of the EGS programs. These input files may be identical, but,
if so, there must be three copies -- one with each of the aforementioned
names.

28

EGS4lnput File Format

Line 1 -- format (3FIO.0)
XMAX, YMAX, ZMAX
The maximum extent of the calorimeter dimensions in centimeters for
the X, Y and Z directions, respectively. For example, if the calorimeter
is 1m x 1m x 2.3 m -- the last number being the depth -- and if the
center of the front of the calorimeter is at X = 0.0 and Y = 0.0, then the
numbers to be entered in this line are 50.0, 50.0 and 230.0. (See
Changes to HETC input, item 2.)

Line 2 -- format (110)
ISEED(1)
The first of two random number seeds. These should be non-negative
and no greater than 231 _ 1, which is 2147483647.

Line 3 -- format (110)
ISEED(2)
The second of two random number seeds. See note for Line 2 of the
input just above.

Line 4 -- format (15)
IGPRNT
This is the geometry print flag. Set to 0 to prevent writing out the
geometry input in geom.I8 to the main output file. If this is set to 2, the
geometry information will be printed out -- but the program may expect
to find information on the user's sex and marital status in the
geometry input. Rest assured that the program will not expect to find
information about the geometry of the USER, however -- only that of the
calorimeter. Users who consider being expected to supply their sex
and marital status to be an invasion of privacy need not provide such
information to run the program.

Caution Points when Runnjng EGS4 Programs

1. In the main programs, egs.f, megs.f and egse.f, a data statement is
used to give names to the various media. The array is MEDARR, and
its dimensions are 24 by the number of media. Each of the media can
be identified by a name that has up to 24 characters. These characters
should be entered into the data statement in quotes and separated by
commas. Unused characters out of the 24 should be allocated by
spaces in quotes. For example, iron would be fr,'R','O','N',20*' 'f (a
space is included between the last pair of single quotes). It is
imperative that the name given to a medium agree with the name it
was given in the input file for PEGS, pegs.5, that was used to generate
the cross section file, pegs.I2. Be sure to dimension MEDARR
correctly in the 'character*4' declaration.

29

2. The assignments of MEDARR to MEDIA in the do-loop which
immediately follows the open statements should correspond exactly to
the number of media in the calorimeter.

3. In the main programs, each element of the MED array should be
assigned a value equal to the number of that element up to the number
of media. The next element should be O. For example, if there are
three media, assignments should be made as follows: MED(1) =
1,MED(2) = 2, MED(3) = 3, MED(4) = O. In this case, no further
assignments should be made to elements of MED greater than 4.

4. In the main programs, the variable NMED should be set equal to the
number of media in the calorimeter.

5. Be sure that the energy range for which the pegs.12 cross section file
was calculated includes all the energies the particles might have. If a
particle has an energy which lies outside this range, there is code in
place in the main routines that are sent with CALOR to warn the user
and stop the program. This code was just put in place in Unix Version
3. Without it, the program runs indefinitely while accomplishing
nothing but using up CPU time.

Default values for low energy cutoffs on electrons and photons are
defined in BLKDTI in data statements for the variables, ECUT and
PCUT. It is probably easier to set ECUT and PCUT in the main
program. Commented-out lines are present which, if implemented,
will override the block data defaults. These cutoffs MUST NOT be
lower than the lowest energies for which cross sections were
calculated in PEGS as specified in the pegs.5 input file.

Changes of Interest in EGS4:

1. The makefiles contain a flag, -static, which is an option for the f77
compiler on the Silicon Graphics. It is advised that the EGS4
programs always be run in static mode. Running in static mode
insures that upon leaving a subroutine or function, the values of the
local variables used by that routine will be saved and used as initial
values for those variables upon return to that subroutine or function.
If static mode is not used such variables may take the value of zero or
perhaps even an arbitrary value which could be anything. Static mode
is the default on some Unix machines, but not on Silicon Graphics,
Apollo, or Hewlitt-Packard. It is advised that subscript array checking
NOT be used.

2. Subroutine ERROR had been a dummy routine which did nothing.
The routine now accepts an argument and prints it, then stops
execution of the program. All calls to ERROR send a unique integer
argument so the sources of errors can be better isolated.

30

3. Code has been put in place in AUSGAB (both the regular and MEGS
versions) and in the main programs to monitor the energy deposited on
an event-by-event basis and write the results to a file called egs.report,
megs.report, or egse.report on 110 unit 30. A parameter statement at
the beginning of these routines allows one to set the number of events,
slabs, and time gates.

4. In some routines, calls to FLUSH are made to flush the buffers of 110
units and force writing to those files. These are useful for monitoring
the progress of the program. These calls to the intrinsic routine,
FLUSH, are not available on all Unix machines, however (e.g., IBM
RISC, Apollo, and Hewlitt-Packard). On these machines, it is
suggested that a dummy function be added to the code or that the calls
to FLUSH be commented out or deleted.

5. Some changes have been made to Unix Version 3 to throwaway
particles which get lost in the geometry. A file named 'Lost...Jlarticles'
is created and written to if and only if one or more particles get lost in
the geometry. This file should list ALL particles that get lost. The
event number and energy as well as the new and old coordinates of the
particle are printed out so that the user may make a determination
whether the loss is sufficient to throw out the entire event in
subsequent analysis.

6. When running on Apollos, the functions lAND and lOR should be
replaced with AND and OR in jom5.f and jom6.f.

7. Comments have been added to explain what is being done in different
sections of the main programs (egs.f, megs.f, and egse.f) and in
ausgab.f and ausgabm.f.

Suggested Changes for Runnjng EGS4 on IBM RISC:

One may wish to add 'flush. 0' to the list of object files in the EGS4 macro in
the makefiles and put a dummy subroutine flush, which does nothing, in a
new file, flush.f. Otherwise, use the 'grep -i flush *.f command to find
which routines call the flush function and comment out or delete these
calls.

Make.egs, Make.megs, Make.egse
Add 10c.o' to the list of object files in the EGS4 macro.
Change the FFLAGS options from '-static' to '-qextname -qrndsngl'.

(The IBM uses static mode by default.)
Change the 'f77' command to 'xlf.

LOC
The IBM does not have an intrinsic LOC function, so we used one from
CERNLIB. This is in the 'calor89/auxiliary' subdirectory. It is written
in C but is Fortran callable. A copy of this routine is listed on page 17.

31

EGSPREP

EGSPREP generates history files for two of the EGS4 routines. Some
abbreviations have been made in the Unix version of EGSPREP. First, the
program is generally abbreviated to PREP, a term which is generally used
to denote the entire EGSPREP package. For instance, the subdirectory in
which the program is stored is 'calor89/prep'. Second, there are actually
two programs under this heading. One reads the HETC file and sets up
EGS to run. The other generates a series of incident electromagnetic
particles to prepare for running EGSE. The two programs are referred to
as EGSP and EGSEP, respectively. The only significant difference between
the two programs is in the open statements which define the file names
that are assigned the 110 unit numbers and the format of the input files.
Thus, there are two main programs, egsp.f and egsep.f. All the rest of the
subroutines and functions are shared by these two programs.

The entire program has been split up so that each main program,
subroutine, and function has its own file. The compilation is organized
using makefiles. To compile and link EGSP one types the name of an
executable shell script, 'make.egsp', and to compile and link EGSEP, one
types 'make.egsep'. The makefiles are Make.egsp and Make.egsep,
respectively.

This program can be run in either automatic (dynamic) mode or static
mode.

Everything associated with tape buffering has been eliminated from the
program. Thus, the following subroutines have been deleted:

BFIN, BUFLEN, BUFNMT.

A new routine, FLRAN, was incorporated. This had been an assembly code
function in the IBM version but is explicitly in Fortran in this version. This
is the same FLRAN that is used in all the other CALOR programs. In
PREP, it appears to be very rarely called.

EGSPREP Input File Format

The input for the PREP routines is described in the EGSPREP manual and
is repeated here with changes for the Unix version in place.

Card 1 - format (20A4)

TITLE - Problem Title Card

Card 2 - format (1015)

NHST- Logical unit containing an HETC generated input
32

source. This is 9 in Unix Version 3.

IN - Input file unit. This is 5.

10 - Printed output unit. This is 6.

ISORS - 0 => Process an HETC generated input source file.
This is for EGSP.

1-> Generate source using subroutine SETUP. This is
for EGSEP. One no longer rewrites subroutine
SETP, but defines parameters for the EGSE run
in the input file, egsep.5.

ISORT - -1/0/1 Execute the programming in subroutine SORS to
obtain low energy photons and fission photons
when processing an HETC generated input
source file. / Skip / Execute the programming in
subroutine SORS to obtain low energy photons (but
not fission photons when processing an HETC
generated input source file).
Generally, this is input as O.
If U238 is present, this should be -1.
The user may wish to implement a return
statement labeled 10 in subroutine AA6.
Instruction comments are in the code.

ISORU 011 Skip / Execute the programming in subroutine
SORS to obtain the electrons and positrons from
muo decay when processing an HETC generated
input source file. Generally, O.

ISORV - 0/1 Skip / Execute the programming in subroutine
SORS to obtain the electrons which come from
pi- to mu- decay when processing an HETC
generated source file. Generally, this is o.

MAXCAS -

NT-

NPRT-

Number of source particles per batch. If reading
an HETC file, this must equal MAXCAS in the
HETC input file. Generally, this is 1.

Number of batches of source particles per run.
(Number of events to be analyzed.) For EGSP, this
must NOT be larger than the number of events
requested in the HETC input file.

The number of generated source particles to be
printed. One may set this as large as one likes,
but setting it too large may cause the terminal
output file to be very large and consume large
quantities of disk space -- especially for EGSP.

33

Card 3 - format (110)

ISEED(1)- First random number seed. These seeds should be non-
negative and no larger than 231 _ 1, which is 2147483647.

Card 4 - format (110)

ISEED(2)- Second random number seed.

Input file, continued, for EGSEP only. The following lines are not included
in the input file for EGSP.

Card 5 - format (F15.0)

E- The energy of the source particle in MeV.
Add the rest mass of 0.511 for electrons and positrons.

Card 6 - format (3F5.0)

X,Y,Z - The initial position of the source particle.

Card 7 - format (3F5.0)

A,B,G - The direction cosines for the source particle in the X, Y
and Z directions, respectively.

Card 8 - format (2I5,F5.0)

K-

IRI -

WT-

Source particle type. This can be -1, 0 or 1 for an
electron, photon or position, respectively.

Source particle input region number. Generally, 1.

Weight of the incident particle. Generally, this is 1.0.

Changes of Interest in EGSPREP:

1. The program stops with a warning message if a number greater than
or equal to 58 is submitted for the history file. This had corresponded to
tape buffering for the IBM version, but this has all been deleted.

2. The declaration 'PROGRAM ELECTRONIC' has been put at the top of
egsep.f and 'PROGRAM HADRONIC' at the top of egsp.f to denote
explicitly that egsep.f is used to transport only electromagnetic
showers and that egsp.f is used to transport the electromagnetic
component of hadronic cascades.

3. Subroutine ERROR had been a dummy routine which did nothing.
The routine now accepts an argument and prints it, then stops

34

execution of the program. All calls to ERROR send a unique integer
argument so the sources of errors can be better isolated.

Suggested Changes for Running EGSPREP on IBM RISe:

Make.egsep, Make.egsp
Change the FFLAGS options from '-static' to '-qextname -qrndsngl'.

(The mM uses static mode by default.>
Change the 'f17' command to 'xlf.

35

The only major change in Unix Version 3 of PEGS is that the variables that
were read in from the namelists in the data files pegs.S and pegs.9 are no
longer read in as namelists but are read in by a new subroutine, READER,
which reads the data in as formatted input. The old pegs.S and pegs.9 have
been replaced by new data files which contain the same data, but in
formatted form instead of in namelists. The program now consists of 100
subroutines and functions. The program has not been broken up into
separate routines as have many of the CALOR programs, but the PEGS
code remains in one file. PEGS must be compiled when installed, but it
should not be necessary to ever compile the code again unless required by
compiler and/or operating system changes or relocation of the pegs.S and
pegs.9 input files. These input files might best be stored in one location for
access by all users.

Users are referred to the PEGS manual for input instructions. This code
may be run in either automatic (dynamic) mode or in static mode.

The pegs.lO file contains information on the failure of an integration
routine to get errors within specified bounds. The relative error is supposed
to be within .001 %. The greatest range in photon cutoffs I have used is
from 0.1 MeV to 225000 MeV, and the worst relative errors are on the order
of.05 %.

Changes of Interest in PEGS:

1. The variables that were read in from the namelists in the data files
pegs.S and pegs.9 are no longer read in as namelists but are read in by
a new subroutine, READER, which reads the data in as formatted
input. The old pegs.S and pegs.9 have been replaced by new data files
which contain the same data, but in formatted form instead of in
namelists. This change was made to accommodate the Sun computers
which don't seem to be able to read the old namelists in correctly.

In the read statements for namelist, the string 'nml=' must precede
the name of the namelist. The delimiters for namelists in the input
file, pegs.5, have been changed from ampersands, '&', to dollar signs,
'$'. This seems to be standard for Unix machines except IBM RISC
computers, which require the ampersand delimiters which were used
by the IBM mainframes. On the Silicon Graphics, the computer
seemed to read the input file, pegs.5, better if all trailing blanks at the
ends of lines in the input file were deleted.

2. It is imperative, when a subroutine or function is called, that the
arguments passed be of the same data type in the calling routine as
they are in the called routine. In function QD, a number of variables
were originally declared REAL*S. These variables were then passed to

36

the integration function DCADRE where they were declared REAL.
This was causing REAL problems. Therefore, the following changes
were made: In QD, the REAL*8 declaration for DCADRE, ADUM,
BDUM, ERRDUM and MSG as REAL*8 was changed to REAL for all
the variables except MSG which was declared to be CHARACTER*6.
In DCADRE, AERR and RERR were removed from a REAL
declaration and put into a REAL*8 declaration. The declaration
'INTEGER IER' was added to both QD and DCADRE.

3. The declaration 'EXTERNAL F' needed to be added to subroutine
DCADRE.

4. In trying to bring up the code on an Apollo at the University of
Alabama, Jerry Busenitz found that there were a number of functions
which were called the first time only for initialization purposes. These
had been called in the same way as subroutines. This was changed so
that a dummy variable was set equal to the function name. For
example, 'CALL BREMDR(E,K1)' was replaced by 'DUMMY =
BREMDR(E,K1)' in BREMRR. Like changes were made for functions
BREMDZ in BREMRZ, BRMSDZ in BRMSRZ, PAIRDR in PAIRRR,
and P ARIDZ in P AIRRZ. (The code seems to run fine on the Silicon
Graphics without this modification, but the Apollo didn't like it at all.)

5. The cross section data file, though still read out on unit 7, is now called
pegs. 12. This was done in part for consistency with the EGS4 routines
which read the file in on unit 12 and in part to allow the '.7' extension
to belong only to the binary output files which are read by the FINAL
analysis program.

6. In MOLlER in a DATA statement of FO and in PAIRFZ in an
assignment to ONEEPS, the value l.E-38 is used. This is too small for
the real number range on the Silicon Graphics. These numbers were
changed to l.E-37

Suggested Changes for Running PEGS on IBM RISe:

Input File - It will probably be necessary to change the delimiters on
namelists in the input file, pegs.5, from dollar signs ($) to
ampersands (&).

37

APPENDIX A

LIST OF INPUT AND OUTPUT FILES

HETC

1 IN henmt 9 (binary) First Cross Section Data File
3 IN henmt 10 (binary) Second Cross Section Data File
5 IN hetc 5 HETC Input File

18 IN geom 18 Geometry File

6 OUT hetc 6 HETC Terminal Output
9 OUT hetc 9 (binary) HETC History File

SPECT

5 IN spect 5 SPECT Input File
8 IN light 17 Scintillator Light Saturation Curves
9 IN hetc 9 (binary) HETC History File

15 IN id 15 Slab ID Information

6 OUT spect 6 SPECT Terminal Output
7 OUT SPECT 7 (binary) STO and STON in Binary Format

:l) OUT spect report Running Summary of Events

MORSE

1 IN morse 1 (binary) Neutron Cross Section File
5 IN morse 5 MORSE Input File
8 IN light 17 Scintillator Light Saturation Curves
9 IN hetc 9 (binary) HETC History File

15 IN id 15 Slab ID Information
18 IN geom 18 Geometry

6 OUT morse 6 MORSE Terminal Output
7 OUT MORSE 7 (binary) STO and STON in Binary Format

10 OUT morse 10 (binary) Output to MOREGS
:l) OUT morse report Running Summary of Events

38

EGS

5 IN egs 5 EGS Input File
10 IN egsp 10 (binary) EGSPREP Output from HETC

History File
12 IN pegs 12 PEGS Cross Section File
15 IN id 15 Slab ID Information
18 IN geom 18 Geometry

6 OUT egs 6 EGS Terminal Output
7 OUT EGS 7 (binary) STO and STON in Binary Format

3) OUT egs report Running Summary of Events

EGSE

5 IN egse 5 EGSE Input File
10 IN egsep 10 (binary) EGSEPREP Output
12 IN pegs 12 PEGS Cross Section File
15 IN id 15 Slab ID Information
18 IN geom 18 Geometry

6 OUT egse 6 EGSE Terminal Output
7 OUT EGSE 7 (binary) STO and STON in Binary Format

3) OUT egse report Running Summary of Events

MEGS

5 IN megs 5 MOREGS Input File
10 IN morse 10 (binary) Output from MORSE
12 IN pegs 12 PEGS Cross Section File
15 IN id 15 Slab ID Information
18 IN geom 18 Geometry

6 OUT megs 6 MOREGS Terminal Output
7 OUT MEGS 7 (binary) STO and STON in Binary Format

3) OUT megs report Running Summary of Events

EGSP

5 IN egsp 5 EGSPREP Input File
9 IN hetc 9 (binary) HETC History File

6 OUT egsp 6 EGSPREP Terminal Output
10 OUT egsp 10 (binary) EGSPREP Output to be Read by EGS

39

EGSEP

5 IN egsep

6 OUT egsep
10 OUT egsep

PEGS

5 IN pegs
8 IN pegs
9 IN pegs

6 OUT pegs
7 OUT pegs

10 OUT pegs

LIGHT

5 IN light

6 OUT light
17 OUT light

5 EGSEPREP Input File

6 EGSEPREP Terminal Output
10 (binary) EGSEPREP Output to be Read by EGSE

5
8
9

6
12
10

5

6
17

PEGS Input File
PEGS Cross Section Data
PEGS Cross Section Data

PEGS Terminal Output
PEGS Cross Section File
Error Messages for Integrations

LIGHT Input File

LIGHT Terminal Output
Output File read by SPECT and MORSE

HENMT

17 IN henmt 17 Cross Sections in ASCII

9 OUT henmt 9 (binary) HETC Cross Sections
10 OUT henmt 10 (binary) HETC Cross Sections

40

FINAL

11 IN SPECT 7 (binary) STO and STON from SPECT
12 IN EGS 7 (binary) STO and STON from EGS
13 IN MORSE 7 (binary) STO and STON from MORSE
14 IN MEGS 7 (binary) STO and STON from MOREGS
15 IN EGSE 7 (binary) STO and STON from EGSE

6 OUT FINAL 6 Terminal Output from FINAL.
Histograms, etc.

91 OUT had 1
92 OUT had 2
00 OUT had 3 These files list the energy output on an
9i OUT had 4 event by event basis for the time gates 1-7.
!li OUT had 5 Suitable for analyzing with PAW.
96 OUT had 6
!1l OUT had 7

41

APPENDIXB

MORSE Cross Section Identifiers

Following is a list of the elements for which cross sections are available for
MORSE and the identifiers that must be used at the bottom of the MORSE
input file, morse.5, to tell MORSE to read them:

Identifiers Elements

1-4 Fe

~ U-238

9-12 Ar

13-16 C

17-20 H

21-24 Ph

25-28 U-235

29-32 0-16

33-36 AI-27

37-40 Si

41-44 Cu

45-48 Ta-181

49-52 W

42

