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Barrel Muon Detector Design Considerations 

This memo summarizes several calculations of momentum resolution for a 

barrel toroid muon detector. An emphasis is placed on determining the factors 

necessary to achieve a good P.l trigger. 

1. Preliminaries 

Figure 1 shows the efficiency of a muon trigger which demands a muon with 

a momentum above PTHR as a function of P /PTHR for a muon system capable 

of offering a p / P = 20% , 40 %, and 70 % fractional momentum resolution. 

Figure 1 suggests (to me, at least) that a fractional momentum error of 

a p / P = 20% is a reasonable goal for a muon trigger. A 20 % resolution suppresses 

very low momentum muons at the 5 a level, where as a a p / P = 70% detector only 

suppresses soft muons at the 1.4 a level and thus allows a 7 % trigger efficiency 

for soft muons. 

Toroidal systems will give a nearly constant fractional momentum error until 

the momentum becomes large enough that finite spacial resolution effects become 

important. In the absence of special momentum dependent weighting schemes 

(which presumably reflects the "on - line" situation) the fractional error will 

follow the form: 

ap 
-=ar P 

(1) 

where ar is the fractional error at low momenta and P*, which I will call the "ef-

fective" momentum, is the momentum beyond which spacial resolution dominates 

multiple coulomb scattering error (MCS). 
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For a toroid of length L which is instrumented with N planes evenly spaced 

throughout the toroid, one can work out analytic simple expressions for the 

momentum resolution in one parameter fits (ie where the incoming direction 

and position are known from an auxiliary high resolution system (such as the 

CTD). 

aT = .014 fl30 
.3BJLXo Y81 (2) 

P, = .014 J ~o v'N (~) J 1~2 (only for 1 parameter fits!) (3) 

The units are GeV - meters - Tesla. These formula give the leading N approxi-

mations to the resolution but are fairly accurate once N exceeds 5. 

If one considers three parameter fits, where the toroidal system determines 

the incoming position and angle as well as the momenta, my semi-analytical 

calculations indicate that the MCS dominated fractional error computed by Eqn. 

(1) over estimates the 3 parameter fit error by 5%, but the effective momentum 
gets reduced by a factor of over 6! (ie p~3 par) = 0.159 X p~lpar»). Apart from 

the constant of Eqn. (3), the prediction that the P* should be proportional to 

v'N and a-I are well reproduced for my semi-analytic calculations for the case 

of a three parameter fit. 

Figure 2 illustrates spacial resolution effects in the trigger efficiency for the 

case of a P* = 68 GeV , 180 GeV , and 00 for a trigger set at 100 GeV. Figure 

2 assumes a low momentum fractional momentum error of 18 %. Poor spacial 

resolution of the muon toroid read-out planes has its largest effect in prolonging 
the approach to € ---+ 1 at high momentum. Even with a low P* the trigger is 
reasonably discriminating against soft muons. One could argue from the clear 

loss in efficiency up to even 150 GeV in the solid curve ( P* = 68 GeV ) that it is 

highly desirable to keep P* > 50 Ge V if one is considering triggering thresholds 
as high as 100 GeV. If one thinks that the maximum triggering threshold would 

be in vicinity of 50 GeV, a "reasonable" criteria might be to keep P* > 25 GeV 
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In conclusion, I believe that a reasonable criteria for a muon system capable 

of effectively triggering up to 100 Ge V , is a low momentum fractional momentum 

error of about 20 % and an effective momentum of P* > 50 GeV. Once at least a 

minimal number of read-out planes are instrumented, the fractional momentum 

error at low momentum is essentially determined by the the thickness and length 

of the toroid; while the number of read-out planes and their spacial resolution 

controls the size of P*. If one lowers the triggering threshold, the P* (but not the 

aT) criteria could be lowered as well. 

2. An "HCD" Toroid System 

As a starting point, I consider a stand-alone toroid system which follows the 

rough geometry of the RCD detector. The rough real estate is thus: 

HCD - Toroid 
--+ 

Detector Radius B 

SSD & CTD Om-2m 1.7 T z 
Calorimeter 2.4 m - 4.8 m 

Flux Return 5 m-6 m -.62 T z 
TOROID 6.5 - 8.0 m 1.7 T ~ 

The solenoidal and flux return fields are essentially irrelevant here since the 

toroid system only measures trajectories in R-Z plane in my simple stand-alone 

system. 

We begin by considering a system where the toroid is read-out by a read-out 

plane on its inner radius, outer radius and some number of planes interspersed 

throughout the toroid. In this stand-alone mode we make no use of any other 
position measurements from either the beam or chambers not adjacent to the 

toroid. The unfortunate aspect of this design, is at least 3 planes are 

necessary to fit for the momentum, position, and slope and hence at least one 
plane will be have to exist within the toroid itself. We considered a 
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design where the detector planes are evenly spaced and have a U z resolution of 

U z = 400pm. The toroid has a radial extent of 1.5 m and a field of 1.7 T. The 

following resolution parameters were obtained as the number of planes was varied 

from 3 (minimal number) to 6. 

N Ur p* 

3 0.20 58 GeV 

4 0.19 61 GeV 

5 0.19 67 GeV 

As expected, there is little degradation in the fractional momentum error at 

low momentum as one decreases the number of planes. The increase in the P* 

with increasing number of planes does not appear to warrant anything but a 

minimal N = 3 system. 

2.a Use of the Z beam constraint 

Perhaps the Z of the beam will be known to U z = 5 mm and this information 

can be used to supplement the momentum resolution of the above system for 

the use of triggering. A particularly attractive possibility would be to reduce the 

number of toroid planes to two - one on either side of the toroid- and obtain the 

necessary third spacial point from the beam. 

Figure 3 shows the fractional momentum error as a function of P for a two 

plane toroid system (with U z = 400pm) where we include the beam point with a 

weight appropriate to U z = 5 mm. An identical curve is obtained if one employs 

MeS weighting since there is no "redundant" information in this minimal 2 
plane system which can be down weighted. The fractional momentum error 

at low momentum appears to be unacceptable according to the stated criteria of 

up/ P ::; 20%. 

Although the beam constraint does not act as a viable alternative to a third 

plane, will hit help improve momentum resolution to include it in the fit? Figure 
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4 provides a surprising answer for a 6 plane system. The two solid curves show 

the fractional momentum error as a function of momentum for fits without special 

MCS weighting, (ie the points are weighted by the reciprocal of their asymptotic 

resolution). At low momenta, the fits which use the beam point (with a weight 

corresponding to a z = 5mm) actually have a fractional momentum error which 

is twice as poor as a fit which leaves out the beam point at low momentum. In-

clusion of the beam point does improves resolution at momenta beyond 100 GeV. 

The dashed curve shows the fractional momentum error for a fit which includes 

the beam point and is properly MCS weighted. When properly weighted, the 

inclusion of the beam position in the fit always improves momentum resolution. 

Without proper weighting, the inclusion of the beam position actually acts as an 

information destroyer. 

2.b Inclusion of a plane directly before flux return 

It is probably possible to include a muon plane at a location right before the 

flux return and thus have a three plane geometry given below: 

2 + 1 Option 

~ 

Detector Radius B 

SSD & CTD Om-2m 1.7 T z 
Calorimeter 2.4 m - 4.8 m 

p1 4.9 m 

Flux Return 5 m-6m -.62 T z 
p2 6.5 m 

TOROID 6.5 - 8.0 m 1.7 T <P 

f-l3 8.0m 

We can call this deployment the 2 + 1 plane option since the third plane lies 

outside the toroid. 
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Figure 5 gives the fractional momentum error as a function of momentum 

for the above 3 plane system. The solid curve uses just the R-Z view; while 

the dashed curve uses information from the flux return field as well. The figure 

assumes that the muon planes have (j r¢> = (j z = 400 J.lm. The R - </> view provides 

little additional information. This three plane system has a low momentum 

fractional momentum error of (jr = 28% and a large effective momentum of 

P* = 171 Ge V. Figure 6 compares the efficiency as a function of momentum for 

a 100 GeV muon trigger for this 2 + 1 plane system and for the previous 3 plane 

system with the third plane in the middle of the toroid. The 2 + 1 plane trigger 

will have poorer performance at low momenta than the 3 plane option owing to 

the larger value of (jr. The 2 + 1 option offers only suppresses soft muons on the 

3.6 (j level. On the other, the 2 + 1 plane trigger comes to asymptotic efficiency 

above 100 GeV much faster than the 3 plane option owing to its much higher P*. 

The big advantage of the 2+ 1 option is that one does not have to put a muon 

plane in the middle of the toroid system to get three spacial coordinates. 

The inclusion of an additional plane outside of the toroid does quite a bit to 

improve momentum resolution. For example, the dashed dotted curve of Figure 

5 describes the momentum resolution of the below "2 + 2" option: 
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2 + 2 Option 
.... 

Detector Radius B 

SSD & CTD Om- 2m 1.7 T z 
Calorimeter 2.4 m - 4.8 m 

jll 4.9 m 

Flux Return 5 m-6 m -.62 T z 
jl2 6.5 m 

TOROID 6.5 - 8.0 m 1.7 T <P 

jl3 8.0 m 

Air Gap 8.0 - 9.5 m 

jl4 9.5 m 

The 2 + 2 option offers a low momentum fractional momentum error of 

{7T = 20% and a very large effective momentum of P* = 295 GeV. We could thus 

afford to reduce our muon plane resolution requirements to only {7z = 2000jlm 

and still match our criteria for P* > 50 GeV. The 2+2 allows us to meet or 

exceed our design criteria but requires more radial real estate. 

Figure 7 shows the fractional momentum resolution at low momentum as a 

function of the radius of the outermost plane (jl4). Again we assume the planes 

have {7z = 400 jlm. The dashed curve uses proper MCS weighting, while the 

solid curve has each point weighted by its inverse asymptotic spacial resolution 

(ie equal weighting). We note that diminishing returns in reducing {7T beyond 

20 cm of additional radius when one uses MCS weighting; while without the use 

of MCS weighting about a meter of additional radius is necessary to realize the 

potential of 2 + 2 option (ie a 27 % improvement in momentum resolution). 

It should be possible, even at the trigger level, to perform MCS weighting 

for an assumed fixed momentum which I will call the weighting momentum. The 

idea here is to fit the muon tracks assuming a covariance matrix which reflects 
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both the intrinsic chamber resolution and smearing due to MeS calculated for 

tracks with the weighting momentum. Fundamentally, the fitting process finds 

the track curvature (reciprocal momentum) through a linear transformation of 

the muon chamber coordinates Xi of the form: 

1 
-= LPi Xi P . , 

where the Pi fitting coefficients depend on the weighting scheme (as long as re-

dundant information exists - ie more than three planes). As long as the weighting 

scheme (Pi coefficients) are constant, the resolution on momentum will be of the 

effective momentum form: 

ap 
- =aT p 

Different weighting schemes using different weighting momentum will produce 

different values of aT and P*. For tracks with momenta close to the weighting 

momentum, the momentum resolution will be optimal; at other momenta the 

resolution will be non-optimal (possibly much worse than equal weighting). 

Figure 7.2 shows a plot of P* versus aT for the 2 + 2 option with the outer 

most chamber at 8.2 m , 8.4 m, and 9.5 m The box illustrates the criteria 

aT < 0.20 ,P* > 50 GeV. In order to exceed the criteria one needs> 20 

cm of additional radius for the outer most muon plane and one must use weights 

appropriate to a low weighting momenta. 

Finally we try the possibility of a 3 + 2 option where we have included an 
additional plane between the toroid and the calorimeter. The geometry is: 
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3 + 2 Option 

Detector Radius B 

SSD & CTD Om-2m 1.7 T i 

Calorimeter 2.4 m - 4.8 m 

J.l1 4.9 m 

Flux Return 5 m-6 m -.62 T i 

J.l2 6.1 m 

Air gap 6.1 m - 6.5 m 

J.l3 6.5 m 

TOROID 6.5 - 8.0 m 1.7 T ¢> 

J.l4 8.0 m 

Air Gap 8.0 - 8.4 m 

J.l5 8.4 m 

Figure 7.4 gives the fractional momentum resolution as a function of momen-

tum for the 2 + 2 option (with the outermost plane at 8.4 m) (curve a) and 

for the 3 + 2 option described in the above table (curve b). All the curves in 

Figure 7.4 assume perfect MCS weighting. The improvement between curve a 

and curve b is rather modest. We note that the 3 + 3 option has removed the 
steel between 6.1 and 6.5 m over the 3 + 2 option. Much of the improvement in 

resolution is just due to the removal of this 40 cm of steel as illustrated by the 

dashed curve d which shows the resolution if J.l2 information is not used in the 

fit. Finally curve c gives the resolution for the case where J.l1 is absent from the 

fits which include planes J.l2 -+ J.l5 only. Clearly J.l1 provides an important lever 

arm at high momentum but is redundant at low momenta. 

2.c Conclusions 

It does indeed appear to be able to construct a muon system which uses a 1.5 

thick toroid magnetized to 1.7 T and achieve a 20 % -+ 30 % fractional momentum 
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error which appears adequate for triggering purposes. Such a system requires the 

construction of three planes to measure the R-Z trajectory of the track. The Z 

beam constraint does not appear to produce a viable third coordinate without 

the use of special MeS weighting schemes. All plans we have considered in this 

section, have two measuring planes which sandwich the toroid. An adequate 

solution uses a third plane in the center of the toroid and achieves an U r = 18% 

momentum fraction error and P* = 68 Ge V. A barely adequate solution (referred 

to as a 2 + 1 option) uses a third plane directly after the calorimeter and achieves 

U r = 28% and P* = 171 GeV. A superior scheme (referred to as the 2 + 2) option 

uses a fourth plane located after a 1 to 1.5 m air gap after the toroid. The 2 

+ 2 option achieves U r = 20% and P* = 295 Ge V. Because of large P* values 

obtained in the 2 + 2 and 2 + 1 option, the muon plane Z resolutions can be 

considerable relaxed with little harm to the trigger performance. Because of the 

large differences in MeS environments for the 2 + 2 option planes, considerable 

improvements are possible if one approachs MeS weighting. It appears that 

about 40 additional cm for the outermost plane are necessary to realize the 

potential of the 2 + 2 option if one has U z = 400llm muon plane resolution. 

3. No Toroid Options 

We begin by essentially considering the 2 + 1 option with an un-magnetized 

absorber. The geometry is thus: 
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Un-magnetized 2 + 1 Option 

Detector Radius B 
SSD & CTD o m-2 m 1.7 T z 
Calorimeter 2.4 m - 4.8 m 

/-l1 4.9 m 

Flux Return 5 m-6 m -.62 T z 
/-l2 6.5 m 

ABSORBER 6.5 - 8.0 m 

/-l3 8.0m 

We assume all 3 planes measure the R - 4> coordinate with 150 /-lm resolution. 

Momentum dispersion is provided by both the beam constraint and the flux re-

turn. Figure 8 shows the fractional momentum error at 10 GeV as a function of 

the transverse beam error for naively weighted (by asymptotic resolution) (solid) 

and MCS weighted fits (dashed). Although the beam constraint has the capa-

bility of increasing resolution by about 50 % as indicated by the MCS weighted 

fit, the beam constraint without proper MCS weighting acts as a rather severe 

information destroyer. We note past a certain point, the resolutions reach a new 

plateau which indicates that momentum information is coming essentially from 

the flux return alone. Even with MCS weighting, the 2 + 1 option with a beam 

constraint does not look capable of meeting the 0' p / P :::; 20% criteria at low 

momenta. 

It may be possible to include information from the outer most CTD plane 

to further refine the momentum resolution for triggering purposes. The idea 
here is to use the beam constraint, and a space point at 2 M to obtain a high 
quality trajectory into the calorimeter and muon steel and use the cruder R - 4> 

measurements from the 3 planes of the 1 + 2 option to establish the momentum. 

Figure 9 shows the fractional momentum error for muons at 10 GeV as function 
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of aR<jJ for the outer most plane of the CTC at two meters. We assume a 10 

p.m beam extent and 150 p.m measurement from the 3 muon planes. Again the 

solid curve uses naive weighting (asymptotic resolution weighting) and the dashed 

curve has proper MCS weighting. A 13.5 % low momentum fractional error is 

possible with a proper weighting scheme as long as better than 1 cm resolution 

is obtainable by the CTD outermost plane at 2 meters. 

Figure 10 gives a P* versus ar plot for a cruder system with no muon detector 

beyond 6.5 m with geometry and resolutions described below: 

Minimal Non-Toroid Option 
.... 

Detector Radius ar<jJ B 

Beam const 0 10 p.m or 1000 p.m 

outer CTD 2m 400 p.m 1.7 T z 
Calorimeter 2.4 m - 4.8 m 

p.1 4.9m 400 p.m 

Flux Return 5m-6m -.62 T z 
p.2 6.5m 400 p.m 

The solid curve of Figure 10 is for a 10 p.m beam constraint; the dashed 

curve is for a 1000 p.m beam constraint. Clearly a rather crude beam cons taint 

provides sufficient resolution. The plot symbol (single point) is for a 10 p.m beam 

constraint with information from the beam constraint the outermost CTD and 

p.1 only (hence no redundancy). We note that it is possible to meet the resolution 

criteria without building muon planes outside of the flux return if one can get 
information from the outermost layer of CTD. 
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