
SOC
SOLENOIDAL DETECTOR NOTES

A NEWAPPROACH TO PHYSICS CODE

C.A. Fry

March 20, 1991



A New Approach to Physics Code

C. Alan Fry 91.03.20

In REP we are facing a crisis in our ofBine software. We are faced with in
creasingly complex code and procedures. The reliability of such codes is almost
certainly decreasing and when used by mere mortals the reliability approaches
zero. It is perhaps remarkable that journals still accept our results for publication
and that graduate students routinely receive PhD's. I will limit my discussion
to a fairly general level and attempt to define directions and places to attack the
problems.

Description of the Problems
There are several contributing factors in this problem. Many physicists would
blame FORTRAN for this situation and I would agree with them only in part.
Today's modem FORTRANs which exist on VAX VMS and SGI and SUN (just
to name a few) have many enhanced features that allow the programmer take
advantage of many C-like features. Unfortunately, most physics code is still
written to conform to the restrictive ANSI FORTRAN77 standard. Actually, in
practice there are many violations of the standard but they are not violations that
take advantage of extended C-like features of the modern FORTRAN compilers.
It would be interesting to understand the cost and benefits of this practice.

A second factor is the increasing size and complexity of the physics codes in use.
The number of authors is increasing, the number of procedures or subroutines is
increasing. The number of platforms and environments in which it is desirable to
run the code is also increasing. Code management is increasingly difficult. We
have routines with the same name that perform different functions that users rou
tinely mistakenly use, much to their grief. Almost all REP code is now compiled
with an extra step (preprocessing) not only to correct for machine dependence
but also to enforce uniformity in such things as COMMON declarations. This is
one more fallible step that any user must master.

A third factor is that which I will call the data correction procedures. Physics
data seldom stands alone anymore. I cannot give you an analyzed event without
giving you numerous other procedures that correct for the fact that the event is
likely to have been analyzed to some degree incorrectly; a new and better cali
bration exists, a new and better track fitter exists, etc. It is too costly to rewrite
and analyze the events everytime something is improved 80 we choose instead to
incorporate as much as possible such improvements into the post reconstruction
phase. Unfortunately, this is the phase which is executed the most times by
the most users at the most locations and any complications here cause the most

1



inconvenience.

Finally, we have the "human" factor which touches all of the previous factors and
can be viewed in some sense as their source. We make mistakes when we write
code. Some languages protect you less than others. Some operating systems offer
features such as "readonly" sections of memory. Some code is written by pros
some is written by amateurs, all of it can have problems.

We must learn to deal with problems of user code which inadvertently affects
other parts of the code as it executes, thus giving erroneous and unreliable results.

Online Situation
The problem is less acute in the area of online computing. Generally, the task is
more specific and the program writers more skilled (at the risk of offending some
very skilled offiine people). Many so-called object oriented features can easily
be recognized. Additionally, online routines tend to be more compartmentalized;
the various pieces of the system run as separate processes sometimes on different
CPU's. They communicate via standard methods and interfaces like VAX/VMS
mailboxes and shared memory. They are protected from each other by the oper
ating system to a large extent and usually the reliability of one routine will not
affect that of another in this situation. An online system behaves to some extent
as a so-called software bus.

Directions for Solutions
What are the solutions? More practically, what are some directions in which
we can proceed which will simplify and increase the reliability of our code? I
believe there are several points of attack. Mostly they are based on appealing to
the operating system in one way or another. Using the power of the operating
system is the preferred way to do things reliably. Why write a program to copy a
file when a command to do it already exists? First, consider compilers. I know we
will not abandon FORTRAN; some people even like FORTRAN. Are we using
the full power of the compilers offered? The answer is no. Any movement to
utilize FORTRAN-9x features will allow large gains in all areas reliability and
ease of use which far out weigh the fact that we may not be able compile it
on some machines. There is also benefit in using other modern compilers. For
example, object oriented languages such as Eiffe1 are safer. They impose rules
on the program which go a long way to insuring consistency of all the parts.
Inheritance is a feature which promotes consistency. Eiffel when compared to
FORTRAN reduces the number of lines of code by a factor of five. This increases
program writing speed and reliability all by itself. The object oriented approach
also increases execution speed: an oops histogram package is lOX faster than

2



standard FORTRAN calls to HBOOK. There are many places in which C is the
appropriate language, notwithstanding the fact that FORTRAN 9x makes some
features of C redundant.

The code management problem is a difficult one. It mayor may not be sim
plified in the case of languages other than FORTRAN. Both OOPS languages
and FORTRAN have features which could be called "INHERITANCE" which
should simplify management, however, in the case of the FORTRAN INCLUDE
statement we have a problem of non-uniform implementation due to the different
filenaming conventions of different systems. We have not been very successful at
using the "built-in" features of the compilers and operating systems.Virtually all
computers today support a standard c pre-processor which I believe is the thing
to use when managing code for different platforms. To date, this under utilized in
HEP, instead we rely on such anachronisms as PATCHY/CMZ and other home
made pre-processors. Clearly, things such as CASE tools need to be tested in
the REP environment, however, we need such tools to run on several platforms.
An attractive alternative is to confine all code management operations to UNIX
and use the standard SCCS that is part of UNIX. Leaving, only the compile and
link steps to be platform specific. In general, code management should be im
plemented using tools which are well supported by operating systemslike SCCS
and the c-preprocessor.

The continuing growth of post-reconstruction complexity finds its root in our
choice of data-structures and in how we manage data. At present we keep data
in sequential files on disk or tape. A "bank" structure is imposed on the events
and normal reconstruction proceeds by reading in a complete event, discarding
unneeded banks modifying others, and creating new banks and then writing out
the event to a second sequential file. During this process numerous corrections
are applied which are derived from sources external to the actual source of events,
such as calibration databases and actual details of procedures such as track fit
ting. Although we try to keep track of the exact reconstruction procedure often
we fail and often it is simply not practical to re- reconstruct large volumes of
data everytime an improvement is made. We must learn to do this differently.
An obvious direction is that of object oriented relational databases for the event
data banks, calibrations, and reconstruction procedures so that "users" will get
a consistently reconstructed events. Such an example is discussed in the note by
Baden & Grossman. Effort is underway to study the application of databases to
HEP at a few institutions.

Finally, how to attack the human factor? This problem is usually manifested as
flaws in the interdependence of cooperating routines. Here, I believe that we have
something to learn from online software. Our present codes basically ignore the

3



operating system whereas online codes historically have had to learn to utilize
many features of operating systems. We must learn to encapsulate the various
routines of the physics analysis and reconstruction in such a way that they are
insulated from excessive knowledge of each other. This means, for example, that
track reconstruction should be able occur simultaneously with and independently
of shower reconstruction, at some level. The procedures should communicate by
standard means like mailboxes, pipes, sockets, and shared memory whether they
are actually separate processes, on separate CPU's, or whatever. I hasten to
point out that I am not ruling out non-Unix platforms, I am only proposing a that
standard interfaces encapsulate logical portions of an image and that the platform
dependence be internal to the encapsulating routines. The case of conventional
image execution is just a special case where all the procedures occupy one image
but are still encapsulated by standardized interfaces. On most systems it will be
natural to use such procedures as separate images which execute asynchronously
and cooperatively. We will then have very powerful assistance from the operating
system to insure that the procedures do not corrupt and affect each other in subtle
ways we cannot control. We will be able to plug in and unplug routines at will;
even during execution. For example, re-linking and re-compilation will not be
required in order to change such things as the graphics interface or track fitter. A
particular database system can be unplugged and replaced with minimal effort.
A bug in one routine will be confined to that routine. Reliability will be greatly
enhanced and it will be trivial for the user to plug together the pieces of code
which he would like use.

Summary
I have tried to recognize and suggest some solutions to several problems which are
outstanding in our ofHine REP codes. In all cases I would suggest that we make
greater effort to use features of operating systems which are in general better
supported and more robust than any user code we are likely to write. There are
four directions in which we must conduct further study to see if truly feasible
solutions will present themselves. Firstly, we must study and prototype the use
of modem compilers. Secondly, we should attempt to move code management to
sees and UNIX using the c-preprocessor to take care of platform dependence.
Thirdly, we need to make significant effort in the area of databases for HEP
to see if practical application will be possible and if the post reconstruction
problems can be addressed. Finally, we need to study and proto-type a new style
of interfacing logical portions of our code. This might be termed a software-bus
approach, but it can collapse into a conventional system if necessary and should
yield dividends in the areas of reliability and flexibility.

4


