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ABSTRACT
A hadron with energy E cascades in a uniform calorimeter. With some probability, energy Ee enters the

electromagnetic sector, mostly tlUough 11'0 production. It produces a visible signal E;ta via a second frequency
function. To the approximation that escaped energy (carried by albedo particles, neutrinos, and muons) can
be neglected, the remaining energy E,. = E - Ee enters the hadronic sector. A third frequency function,
with its variance dominated by binding energy loss fiuctuations, describes the probability of obtaining a
hadronic contribution EFt- to the visible energy deposition for fixed Ee • Finally a readout transducer such
as photomultiplier samples the visible energy to produce an output signal, or observed energy, and in the
process introduces further lluctuatioDS. In this report, we describe the combined frequency function for all
four processes. It turns out that they are uncorre!ated, so that variances add in quadrature. ~ expected,
the variance contribution due to the initial 11'0 production is proportional to the degree of noncompensation
in the Gaussian approximation. However, (a) there is a slow (InE) decrease in the "constant term," and (b)
the f&mjljar 1/..fE for the sampling term is not quite correct.
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would result in correlation between the sampling
and noncompensation contributions.

The consequences are far from academic, since
results for C1 and C2 are usually quoted without
respect to how the fits were made. As an example,
two fits to some preliminary data[1] are shown in
Fig. 1. The "constant term" is more than 60%
higher when the fit is made assuming linear addi
tion. (The dotted curve will be discussed later.)
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FIG. 1. Fits of several resolution functiOJl8
to highly unofficial SPACAL data, showing the
sensitivity oC the "constant term" to the 888ump
tions.
A second motivation has to do with a challenge

from Tut Alsmiller. In previous papers I have con
sidered the behavior of the means of various distri
butions, arguing that the mean response of a sim
ple calorimeter is described by only three quanti-

1. Introduction

This study was motivated by ongoing discus
sions with several people. One discussion has to
do with the energy scaling of the fractional reso
lution of a hadronic calorimeter, aIE. It is usual
to write the contribution of sampling fluctuations
as to 1Iv'E, and the contribution of other ef
fects, notably noncompensation, as having little
or no energy dependence. The combined frac
tional standard deviation behaves as 11v'E at low
energies and is asymptotically constant. In gen
eral, one should be able to write the variance as
a general quadratic form

(~) 2 _ Cl 2pC1C2 0 2 (1)
E -E+.../E +2'

where C1 is due to sampling and C2 is the result
of noncompensation, cracks, channel-to-channel
gain variations, nonuniformities, and the like; in
the present discussion only noncompensation con
tributions are considered. The correlation is p,
and 0 :s p :s 1. IT the processes leading to
C1 and C2 are completely uncorrelated, p = 0
and the contributions to (fIE add in quadrature,
while if they are totally correlated, p = 1 and
(fIE = Cl/v'E + C2. The conclusion of this re
port is that p = 0, so that the two terms add
in quadrature. This follows from the mathemat
ical structure of the problem as formulated here;
I have been unable to find any mechanism which

* This work was supported by the U. S. Department
of Energy under Contract No. DE-AC03-76SFOOO98.
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FIG. 2. Logic flow in a hadron-induced cascade in a calorimeter. Transfer of energy to the electromagnetic
sector occurs in many high-energy collisions. Eh (Ee) is the efficiency with which energy in the hadronic
(electromagnetic) sector is converted to visible energy. Included are all effects of saturation, gate width,
etc. The visible energy is converted to the energy (signal) finally observed by a photomultiplier or other
readout transducer, which introduces further fluctuations.

ties, and that only one of these has energy depen
dence. The picture should also yield a description
of resolution, and Tut asked if I could provide it.
This paper is the result, except that I now chal
lenge him to find one crucial distribution function,
the hadronic response function called A(EtIEe )

in the following discussion. This quantity is sub
ject to large fluctuations, evidently because of a
small number of nuclear spallation events in which
perhaps 30% of the hadronic energy is for all prac
tical purposes lost. These fluctuations are the rea
son hadronic resolution is always much worse than
electromagnetic resolution. A careful study of this
distribution function would be very valuable. Here
we make only a Gaussian approximation, relying
as usual on the central limit theorem for salvation.

The function describing the distribution of the
electromagnetic fraction in a cascade is explored
in more detail than before, albeit only in the con
text of FLUKA simulations. A parallel BETe
study of this distribution would be very valuable.

As in other papers, I restrict the discussion to
the response of a uniform calorimeter to an inci
dent high-energy hadron with energy E. By "uni
form" I mean that the structure ofthe calorimeter
(usually a sandwich structure) is the same from
front to back, and that the dimensions are suffi
cient to contain the cascade. In addition, plate
thickness is small compared with the interaction
length of a ......1 MeV neutron (......10 em), but not
necessarily small compared with a radiation length.
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2. Formulation of the problem
The logic flow in a hadronic cascade is shown in

Fig. 2. It is simplified in two respects: escaped en
ergy (carried by albedo, neutrinos, and muons) is
neglected, and complicated processes are lumped
together. For example, in the low-energy hadronic
sector, the effects of nuclear binding losses, sat
uration, and gate width are combined in relating
the hadronic energy En to the visible hadronic
energy Et.

Energy is transferred to the electromagnetic
sector (the EGS world) in high-energy collisions,
mostly through 11"0 production. In a given cascade
the energy transfer is Ee , but the mean value is
FfroE.* With some efficiency (Eel on the average)
this energy appears as a visible signal ~. Simi
larly, En = E - Ee enters the hadronic sector, and
Et contributes to the visible signal. Eil contains
all of the hadronic energy below the 11"0 thresh
old as well as ionization loss by above-threshold
hadrons. It also contains the energy of photons
from nuclear processes, since this energy scales
with the incident energy in the same way as other
hadronic contributions.

The four distributions under consideration are
as follows:
1. The distribution of Ee , given by the frequency
function fo(Ee) . (It is convenient to leave the
incident energy E implicit.)

'" We reserve f 71:0 for the energy transfer to the elec
tromagnetic sector in a single collision.



(3)

- rll 'It-on Lead
..! III "I
I II 1rl
J II I
I - Lll 200 GeV
I I ii ,/(scale x 2)

-I

I I'
III
-I
I~
-I

..'"I
LL.

-:..r LI

150

o
0.0 0.2 0.4 0.6 0.8 1.0

EelE
FIG. 3. Distributions of Ec for 20 GeV and
200 GeV negative pions incident on lead, as
simulated with FLUKA90.

3. The distribution Io(Ee )

The function 10(Ee ) has been generated with
the aid of the high-energy hadronic cascade sim
ulation program FLUKA90[2]. Typical distribu
tions, at 20 GeV and 200 GeV, are shown in
Fig. 3. As expected, the mean moves to the right
with increasing energy, as more of the hadronic
energy is transferred to the electromagnetic sector
as the number of hadronic generations increases.
The width scaled by the incident energy is almost
independent of energy, and the distribution has
positive skewness.

The methodology and geometry used in simu
lating these events is described elsewhere[3]. The
first 1r- interaction was permitted only after the
first 1.1 ).,1 had been traversed, so that there was
essentially no albedo loss. In. accord with the ob
servations made in SDC-91-00002[4], simulations
were limited to the high-energy sector, where 11'0

production and consequently all of the energy
transfer to the electromagnetic sector occurs. The
time required to produce the results shown in
Figs. 3 and 4 was exceedingly modest; less than
an hour was required for the 500 events simulated
at 1 TeV, and the CPU time was proportionally
less at lower energies.

The energy dependences of the mean and stan
dard deviation are shown in Fig. 4, where we
show the mean divided by incident energy (Fr»)
and the square root of the variance divided by

(4)

4. Finally, the distribution of observed sig
nal, or energy, is obtained by folding this with
whatever photoelectron statistics or electronic
noise distribution characterizes the readout trans
ducer, as described by the conditional distribu
tion ft(EObalr). The separation of Jv(EfYU) and
the final distribution I(EObs) is in many ways
artificial, but it serves a useful purpose: The
distribution of EfYU is in some sense irreducible,
except for the choice of sampling fraction, it is
beyond the control of the experimenter. Given
a configuration, it can in principle be calculated.
Its variance thus defines the best that a given
calorimeter can do. A proper designed readout
should have a readout which introduces a vari
ance which is small, but not too much smaller,
than the variance of EfYU.

This final step does not change the mean of
the distribution (by definitionl], but the variance
adds to the variance of lo(r), and the skew
ness is slightly modified. Accordingly, most of the
conclusions and analysis is based on lo(r), and
this distribution is (appropriately) included as an
afterthought.

· 2. The distribution of visible electromagnetic en
ergy is given by the conditional frequency function
fe(~IEe)'
3. Similarly, the distribution of visible hadronic
energy is given by fh(~IEe). Since Eh =E-Ee,
it is sufficient to express the condition as on Ee•

The distribution of the total visible energy,
f'll(EfYU), can be calculated from 10 and the two
conditional distributions. Only the total visible
energy can be observed:

·r=~+~ (2)

The problem is to find the distribution f'll(r)
for an incident hadron with energy E. We first
combine Ie and fh, subject to the constraint
provided by Eq. (2):

lvis(,E"isIEe) = Jle(~IEe)

x Jh(EvU
- ~IEe)d~

This distribution is then summed over intermedi
ate values of Ee:

Iv(Evia
) =f 10(Ee)fvis(PIEe)dEe .

3



(8)¢J(u) = A(U)¢J1(g(U»

Finally, we note from Eq. (5) that the nth
moment an of the distribution f (e) is given by

d!"d~I = in / xR J(x)dx = J-nan . (9)
u u=o

As a result, it is often easy to calculate all the

Then

vided by the variance to the 3/2 power (0-3).
Within the Monte Carlo statistics, this quantity
is independent of energy and has a value near 0.6.

The mean and width have been studied previ
ously[3, 5], but in a rather second-hand way. The
present method is more sensitive since the distri
butions of Ee are studied directly. These results
are the best to date for examining the veracity
of the power-law hadronic yield and for observing
the slope of the "constant term."

4. Characteristic functions
Further analysis is considerably simplified by

using a mathematical development not (yet) given
in the Review 0/ Particle Properties. The char
acterlstic function 4>(u) associated with the fre
quency function f (e) is essentially its Fourier
transform, or the expectation value of exp(iuz):

4>(u) = E(ei u lll
) = f ei Ulll f(x)dx (5)

It has many useful properties, several of which we
exploit here.

II h(x) and hey) have characteristic functions
4>1 (u) and t/>2 (u), then the characteristic func
tion of the weighted sum ax + by is 4>l (au)4>2 (bt&).
(This is just the statement from usual Fourier
theory that the Fourier transform of the convo-
lution of two functions is the product of the two
Fourier transforms.)

Let the (partial) characteristic function corre
sponding to the conditional distribution h(xlz)
be 4>2(ulz), and the probability distribution of z
be ft(z). The characteristic function after inte
gration over the intermediate value is given by

¢J(u) =f h(z)4>2(ulz)dz . (6)

Suppose we can write 4>2 in the form

4>2(ulz) =A(u)eig(u).z • (7)

500100010 50 100
E(GeV)

FIG. 4. Energy behavior of the mean FffoE and
width 0"0, scaled by the energy E, as simulated
using FLUKA90 for negative pions incident on a
lead "calorimeter." The function [1- (EIEo)m-l]
is shown for the comparison with Fffo, for m =
0.866 and Eo = 0.764 GeV (solid curve, least
squares fit to data above 10 GeV) and for the
nominal values m =0.85 and Eo =1 GeV (dot
ted curve). The dashed line through the (101E
points is the least-squares fit 0.171- a.010mE.
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energy (unc = uo/E). It is expected from pre
vious work[5] that the mean hadronic energy
«1- FrO)E) can be described by a constant times
Em, where m ~ 0.85. Accordingly, the curves
drawn through the means are of the form [1
(E/Eo)l- m]. The solid curve is a least-squares fit
(excluding the 10 GeV point) for which m = 0.866
and Eo = 0.764 GeV. Nominal values from the
Tuscaloosa paper are used for the dotted curve.

The width uo/ E is remarkably constant, as was
first pointed out by Wigmans[6]. (This is the
famous "constant term" in the resolution, or at
least that part intrinsic to cascade production.)
Dan Green has observed that most of the vari
ance is simply the result of fluctuations in the
number of lI'°'S produced in the first collision, and
he has been able to make a rough estimate of
the width. Since the multiplicity increases Ioga
rithmically with energy, we should expect uo/E
to decrease slightly as the energy increases. The
dashed line is a least-squares fit, 0.171-0.0tOlnE.
This function has the value 0.14 at 20 GeV and
0.12 at 200 GeV.

The dimensionless "coefficient of skewness" is
defined as the third moment about the mean di-
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(14)

(20)

However, the distributions are not yet available,
so I make a Gaussian approximation here also.

For an ensemble of events with electromagnetic
energy Ee , we would not expect the variance of
the electromagnetic signal to be constant, but in
stead to be proportional to Ee• The variance
of the the hadronic fraction should be propor
tional to (E - Ee ) . Accordingly, we consider the
characteristic functions

¢e(uIEe) = ei _ . E.- !D':oe.E.u2

(17)
¢h(uIEe ) = ei~e,,(E-E.)-!c1oe,,(E-E.)u2 ,

so that
¢vis(uIEe ) = ei-"E-l~oe"E~2 x eiE.(~4l!-tu24q2) ,

(18)

where at: == Ee - Eh, and au2 =O'fOfh - ~oEe'
aO'2 is usually positive. Noting that Eq. (18) has
the same form as Eq. (7), we see that

<jJ,,(u) = ei~e"E-iD':ol!"Eu2¢o(UaE - iu2aO'2) ,
(19)

where ¢o is the characteristic function correspond
ing to fo.

The distribution of Ee was discussed in Sec
tion 3. Based on that analysis (and with reference
to Eq. (14», I approximate it as .

where FwO and 0'0 are given in section three, and
11-30 :::-; 0.60'~. Then Eq. (19) becomes

¢,,(u) = exp (iUfeE{fh/fe + FwOaf/fe}

- !u2{feE[(I-F,..o)(O'lofh/fe-O':O) +0':0]
+ (1 - fh/fe)20'~E~}

- iru3{l1-aoa e3 - 3~~0'2af} + ... ) .
(21)

(Since only the first three moments of Jo were
evaluated, we drop terms of order u" and higher.)

Two housekeeping chores are necessary before
interpreting these results: In the first place, it was
pointed out in Section 3 that 0'0 is proportional
to energy, except for a slow logarithmic decrease:
0'0~ O'ncE. We therefore make this substitution.
Secondly, with the notation used above the mean
visible energy for an incident electron (or for a
hadron if f e = fh) is €eE. In a real situation, one
calibrates the device so that the measured mean

"3 = 113

= Q3 - 3Q1Q2 + 2O'~

Any odd moment about the mean is a measure of
skewness; the simplest of these is the coefficient
of skewness "Y1 = 113/11~/2.

The characteristic function of a Gaussian fre
quency function with mean m and variance 0'2 is

. 1 _2 2
¢(u) = e·m~-jq-~ , (13)

so the Gaussian is that unique distribution for
which all semi-invariants beyond the second van
ish. In this study I also use the simplest skewed
distribution,

""( ) _ im~- !D'2~2 - J.P'lu'l,*,u-e 2 .,••

moments of a distribution defined by 4>(u) even
when the inversion is not carried out.

Several other definitions are useful. The nth
moment about the mean is given by

I1n = E[(x - (1)] : (10)

The semi-invariants "n are defined by

¢(u) = exp (f "~(iU)n). . (11)
1 n.

The Qn'S, IJn'S, and "n '8 are related algebraically,
and the first few are familiar:

"1 = Q1 (the mean)

"2 = 112 (=~)

= 0'2 - Q~ (12)

and

¢v(U) = / Jo(Ee)¢vU(u[Ee)dEe. (16)

The electromagnetic response is expected to be
fairly Gaussian. The hadronic response is less
well known, but because the variance is domi
nated by a small number of collisions with large
nuclear binding energy losses, it is likely to de
viate substantially from a Gaussian distribution.

S. Results
Let ¢via(ujEe ) be the (partial) characteristic

function corresponding to the conditional visi
ble energy distribution Jvia(EVisIEe) introduced
in Eq. (2). Then

¢vU(u[Ee) = ¢e(uIEe)¢h(uIEe), (15)

5



is E. Accordingly, we replace feE by E.

With these substitutions and the aid of Eqs,
(12) and (14), the mean, variance, and skew
ness of the distribution given by Eq, (21) can be
written down.

After some rearrangement, the mean can be
written as:

(Evis
) = E[1 - (1 - F1r o)(1 - Eh/Ee)]. (22)

This is a convenient form, since the second term,
the product of the hadronic fraction and the
degree of noncompensation, expresses the energy
dependent correction for noncompensation. The
quantity in square brackets is the "linearity curve"
(the ratio of response to energy) for hadronic re
sponse, and, alternatively, the reciprocal of the
usual "e/ tr" ratio.

Similarly, the variance is the coefficient of iu2

in Eq. (21), or the quantity in curly brackets.
With the substitutions given above, the fractional
variance becomes

(;f = (1- F'lI"o)(U~Of~Ee- u;o) + u~o (23)

+ (1 - fhlfe)2u~ .

This is almost of the form given by Eq. (1), with
two important differences:

1. p = O. There is no cross term; there is no
correlation.

2. H F1r o were not a function of energy, the nu
merator of the first term would be just the
square of the usual coefficient of 1/-IE. How
ever, F1r 0 is energy dependent. This means that
the familiar l/VE dependence never did exist!

To understand this statement, it is important
to remember the relative size of the different vari
ances. For purposes of evaluating SDC detector
requirements, the design goal assumed in the Lol
was Uhad/UEM = 0.7/0.25 = 2.8. We identify this
ratio with (UhO";Eh/Ee)fUeQ. The hadronic vari
ance (scaled by Eh/Ee) is thus about 8 times larger
than the electromagnetic variance, and to a good
approximation u~o can be dropped. Eq. (23) then
becomes

6

(24)
A fit to the final form is shown by the dotted curve
in Fig.!. It is doubtful if this small deviation
from 1/-IE behavior would have been noticed.

The physical reason for deviation from 1/../E
behavior is simple. As the energy increases, more
and more of the cascade moves from the hadronic
to the electromagnetic sector. The resolution
therefore improves for this reason alone, and so
improves more rapidly with increasing energy than
would be expected just from sampling statistics.

Finally, we note that the "constant term" is
explicitly proportional to the degree of noncom
pensation. We have previously concluded that
the contribution (in quadrature) to the fractional
resolution ulE was (1 - Eh/Ee) X 14%. In this
analysis 0"ftC decreases from 14% at 20 GeV to
12% at 200 GeV.

6. Inclusion of transducer contributions
For illustrative purposes we take the distribu

tion ft(.&'bsl,EVU) as Gaussian also, with mean
gns (by definition) and variance 0";r Following
the same arguments .as above, the characteristic
function of the final distribution, <p( '1,1,), is ob
tained by evaluating 41,,('1,1,) as given by Eq. (21)
at 'U + to";u2

:

41('1,1,) = <p,,(u + !0";u2 ) (25)

The mean remains the same (as planned) and the
variance increases by 0"; (r). The third mo
ment about the mean is increased by 30':0'2, where
u 2 is the variance of J", as given by Eq. (23). The
change in skewness comes about because the vari
ance is not constant, but is proportional to the
input signal; the same "feedup" of moments has
occurred in earlier parts of this discussion.

The inclusion of Jt is mathematically hollow,
but it is of importance for designers: The variance
of J" can be obtained by careful simulation. The
only part within the control of the experimenter
is the sampling fraction, since this variance is
obviously smaller if the sampling fraction is large.



The burden on the experimenter is to make u;
smaller than u 2 (for example, by efficient light
collection and good photocathode sensitivity, in
the case of photomultiplier readout), but there is
no point in making ul very much smaller than u2•

7. Summary and discussion
It follows from the mathematical structure of

the problem as presented here that the sampling
and noncompensation contributions to the reso
lution are not correlated; nor have we been able
to identify any mechanism which would provide
correlation. In general, correlation occurs only
in the case of multivariate distributions (for ex
ample, the correlation between energy deposited
in the first interaction length and the energy de
posited elsewhere). As I understand a calorimeter
in which a single number is measured, there are
a series of cascaded and convoluted distributions
but never a coupling among them.

On the other hand, it has been found that
1. The sampling term decreases a little faster
than 1/.JE, and
2. The noncompensation contribution decreases
slowly with increasing energy.

It will be of great interest to understand the
distribution A(~IEe), as this will permit a
reasonably complete quantitative solution to the
problem.

6. Appendix: Summary of variable definitions
fo(Ee): Distribution of electromagnetic energy for

incident energy E (implicit in all distributions)
fe(.E:mIEe): Distribution of visible EM energy if

E; is in EM sector
fh(~IEe): Distribution of visible hadronic en

ergy if E - Ee is in hadronic sector
fvis(,EvisIEe ): Distribution of total visible energy

if Ee is in EM sector
Ee: Average efficiency with which EM energy is

converted to visible EM energy; ::::: F1(o/ (~)
Eh: Average efficiency with which hadronic en

ergy is converted to visible hadronic energy;
::::: (1- F1(o)/ (~)

fvis(EJvis): Distribution of total visible energy
ft(,EObs IEJvis): Distribution of observed response

after readout transducer, given ,Evis visible en
ergy (defined to have same mean)
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¢o(u): Characteristic function corresponding to
Jo(Ee). In all cases, subscripts and conditions
label the f/> corresponding to each J.

F 7ro: Fraction of energy entering the EM sector
(mean value of Jo(Ee ) divided by E)

u~: Variance of fo(Ee ) divided by E 2 .

Urn:: uo/E (the noncompensation contribution to
the "constant term)

an: nth moment of a distribution

Jl.n: nth moment about the mean

u5: Variance of Jo(Ee ) divided by E2

JJso: Third moment of fo about its mean

u;o: Variance of Je(~IEe) is taken to he
2 .
ueoee~, or, after final scale changes, as

~~
uio: Variance of fh(~IEe) is taken to be

2 •
UhOehE'h, Of, after final scale changes, as

2 •
Uhoc:mee/eh

ae: ee - eh
au2

: U~OEh - U;OEe
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