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ABSTRACT

I have developed a procedure for fast shower simulation on the basis of Gauf’s
law, applied in analogy to charge distributions and related vector fields of electro-
magnetic interactions. The nature of a shower (i.e. electromagnetic or hadronic), a
homogenecus medium for its development, its starting point, direction and energy
content are needed to be specified. Then the contribution from the shower to the
total signal in any given volume made up of the given medium can be calculated
as an integral over the ‘surface of that volurne using a precalculated vector field
corresponding to the shower distribution. Thus the integration problem is reduced
from three to two dimensions. The quality of the shower simulation is determined
by the accuracies of the vector fields and of the surface integration. This technique

is shown to yicld acceptable results for typical sizes of calorimeter cell structures.

*Work supported by the U.S. Department of Energy, Division of High Energy Physics, Contracl
W-31-109-ENG-38



1. Motivation

The simulation of events at high energies like e.g. at the SSC presents a major
challenge. The straight method of stepping through the full development of showers -
initiated by encrgetic particles would take huge amounts of computing time ev'en}'forv
a single event [1], about one day of VAX 780 time or more. A number of schemes
for treating shower development in some approximating fashion have been devel-
oped like shower library approaches [2-4] and parametrizations [5-9]. In this note,
[ present a new procedure belonging to the parametrization class for approximate
shower development. The basic idea is to take predetermined shower shapes, in
the form of parametrizations, experimental or simulated data, and convert them
into vector fields, in analogyv to the vector field for a charge distribution in the
theory of electromagnetic interactions. These fields allow to apply GauB’s law for
transforming integrals of deposited energy over detector cell volumes into surface
integrals involving the vector fields [10]. The gain expected for this approach is that
it should be noticeably {aster than any threedimensional integration while maintain-
ing a comparable accuracy. A drawback will be that fluctuations have to be put in
after the integration (threedimensional approaches like e.g. the one used by the H1
collaboration [9] can insert fluctuations “semi-microscopically” during the process
of integration). The gain in speed is being paid for by having to calculate the vector
fields alezd of time which by itself is a threedimensional integration procedure for

two vector components (the third being given by rotational symmetry).

.2. The underlying formalism

The starting point is a distribution of deposited energy

f(z,r3 Xo,7a0,01) (1)

in some homogeneous material, possibly or probably an artifical, averaged one stand-
ing for a real calorimeter, characterized by a radiation length X, a Moliére radius
rpr, and an interaclion length A;. The coordinate system is cylindrical with z along
the central axis of the shower distribution, r the radius off that axis in the plane
transverse to it, and ¢ the polar angle around the axis (it does not appear in the dis-

tribution (1) as rotational symmetry is assumed). 1 will assume by default that the



shower origin coincides with the origin of the coordinate system. Using the analogy
to a distribution of clectric charge, we define a vector field F(zp, rf) related to the
distribution (1) by Gauf's law,

[ ], [iGnXemninrdédrds= § Feprp)-a(S)ds , @)
where the integral on the left side of the equation runs over a finite volume V, e.g.
a calorimeter cell, and the integral on the right side over the surface 6V of that
volume. The boundary condition that {or a sufficiently large volume both integrals
should give the total energy (or charge in the original picture) contained in the

distribution, leads to the representation

(zps7Fy0) — (2,7, )
_ . d
(zp.7F) ././-/all space 47‘f 275 X0, A1) {zp,rF,0) — {2,r, 6;5)|d rdgdrdz
(3)

for the vector field*. As the vector field exhibits rotational symmetry like the under-
lying distribution, the specification of a ¢ coordinate fixed at zero in the integrand

and omission in the symbol F(zp,rp) does not restrict the validity of eqs.(2,3).

3. Design of the procedure

First, I have to pick distribution functions (1): The basic functional form of the

distributions used for electromagnetic showers

1 2R?
t e, e o= —z  E2F
f(I, )G.R) F(Q)x € (i2 +R2)2 (4)
is taken from the H1 collaboration [11]. It is completed as
fem( ) Emc f(ﬁemZ/XO,’"/TM,aem,Rem) (5)

where the starting point of the shower of incident energy Ej,. is the origin of the
(z,7) plane and the z axis along the shower direction, and the three parameters

remaining are sct as |
aem. = 2.314 4 0.549 - In(Ejpn.)
Bem. = 0.404 4 0.015 - In(Eip)
Rem. = [0.099 4+ (0.061 — 0.0047In(E;nc)) - 2/ X0)?

*Ihe component notation for the relevant space points has been used to make their relations
more explicit. The veclor field itaelf, as calculated, would have to be wrilten as F(zp, rp) =
(Fz(zp,rr), Fu(zpr,7r),0) in that same notaticn.



Note that the radial parameter depends on the longitudinal coordinate**.

For hadronic showers, I fitted distributions
Ihad(2,7) = Einc f(Bez/A1,85:/Anrsap, e on,0ow) ((6)
to data from ZEUS test measurements [12,13]. The functional form

flzg,zy,miap, oy, 0N, o) =

= apg—l —zg — 1 ap-1 —IH]. 7
wr(aE):L € + (1 w)r(aE)z e (7)
1 " 11’2 __i?
20

. c-e
27.'(00%; +(1- c)cr%y)(

follows Bock et al. {6] for the longitudinal shape and uses a superposition of two
Gaussian functions for the radial shape (similar to CDF [7]). The radial width
parameters (o, 0yy) do again depend on the longitudinal position. The parameters
are calculated as
ep = 3.8747 4 0.3893 - In(Ein.)
Bp = 0.1712 + 0.0309 - In{Einc)
ay = 11941 4 0.0410 - In(Ejn.)
By = 1.1742 = 0.0933 - In(Ejnc)
w = 0.16
oy =008 2740012 2
oy =041+ A7 +0.04- z —0.0085 - A; - In(Einc)

¢ =0.9-008- :\z— +0.0085 - In(Eine) .
I

t

Einc

Next I select a sct of energies and a method for numerical integration and evalu-
ate the vector field at a number of points suitable for later use (e.g. by interpolation).
My current choices for encrgies are every decade from 0.1 GeV to 10 TeV for elec-
tromagnetic showers, and 1, 10,100, 2500, and 50000 G'eV for hadronic showers. The

**The 11 paper [11] has an additional factor r/ry multiplied into fem. and is missing the
factor of 2; 1 take the former to be patt of the integration differential r d¢ dr dz and carry the
appropriale scale factor along, and I place the factor 2 in there to normalize fe.m.(z,7) Lo the
incident energy Eine.



inlegration is done in cylindrical coordinates using the trapezoidal rule. Although
simple in principle, the practical layout and exccution of this integration requires a
lot of attention to conirol the effect of the numerical truncation error (mathemat-
ical, not of the number representation in the computer); a more detailed technical
description of my approach to this problem and a guide to my programs are given in
the appendices of this note. At this point it is sufficient to note that I calculate the
vector fields (3) on all (discrete) points of a number of grids layed out to suitably

cover a large region in the (zp,rp) planc.

To allow the evaluation of the vector fields at any arbitrary point in space, I fit
locally (i.e. on grids of size 44 points) quadratic polynomials for the longitudinal and
radial components of the vector fields separately, the latter multiplied by an extra
factor rp as rotational symmetry makes the radial component vanish for rgp = 0.
The coeficients of the polynomials are stored on a file and read completely into

memory when an application program initializes the vector field evaluation routines.

The final piece needed is a routine to perform the integral over the surface of
a tower volume. For this purpose, I use two routines below, INTGRT written by
L.E. Price for use in the simulation program ANLSIM [14], and a routine DPIBOX
I kave written for performance tests of the Gaufi-law method. Both routines handie
boxes of possibly nonrectangular shapes (with four corners for each of six sides
expected though) by performing integrals over each of the six sides. In INTGRT,
czch side is split further into two triangles which are independently integrated over.
A predetermined number of points, normally 8, up to 32 if the starting point of
a shower is nearby, s distributed homogeneously across the triangle. The integr‘.:sl
is then determined accérding to a mid-point rule. In DPIBOX, each box side is

integrated directly using the trapezoidal rule* in two dimensions.

*A profitable use of any higher order rule for this purpose would require many more points for
evaluation, for the sainc reasons as explained for the veclor fields in appendix A.
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4. Performance evaluation

The first step to evaluate the performance of the Gauf-law method is to check
if the vector fields can be reasonably well calculated and interpolated with, the
techniques outlined above. For this test I used two variants of an exactly éaléulab]e
model: a constant density inside a sphere, and a density decreasing linearily with
radius from the center of a sphere to its surface. The knowledge of the analytical
form of the vector field can be used to calculate the total integral of the distribution
from vector field values at any single point. I have achieved relative deviations of
the reconstructed values from the input of up to 0.37% for field points inside the test
spheres and up to 0.08% outside, with deviations of the mean values over 164 points
inside of 6.4 - 1075 and over 91 points outside of 1.7 - 107°. The field component
transverse to any radius out of the center of the sphere has to vanish; parallel to the
axes of the cylindriczl coordinate system used in the present work on lines ern.erging
from the center of the spheres, the absolute values for this component come out
smaller than 10710 times the maximum values of the fields anywhere (Fig. 1). As
the distributions f(¥) = 1 and f() = (R —|7])/ R are much more well-behaved than
the physically relevant ones [5-9], I can conclude only that the present approach can
achieve a reasonable accuracy in principle but I cannot estimate the actual errors in

the physical model from the spherical models.

To evaluate the performance on the actual physical application, I calculate longi-
tudinal distributions “backwards” from the vector fields as follows: With each of the
two integration routines, INTGRT and DPIBOX, I determine the energy depositic;n
in a thin slab of 0.25X( (0.05)]) thickness for electromagnetic (hadronic) showers,
in 4 - 4 tiles sufficiently wide to contain the whole shower, through 30Xy (6))) in
depth and compare the result both to the input distributions and the available data
(Fig. 2, Fig. 3). There are two kinds of limitations to the quality of the calculations
appearing: First, the showers are very narrow with steep slopes in their front section.
This will create problemns with discretized evaluations like the numerical integration
procedure employed at both levels where integrations are used, the calculation of the
vector fields from the distribution, and the reconstruction of the distribution from
the vector fields. For electromagnetic showers, integrations around the starting

point, within almost one radiation length, become totally unreliable. For hadronic



showers, the ratio oulput over input varies in a £20% band over a bil more than
the first interaction length. Also, the transverse distributions do not reproduce as
well as in the electromagnetic case because of the {wo-component structure with a -
large narrow picce at the center of the shower. The second limitation comes from
the use of quadralic polynomials locally to interpolate the vector field components.
These do not join continuously in neighboring regions, so the very fine slabs used to
look at the longitudinal distributions show spikes across the borderlines between two
polynomials. The physical applications [14] will use much larger dimensions in any
direction compared to the thickness of the slabs used in this particular comparison,
suppressing the effect of the discontinuities almost completely. This is exemplified
in the quite good agreement of the calculations with experimental data shown for

the transverse distributions in Fig. 2,3.

Tab. 1: Energies from the Gauf-law method for the test setups

electrons pions
6 GeV 20 GeV 10 GeV 30 GeV
longitudinal
INTGRT 5.467 18.284 9.29] 28.040
DPIBOX 5.468 18.426 9.028 27.346
lateral
INTGRT 5.5417 18.63 9.204 27.937
DPIBOX -} 5.446 18.347 9.128 27.663

Using either the longitudinal or lateral integrations shown in the figures one can
sumn up the energies in the single elements to reconstruct the total shower energy.
The values come out at 7 — 10% below the input values (Tab. 1). Thus overall, the
Gauf’s Jaw method produces acceptable results for typical sizes of calorimeter cell

struclures.



5. Sumimary and outlook

I have developed a scheme to make use of GauB’s law to reduce the integration
of electromagnetic and hadronic showers over the volume of a calorimeter cell to a- |
surface integral. The encrgy distributions are reasonably reproduced. Tlie meiimci
allows to simulate full events for the SSC environment with manageable efforts and
acceptable quality of the results unless the determination of the cell geometries
becomes prohibitive. In practice, it has proven to deliver a reasonable performance
in studies [15} for the Letter of Intent [16] of the Solenoid Detector Collaboration
using this method within the detector simulation program ANLSIM [14].

To significantly improve the method over its present status, almost all technical
elements may have to be revised. The choices for new methods are not completely
obvious however: methods used for electrostatic and magnetic field calculations
[17,18] sufier from the assumption of locally constant fields and/or source distri-
butions which is very hard to make for the sho‘wer distributions of concern in the
present work. The output obtainable from the field determination then strongly
influences the possible choices for the surface integrations. A further complication
in this second step are the possibly quite irregular shapes of the surfaces to be dealt

with, making already the Gaussian integration rules almost impossible to apply.
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Appendix A. The integration procedure for obtaining vector fields

As mentioned in the main text, I use the trapezoidal rule to evaluate the vector
ficlds of eq. (3):
b h & , : RS, '
| 1) dz =5 Slfla+ (= Dh) + f(a+ik) — (&)
i=1 "'
b—a

i

(8)

h =

with §; chosen out of the open interval Ja+(z—1)k, a+1k| suitably in accordance with
the mecan value theorem for integration [19]. The derivativeterm in eq. (§) is dropped
for numerical evaluation of the integral(s) and thus describes the truncation error
inferred by this method. It is apparent that the trapezoidal rule will integrate linear
polynomials exactly. The Simpson rule integrates even cubic polynomials exactly,
without any significant added complication to the trapezoidal rule. It turned out (by
numerical experiments), however, that the Simpson rule would perform better than
the trapezoidal rule only for a “sufficiently” large number of integration points, and
the number of points required for the present problem would lead to excessively huge
cpu time requirefnents. The choice of ar integration formula with equidistant points
over e.g. GauB integration (1.e. “optimally” chosen points and weights with some
weight function) is made for the sake of computing economy. For single integrals
(“single” meaning in the present context the integral of eq. (3) for a single field
point) and a given degree of polynomials that are to be integrated exactly, Gaufs
integration formulae require fewer points for evaluating the integrand than Newton-
Cotes formulae with equidistant points of which the trapezoidal and Simpson rules
arc examples for first and second degree. I have found, however, that with the 1/7‘*’2
pole at every ficld point, 1 still can use one common set of equidistant integration
points to obtain all vector field values because the integration points can be placed
with a minimal symmetry with respect to the poles. This specification is an empirical
Jesson from the tests with the analytically solvable spherical models, it is needed to
cancel destructive cffects of discretizing the integrand of eq. (3) with the 1/72 factor.
The integral is finite, of course, because the contribution from any neighborhood of
the field point actually scales not only with the 1/72 dependence of the Coulomb like
“force” but also with the 72 dependence of the contained amount of energy “density”

in the same neighborhood. Thereby I can perform the integral (3) simultancously
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for all field points, evaluating the energy distribution (1) only ence in common for
all integrals. Using a Gauf} type rule would require the integration points to be
adjusted for each pole which implies a recalculation of the energy distribution (1)
for all integration points. The gain in the number of points per integral (SQ%zfor"l
degree 1, 33% for degree 2 are the extremes on opposite ends) is more than offset

by the multiplication of the number of evaluations of the energy distributions.

For the following, remember that the coordinates (z,r) refer to the space in
which the shower distribution (1) is defined while (zp,rf) are the coordinates for
the vector fields (3). Along the z direction, the integration points are chosen with
constant spacings of up to three different sizes which are related by one odd integer
factor. The highest density is used near the origin, the others successively with
increasing z. The odd integer factor guarantees that the field points never coin-
cide with integration points, avoiding the 1/7¢ pole. In radial direction, variable
step sizes are created from equidistant ones on an artificial axis s according to the

prescription
fr(s,d)=s* + d-s fors<s.=3/(1-d)/4

=5+ ¢ fOT‘SZSc

(9)

where the coefficient d determines the asymptotic ratio of step sizes at the center
and at large values of s. The location of the break point between the two functional
forms is given by the requirement that the 4:A order polynomial has the same value

of the derivative
~—(s¢) =1 -

as the linear function. The constant ¢ is then fixed by connecting the two pieces of
the function continuously. The transformation to the r coordinate axis is completed
by scaling fr to map s = 0 onto r = 0 and the connection point s; onto 3 - R
where R is e.g. the radial parameter appearing in the radial shower shape functions
(5). The upper integration limit is set at a few Moliere radii rps or interaction
lengths A7 beyond the transition point 3- R. Finally, for the angular coordinate ¢, a
fixed number of points independent of the radial coordinate is used. For the actual
calculations presented below, the numbers of integration points used are 201 along
z, 101 along r, and 100 along ¢. This last number has to be even and ¢ = /2

has to be one of the points Lo produce the necessary cancellation of the radial field

10



components on the shower axis. (The first of those points is then actually re-used

as the 101st to close the circle, i.e. the number of different points has to be even.)

Tab. 2: Latlice specificalions for vector fields

i}

e.m. showers had. showers
points range poinls range

zp 31 —0.525 — +2.475 X} 82 —0.0115 — +0.0695 A;
TR 121 0— 24 rp 31 0—0.03 Af

zp 58 —0.525 — +5.325 X 43 —0.0585 — 0.3195 A
TF 61 0 =45 ryy _ 31 0— 0.18 );

zZp 58 —6.1 — 416.7 Xy 49 —0.29 — +1.63 A
rp 61 0o 6ry 31 0— 18 X;

zr 79 —26.5 — +51.5 Xy 73 —5.95 — +15.65 g
TF 46 0— 15 rp 49 0—9.6 )

The field points are chosen on rectangular lattices in the (zp, rp) space (Tab. 2).
The integration points are placed between field points such that they are covering
the'neighborhood of every field point nearly symmetrically, for the reasons explained
ezrlier. The odd factor relating the different step sizes in z guarantiees that the field
points fall always into the center of an integration interval* for all step sizes if they
do for one of them. The lattices are chosen such that a transition point in the
integration step sizes will never occur in the range where a lattice will later be used,
1.e. the transition point is either “hidden” under a smaller lattice or is located outside
the latiice by a few steps (more than the value of the step size factor). The purpose
of the variable step size strategies is to cope with steep and rapidly changing slopes
in the energy distributions (1). An 'example for the resulting components of the

veclor fields is shownin Ifig. 4.

*in this z coordinate; the radial pattern is different and has to have nearly identical point
locations in successive radial rows near the center of the shower only, leaving just enough
room for the “symmetry-breaking” effect of the variable step size Lechnique of eq. (3).

11



As mentioned before, the simplicity of this integration technique allows to do
the integrals of ¢q.(3) simultancously for all points of a given lattice. For the spec-
ifications in Tab. 2, there are between 1333 and 3751 parallel integrations to be
done. This picce is by far the most cpu-intensive part of generating the tools,for "
the shower simulation: One set of electromagnetic and hadronic vector fields for a
single material takes 44 cpu — hours on the CRAY X-MP/14 at Argonne wherein
vectorization has gained more than a factor of 10 in speed for program execution. I
have measured the execution speed to be about 137 MY FLOPS, making the vector
field determination one of the highest performing prorams currently in use on that

installation.

Appendix B. Guide to generating vector fields

Below I list a plain ASCII file containing - for users on the Argonpe site - instruc-
tions for use of my vector field generation programs. For users elsewhere, some fairly
trivial translations will be needed (logical names, CERNLIB setup, mathematical
libreries). The file is separately accessible on ANLHEP in

$9$DUB10; [SSC.TROST.TEX]JDEPFIELD.DOC

H.-J.Trest, ANL EEP, 01 March 1891

Running instructions for creating and fitting vector fields:

The following directories are used:

$9$DRA1: [TROST.SSC] logical name HJTSSC -
$0¢DRAL: [TROST.UTIL] . logical name BJTUTIL (possibly not used)
ANLPEPEDUALL10: [SSC.TROST] logical namee HITSCR, SCR (equivalent),

used for work files and log files
Rules for adapting to your enviromment (on ANLHEP):

1) define a symbol
YPATCEY := "RUN CERN$EXE:YPATCHY"

2) in any .COM file, change the lines
$ YPATCHY - fortrantile cradle ...
tc twe lines {(note the leading blank in the second line)

$ YPATChY

12



- fortranfile cradle ...

Creating vector fields on VAX (far too slow for production):

Job to run: BJITSSC:DEPFIELD.COM N
Input HITSSC:DEPFIELD.CRA for code preoduction by YPATCHY

HJITSSC:DEPFIELD.DAT data input for program run

The source code is in HJTSSC:DEPFIELD.CAR. This file is structured by
cards
+PATCH,patchname

and substructured by cards
+DECK,deckname N

Lines of the form
+SEQ,sequencename.

are calling in pieces of code defined further up with header lines
+KEEP, sequencename.

The VAXese equivalences are the statement

INCLUDE ’sequencename.INC/LIST’
for +SECQ and the file
seguencenanme. INC

tor the piece of code headed by a “+KEEP" line and terminated by any
otler "+xxxxx’ line where "xxxxx" is anything but blank or SEJ.

Lines of the form

+S5ELF,IF=xxxxx.

+SEL%<:I%=yyyyy>.
enclose code that is used only when an instruction
+USE, xxxxx.
appears in the .CRA file. Rules for the “xxxxx" labels are:

like all names used by YPATCHY, up t¢ 8 characters are allowed
(exceeding characters are ignored silently)

a minus sign means "not", i.e. there ig RO "+USE,xxxxx." in the
cradle

OF is accomplished as "+SELF,IF=xxzxx,yyyyy."

KND ie accomplished as “+SELF,IF=xxxxx,IF=yyyyy." i.e. by re-
peating the "“IF=",

13



The cradle file (DEPFIELD.CRA in this case), contains lines
+USE,patchname, T=EXE.

which cause the corresponding patch to be written into the FORTRAK code file .

with all conditional clauses and sequence calls resolved. In the form
+USE,patchname,

a patch is made available for e.g. pulling a +KEEP sequence out. (Side remark:
A patch name can then also be "ab"used as a logical flag e.g. in +SELF lines.)

What to look for in DEPFIELD.CAR: There is a lot of stuff kept together under
one roof. You will need (cf. DEPFIELD.CRA):

the patch DEPCOMS to give you all +KEEP sequences
the patch DEPUTIL to give you all "utility" routines
the patch FIELDVOL to give you the vector field generation code.

The code is pretty extensively documented inline. To use the e.m. distributions
of Bl (deck DPDENE in patch DEPUTIL) you to "+USE" the flags DEPSETS, Hi and

EMSET. For the hadrenie distributions (deck DPDENH in DEPUTIL) "+USE" DEPSETS,
BI and BEADSET. To create your own routines DPDENE or DPDEXE, proceed as follows:

a) put lires

+USE,P=DEPUTIL,D=DFDENE,T=INEIBIT.
+USE,P=DEPUTIL,D=DFDEKH,T=INBIBIT.
+USE,MYCODE, T=EXE,

in a2f¥ter the "+USE,CRA* T=EXE." and
b} put a section

+PATCE ,HYCODE.
+DECK ,DPDENE.
SUEROUTINE DPDENE(XR,X,F)
your version
+DECK ,DPDENH.
SUBROUTINE DPDENH(XR,K,F)
your versiom

in between the "+PAM,LUN=11,..." and "+QUIT." lines in DEPFIELD,CRA.

KB: If you use substantially different functional forms, make sure that
the main routine FLDVOL does not get far off track in adjusting its
radial step =izes. For this purpose, it “knows" something about the

radial form and governing parametric dependences.

¢) don't forget to use the common block /DENPRC/ through the sequence named

DEFDENSP in those routines. You need not normalize the densities yourself

14



but keep a factor DENORM in calculating them; the normalization will be
done numerically by the main program FLDVOL if you include the line
“+USE,FINDNORM." in your cradle.

Lines in the cradle beginning with a "C" are comments and will bs ignored. ;
. M
The data input attempts to be selfexplanatory by having alvays ons comment line
folloved by a data line. Data lines are always in fixed format. If you do not
"+USE" either of the flags VARYRPOINT, DEPTEST, DEPTESTO you will get 151 points
each on the z and r axes nsed for the density, i.e. 150 intervals. Similaxly,
when you specify the numbers of points for the vector fields as 'nz' and "nr"
then you ¥ill have nz-1 and nr-i intervals. Make sure that the 2 points of the
density and the vector fields do never coincide. Also, nr*nz is limited to
INZR=101#+2 (if one is larger, the other must be small enough to meet the limit
for their product). Either of the two, nr and nz, should be chosen as 3*m+l so
all points are used in the guadratic fits (vhich will be done on 4*4 grids).
The flag VARYRPOINT offers a variation on bandling the radial integrations, and
under the master flag DEPTEST, the flag DEPTESTO allows to run quick and dirty
tests that can live with 21 integration points each in z and r, 10 points in
phi, and nz*nr field points no more that 21%#2,

Fitting vector fields on VAX:

DEPFIELD will leave a file FOR021.DAT in the HITSCR scratch directory containing
the discretized vector fields,

The job FITFIELD.CDX with a cradle FITFIELD.CRA (both in BJTSSC) will do the
fitting using KINUIT. (Bere, BJTUTIL can come into play.) Note that HINUIT will
fill your log file heavily with a message on every fit of which there will be

a few thousand per run if you were doing a production run. Some steering is
taken from FIELDFIT.INP (!). The vector fields are taken from the directory -
EJTSSC file E1EMNFIELD.DAT unless you specify /PAR with the SUBMIT command.
Thereby ycu can request the file "HJTSSC:yourname.DAT" via "/PAR=yourname".
Perhaps your best choice is changing the handling of this file in the job.

The resulting fitted field parameters will appear on unit 22 in the file

EJTSCR:yourname.PAR

given a field input file "yourname.DAT". (Our DELIVERYxxx.POL files are com-
pilations of these .PAR files.)
The file FITFIELD.INP you prebably take best the way it is now.

The source code is again in DEPFIELD.CAR. The common and utility patches are
uzed, and the deck FLDFIT plus some more of the patch FIELDFIT. The flag
QUADFORM turns on the local ﬁolynomial angatz; else a global function ansatz
will be used which currently may not be in working order. Forget all other



decks that contain main programs in the patch FIELDFIT. (You need the FUNCTIONs
and SUBROUTINEs, of course.)

Running on a CRAY:

““““““““““““““ N ¢

DEPFIELD is installed on the CRAY X/MP-14 at Argonne and the CRAY Y/MP-432 at
SCRI/Florida State University. The master source is not available there, so you

have to run PATCHY ahead of time on ANLBEP to obtain the FORTRAN sources and
ship those over.

To get your programs onte & CRAY, use these command files:

a) for DEPFIELD (produces DEPFELD.FOR for the CRAY): RJTSSC:DEPCRAY.COK, along
vith an adjusted cradle HJTSSC:DEPCRAY.CRA ;

b) for FITFIELD (produces FITFELD.FOR for the CRAY): BJTSSC:FITCRAY.COM, along
vith an adjusted cradle BITSSC:FITCRAY.CRA ; .
this job will access a file EJTSSC:ZXSSQ10.CAR in addition to DEPFIELD.CAR
vhich takes care of hocking up some IMSL fitting routines.

Both command files make use of HITSSC:CRAYCODE.COM to do the actual work. (Check
that one to make sure that its use of YPATCEY conforms with your definition.)

The shipping to (and from later on) the CRAY's is easiest done with FTP in ASCII
mode. .

On the CRAY’s you go into one of the areas

/u/troest/vector in the case of the SCRI YMP
/n2/trost/vector in the case of the ANL XMP

ard steal e.g. the files

emfeld. job equivalent to DEPFIELD.COM plus FITFIELD.COM
emfeld.inp equivalent to DEPFIELD.DAT

fitemfl.inp equivalent to FITFIELD.INP

deptran.for for binary to ASCII conversion

(feel free to lock at the other files, in particular "hadfeld,xxx" and
"fithdfl.xxx" also) where you change in the ".job"™ files all the references to
my directories appropriately to yours. The vector fields appear as "emfeld.dat“

(vevally only in the work area but you can go and save them; they are LARGE)
and the fitted fields as "emfeld.pol" (in binary form) and "emfeld.crd" (in
ASCII form for-shipping). Additionally, some histograms appear in “xxxx.hed"
files (HBDOK3 formatted by HWRITE) and printed outputs in files "xxxx.out".

Concatenate the card image files (extension .CRD) and transform them back using
"depback.job" with "depback.lor" or copy them to e.g. ANLHEP where you would

obtain the module (prepared with HJTSSC:DEPEACK.COM)

16



ANLHEP$DUA10: [SSC.TROST]DEPBACK.EXB

assign your card image file to unit 19, define unit 18 as output, and run
DEPBACK:

S
$ ASSIGX yourfields.CRD FOR0O19

$ ASSIGN yourfields.POL FORO18
$ RUN/NODEB DEPBACK )

$ DEASSIGKN FORO18B

$ DEASSIGN FORO19

The raw vector fields from DEPFIELD cannot be converted (unless you write a

program to do that); they are usually so large that this does not make any
sense anyway.

On the CRAY, the fitting uses IMSL routines instead of MINUIT. For this,
keep the fourth number in the first line in "fitemfl.inp" set to 3.

Miscellaneous remarks:

Investigate in particular “fitemfl.out" if there is any cccasion of 8 or
rore {!) error messages about number of iterations exceeded before an addi-
ticral message that finally a code different from 3 (usually 0, 1, or 2) has
been obtained. If that happens (i.e. 8 or more), then there is a local area
where the fit may have rerained screved up.

A test program that produces plet of the longitudinal and transverse distri~
tutions like those used in the note describing the method is available with
the files TESTBEAM.COM, .CRA and .INP, and their counterparts for the CRAY's
named "emtest.xxx"; the code shoveling is prepared using CRAYBEAM.xxx. Com-—
bined plots including experimental data when available are done by postpro-
cessing histogram files (BSTORE and BWRITE files are both accepted) from the
test progranm with the procedure HITSSC:BEAMPLOT.COM and associated input files
(BEAKPLOT.INP, BEAMSCREEN.IEP, etc in HEJTSSC) on ANLEEP only.

If you are suspecting problems with the numerical stability of the field
determination (you have to experiment a bit and try to get a feeling for how
to design the lattices), the job DISFIELD {"disfeld” on the XMP, not exiting
on the YMP; either with the corresponding extensions for the individual files)
can be used to look at the raw vector field data in axis-parallel cuts. The
field components should not show any kind of eoscillatory pattern in a region
where they are used. In the plots from TESTBEAM, in particular the longitudi-
nal reconstructed distributions, you may find locally huge {or negative)

values of the distribution over a limited interval. Check if that interval is
in (one of) the last, highest z radial rows of polynomial grids (4#4 grids used

17



for fitting). If so, you can cure the problem by going into the .CRD file and
¢hanging the number of rows, i.s. reduce it, to actually be considered. This
will work as long as there is a larger grid available. For the largest grid,
you may have tc change more numbers in the header.

U,
A glance at the physical content:

The integration job DEPFIELD first normalizes the density to one and then
integrates for the vector field at all requested field points simultaneously.
This keeps the longest loop as the innermost ome; it is fully vectorized by
the CRAY compiler thus making the best use of that machine. Almost all the
cpu time is spent in the integration loop nest, and even in the vectorized
version that is a lot (measure it in CRAY cpu-hours rather than minutes in
production mede). The coordinate system used is cylindrical; only for putting
the vector field components together the cartesian components are calculated
intermediztely. The integrations are all done using the trapezcidal rule as
described in the note. The integraticn directions on the radial and
longitudinal coordinates are taken outside-inward to first accumulate the
mostly very small terms which otherwise get lost in the rounding errors and
finite precisicn of number representation. The densities are calculated for
shole arrays for the sake of speed {that vectorizes well if you are careful).
The density calculation does not take much time in the current setup, though.

The fits are dene in a least-squares ansatz. The program can try up to three
different strategies to obtain starting values. (That’s what the fourth number
in FI1TF(I)ELD.IKP allows; a value larger than 3 does not make any sense.)

Using the vector fields in an application:

The TESTBEAM job shows a good example of how to use the vector fields. You
have to call VFLGET (for electromagoetic showers) and BFLGET {for hadrenic
showers)} once at the beginning of your program. For each new shower, you need
to ¢all once VFLINI (or HFLINI). Then the vector fields are obtained from
calls to VFIELD and EFIELD (these are subroutines !). Inspect the code of the
TESTBEAM program and the utility routines in DEPFIELD.CAR for more details.
ANLSIM is another example of using the vector fields.

Good luck.
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FIGURE CAPTIONS

. Vector field components for a spherical distribution f() = (R~ [f)/R

centered at (z,r) = (10,0) on the z and r axes .

. Longitudinal and radial distributions for electrons of 6 GeV and 20 GeV
incident energies: crosses are data (from simnulation), dash-dotted lines for
INTGRT, dashed lines for DPIBOX, dotted lines for input distributions
(in the lateral cases integrated to better than 2 % accuracy); also shown
are the ratios of the longitudinal distributions from INTGRT (“SRF”) and
DPIBOX (“HJT”) over the input distributions.

. Longitudinal and radial distributions for negative pions of 10 GV and
30 GeV incident energies: crosses are data [12,13), dash-dotted lines for
INTGRT, dashed lines for DPIBOX, dotted lines for input distributions
(in the lateral cases integrated to better than 2 % accuracy); also shown
are the ratios of the longitudinal distributions from INTGRT (“SRF") and
DPIBOX {“HJT”) over the input distributions.

. Longitudinal (top) and radial (bottom) vector field components for elec-
tromagnetic showers of 1 GeV, on the fourth lattice of Tab. 2. The vertical
scales are linear but not normalized to each other, the offset of the values in
the top plot from the base is the largest negative value of the longitudinal

component calculated. The plane of asymptotic values marks the zero of

the vertical axis.
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VARIABLE STEP INTEGRATED VECTOR FIELDS #sx

PHI= 30

1A= 45

TH

1.00 Gev

LONGTUDINAL COMPOMNENT OF FIELD FOR E

PHi= 30

1.00 GEV

RADUL COMPONENT OF FIELD FOR E

FCS- Y4



