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Abstract

We investigate the possibility of measuring the top quark mass in the SDe detector via

the sequential ep: channel. In the decay sequence t ..... Wb we consider events with an

isolated electron from top decay and a non-isolated muon from the decay of the b which

is a decay product of that top. The invariant mass of these leptons can provide a top

mass measurement, at 250 GeV, with an uncertainty of ± 1 GeV (stat) ± 6 GeV (sys)

in one sse year of data taking at nominal luminosity.

t This work was supported by the Director, Office of Energy Research, Office of High Energy
and Nuclear Physics, Division of High Energy Physics, of the U. S. Department of Energy
under Contract No. DE-AC03--76SF00098.
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1. Introduction
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The present top mass limit set by eDF[l] is M(top) > 89 GeV. The higher luminosity

of the Tevatron collider over the next few years will allow measurements to higher top

masses, with discovery limits that will be dependent upon the upgrades of the machine.

If the top quark mass is greater than about 200 GeV, it may fall to the sse to discover

the top and measure its properties. For a top mass of 250 GeV, tt pairs will be produced

copiously at the sse (<1=1.6 nb) and will be an important background to other physics

processes.

In this note we consider measuring the top quark mass using events which contain

both an isolated electron and a nonisolated muon12J :

pp ---> a ---> WbX

with

W ---> ev (isolated electron)

and

b -+ JlX (muon in a jet, or nonisolated).

This topology is called the "sequential e-u" topology, because the e and the Jl come

from subsequent decays of the Wand the b from the same top quark. The variable that

appears to be most sensitive to the top mass is M(eJl), the invariant mass of the two

leptons.

Section 2 describes event generation and detector simulation, section 3 the event

selection, and section 4 the background. Finally, section 5 describes the results, section

6 the systematic errors, and section 7 gives the conclusions.

2. Event Generation and Detector Simulation

This study uses ISAJET 6.3113J to generate samples of tt events at the sse energy of 40

TeV. We have generated a total of 5.5 million events at five top masses between 220 and

280GeV and top Pt ranging from 4 GeV/c to 3000 Get/]«. For the 250 GeV mass we also

generated a sample in the P, range 5-1000 GeV/c and two other samples for determining

the systematic uncertainty on the mass determination (see Section 6). Table 1 shows the

number of events generated, event cross section and integrated luminosity for the 250

GeV top runs. Table 2 contains the same information for the other mass values. Tables

1 and 2 also list the numher of events which pass our cuts for this analysis, as descrihed

in Section 3 below.
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The electrons and muons pass through the standard SDC four-vector smearing

routines I') which correspond to the geometry of the descoped SDC detector, with a

nominal electromagnetic calorimeter resolution

and muon resolution

A: = :;; EB 0.01 I'll < 3, (1)

APt -2 1 1
(p;) = (0.0053)2 +0.00026(pt)2 + (0.16v'sin9)2 + (0.0000545Pt)2

APt rr:» cos29
- = 0.11v cos9 Ell 0.000075----;--;;-Pt
Pt sine

1.7 < I'll < 2.5 (2)

where Ell means that the two terms were added in quadrature. We have assumed an 85%

efficiency in detecting and identifying each of the two leptons. For the final results we

have normalized the generated samples to an integrated luminosity of 10000 pb-1
, or one

nominal SSC year.

3. Event Selection

For this analysis we have to apply requirements on the data so that we select preferentially

events coming from the sequence

t_Wb

with

W -+ ev

and

b -,..X

Figure [1) shows the ET distribution of the electron from the W, and figure [2] shows

the Pt distribution of the jz from the bottom decay. Notice that both plots start at

15 GeVlc due to an arbitrary 15 GeVlc cut in the ISAJET sample that we retained

for further analysis. In top events electrons and muons can come also from subsequent

decays of charm quarks, as shown in Figure [3]. Leptons from charm, however, will tend

to be of lower momentum than the ones from top and bottom. In addition, leptons from

top will be isolated, whereas those from bottom and charm will be nonisolated. Figure

[4] shows examples of isolated and nonisolated leptons in heavy quark decays.
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In this study we assume the use of events from an electron inclusive trigger with ET >
35 GeV and assume that the trigger becomes fully efficient at 40 GeV. In addition, the

electron is required to be isolated. To study the isolation of electrons from top decay we

calculate the vector sum of the transverse energy of all particles (except for neutrinos) in

a cone about the electron direction. Defining 6R =..;drp +d,P, we show in Figure [5]

the distribution of ET in a cone of 6R = 0.2 around the electron direction. This shows

that a requirement of ET < 4 GeV removes ouly 9% of the sample while insuring that

the electron is truly isolated. Therefore, for the electron we require:

• Er> 40 GeV

• 1'71 < 3

• Er(cone of 6R = .2) < 4 GeV

A few comments on electron isolation follow. In Figure [5J we have used the full

sample, the run with a top Pt range of 5 to 1000 GeV/c. The electron Er is required

to be Er > 40 GeV. Figure [6] shows the ET distribution in a cone of 6R = 0.2 for

electrons from true top decays, for different top Pt bins. Note that these data are not

normalized relative to one another. We point out that for electron ET > 40 GeV, the

energy in the cone is almost independent of top Pt. Figure [7] shows the ET distribution

for a cone of 6R = 0.4 for the full sample.

We now turn to the muon requirements. First we look at the isolation. Figure [8J

shows Er in a cone of 6R = 0.4 around the muon direction for the complete top sample

(Pt = 5-1000 GeV/c). The muon is required to be a decay product of a b coming from top

decay. A cut at 20 GeV removes only 6% of this sample, and would include a very small

fraction of muons from top decays (see Figure [7]). Therefore, we impose the following

requirements on the muon from the associated b decay:

• opposite sigu from the electron,

• Pt > 20 aevt«;

• /'7/ < 2.5

• ET(cone of t;.R =0.4) > 20 GeV

The Pt cut at 20 GeV/ c reduces background from charm decays and enhances the

region of phase space where the muon Pt carries information about the top mass. Figure

[9] shows the Er in a cone of 6R = 0.4 for muons from the decay of a b from a top

for four different bins of top Pt. We notice that for higher top Pt the distributions are

broader and peak at higher ET , as expected for increased jet activity in the event.
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Figure [10] shows some properties of the ep. pairs which come from real "sequential

top decays": the </>, " and R separation of the two leptons and the pteep.) for the

sample selected with the above cuts. Figure [11] shows the same distributions for all

eu combinations. Clearly the t.</> distribution is very different from that of Figure [10].

It shows a peak at 1800 which is likely to come from charm contamination (see Figure [3]).

The t." distributions are very similar whereas the t.R distributions reflect the difference

in the t.</> distributions. To maximize the probability that the e and p. both come from

decays associated with the same top quark, that is, to reduce charm background from

the other top (see Fig. [3]), we require that both leptons be in the same hemisphere.

After comparing figures [10] and [11] we impose a requirement of t.</> < 800
• The t.</>

cut removes 51% of good ep. combinations, but it also removes 63% of combinatoric

background, giving an ep. sample purity of 77%.

We now compare the Pt(ep.) distributions for real top events and for the sequential

ep. sample we have obtained with the above selection. These are shown in figures [IOd]

and [I Id]. For both plots we have already applied the t.</> cut. The distributions are

quite similar. To maximize sensitivity to the top quark mass we add the additional

requirement pt(ep.) > 120 GeV/c (see section 5) and obtain the ep. separations shown in

Figures [12a-c]. Finally, Figure [12d] shows the ep. invariant mass for all combinations

after all the cuts above.

The comparison between the M(ep.) obtained with the real "sequential top decays"

and the one obtained by all ep. combinations is shown in Figure [13]. The distributions

are remarkably similar with a peak position at the same value, which shows that the

remaining charm background is small.

4. Background from other processes

The requirements on the electron and muon discussed above serve to reduce the

background from wrong ep. combinations in the tf. events. Backgrounds from other

processes are expected to be small. The most significant ones are due to:

• WW production could be a source of isolated e from one Wand nonisolated

p. from the hadronic decay of the other W;

• W Z production could give an isolated e from the Wand a nonisolated p. from

the hadronic decay of the Z.

• Wbb production, where W --> e+v and b --> p.- could fake our event topology.
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We estimatel' ! that the background from processes such as WW «(1 = 240 pb) , W Z

«(1 = 80 pb) is much smaller than that from the Wbb channel. In order to estimate this

background we invoked the ISALEP option of ISAJET 6.36 [3] for W + jet production.

Accepting events with any p,(W) above 0.1 GeV, we obtain a cross section of 5.6 nb

for Wbb with a lepton with p, > 15 GeV and a bb pair in the final state. Requiring

bottom decay to muons and applying the cuts used to select "sequential ep. events," we

remove many but not all of the candidates from Wbb events: 13 events are left in 320

pb- 1
• Figure [14] shows the M(eJ-l) for these events, compared with the distribution for

the sequential ep; the Wbb contamination corresponds to 3% of the signal. Preliminary

calculations with VECBOS[6] with slightly different cuts, gave an 8% estimate for the

background. This is not surprising as VECBOS uses exact matrix elements whereas

ISAJET's calculations are approximate. Still, the 8% background will not affect the

results presented here.

All of the background estimates are subject to uncertainties in the evaluation of the

cross sections for these processes.

5. Results

Figure [15] shows the comparison of the eJ-l invariant mass as obtained with top masses

of 220 and 250 GeV. The gaussian fits shown describe the data quite well and determine

the peak of the distributions with a good accuracy. The two distributions are clearly

different. Table 3 and figure [16] show the fit results for five top masses between 220 and

280 GeV. They show a linear dependence of M(eJ-l) on the top mass. Using a cut of 120

GeV/c on the p, of the ep. pair, for M(top) = 250 GeV the gaussian fit gives:

M(eJ-l) =86.7 ± 0.24 GeV

The fit for the five masses shown in Figure [16] gives the relation:

dM(eJ-l) = (0.288 ± 0.005)dM(top)

(3)

(4)
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which gives:

M(top) = 250 ± 1 (stat)
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(5)

To maximize the sensitivity to the top quark mass, we have required that the p, of

the combined eJ-L system be greater than 120 GeV. Figure [17] shows the p, distribution

of all eJ-L pairs which pass the electron and muon requirements discussed in section 3 for

M(top) = 250 GeV. The distribution peaks at 60 GeV/c, and tapers off quickly; a cut

at 120 Gei/]« reduces the sample considerably. We have studied the variation of M(eJ-L)

with this cut. The results for p,(eJ-L) > 80 GeV/c and p,(eJ-L) > 160 Gei/]« axe shown also

in Figure [16] and Table 3. We see that the linear dependence persists for other pteeJ-L)

cuts and that this dependence is more pronounced for the higher p, cuts.

Table 3 summarizes the results. It shows the number of events expected in an SSC

year and the slope of the p,( eJ-L) dependence at each of the masses and p, cuts. Cutting

at p,(eJ-L) > 120 GeV/c yields both an adequate sensitivity to the top mass and sufficient

events for a top mass determination.

6. Uncertainties in the Mass Measurement

The error on the top mass measurement with this method is likely to be dominated

by systematic uncertainties due to uncertainties in the physics assumptions. We

consider errors arising from uncertainties in the b fragmentation function and the top p,

distribution.

6.1 b fragmentation effects

The b fragmentation function controls the J-L momentum distribution. Heavy quark

fragmentation in ISAJET is paxametrized with the Peterson fragmentation function!')

We have run ISAJET changing the parameter £ of the Peterson function by one standard

deviation as measured by ALEPH:(8)

(6)

This corresponds to changing!") the ISAJET parameter XGEN to 0.167, since the default

value of 0.5 corresponds to £ = 0.01. The lower points at M(top) = 250 GeV in Figure

[16] correspond to the lower value of e. The two runs give a range of ±3 GeV on the top

mass due to uncertainty in the b fragmentation function.
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6.2 dependence on the top production mechanism
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We have also studied the dependence of the measured M( ell) on the top P, distribution.

We find this dependence to be rather strong.

Figure [18] shows, for M(top) = 250 GeV, the Pt(top) distributions obtained in

ISAJET for the six different Pt bins used for the runs of Table 1. We combine these

runs, properly weighted, to obtain the top Pt distribution shown in Figure [20] as a

solid curve. We then take ranges of Pt(top) and plot the ell invariant mass. Figures

[19a-d] show the M(ell) distributions for several Pt(top) ranges. We fit each of these

distributions and show in Figure [21) the fitted values of M(ell) as a function of Pt(top).

There is a clear dependence of M(eJl) on Pt(top). The values of M(top) corresponding

to each of these M(eJl) values are shown in Table 4. The results show that the top

mass determination depends on the top Pt distribution, i.c, on the knowledge of the top

production mechanism.

With ISAJET we have generated only events where the tt pairs were produced

directly from quarks and gluons. There are other processes, like gluon splitting (a gluon

giving a apair), and flavor excitation which can produce a different Pt(top) distribution.

This is also the case for Wt production. Figure [22) shows the Wt cross section compared

to the a cross section as a function of the top mass at LHC energy[lol. It shows that at

M(top) = 250 GeV, this process is nonnegligible. This will be the case at SSC also. In

order to generate a different top Pt spectrum, we have changed the Q2 scale in ISAJET

by a factor of 3, thus altering the initial state radiation. Figure [20) shows the Pt(top)

spectrum before (solid) and after (dashed) changing the Q2 scale.

The different Pt spectra give a difference in M(top) of 5 GeV and we take this to be

the systematic error due to uncertainty on the top production mechanism.

6.3 Total systematic error

Adding these uncertainties in quadrature, we expect to determine the top mass at 250

GeV with uncertainty ±1 (stat) ±6 (sys) for one year of running at the SSC design

luminosity. Both the systematics uncertainties we have considered can be studied when

the SSC data are on hand. Hopefully tuning the Monte Carlo to the data can reduce

the uncertainty considerably.

7. Conclusions

The technique of selecting isolated electrons and nonisolated muons which come from

decays of the same top quark works well. Using a cut of 120 GeV/c on the Pt of the ell

pair, we find:
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M(top) = 250 ± 1 (stat) ± 6 (sys) GeV
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(7)

for one year of SSC running at the design luminosity. The systematic uncertainty

considered here can be reduced by detailed studies of the data, when they become

available.
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Top Mass p, Range Events Gen Event o Integrated .c sequential ell Events

(GeV) (GeVjc) (thousands) (nb) (pb- 1 ) (one SSCY)

250 4-50 70 0.102 1908 262

250 50-150 300 0.585 1420 1485

250 150-300 450 0.646 1503 6030

250 300-600 150 0.243 1710 8233

250 600-1000 200 0.021 26000 1404

250 1000-3000 50 0.002 64500 131

total 4-3000 1220 1.599 17545

250 5-1000 753 1.594 1314 19620

250 (b frag) 50-1000 300 1.49 1541 18450

250 (p,(top)) 50-1000 245 1.489 456 14760

Table 1: The number of events generated, event cross section, effective integrated

luminosity, and number of sequential ell events normalized to one SSC year at top

mass 250 GeV and several top p, ranges. The last two rows give these values for the

p,(top) dependence and b fragmentation study samples. The fluctuation in the total

number of sequential ell events over the last four rows reflects the fact that a luminosity

corresponding to a fraction of an SSC year has been generated.
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Top Mass p, Range Events Gen Event a Integrated I:- sequential OJ.' Events

(GoV) (GoV/c) (thousands) (nb) (pb- 1 ) (one SSCY)

220 4-50 100 0.220 1282 281

220 50-150 662 1.150 1596 2539

220 150-300 500 1.025 1349 9445

220 300-600 200 0.305 1819 11134

220 600-3000 200 0.025 22185 1499

total 4-3000 1662 2.725 24898

235 4-50 100 0.147 1888 281

235 50-150 200 0.815 680 2343

235 150-300 200 0.813 681 7742

235 300-600 200 0.273 2026 9978

235 600-1000 100 0.022 12500 746

235 1000-3000 50 0.002 63860 127

total 4-3000 850 2.072 21217

265 4-50 100 0.072 3867 253

265 50-150 300 0.427 1947 1345

265 150-300 250 0.516 1342 4189

265 300-600 200 0.216 2563 7866

265 600-3000 100 0.023 12230 1542

total 4-3000 950 1.233 15195

280 4-50 100 0.051 5403 194

280 50-150 200 0.314 1760 1330

280 150-300 200 0.413 1345 2045

280 300-600 200 0.192 2886 3378

280 600-3000 100 0.022 12774 1540

total 4-3000 800 0.992 8487

Table 2: The number of events generated, event cross section, effective integrated

luminosity, and number of sequential ell events normalized to one sse year for several

top mass and top p, ranges.
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pteeJ1) Top Events Calculated

cut Mass Expected M(eJ1) Slope

(GeV/c) (GeV) (one SSCY) (GeV)

80 220 43810 70.45 ± .15

80 235 34886 75.60 ± .16

80 250 29837 78.60 ± .20 0.273 ± .004

80 265 24073 84.56 ± .23

80 280 12920 85.26 ± .32

120 220 24616 77.86 ± .18

120 235 20920 83.92 ± .18

120 250 17610 86.69 ± .24 0.288 ± .005

120 265 15234 92.47 ± .26

120 280 8285 94.11 ± .36

160 220 12584 83.54 ± .23

160 235 10274 91.04 ± .24

160 250 9993 93.56 ± .31 0.312 ± .006

160 265 8986 100.19 ± .31

160 280 4896 100.93 ± .40
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Table 3: The number of sequential eJ1 events expected in one sse year (10000 pb-1
)

and the calculated eJ1 invariant mass for three values of the pt(eJ1) cut and five top quark

masses. The final column shows the slope of the linear dependence of M(eJ1) on M(top),

as is shown by the fitted line in Figure [16].
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Pt Range M(ep.) M(top)

(GeV/c) (GeV) (GeV)

50-150 84.3 ± 5.1 240 ± 18

150-250 90.2 ± 1.7 260 ± 6

250-350 91.3 ± 1.1 264 ± 4

350-500 83.0 ± 1.0 235 ± 4

500-650 78.8 ± 1.0 221 ± 3

650·1000 76.7 ± 1.0 213 ± 3
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Table 4: The fitted invariant mass M(ep.) for samples with different Pt(top) ranges. All

the sequential ep. cuts have been applied, as has the requirement that pt(ep.) > 120 GeV.

The calculated M(top) in the final column assumes the straight line fit for the pt(ep.) >
120 GeV sample in Figure [16].
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Figure 6) Distribution of transverse energy in a cone of t:.R = 0.2 around the electron

from a true top decay for different Pt ranges of the top produced: a) 4

< Pt(top) < 50 GeV/c,b) 50 < Pt(top) < 150 GeV/c, c) 150 < Pt(top) < 300

GeV/c, and d) 300 < Pt(top) < 600 GeV/c. M(top) = 250 GeV in all cases,

and the electrons are required to have ET > 40 GeV.
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Figure [8].
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Figure 10) Properties of ep. pairs which come from true sequential top decays: a) t:;.¢i

b) t:;.7]j c) t:;.Rj and d) the PI distribution of the ep. pair. Lepton cuts are as

in Figure [8J, and in d) we have added the t:;.¢ > 80 0 cut.
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Lepton cuts are as in Figure [8], and in d) we have added the tl</> > 80 0

cut.
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Figure 13) The ep. invariant mass;a) all ep. combinations;and b) ep. combinations that

come from real top. The cuts discussed in section 3 are applied in both cases.
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Figure 17) The PI distribution for all ep. pairs which pass our cuts.



:!t 10 199 10 199
6726

...
Entries 308691500 .. sntries

~

0) Mean 71.13 4000 e- b) Mean 125.6
RMS 52.79 RMS 58.44

1000 ~.

~

500 ~ ~ 2000 1--
~~

~~
---- , I . I 0
-T- , I .

0
500 750 10000 250 500 750 1000 0 250

p, of Top p, of Top

10 199 10 199...
Entries 43,32 ..

Entries 25004~ + •~
~ Mean 225.2 2000 """ ~ Mean 395.1

4000 - ~ c) RMS 69.81 d) ... RMS 97.40.

+ +
+

1000 f-- +
2000 - ~

~

-- , ----- , , ._~--, . I '-~-T. I".
0 - 0

0 250 500 750 1000 0 250 500 750 1000
p, of Top p, of Top

10 199 600 f- lO 199
• +

49723 ~ntries 17429Entries. ++...

3000 ~ Mean
~

689.8 1) Mean 841.8:
.) RMS + 132.8 400 f- RMS 163.-1>

c, +
~2000 ~

tt
~

.. ++
~

200 l:" +
1000 ..

~ .:«. +++
, , -"'-·"'++1

0 o 0
,

0 250 500 750 1000 250 500 750 1000
p, of Top p, of Top
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the top mass at the LHe energy of 16 GeV. The cross section units are pb.


