T

.0 1160 0052553 9

SDC-90-00112

SDC
SOLENOIDAL DETECTOR NOTES

VHDL SIMULATION FOR THE STRAW TUBE READOUT
Y. Arai

Ist JSD Workshop, KEK, Aug. 8-9, 1990

5DC-90-00112
JSD - NOTE - 1990 - 53

VHDL Simulation for the Straw Tube Readout

Y. Arai
KEK, Narional Laboratory for High Energy Physics
1-1 OQho, Tsukuba, Ibaraki 305, Japan

Contribution paper to the 1st JSD Workshop held at KEK on Aug. 8 - 9, 1990.

VHDL Simulation for the Straw Tube Readout

Y. Arai
KEK, National Laboratory for High Energy Physics
1-1 Oho, Tsukuba, Ibaraki 305, Japan

Introduction

Designing the readout system in the SSC experiments is very difficult because of the high
data rate, the long pipeline structure and the several levels of trigger stage. Thus it is very
important 1o simulate the readout system before starting detailed design and production.

Recently, system simulation software, such as Verilog{1]} and VHDL[2], can be easily
available and runs on workstations. These softwares can handle behavior level descriptions in
addition to gate level descriptions. These simulation models also help much when we proceeds
to design LST's.

In this report, I will show an example of VHDL simulation applied for straw tube readout
system at the SSC experiment The simulated system includes frontend time-to-digital
converter chip (TMC [3]) developed by KEK and a second level buffer. Trigger signals are
generated according to the expected rates at the SDC detector{4]. Experience on using VHDL
simulator are also described.

Readout Scheme

Fig. 1 shows the data flow diagram of the straw tube readout based on the TMC chip. The
TMC (Time Memory Cell) is 2 CMOS VLSI chip which records input signal to memories in
1ns step. Because of this fast digitization, the readout scheme is very simple and there is no
need for analog to digital conversion time. On the other hand, for the TVC case[5] ,which is
developed at Pennsylvania Univ., timing information are stored as analog voltage, so the
readout scheme of the TVC will be different from that of the TMC.

Straw tube detector consists of about 250k channels, and 256 straws make a mechanical
module in a present design. Present TMC chip (TMC1004) has 4 channels in a chip and each
channel has 1024 bit depth. All the signal transitions are kept in the memory for 1 psec. In
future version, it may be possible to increase the number of channels per chip, but it may be
rather required to increase the depth of memory and reduce the timing resolution below 1ns.
Thus, the present scheme is assuming the number of channels is 4.

When the first level trigger arrives, the data are sent from the TMC to the second level
buffer. The data are encoded from 32 bits to 6 bits at this ime as shown in Fig.2-(a). After
second level trigger processing time, second level reject or accept signal will come to the
second level buffer. If the reject signal appears, the corresponding data are abandoned. If the
accept signal comes, the data are sent to the data coliection board. At the output of second level
buffer, the data can be encoded further as shown in Fig.2-(b).

@) Row Memory

A 1]o]o)/
1 0 0

1 ilo]o

32b|t LY 1 1 0 — 0 5 0 . s ebit

1 1 0
0 1 0 l
0 1 0

¢ 0 1 o]

Bbit { . .. ols Yo — | 37 | 8bit

l l

-+ 3 row—-

Fig. 2 Encoding scheme (2} column encoding at the TMC1004 (b) event encoding
at the second level buffer/encoder. It is assumed that each Tow memory consists of
32 bits and 3 rows are read out for a trigger.

Until here no data sparcification is employed, so the data length is fixed (1 byte/ch). This
reduce the address attachment and ease the data transmission protocol. Behind the data
collection board, we need another data collection/compression modules which may sit on the
detector wall. Here data formatting will be done and the data are sent out via fiber optic cables.

Fig.3 shows an example of mounting of front-end electronics at the chamber wall. The
signals are pulled out both sides of the super layer and connected to a hybrid module. In the
hybrid, bare chips will be mounted on both side because of the limited available space.

generates first level trigger signal "trg1” and second level reject / accept signal (“"tZ2reject” /
"t2accept”).

- e W W wm e v e W R A e e e e T A mm e W e e e R am e e e

R MW W W W W, o s,

LA B Rl N N N Y

-
; 1
1 I
Ly e dobus : ' -
B) - ey @0bUS N
¥ ’
b ¢ v dibus ’ '8 :
' > T et
L]
Vb \ ’ ! 8 !
: \ DN d2bus > S e2bus !
r 1
P N ? slbe ’ !
N 6 d3bus ’
PN s > 7> e3bus :
P \ , ‘ .
7 rcobus 7
: : oy »! £ adrbus !
1y i ‘ ’ i
B _ dvaid ——» todvalid |
) : ’ } t2accept N
') imctoo4 / o t2slect l'
i , SRS X
NN dsn .] trg1 :
' " . ’ . (|
N \ clk. .“‘h\\‘ ’ tﬂgger ¢\
! : N Y \ ¥ I |
by ' 7 v syscky feooooos
N ¢y —p Ciobus ‘- N !
k N N [S Y 1
N *—————reset !
L}
b - —pt— radr \
: N csn system)
ey]
£

e A T W R e T e e A W WE W e U e W R W VR VR e e - R MR R e e W W W W W e e = e W m wm wm

Fig. 4 Top Level Structure of the simulation model.

The module "tmc1004" simulates only the IfO part of the TMC1004 chip at now. The
contents of the memory in the "tmc1004" are loaded from a file at startup. The module "slbe"
has FIFO buffers (D0 - D3 and TRG), encoding logic "ENC" and control circuit (POINT).
Some of the simulatign models are listed in Appendix. As there are many way to describe the
behavior in the VHDL model and I am not yet an expernt of the VHDL, the models shown in
the appendix is not the best one but this may help your understanding of the VHDL modeling.

-

S e -

e e W W W e W N M a w W A e W w w o W oo

; sive.vha ’
‘ . doout— p
doin J———*w DO: dpmem = N ‘——:—»eOOUt
c
’ [
s diout[E] 4
d1in 4 D1: dpmem N s elout
/ cl 4
J ’
d2out| &
d2i y——— g D2: dPMem ——-l N t—»e20ut
/
; cl
4 d3out j
d3in -E-———- D3: dpmem g —4—w 230Ut
' /
’ . v addr ’
adrin-:——q-—- ADR:dpmem p Latch -—:-’adrout
¢ ’
/ t1ind trgout ¢
t1in 4 TRG: dpmem g ’
[
: var :
t2accept ——e] T2 wpt W R tptrot !
t2reject L—wi- £ b1 ¢4 ’
_ﬁ]
writt——a | POINT: ts ful
ck ——e Process e 8Pty
’
reset 4 /
’ ’

P L Tt I I

Fig.6 Structure of the second level buffer/encoder "slbe".
Simulation Results

The simulation for the model shown above needs about 1 sec 10 do 1 usec simulation on
the Sun3/470 workstation, To see the second level processing effects, we have to simulate at
least 3 msec or so. This corresponds to one hour CPU time. For the simulation of more
comprehensive system, we obviously need more powerful CPU to do a good job.

Fig. 7 shows time distribution of the first and second level trigger signals. First level
trigger signal is randomly distributed with the average rate of 100kHz. Second level trigger
processing time is fixed to 10 psec at now. Second level accept signal is generated randomly
in average 1 accept signal for 100 first level signal.

Fig. 8-(a) shows data and readout control signal for the first level signal. 3 consecutive
row data are read out for a first level trigger. If we have two successive first level rigger
during the readout, data will be overlapped for two trigger as shown in Fig. 8-(b)

Fig. 9 shows histograms for the number of event and data in the second level buffer. As
we $et the first level trigger rate is 100 kHz and the second level trigger processing time is 10
us, the time average of event and data is consistent with 1 and 3 respectively.

{a) Number of event in the second level buffer.

Trace name: /SYSTEM/SLB/NEVENT (18 (file=1})
Time information:
Range: 0-2213856 (2213857 time units}.
Unknown or Disabled 1 times; total 3504 time units (0.l6%)
Univariate Statistics:
Samples: 474
Minimum data value: 0
Maximum data value: 7
Sample Mean: 1.677; Sample Var.: 1.957; Sample Std. Dev.: 1.39%9
Time Average; 1.072; Time Var.: 1.348; Time Std. Dev.: 1.161
> histogram 18
Trace name: /SYSTEM/SLB/NEVENT ({18 {file=1})
Time informatioen:
Range: 0-2213856 (2213857 time units).
Unknown or Disabled 1 times:; total 3504 time units (0.16%)
Histogram information:
8 buckets
width = 1
rem =
474 samples, 3 sample (s} per star
[0'0] 85 |!tt********i*****ti!w*t***ﬂ**
Ilfl] 165 lt*****t******tit*tit*tt***itttt**ﬁ******t****tt**t**t**ﬂ
:2’2] 124 Ittittii‘***i‘titi***tt*i*************i******
‘3'3} 55 i*t*itt******ti*i*t*
[4’4] 20 |wwwkwkw
[5,5) 12 jr=ww
(6,6] g wws
[1.7] 4 |

(b) Number of data in the second level buffer.

Trace name: /SYSTEM/SLB/POINT/QUEUE LENGTH (19 {file=1})
Time information:

Range: 0-2213856 (2213857 time units).

Unknown or Disabled] times; total 10 time units (0.00%)
Univariate Statistics:

Samples: 942

Minimum data value: 0

Maximum data value: 21

Sample Mean: 4,992; Sample Var,: 16.667; Sample S$td. Dev.: 4.082

Time Average: 3,162; Time Var.: 11.799; Time Std. Dev.: 3.435
> stogram 19

Trace name: /SYSTEM/SLB/POINT/QUEUE_LENGTH (19 {file-=1})
Time information:

Range: 0-2213856 (2213857 time units)}.

Unknown or Disabled 1 times; total 10 time units {0.00%)
Histogram information:

10 buckets

width = 2

rem = 2

942 gsamples, 4 sample (s) per star

0' 11 172 [oA kA AR N AR TR AR RN AR RN NI AT R A RN RN

2, 3] 25] Ak ARk kAR R AN R A kA AR AN A A A AN AR AR AR NI E RN R TR Rk T Xk

{

[4, 5] 162 |aatwdiddkrdnm ke drkmw ek F Rk hw kRS R ARk NN
[6, 7] LET [dudd stk d ke ke m ok h w kR A KR A AR NIRRT EA AKX N
[B, 9] 90 [wwawddmurwnhadrthrarnnn

(10,11) 24 [*uswww

{12,13] 28 [wewwnw=

(14,15] 20 |w*xxwx

(16,17] 8 |**

[1B,21) 20 |wx=*x

Fig. 9 Histograms of the number of event (a) and data (b) in the second level buffer.

Simulation for 2.2 msec was done.

Appendix : Examples of VHDL models

-- system.vhd

-~ TMC Readout System Top Level Structure

library ZYCAD;
use ZYCAD.types.all;
use WORK.convert.all;

entity SYSTEM is
end;

architecture A of SYSTEM is

component tmc 1004

generic{ncolumn: positive);

port(dObus, d1bus, d2bus, d3bus: out MYL4_VECTOR(S downto 0);
ciobus: inout BusX(6 downto 0);
radr: in MVLA_VECTOR(! downto 0);
rcobus: out MVL4_VECTOR(6 downto 0);
dvalid: out MVLA4;
clk, ds, wen, csn: in MVLA4;
reset; in MVL4),

end component;

component sysclk
generic (high_time, low_time: time);
port {clk: out MVL4);

end component;

component slbe
generic(Naddr, ncolumn: Positive);
port {(d0in, d1in, d2in, d3in: in MVL4_VECTOR(S downto 0);
adrin: in MVLA_VECTOR(6 downto 0);
adrout: out MVLA_VECTOR(6 downto 0);
write, tlin, 2accept, 2reject, clk, reset: in MVL4;
eDout, elout, e2out, e3out: out MYL4_VECTOR(7 downto 0);
dvalid, full, empty: out MVL4),
end component;

component trigger
generic(Pmigl, Pirig2: REAL range 0.0 t0 1.0;
T2nd: Time);
port(clk: in MVLA4,
tlout, t2accept, 2reject: out MVLA);
end component;

signal d0bus, d1bus, d2bus, d3bus: MVLA_VECTOR(5 downto 0);
signal ciobus: BusX(6 downto {);

signal radr: MVL4_VECTOR(1 downto 0}

signal rcobus, adrbus: MYLA_VECTOR(6 downto 0);

signal dvalid: MVL4;

signal clk, wen, csn: MVLA4;

signal migl, t2accept, 2reject, reset: MVL4;

signal eQbus, elbus, e2bus, e3bus: MVL4_VECTOR(7 downto 0);
signal 2dvalid, full, empty: MVL4;

i1

rcobus; out MVL4_VECTOR(6 downto 0);
dvalid: out MVLA4;
clk, ds, wen, csn: in MVLA;
reset: in MVL4);
end tmcl1004;

architecture A of tnc1004 is
component csrdecod
port {adr: in MVLA_VECTOR(1 downto 0);
wen, ¢sn: in MVLA4,
rport, wport: out MVL4_VECTOR(2 downto 0));
end component;

component buf7

port (inbus: in MYL4_VECTOR(6 downto 0);
autbus: out MVLA_VECTOR(6 downito 0);
enable: in MVLA4);

end component;

component rpoint

port {clk, dsw: in MVL4;
dvalid: out MVLA;
rcobus: out MVLA_VECTOR(6 downto 03;
restl: out MVLA_VECTOR(6 downto 0);
westl: in MYVL4A_VECTOR(6 downto 0);
saenb, encl, olaich, denb: out MVLA4;
reset: in MVL4);

end component;

componerit mem
port (addr; in MVL4_VECTOR(4 downto 0);
datain: in MVL4_VECTOR(31 downto 0);
dara: out MVLA_VECTOR(S downto 0);
saenb, encl, olatch, denb, write, reset: in MVL4);
end component;

signal csr, cstw: MVL4_VECTOR(2 downto 0};

signal west0, wesrl, west2: MVL4_VECTOR(6 downto Q);
signal restl: MVLA_VECTOR(6 downto 0);

signal din0, dinl, din2, din3: MVLA4A_VECTOR(31 downto 0%;
signal dsw, saenb, encl, olatch, denb, write: MVLA4 = '0';
signal addr: MVL4A_VECTOR(4 downto 0);

begin
DECQDE: csrdecod
port map (vadr, wen, £sn, CSIT, CSTW);
CSROW: REG_EDGE
generic map (7, 5 ns, 5 ns)
port map (Drive{ciobus), cstw(D), reset, wcst0);
CSROR: buf7 '
port map (wcsr0, Drive(outbus) => ciobus, enable => ¢siT(0));
CSR1W: REG_EDGE
generic map (7, 5 ns, 5 ns)
port map (Drive{ciobus), csrw(1), reset, wesrl):
CSR1R: buf7
port map (rcsti, Drive(outbus) => ciobus, enable => ¢sr(1));
CSR2W: REG_EDGE
generic map (7, 5 ns, 5 ns)

13

