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Introduction
Cylindrical drift chambers made with wound mylar cathodes (Straw Chambers) were developed
almost a decade ago. I am going to report on recent developments i in the design of these
chambers for an SSC detector. This work was carried out at Indiana University under an SSC
R&D grant and as part of the Central and Forward Tracking with Wire Chambers Subsystem

group !

The central tracking system for SDC

The central wire tracking chamber for the SDC will consist of 8 superlayers. Each superlayer
consists of two cylindrical sections 3 melers in length. Each superlayer contains 8 layers of
straws. The inner radius is 0.7 meters, the outer is 1.8 meters. One quarter of the tracking system
is shown in Fig. 1.
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Fig. 1. Possible layout of SDC central wire tracking system
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In Fig. 2 we see the end view of the central wire tracking chamber and the the eight super layers.

The superlayers are constructed from a ring of identical modules, holding up to 256 straws. Four ~
of the superlayers are stereo and four are axial. The stereo layers are formed by orienting a module

of straws at a 3 degree angle. (The modules (and straws ) are kept straight).

The total number of module will be about 544*2.

Since straws type detectors have been used in a number of experiments in the past ten years, the

primary task is to define the mechanical specification for the superlayers, modules, and straws, and

to integrate the system with the silicon tracker.
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Fig. 2. End View of central wire tracker with detail of a module
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The SSC Environment

The hit rate, current draw, occupancy, and charge/unit length were calculated using the rates
predicted by D. Groom at a nominal luminosity of 1033 cm -2 sec - 1. They are shown in Fig. 3
a,b and Fig. 4 a,b. The effects of the magnetic field (loopers) will increase these predictions at
intermediate radii and decease them for the larger radii, however these the general dependance and
are a valuable guide for chamber construction. The current draw for each straw may be the limiting
feature for the operation at SSC. It s principally for this reason that the straws are split into two
sections axially.

rate ({MHz)

occupancy (%)

2.0+
1.5
1.0 -
0.5~
0.0 T T T L T ] T a
60 80 100 120 140 160 180
radius (cm)
5 -
4mm dia. straws
4 4 27 ns drift+15ns shapin
3-.
2 -
1 =
0- | } | I 1 [} H b
60 80 100 120 140 160 180
radius {(cm)

Fig. 3. a)The hit rate per wirec and b) occupancy versus superlayer radius
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Modular Design Aspects
We are interested in the design of modular systems for the SSC. We belicve that there are several
compelling reasons for this:

1) Alignment
+ The module's cross section stability aligns the straws internally
» The support structure maintains the modules in position.

2) Compressional Loading
« The compressional loading due to the wire tension ( 12 Kg for 256 wires) is taken up
entirely by the external module.
* Since the module takes up the compression, the end support structure can be very light.

3) Mass Production
* The 240,000 channels of drift tubes is much larger number of wires than past detectors.
With a modular approach the 1088 identical modules can be built by industry.
« Endplate design is simplified, HV, gas, electronics card are all identical.

4) Testing
« Each module can be tested, calibrated, and measure before assembly.
+ HV and gas tests can be completed before assembly.
» The completed electronics and trigger can be tested before assembly.

5) Repair
» Modules can be repaired both before and after assembly.
* Modules can be replaced during major shutdown periods.

Module construction

As part of our SSC Tracking Subsystern development, we are planaing on constructing several
smaller modules this summer. The purpose of these smaller test modules is to determine the multi-
straw alignment, to workout an endplate design, to begin to understand construction techniques
with carbon fiber composites, and to investigate integration of the electronics in the modular
design. The first modules will be about I meter in length. Fig. 5 shows a endview of a 64 straw
prototype chamber.
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Fig. 5. Side view of a possible small straw test module

We are trying to workout a minimal mass design for the modules . One possibility is to
slightly compress the wire supports with the outer shell in order to set the straw spacings. In this
case the endplate provides the wire tension, but does not have to position the wire accurately. We
have several preliminary designs that utilize this idea. The sideview, showing the end cap and wire
attachment pin are shown in Fig. 6. Details of the endplate and the wire connection pin are shown

in Fig. 7, and Fig. 8.



.

Spocer 0D : 1570
2x str.woll: D028
Sper compr. = 0005
Pocked dia. 1593

2.0907 2.eel
A2

Hoop rigidity nesded in region
0.020 - see note 1. F wire supports.

Limit of end-plates

1243p

1.2735 ¢ 2e;

0.1533D(A ¢ ¢
- 12.00 —
iy ks i
] A [
(R [
oA [
b Nire support P
1.1250 . eot B oo -
o> || [ 2
T (I
[ "o
to [
- 0, 160 v
N e o
\ 0.250
. 1. This is on initial estimate.
Actuol shell thickness to be determined
Locations for tA\ B4 strows by structurol onolysis. Actuol deflection of
\ shell ot mid-point when Looded with strows ond
¢ shell Boss sust not exceed 0,002.
¥oll must bow Less thon Indigre University :;ﬁ:ru?ﬁt
.002 ot this point in oll sections. :
Bowing drawn exogeroted 10X octual. b4-straw enclosure
Non-uniform woll thickness
a0y be needed, shell32
F=l foerr 1 o 1

Fig. 6. End view of a possible 64 straw test module



1.112

p.085 DiA

.
0. lzsou-/

Shawt

PAOTOTYPA 8.0 JLATE

hflarm Univerelly b e i
ST endplote
’é, ] Tendptete |l

AT ._I-.r'li‘l
t

Fig. 8. A possible wire fastener for the 64 straw endplate
8




Basic straw cell, design

The straws we are presently using are 2 meters long.2 Construction of 3 meter straws is not
thought to be a problem. The general method is shown in Fig, 9. Two thin films are wound on a
precision mandrel. The straws we are using are made with an aluminized (1000A) polycarbonate
layer and an outer wrap of mylar. Both films are 12 microns thick.
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Fig. 9. Schematic of straw construction

Some of the R&D areas we are working on are fabrication of thinner straws, investigating other
materials such as Kapton, and increasing the metallic coating to reduce the cathode resistance.



Electrostatic stability

One of the original uncenainties for straw construction was electrostatic stability, This is now well y
understood.? We, and others, have calculated the wire displacement as a function of offset as

shown in the figure. Our conclusion is that for 4 mm diameter straws with 25 micron wire and 50

micron construction and alignment accuracy, we will need wire supports about every 80 cm at

2000 volis. The stability plot is shown in Fig. 10. This shows the electrostatic deflection

amplitude as a function of the centering offser and the applied voliage.
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Fig. 10. The wire deflection amplitude versus voltage for several offsets

Requirements for the wire support

The design criteria for the wire supports are:

»Center the sense wire within 25 microns

*Allow free gas flow, restrict no more than 50%
Insulate the HY at2 t0 2.5 KV

+Minirnize multiple scattering

*Minimize detector dead space

»Allow rapid, low cost, and automated construction
+Have long term dimension stability, radiation resistant
«Allow accurate positioning along the wire

Several designs are shown in the next figures. Fig. 11 shows the "M&M" design which

has been manufactured by Sabin Co., Bloomington, In. The unique feature of this design is that

the wire is melted into position with small precision fixture shown in the same figure. A short

pulse of current into a 1 inch section of the wire heats it sufficiently to melt the Delrin and allow

the tensioned wire to move to the center. This support has been used in a 3.5 meter straw cell. Two

other support designs are shown in Fig. 12 and 13. The " double V" design is being presently ~
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manufactured for use in the prototype modules we are building this summer. It has the advantage
over the "M&M" of allowing restringing.
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Fig. 11. Two views of an "M&M" wire spacer and the alignment jig for melting wire in.
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Drift Chamber tests

A number of studies have been done on drift chamber gases. These have been reported? previously
.50 I will mention only a few of the results to show that we have an example of a gas that will
work at the SSC. The speeds of various gasses are shown in Fig. 14 a,b,c,d. The fastest gas we

have studied is CF4. with 20% isobutane, shown in 14 d. The drift time with no magnetic field is
19 ns for 2 mm drift.
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P~ The resolution of this gas, for various isobutane concentrations is shown in Fig. 15
This gas gives us a resolution of about 100 microns and full efficiency at about 2000 Volts. Other
gases are still under study.
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Fig. 15. Wire resolution for CF4 gas mixtures

P
We have also measure the efficiency of these gas mixtures as a function of voltage. These
measurements, shown in Fig. 16, will depend rather importantly on the noise immunity of the
electronics and the resulting threshold level, so they should only be taken as an indication of the
signal size for this particular gas.
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Fig. 16. Cosmic ray efficiencies for CF4 mixtures
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Long straw tests at Indiana University

In addition to the basic chamber operaton studies that I reporied above, we have begun a program
for directly measuring the properties of long straw systems- chambers as long as those required for
SSC. The goals of this program are:

+Establish construction techniques
sstudy signal attenuation

«Study termination

*Verify short straw performance
sverify support-stability calculations

As part of this program we have constructed a 2 meter, six straw array and completed a 3.5
meler, six straw array. The six straws are held in a precision machined V groove 3.6 meters in
length. The basic test system for cosmic rays in shown in Fig. 17.

Scintillator \ e~ 2 meterx 33 cm
{ i1 ] )
Ny
scintillator 2meterx Scm

L

Fig. 17. Layout for 6 straw chamber cosmic ray tests

In the case of the 3.5 meter straw array, two straws were spliced together to give the full length.
Wire spacers of the "M&M?" design were positioned every 60 cm. Our initial tests satisfy us that
the system is electostatically stable and that the performance is very similar to the short straw
system. In Fig. 18 we show the measure pulse height from a Fe33 source for a 3.5 meter straw
tube operating at 2300 V. Both the direct and the reflected pulse can be seen. The pulse is
extremely short.
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The far end of the straw was satisfactorily terminated with 223 ohms through 34 Pf. This is
consistent with the calculated value of 310 ohms for the impedance of the straw transmission line.
The terminated pulse is shown in Fig. 19. -
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Using the terminated pulse we were able to measure the attenuation of the Fe35 signal in the straw
chamber. This is shown in Fig. 20. We find an attenuation length of somewhat over 4 meters.
This would be satisfactory for the 3 meter length chambers foreseen at SSC, but is somewhat
shorter than a simple calculaton would predict. We are investigating the effects of the splice
resistance and the total cathode resistance.
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Fig. 20. A measure of the signal attenuation in a 3.5 meter straw

We were also able to make a series of measurements on the 2 meter six straw system using the
University of Pennsylvania electronics. The signal from a cosmic ray in the 2 meter straw. is
shown in Fig. 21. The signal shown is the output of the University of Pennsylvania preamplifier
with tail cancelation circuitry . Note the very short recovery time of the signal to the base line.
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Signal Calculations

We have calculated the signal characteristics of the 4 mm straws based on the work done
by Iwasaki.> We note that there is an impressive gain in signal size going to a fast gas at higher
voltage. Figure 22 shows the calculated signal from a 3 meter straw for both 7 mm and 4 mm
diameters. The 4 mm straw gives almost twice the signal, and has a much faster rise time. We feel
that both jitter and walk errors will be tolerable in 4 mm straws. of 3 meter length.
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Fig.22. A calculation of the signal size from two different gases and sraw diameters
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Summary ~?’

Large scale mechanical design of a modular straw system is underway by Westinghouse.
This design will include the integration with Si system , the module support , and a study of the
alignment and stability of the system.

The modular approach to constructing a tracking systern will be studied this sumnmer with the
construction of several 64 straw modules. These will be available for testing by collaboration.
Tests might include :

sclectronics evaluation

*High rate beam studies

« Trigger electronics

¢ Gas flow and heating studies

* Radiation testing

» precision track linking and resolution

We would like to stress that basic R&D still very useful by any group. We would like to help you
get started if you are interested. Some areas of useful activity might be:

*Straw tube materials

swire studies

sspacer designs

+fast gases- response in B fields

sendplate design- signal coupling Jy/
stermination- capacitors

we
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