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Abstract

Momentum resolution for muons is analyzed for a sys-
tem consisting of 100 layers of tracking equally spaced
between 0.5 m and 1.6 m from the beam. With 200 um
resolution the result is o(p.)/p. = 0.74p, (TeV). Con-
straining the vertex to 20 um reduces this by a factor
0.31. If the calorimeter is inside the coil further improve-
ment can be achieved by making an additional measure-
ment beyond the calorimeter. The improvement is dra-
matic only for transverse momenta beyond 1.5 TeV and
thus does not furnish a compelling reason for a large ra-

dius coil.




The analysis of Gluckstern (NIM 24, 381 (1963)) is adequate for explor-
ing the muon momentum resolution of a system consisting of a central tracker
supplemented by a vertex constraint and an additional measurement made just
after the calorimeter and just before the coil (in the instance of the LSD design).
The specific geometry studied has an inner tracking radius of 0.5 m and an outer
tracking radius of 1.6m. The coil begins at 4.0 m and between the tracker and
the coil is a calorimeter with 300 radiation lengths of material. The tracker is
assumed to have 100 wires, each giving a position measurement with rms error
€0 = 200um. We shall suppose the vertex is known to 20um. The measurement
made after the calorimeter suffers from multiple coulomb scattering with an rms

displacement

1 14 x10™ 6\/_L 336pm

V3 p(TeV) p(TeV)
where A = 300 is the number of radiation lengths of material and L = 2.4 mis

the depth of the calorimeter. The effective resolution is

€eoil = \/6% + 62.

At 90° to the beam we have

6=

p(GeV) = 0.3B(T)R(m)

or

1 03B(T)
R(m) ~ p(GeV)’

Now Gluckstern considers a series of measurements in the zy plane, per-

pendicular to a putative magnetic field. In the absence of the magnetic field a

fit

y=a+0:c+:‘12-cz2

will yield an expectation for ¢ = 1/R? that determines the uncertainty in the

measurement of p according to
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where p, is in GeV, B is in tesla, and ¢ is in m~1.

From a set of measurements (z,,yn) n = 0,

we determine a, 8, and ¢ by minimizing
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N
X2 = Z[y(xn) - yﬂ]zfn
n=0

with the result
Fo

Theo| A
1 F

R
F,
F3

ynfn

2 Fy
Fy
Fp

with

F F,

F3
F3

N .
F; = Efnx:z

n=0

or with

Fo

Qn =fn Fy
F;

1 _ Y Qnyn

=C

Thus

F
F,
F3

27 T T Qnzd

1

Tn

2
n

z

_];c2> = Q: Qnyn Z mem> .
(E an;{)z

Because the f,s can be scaled by a constant, 3~ @,z2 can be fixed to some value.

If the errors are uncorrelated

(Ymyn) = €26mn
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We now choose the f;’s to minimize (c?) using Lagrange multipliers, following
Gluckstern. From the definition of @, clearly Q. = 0,3 Qnz, = 0 so we
minimize
Z eiQi + AOZ @n+ M Z @nZTn + Az Z Qn:’::
varying the f,
eiQn + Ao+ ANz, + /\gxi = 0.
Comparing with the definition of Q. we see that f,, = 1/€2 times a constant

independent of n.

Equal spacing and weights
Suppose ¢, = € independent of n and further suppose z,, = !}6—‘ with N >> 1.
Then if f, =1
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This leads to the result for a tracking chamber with equally spaced wires
épy 720 €(m)

2~ VN 0.3B(Tesla)L?(m)
as quoted on p. 350 of the 1987 Berkeley Workshop Proceedings.
The result from the tracking without the vertex constraint gives

SPL _ 0.74p, (TeV)
by

for € = 200um and 0.55 p, (TeV) for € = 150um as stated in the 87 Workshop
Proceedings.

Vertex Constraint

Let us add an additional point at z = —L’ = —L\ with an uncertainty €

Fy= 20 + (0L
where the new point has the weight n = €2/€?.
The addition of the vertex constraint improves the resolution by a factor
depending on 1 and A. The result is shown in Figure 1. In the limiting case

A =0, [, F,, F3, and Fy are unaffected while
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so that forn >> N




a reduction of 4/9 = (2/3)2. Of course increasing )\ improves the result. In fact
in the extreme case A — oo as well as  — oo we find
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n =N2 4_1/\3(___ ___)
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and
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an improvement in (c?)} by
/1
AV 15°

For the particular geometry specified above, A = 0.5/1.1 = 0.45. If ¢ =
20pm, e = 200um then n = 100. The reduction in (c’)% is, from Fig. 1, 0.31, so
we determine

Z% =0.31 x 0.76 p.(TeV)
L

= 0.24p, (TeV)

Momentum Resolution Enhancement for LSD

It is straightforward to include a single measurement subsequent to the
calorimeter for the LSD design. Of course for low p, the Coulomb scattering
renders this measurement useless, but at high p, it is significant. Figure 2 shows
results for the factor by which the resolution is improved from that with tracking
only by inclusion of an extra point at 4.0 m. The solid curve includes the vertex
constraint while the dotted one does not. The results are shown in Table 1 as

well.

Comments
An evaluation of the results of Table I requires some idea of the physics
demands. Two important requirements are furnished by the search for the Higgs

boson and the search for a new Z.



pL(GeV) | Tracking | Tracking + Vertex | Tracking+Quter | Tracking+ Vertex
+Outer
200 0.15 0.042 0.10 0.047
500 0.38 0.081 0.14 0.12
1000 0.76 0.11 0.17 0.24
2000 1.52 0.16 0.25 0.47

Table 1: The value of .o(py)/p. for various values of p;. The tracking is from
0.5 m to 1.6 m. The outer measurement is made at 4.0 m. The Tracking +
Vertex column is given by 0.31 times the Tracking column. The factors relating
the Tracking 4+ Outer column and the Tracking + Vertex + Outer column to
the Tracking column may be read off Fig. 2.

For the Higgs search the values of p, are generally less than 200 GeV even
for my = 800 GeV so tracking plus the vertex constraint would be adequate,
given the conventional standard that 10% resolution suffices for the purpose.

For the search for a new Z the p;s might be very much greater. However,
assuming € — p universality the Z’ mass would be determined from the ete~
signal. The role of the muons would be té pfow)ide additional statistics confirming
the result, and possibly to measure the forward-backward asymmetry. This
requires a sign determination and thus a resolution of about 30% or so. From
Table I we see that the addition of the outer measurement would raise the
maximum p, for which this was possible from about 1.2 TeV to well beyond 2
TeV. However the large number of Z’s required for the measurement means that
the asymmetry could not be obtained any for a Z’ near the maximum observable
value of about 6 TeV. As a result the p,’s would generally be less than 1.2 TeV.
It appears that the extra lever arm provided by the calorimeter is not crucial to
any anticipated muon physics provided a vertex constraint is used.

There might be concern that if the resolution is very poor the Z’ signal
might get lost in the Drell-Yan background. This is not a problem. It suffices
to compare the Z’ and continuum contributions to gg — u*u~. The resonant

cross section can be approximated by
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M
where I'y = I'(Z — ¢7), Ty, = T(Z — putu~), T' = Iy, and the factor of 1/3
comes from requiring the ¢ and 7 to have the same color.

Oqgmptu- = 127 6(s —.M2) X -;;
The continuum cross section through the v* is

4ra? , 1
O'qa-—wy‘—»“'ﬁ'“- = 33 CQ X §

By analogy the cross section through the Z (assuming Mz >> My) is

O _ 47r02 (T3Q — €Q Sin2 aw)z(—l/Q + sin’ 9w)2
W=Z—utum T gl sin? Ow cost O '

x 1
3
The total continuum (Drell-Yan) cross section is the sum of the 4* and Z con-

tributions,

dra® | 1
Opy = 3SI\X§ S~

where K is 0.72 for u quarks and 0.53 for d quarks.

If the signal and background are integrated over an interval, AM, much
broader than the width of the Z’ (or the resolution of the lepton pair), the ratio
of signal to background is

oz o r 1
= )2 Y —
Ccontinuum 202 = “M(AM/M)K
where B, is the branching ratio for Z’ — ¢§ and B, is the branching ratio for
Z' — ptp~. If we simply use the values from the Z, B, =~ 0.1, B, ~ 0.03,
I'/M =~ 0.03, we find

oz _ 24
Ocontinuum  (AM/M)K

This shows that the Drell-Yan background will not be a problem even if AM is

a large fraction of M.

AN



Figure Captions

1. The factor by which o(p.)/py is reduced by the addition of a vertex con-
straint. Tracking is assumed to occur over a distance L and the vertex
is located a distance L’ = AL from the tracking. The result is shown for
n = 1, 10, 100, 1000, where n = €?/¢? and ¢ is the spatial resolution of
the tracker (assumed to have 100 Idyers) and ¢ is the uncertainty in the
location of the vertex.

2. The factor by which o(p.)/p, is reduced by the addition of a point beyond
the tracking, with multiple scattering included as described in the text.
The solid curve shows the result with the vertex constraint and the dashed
line shows the result without the vertex constraint.
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