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Higgs Bosons in the Minimal Supersymmetric Model:
The Influence of Radiative Corrections

Howarp E. HABER
Santa Cruz Institute for Particle Physics
University of California, Santa Cruz, CA 95064, U.S.A.

ABSTRACT

The Higgs sector of the Minimal Supersymmetric Model (MSSM) is a CP-conserving
two-Higgs doublet model that depends (at tree-level) on two Higgs parameters. In order
to accurately determine the phenomenological implications of this model, one must
incorporate the effects of radiative corrections. The influence of virtual Higgs exchange
on precision electroweak measurements is extremely small, with the possible exception
of processes involving external b and/or ¢t quarks. On the other hand, certain natural
relations of the model (such as tree-level Higgs mass relations) are substantially altered
if m, is large. Various implications of the radiatively corrected MSSM Higgs sector
are explored. The theoretical upper bound to the lightest Higgs mass is determined
and the influence of radiative corrections on Higgs masses and couplings is exhibited.
Implications for Higgs phenomenology are briefly discussed.

1. Introduction

The Standard Model with minimal Higgs content is not expected to be the ulti-
mate theoretical structure responsible for electroweak symmetry breaking [1,2]. If
the Standard Model is embedded in a more fundamental structure characterized by
a much larger energy scale (e.g., the Planck scale, which must appear in any theory
including gravity), the Higgs boson would tend to acquire mass of order the largest
energy scale due to radiative corrections. Only by adjusting (i.e., “fine-tuning”)
the parameters of the Higgs potential “unnaturally” can one arrange a large hierar-
chy between the Planck scale and the scale of electroweak symmetry breaking [3,4].
The Standard Model provides no mechanism for this, but supersymmetric theories
have the potential to address these issues. In a supersymmetric theory the size of
radiative corrections to scalar masses is controlled by the cancellation of contribu-
tions from particles and their supersymmetric partners. Since supersymmetry is
not an exact symmetry of nature, the cancellation must be incomplete, and the
Higgs mass receives contributions that are limited by the extent of the supersym-
metry breaking. In order that the naturalness and hierarchy problems be resolved,

it is necessary that the scale of supersymmetry breaking not exceed O(1 TeV) [5].
Such “low-energy” supersymmetric theories are especially interesting in that, to
date, they provide the only theoretical framework in which the problems of nat-
uralness and hierarchy can be resolved while retaining the Higgs bosons as truly
elementary weakly coupled spin-0 particles.

The Minimal Supersymmetric extension of the Standard Model (MSSM) con-
sists of taking the Standard Model as it is known today (including the as yet undis-
covered {-quark) and adding the corresponding supersymmetric partners [6,7). In
addition, the MSSM must possess two Higgs doublets in order to give masses to up
and down type fermions in a manner consistent with supersymmetry (and to avoid
gauge anomalies introduced by the fermionic superpartners of the Higgs bosons).
In particular, the MSSM Higgs sector is a CP-conserving two-Higgs-doublet model,
which can be parametrized at tree-level in terms of two Higgs sector parameters.
This structure arises due to constraints imposed by supersymmetry that determine
the Higgs quartic couplings in terms of electroweak gauge coupling constants.

In section 2, I review the general structure of the (nonsupersymmetric) two-
Higgs-doublet extension of the Standard Model. By imposing the constraints of
supersymmetry on the quartic terms of the Higgs potential (and the Higgs-fermion
interaction) one obtains the Higgs sector of the MSSM. The tree-level predictions
of this model are briefly summarized in section 3. In section 4, I investigate the
size of Higgs-induced radiative corrections to electroweak processes. Higgs radia-
tive corrections that enter through the correction to gauge boson propagators are
extremely small. On the other hand, virtual Higgs effects in processes involving
external b and/or ¢ quarks may be large enough to be observable. The most dra-
matic effect of radiative corrections to the MSSM Higgs sector is the modification
of tree-level mass relations of the model. Section 5 demonstrates that the tree-level
bound restricting the lightest CP-even Higgs scalar to be lighter than the Z can
be significantly violated if the top quark mass is large. Radiative corrections to
MSSM Higgs masses and couplings in the leading logarithmic approximation are
described in section 6 and some numerical results for Higgs masses are presented in
section 7. Finally, some implications of the radiatively-corrected Higgs sector are
explored in section 8. Certain technical details are relegated to three appendices.

2. The Two-Higgs Doublet Model

I begin with a brief review of the general (non-supersymmetric) two-Higgs
doublet extension of the Standard Model [8]. Let ®; and ®; denote two complex
Y = 1, SU(2), doublet scalar fields. The most general gauge invariant scalar



potential is given by
VY =m? 010, + md,8l8; — [m2,0!6, 4+ hc]
+ 30 (2181)7 + FAa(@]82)” + As(0]@1)(2]2:) + M(S]2)(@}1) (1)

+{106(0182)* + [Aa(0] 1) + M(8}82)|0]@; +hc.} .

In most discussions of two-Higgs-doublet models, the terms proportional to Ag and
A7 are absent. This can be achieved by imposing a discrete symmetry &; — —&,
on the model. Such a symmetry would also require mjs = 0 unless we allow a
soft violation of this discrete symmetry by dimension-two terms. For the moment,
I will refrain from setting any of the coefficients in eq. (1) to zero. In principle,
mi,, As, A and A7 can be complex. However, I shall ignore the possibility of
CP-violating effects in the Higgs sector by choosing all coefficients in eq. (1) to
be real. The scalar fields will develop non-zero vacuum expectation values if the
mass matrix m?j has at least one negative eigenvalue. Imposing CP invariance and
U(1)gy gauge symmetry, the minimum of the potential is

(¢1)=%(2), (¢2)=—\}—§(i) : (2

where the v; can be chosen to be real. It is convenient to introduce the following
notation:

2, 2 _dmy
vptvy= 2

2

v iﬂEtanﬂEE. (3)

v

Of the original eight scalar degrees of freedom, three Goldstone bosons (G* and
G°) are absorbed (“eaten”) by the W* and Z. The remaining five physical Higgs
particles are: two CP-even scalars (h® and HY, with mye < mpye), one CP-odd
scalar (A°) and a charged Higgs pair (H*). The mass parameters my; and mgp
can be eliminated by minimizing the scalar potential. The resulting squared masses
for the CP-odd and charged Higgs states are

2
2= 2 120900 4 Astsl 4 Mt
on SﬂCﬂ 21) ( 5+ Sﬂ + 75),

mf;& = mio + %1)2(/\5 - /\4) .

)

* This latter requirement is sufficient to guarantee the absence of Higgs-mediated tree-level
flavor changing neutral currents.

The two CP-even Higgs states mix according to the following squared mass matrix:
% —sgc
M2 = mio b z p
—sgcg ¢4

+ o )\10123 + 2/\&9@83 + /\53?3
(.\3 + /\4)8,365 + /\66?9 + 1\73?3

)
(1\3 -+ /\4)8565 + /\66129 + X7S§)

)\25% + 2)\785(:5 + /\56§
where sg = sin # and cg = cos 8. The physical mass eigenstates are

H® = (V2Re ®? — v1) cosa + (V2Re ®) — v3) sina,

6
h® = —(V2Re 8} — v))sina + (V2Re &3 — v3) cosa. ©)

The corresponding masses are

Mo po =} [M%l +Mi+ \/(Mfl - ML) +4(ME)? |, Q)

and the mixing angle « is obtained from
wMi,
VME = M3+ a(MB,)?
My-My
V(MY — M)+ 4(M)?

sin2a =

(8)

cos 2a =

The phenomenology of the two-Higgs doublet model depends in detail on the
various couplings of the Higgs bosons to gauge bosons, Higgs bosons and fermions.
The Higgs couplings to gauge bosons follow from gauge invariance and are thus
model independent. For example, using the symbol ¢° for the minimal Higgs boson
of the Standard Model, the couplings of the two CP-even Higgs bosons to W and
Z pairs are given in terms of the angles a and § by

vy = 9gpyy sin(f - a)

9
Imovy = ggyy cos(f —a),
where gy = gymy and
{y, V=W, 10)
v = g/cosby, V=2, (

There are no tree-level couplings of A° or H* to VV. Gauge invariance also
determines the strength of the trilinear couplings of one gauge boson to two Higgs



bosons. For example,

_geon(B-a)
Az 2cosby '
(11)
—gsin(f — @)
AT sy

In the examples shown above, some of the couplings can be suppressed if either
sin(# — a) or cos(f — a) is very small. If the theory yields a Higgs mass spectrum
in which the A? is considerably lighter than the other physical Higgs scalars, then
the A% couplings will typically approach their Standard Model values [9]. In this
limit, cos(f — @) — 0. More generally, all the Higgs couplings cannot vanish
simultaneously. From the expressions above, we see that the following sum rules
must hold separately for V =W and Z:

2

iy + Ghovy = 9eovv s

2 12
gzoo +9200 ='—g"—- ( )

WAz TIHAZ T Yoo g.
These results are a consequence of the tree-unitarity of the electroweak theory [10].
Moreover, if we focus on a given CP-even Higgs state, we note that its couplings to
VV and A’V cannot be simultaneously suppressed, since egs. (9)-(11) imply that

2,2
g'my

(13)

2 2 2 —
9hzz +Amzlhwz = g
for h = h% or HP. Similar considerations also hold for the coupling of ° and H®
to WEH¥. We can summarize the above results by noting that the coupling of A°
and H® to vector boson pairs or vector-scalar boson final states is proportional to
either sin(f — @) or cos(f — a) as indicated below.

cos(f —a) sin(f — a)

H'W*W- Owrw-

HO VA hOZZ

ZA%0 ZA'HO

WEHFRO WEHTHO (14)

The 3-point and 4-point Higgs self-couplings depend on the parameters of the
two-Higgs-doublet potential [eq. (1)]. The Feynman rules for the trilinear Higgs
vertices are listed in Appendix A. The Feynman rules for the 4-point Higgs vertices
are rather tedious in the general two-Higgs-doublet model and will not be given

here.

The Higgs couplings to fermions are model dependent, although their form
is often constrained by discrete symmetries that are imposed in order to avoid
tree-level flavor changing neutral currents mediated by Higgs exchange [11]. An
example of a model that respects this constraint is one in which one Higgs doublet
(before symmetry breaking) couples exclusively to down-type fermions and the
other Higgs doublet couples exclusively to up-type fermions. This is the pattern
of couplings found in the minimal supersymmetric model (MSSM). The results in
this case are as follows. The couplings of the neutral Higgs bosons to ff relative
to the Standard Model value, gm/2my, are given by (using 3rd family notation)

i - cosa
Hot—: S_IE.E_ .Hobb :
t sin 8 cos
WO 222 App: S (15)
sinf cos f
A%i: yscot B A%b: vstan B,

(the 75 indicates a pseudoscalar coupling), and the charged Higgs boson coupling
is given by

-6 =

[m¢ cot B(1+ 75) + my tan A(1 — 7s)]. (16)

Finally, consider the experimental constraints on the parameters of the two-
Higgs doublet model. Limits on the charged and neutral Higgs masses have been
obtained at LEP. Here I briefly summarize the results for the Higgs search as
compiled by the Particle Data Group [12]. For the charged Higgs boson, mpys >
41.7 GeV. This is the most model independent bound and assumes only that the
H?* decays dominantly into 7+v,, ¢5 and cb. The LEP limits on the masses of
hY and A°® are obtained by searching simultaneously for Z — A%ff and Z —
h9A° [13,14]). The ZZh® and Zh%A® couplings that govern these two decay rates
are proportional to sin(f — a) and cos(f# — a), respectively. Thus, one can use the
LEP data to deduce limits on mye and m 4o as a function of sin(# — a). Stronger
limits can be obtained in the MSSM where sin(f# — a) is fixed by other model
parameters. The present limits as summarized by the Particle Data Group [12] are
mpo > 29 GeV and m 4o > 12 GeV based on supersymmetric tree-level relations
among Higgs parameters, but with no assumption for the value of tan 8. If leading
log radiative corrections are incorporated and tan§ > 1 is assumed, then recent
results of the ALEPH Collaboration [14] yield myo > 41 GeV and m 40 > 20 GeV
(at 95% CL). However, the limit on myo may be substantially weaker if large squark
mixing is permitted [15].



The experimental information on the parameter tan B is quite meager. For
definiteness, let us assume that the Higgs-fermion couplings are specified as in the
MSSM. In the Standard Model, the Higgs coupling to top quarks is proportional
to gm;/2my, and is therefore the strongest of all Higgs-fermion couplings. For
tan 8 < 1, the Higgs couplings to top-quarks in the two-Higgs-doublet model dis-
cussed above are further enhanced by a factor of 1/ tan 8. As a result, some weak
experimental limits on tan g exist based on the non-observation of virtual effects
involving the H~tb coupling. Clearly, such limits depend both on mpys and tan .
For example, for mys ~ my, limits from the analysis of B% B% mixing imply
that tan 8 2 0.5 [16]. No comparable limits exist based on top-quark couplings to
neutral Higgs bosons.

Theoretical constraints on tan 8 are also useful. If tan # becomes too small,
then the Higgs coupling to top quarks becomes strong. In this case, the tree-
unitarity of processes involving the Higgs-top quark Yukawa coupling is violated.
Perhaps this should not be regarded as a theoretical defect, although it does render
any perturbative analysis unreliable. A rough lower bound advocated by ref. 16,
tan f & m;/600 GeV, corresponds to a Higgs-top quark coupling in the perturba-
tive region. A similar argument involving the Higgs-bottom quark coupling would
yield tan 8 < 120. A more solid theoretical constraint is based on the requirement
that Higgs—fermion couplings remain finite when running from the electroweak
scale to some large energy scale A [17-19]. Beyond A, one assumes that new
physics enters. The limits on tan § depend on m; and the choice of the high en-
ergy scale A. Using the renormalization group equations given in Appendix B, we
integrate from the electroweak scale to A (allowing for the possible existence of a
supersymmetry-breaking scale, mz < Mgygy < A), and determine the region of
tan #-m; parameter space in which the Higgs-fermion Yukawa couplings remain
finite. (The ¢, b and 7 are all included in the analysis.) The results are shown
in figs. 1 and 2 for two different choices of A [19]. The allowed region of param-
eter space lies below the curves shown. For example, if there is no new physics
(other than perhaps minimal supersymmetry) below the grand unification scale of
10! GeV, then based on the CDF limit [20] of m; > 91 GeV, one would conclude
that 0.5 S tanf S 50. The lower limit on tan # becomes even sharper if the
top-quark mass is heavier. Remarkably, the limits on tanf# do not get substan-
tially weaker for A as low as 100 TeV. Finally, it is interesting to note that the
limits on tan @ shown in fig. 2 are not very different from those that emerge from
models of low-energy supersymmetry based on supergravity which strongly favor
tang > 1 [21].
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Fig. 1. The region of tan f—m, parameter space in which all running Higgs-fermion
Yukawa couplings remain finite at all energy scales, u, from mz to A = 10! GeV [19].
Non-supersymmetric two-Higgs-doublet (one-loop) renormalization group equations
(RGEs) are used for mz £ p < Mgygy and the RGEs of the minimal supersymmetric
model are used for Mggy < p < A (see Appendix B). Five different values of Mgygy
are shown; the allowed parameter space lies below the respective curves.
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Fig. 2. The region of tan f-m; parameter space in which all running Higgs-fermion
Yukawa couplings remain finite at all energy scales from mz to A = 100 TeV. See
caption to fig. 1.
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3. The Higgs Sector of the MSSM at Tree Level
The Higgs sector of the MSSM is a CP-conserving two-Higgs-doublet model,

with a Higgs potential whose dimension-four terms respect supersymmetry and
with restricted Higgs-fermion couplings in which ®; couples exclusively to down-
type fermions while ®; couples exclusively to up-type fermions [8]. Using the
notation of eq. (1), the quartic couplings A; are given by

Ai=X=1"+4%,

A2 = 1(,2 _ 2

= _'2'9 3

As=X=Ar=0.

Inserting these results into egs. (4) and (5), it follows that

m%o = miy(tan B + cot B),
m?{* = mi" + m%V y

(18)

and the neutral CP-even mass matrix is given by

) mio sin? B + mbcos?f  —(mi, + m%)sin f cos # 1
M= (m%, + m%)sinfcosf mi,cos? f+mysin?p | (19)
T\ 40 z A° z

The eigenvalues of M? are the squared masses of the two CP-even Higgs scalars

M po = 3 (mﬂo +mi+ \/(mfi., +m%)? — dm%m?, cos? 2 ) . (20

and the diagonalizing angle is a, with

2 —ml mi, + m}
cos2a = — cos 2 ('_"2,_40__'_221) , sin2a = —sin2f (——%—’o————g&) . (21
mH° - mho mHo — mhn

From the expressions for the Higgs masses obtained above, the following inequali-
ties are easily established

mpo S m Ao

mpyo < m|cos2f| < mz, with m = min(mz,m 4)

(22)

mg > mz,
myz 2> My .

Thus, in the MSSM, two parameters (conveniently chosen to be m 4o and tan §)
suffice to fix all other tree-level Higgs sector parameters.

4. Virtual Higgs Contributions to Precision Electroweak Measurements

After three years of running at LEP and more than two million Z° events
accumulated, the Standard Model of particle physics continues to provide a de-
tailed and accurate description of all observed high energy physics phenomena. In
particular, precision measurements of various electroweak observables are now pos-
sible that are sensitive to one-loop predictions of the theory. Apart from providing
very sensitive tests of the Standard Model, such measurements can impose severe
constraints on theories that incorporate physics beyond the Standard Model.

The Standard Model is usually assumed to be an effective low-energy limit of
a more fundamental theory. Let M be the minimum characteristic energy scale at
which new physics beyond the Standard Model enters. For example, theoretical
attempts to address the hierarchy and naturalness problems (see section 1) usually
take M no larger than about 1 TeV. We then can pose the following question. Can
evidence of physics at the scale M be detected through its virtual corrections to
electroweak observables? In order to address this question, one must first deter-
mine the expected size of such radiative corrections. The decoupling theorem [22]
implies that radiative corrections to electroweak observables from such new physics
should be of O(g?m%/M?). That is, the virtual effects due to new physics formally
decouple as M — co. However, in spontaneously broken gauge theories, an ex-
ception to the decoupling theorem arises [23-25]. Suppose we wish to consider the
virtual effects of a certain particle whose mass m is proportional to a dimensionless
coupling of the theory. In this case, the virtual effects due to such a particle do
not decouple in the large m limit. Two examples in the Standard Model are the
top quark, whose mass is proportional to a Higgs-quark Yukawa coupling, and the
Higgs boson, whose mass is proportional to the Higgs self-coupling.

The classic example of non-decoupling can be seen in the p-parameter of elec-
troweak physics [23,26]. If one defines p = m¥,/m% cos? O, then at tree-level
p = 1in any SU(2)xU(1) model whose Higgs sector consists entirely of weak scalar
doublets (e.g., the Standard Model and the MSSM). Since p = 1 is a “natural”
relation in such models, the deviation of p from one is calculable when radiative
corrections are incorporated. To proceed, one must carefully define the observables
of the model in order to establish a useful one-loop definition for p. For example,
in ref. 27, p = py is defined as the renormalization factor in the one-loop neu-
tral current neutrino-nucleon scattering amplitudes when expressed in terms of
the Fermi constant Gp. A recent theoretical analysis of LEP data in ref. 28 gives
p = 0.9995+0.0051. In the Standard Model, the deviation of p from 1 is predicted
to be quite small unless there exist particles with nontrivial electroweak quantum
numbers that are substantially heavier than the Z boson. It is therefore convenient
to define

P = prsm +0p, (23)

10



where ppgy = 1 is the p parameter in a “reference Standard Model” (RSM) in
which the radiative corrections to p are very small. In order to exhibit the explicit
dependence of p on the top quark and Higgs masses, let us choose a RSM in which
m; = my and mg = mz (where my is the mass of the Standard Model Higgs
boson). Then, in the Standard Model, assuming mye > mz [23,26,27)

2 2,2 2

g°N. 2, 2 2mim} m?

dpr~y —————— — et | —
P 64rim}, [m, T m? — m} ! m}

(24)

2

— __3.g2__ 32 ln(.."_l.é:) — iln (ﬁ) - l
64r2ck, | \m% sty m% ’

where N. =3, sy = sinfy and cyy = cosfy. myo is assumed to be much larger
than mz. As advertised, the decoupling theorem is not respected in the limit of
large top quark and/or Higgs mass. The quadratic dependence of ép on m, yields
a useful constraint on the top quark mass’ In contrast, the dependence of §p on
Higgs mass is only logarithmic and is therefore not very useful in constraining the
Higgs mass'

The contributions of physics beyond the Standard Model to electroweak observ-
ables occur primarily through virtual loop corrections to gauge boson propagators,
sometimes called “oblique” corrections [32]. This is often a good approximation
when it comes to the study of virtual Higgs boson corrections, since the Higgs
coupling to light fermions is suppressed by a factor my/mw . However, there are a
number of cases where one-loop vertex and box corrections involving the coupling
of charged Higgs bosons to tb can lead to interesting effects. I will return to this
possibility at the end of this section. For the moment, I shall work in the oblique
approximation and assume that the radiative corrections to an electroweak observ-
able of interest are dominated by virtual heavy particle corrections to gauge boson
propagators.

In the limit where the heavy particle masses are much larger than the Z mass,
the heavy particle contributions to oblique radiative corrections can be summarized
in terms of three numbers called S, T and U [33-36]. T is related simply to the p
parameter

p—1=aT, (25)

where a is the usual fine structure constant. To formally define the three quantities

* Radiative corrections to other electroweak observables also depend nontrivially on my (e.g.,
see refs. {28-30]). A comprehensive analysis of electroweak data quoted in the 1992 Particle
Data Group compilation {12] yields my < 201 GeV at 95% CL.

 This is an example of Veltman’s screening theorem [31].
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S, T and U, one proceeds as follows. Let
illy (q) = ig" Aij(¢%) +ig"¢” Bij(¢%), (26)

be equal to the sum of all one-loop Feynman graphs contributing to the V;-V; two-
point function, where g is the four-momentum of the vector boson (V =W, Z or
7). Only the functions A;; are relevant for the subsequent analysis. It is convenient
to write

Aij(¢) = Aij(0) + ¢* Fij(d) (27)

which define the quantities Fj;. Gauge invariance implies that A,,(0) = of A
major simplification takes place if one is interested in the effects of “heavy” physics
(characterized by a scale M > mz) on electroweak observables. In this case,
since ¢ is of order m%, one only makes an error of @(m%/M?) by neglecting the
g% dependence of the Fi;. Then, one can show that the oblique corrections to
electroweak observables due to heavy physics can be expressed in terms of three
particular combinations of the A;;(0) and F;;

or = Aww(0)  Az7(0) 25w Az,(0)
- m%v m% w mzz

2 252, — 1
g - 2 2 Sw
__—16W02 S = Fzz(mz) — F,y..,(mz) + ( 5

wew

) Fy(m3)  (28)
2
1675 +U) = P (mly) = Fy(miy) = 2L Fy (my).

Note that the A;;(0) and F;; in the above formulae are divergent quantities. Nev-
ertheless, if one includes a complete set of contributions from a gauge invariant
sector, then S, T, and U will be finite constants. The Higgs sector by itself does
not constitute a gauge invariant sector in this regard, so one must include the vector
boson sector as well to obtain a non-divergent result for S, T and U. Alternatively,
in order to obtain finite quantities that solely reflect the influence of heavy Higgs
physics, one can define 85, 6T and §U relative to some reference Standard Model
where myo is fixed to a convenient value. For example, if we choose a RSM with
mg = mgz, then the change in S due to a fourth generation of fermions U and
D (with electric charges ey, + 1 and e, respectively) and a heavy Higgs boson of

{ In addition, the sum of heavy particle contributions to Az,(0) also vanishes exactly. Only
gauge boson loops can produce nonzero contributions to Az,(0) (in the standard R-gauge).

12



mass myo is given by

N, m?, 1 m3 107
65 = [1 +(1+2ep)In (}52;)] +ox [m (-@— ~3nV3+==| . (29

where my, mp, mgp > mz has been assumed. Once again, the non-decoupling
effects of the heavy physics are apparent.

Radiative corrections (in the oblique approximation) to electroweak observables
can be expressed in terms of S, T and U. The p-parameter discussed above is
one such example. A second example is the W mass prediction. The one-loop
prediction is obtained by solving the following equation for the W mass

2 2 1
2 l_z*_z).___(_&) 1 2
mw ( m?, V2Gg/) 1-A4r (30)
where ra/V2Gf = (37.2802 GeV)? and
ar=2 s re (B0 (31)
r= —8—?; had CW + 233" .

Other examples can be found in refs. 33-35. Thus the effects of heavy physics on
numerous electroweak observables are immediately known once the corresponding
contributions to S, T' and U have been computed.

In order to compute the contributions of the Higgs sector of the MSSM to S, T
and U one must first define the RSM. Then,

U = Upgy + 68U,

where the MSSM Higgs sector contributions to 65, 67" and éU are obtained from
eq. (28) by computing the MSSM Higgs loops contributing to A;;(0) and Fjj (in-
cluding diagrams with one virtual Higgs boson and one virtual gauge boson) and
subtracting off the corresponding Higgs loops to the RSM. In nearly all cases of
interest, one finds that 8U < 88, 6T, so I shall focus on 65 and éT below. In the
present case, it is most convenient to define the RSM to be the Standard Model
with the Standard Model Higgs boson mass set equal to the mass of the lightest
CP-even Higgs boson of the MSSM. In addition, until mq is known, the definitions
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of 6S and 8T will depend on the value of m; chosen for the RSM. Typically, one
chooses m; = mz (equal to the present experimental CDF lower bound [20}) in
order to obtain conservative limits on the possible new physics contributions to S
and T.

Consider now the specific contributions of the MSSM Higgs bosons to §S and
6T. As indicated above, the sum of these contributions is finite after subtracting
out the contribution of the Standard Model Higgs boson with my = my. In
contrast to the Standard Model where the Higgs contributions to S and T grow
logarithmically with Higgs mass, the contributions of the MSSM Higgs bosons
smoothly decouple as the Higgs masses become large. This behavior is easy to
understand. According to the results of section 3, the mass of h° cannot be arbi-
trarily large—it is bounded at tree level by mz. All other Higgs masses can become
large by taking m4e 3> mz. In this limit, we see that mys >~ mg >~ m4 and
mpo =~ myz| cos2f|. However, in this limit, the large Higgs masses are due to the
large value of the mass parameter m;s [see eq. (18)] rather than a large Higgs self-
coupling (which is the case in the large Higgs mass limit of the Standard Model).
In particular, the Higgs self-couplings in the MSSM are gauge couplings which can
never become large. As a result, the decoupling theorem applies, and one must
find that S and 6T approach zero quadratically as m 4¢ — o0o. This result can be
generalized to all other sectors of the MSSM! All MSSM contributions to S, T and
U vanish in the limit of large supersymmetry-breaking mass parameters [37,38]. In
this limit, the effects of the supersymmetric particles (and all Higgs bosons beyond
h%) smoothly decouple; the resulting low-energy effective theory at the scale mz is
precisely that of the Standard Model.

The results of an exact one-loop computation of the MSSM Higgs contributions
to S and T are given in Appendix C [38]. (See refs. [25,39-41] for previous work on
radiative corrections in two-Higgs doublet models.) Numerical results are shown
in figs. 3 and 4. To understand why the numerical values for the MSSM-Higgs con-
tributions to 65 and 8T are so small, it is instructive to evaluate the corresponding
expressions of Appendix C in the limit of large m . 1 find*

m%(sin? 28 — 2 cos? Oy)

8S(MSSM —Higgs) ~ pym—
AG

; (33)

m?(cos? By — sin’ 26)

$T(MSSM—Hi o
( iges) 48wm2Ao sin® By

(39

* Asymptotically, SU(MSSM-Higgs) = O(m} /m%), which is completely negligible.
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Fig. 3. The contribution to the S parameter from the MSSM Higgs sector relative to
the Standard Model with Higgs mass set equal to mye, as a function of mgo. Three
curves corresponding to tan 8 = 1, 2, and 10 are shown. For comparison, the dotted
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curve depicts the asymptotic prediction [eq. (33)] for tan 8 = 10.

Fig. 4. The contribution to the T parameter from the MSSM Higgs sector relative to
the Standard Model with Higgs mass set equal to mye, a8 a function of mae. Three
curves corresponding to tan 8 = 1, 2, and 10 are shown. For comparison, the two dotted
curves depict the asymptotic predictions [eq. (34)] for tan§ = 1 and 10 respectively.
The p parameter is related to T via 6p = a6T, where a is the fine structure constant.
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A recent analysis of S, T and U based on LEP data (assuming a RSM where
my = myo = mgz) reported in ref. 30 yields: 65 = —0.97+0.67, 6T = —0.18 £ 0.51
and §U = 0.07 £ 0.97. It is hard to imagine that the these quantities could ever
be measured to an accuracy better than 0.1 One must also consider the possibility
of other contributions to S and 6T. As long as m; is not well known, there
will be m; dependence in these quantities (entering through the m, choice of the
RSM). Moreover, in the supersymmetric model, 65 and 6T would also acquire
contributions from other MSSM sectors which, although small, are nearly always
larger than the MSSM-Higgs contributions shown above [38]. Thus, I conclude
that virtual effects of the MSSM Higgs sector will never be detected via its oblique
radiative corrections.

One class of processes for which virtual Higgs effects could be important are
those involving external b or 1 quarks. Here, I shall briefly focus on processes in-
volving B-mesons. In such cases, vertex corrections and box diagrams that involve
an intermediate {-quark and charged Higgs boson can be substantial, because gy ;3
contains a piece proportional to mycot 3/mw [see eq. (16)]. Thus the impact of
such contributions can be significant for small tan # and mpg+. Three examples of
relevant processes studied in the literature are: (i) charged Higgs box diagram con-
tributions to B°~BY mixing [42-45, 16] (briefly mentioned at the end of section 2);
(ii) the charged Higgs vertex correction to Z — bb [46]; and (iii) the charged Higgs
vertex corrections to various rare b-decays [47,43-45] such as b — sy, b — s€t¢™,
b — sg and b — swp. Of course, if the two-Higgs-doublet model is a piece of the
MSSM, then there will also be one-loop supersymmetric particle contributions to
all of the processes mentioned above. Some of these contributions (e.g., loops con-
taining top-squarks) could dominate over the virtual charged Higgs effects [44,46].

Among the rare b-decays, the charged Higgs contribution to b — sv is perhaps
the most promising. The theoretical prediction for this rate in the Standard Model
is BR(B — Ky + X) ~ 3.6 x 10~* (4.1x10™*), for m; = 150 (200) GeV, where
leading log QCD corrections have been included. Incorporating the charged Higgs
contribution [assuming an H~tb coupling specified in eq. (16)] yields results for
this branching ratio shown in fig. 5. These results correspond to an enhancement
over the Standard Model expectation as shown in fig. 6. Whether effects of the
charged Higgs boson can be detected in this way (or interesting limits set) depends
on the reliability of the Standard Model prediction. At present, this prediction
is reliable to within a factor of two [47]. Improved theoretical analysis as well as
more B-decay data will be required before definite conclusions can be drawn.

In summary, the only potentially important virtual Higgs boson corrections to
Standard Model processes arise either through oblique radiative corrections (i.e.,
Higgs loop corrections to vector boson propagators), or through charged Higgs
vertex and box diagram corrections to processes with external b andfor ¢ quarks. I
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Fig. 5. The branching ratio for B — K+ + X in the two-Higgs-doublet model as a
function of the charged Higgs mass for mg = 150 and 200 GeV and various choices for
tan §, assuming an H~tb coupling given by eq. (16). This graph is based on calculations
of ref. 45.

BR(2-Higgs)/BR(SM)

1 L U SN N S T U |

100 200 600 1000 100 200 500 1000

mg+ (GeV)

Fig. 6. The ratio of BR(B — K7+ X) in the two-Higgs-doublet model relative to its
predicted value in the Standard Model (SM) as a function of the charged Higgs mass
for my = 150 and 200 GeV and various choices for tan #, assuming an H~tb coupling
given by eq. (16). This graph is based on calculations of ref. 45.

17

have shown above that in the MSSM, Higgs-mediated oblique radiative corrections
are too small to be observed. This leaves heavy quark processes as the only possible
arena for observable Higgs-mediated radiative corrections,

5. A Theoretical Upper Limit on the Lightest MSSM Higgs Mass

The tree-level Higgs mass predictions of section 3 have important phenomeno-
logical consequences. For example, the bound mje < myg, if reliable, would have
significant implications for future experiments at LEP-II. In principle, experiments
running at LEP-II operating at /s = 200 GeV and design luminosity would either
discover the Higgs boson (via e¥e™ — Ah%Z) or rule out the MSSM. (Whether this
is possible to do in practice depends on whether Higgs bosons with mye =~ my
can be detected [48].) However, mp < mz need not be respected when radiative
corrections are incorporated. In the radiative corrections to the neutral CP-even
Higgs squared-mass matrix, the 22-element is shifted by a term proportional to
(9*m{[m}y) In(M}/m}) [49-51]. Such a term arises from an incomplete cancel-
lation between top-quark and top-squark loop contributions to the neutral Higgs
boson self-energy. If my is large, this term significantly alters the tree-level predic-
tions.

Hempfling and I computed the exact one-loop expression for the light Higgs
mass bound, as a function of all the relevant supersymmetric parameters [49)].
This bound is saturated in the formal limit where tan$ — oo (with all down-
type fermions masses set equal to zero) and m 40 > mgz, mpo. The expression we
obtained is quite cumbersome, although straightforward to evaluate numerically.
However, it is useful to display an approximate expression, valid for a certain range
of supersymmetric parameters. If all supersymmetric mass parameters are roughly
of order Mgygy and if mz < my € Mgygy, then

MIQ 2

dg°m =\ rom4 — mim?
-5 gt 29) [P - 44 90)

M2
+in | 2] [50-3ob+ Bh) 10 dok + k)
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Fig. 7. The light Higgs mass bound (mje < mz+Am,)including one-loop radiative corrections.
The dashed line denotes the contribution to Am, due to three generations of quarks, leptons, and
their supersymmetric scalar partners {assumed to have a common soft-supersymmetry breaking
mass of M5 = 1 TeV); f,~tg mixing is neglected. The dot-dashed line is a plot of the corre-
sponding contribution to eq. (35). The solid line includes all contributions to the exact one-loop
calculation of Amy, where all supersymmetric mass parameters (including the A parameter that
controls top-squark mixing) are equal to Mgygy =1 TeV. Taken from ref. [49].
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Fig. 8. The contribution to Amj of three generations of quarks, leptons, and their supersym-

metric scalar partners as a function of the common soft-supersymmetry breaking scalar mass,
Mﬁ" for three different values of the top quark mass. Squark mixing is neglected.
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where sy = sinfw, cw = cosbw, M 3 is a common soft-supersymmetry-breaking
diagonal squark mass term, and M is a common neutralino/chargino mass. The
radiatively corrected light Higgs mass bound will be written as

mp <mg + Amy, (36)

which defines the quantity Amj. A numerical calculation of Amy is displayed in
fig. 7. As advertised, the dominant correction to the tree-level formula increases as
the fourth power of m;, and therefore can be quite large. Nevertheless, for values
of my S 250 GeV, the perturbative one-loop calculation is reliable. This can be
verified by estimating the largest two-loop contributions to Amj, and showing that
the one-loop result is stable [52].

It is also evident from eq. (35) that the dependence of the squared Higgs mass
shift on M2 is logarithmic. Thus, even if M F is significantly smaller than 1 TeV,

Amy, can be appreciable if m; is sufficiently large. This is illustrated in fig. 8,
where Amy, is plotted as a function of M F for my = 100, 150 and 200 GeV. These
results are based on an exact numerical one-loop computation; the approximate
formula given in eq. (35) is unreliable for values of MQ’ approaching m;.

6. Radiative Corrections to the MSSM Higgs Masses

One can also compute radiative corrections to the full CP-even Higgs mass-
squared matrix [51,53-58]. Full one-loop computations can be found in refs. 53 and
57. Here, I will present the results based on a calculation of the mass-squared ma-
trix in which all leading logarithmic terms are included (see ref. 54 for details). We
take the supersymmetry breaking scale (Mgygy) to be somewhat larger than the
electroweak scale. For simplicity, we assume that the masses of all supersymmetric
particles (squarks, sleptons, neutralinos and charginos) are roughly degenerate and
of order Mgygy. This means that various soft-supersymmetry breaking parameters
such as the diagonal squark mass parameter, M & and the gaugino Majorana mass
terms, as well as the supersymmetric Higgs mass parameter are all roughly equal
to Mgygy. Admittedly, this is a crude approximation. However, deviations from
this assumption will lead to non-leading logarithmic corrections which tend to be
small if the supersymmetric particles are not widely split in mass. Moreover, the
procedure outlined below can be modified to incorporate the largest non-leading
logarithmic contributions that arise in the case of multiple supersymmetric particle
thresholds and/or large squark mixing.

The leading logarithmic expressions for Higgs masses are obtained from egs. (4)
and (5) by treating the ); as running parameters evaluated at the electroweak scale,
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we

k- In addition, we identify the W and Z masses by

(37

mly = Lo (v} +93),
1+ g% (v +03),

—~~

my =

where the running gauge couplings are also evaluated at M_,,,. Of course, the
gauge couplings, g and ¢’ are known from experimental measurements which are
performed at the scale M, . The \i(MZ_, ) are determined from supersymmetry.
Namely, if supersymmetry were unbroken, then the A; would be fixed according to
eq. (17). Since supersymmetry is broken, we regard eq. (17) as boundary conditions
for the running parameters, valid at (and above) the energy scale Mgygy. That is,
we take

M(Mysy) = Y(Mgysy) = 3lo* (Mgysy) + 9™ (Mysy)l
Ma(Miysy) = § [0 (Miysy) — 9" (M3ysy)]

M(Miysy) = ~39" (Mgysy),

'\S(Mgusy) = ’\G(Méusv) = ’\7(M§usy) =0,

(38)

in accordance with the tree-level relations of the MSSM. At scales below Mgygy,
the gauge and quartic couplings evolve according to the renormalization group
equations (RGEs) of the non-supersymmetric two-Higgs-doublet model given in
egs. (B.5)—(B.7). These equations are of the form:

dp;
P = Bi(pr,par- )

" with ¢ = In p?, (39)

where p is the energy scale, and the p; are the parameters of the theory (p; =
gf, AL, ...). The relevant S-functions can be found in Appendix B. The boundary
conditions together with the RGEs imply that, at the leading-log level, A5, Ag
and A7 are zero at all energy scales. Solving the RGEs with the supersymmetric
boundary conditions at Mgygy, one can determine the A; at the weak scale. The
resulting values for A;(M,.,)) are then inserted into eqs. (4) and (5) to obtain the
radiatively corrected Higgs masses. Having solved the one-loop RGEs, the Higgs
masses thus obtained include the leading logarithmic radiative corrections summed
to all orders in perturbation theory.

The RGEs can be solved by numerical analysis on the computer. But it is
instructive to solve the RGEs iteratively. In first approximation, we can take the
right hand side of eq. (39) to be independent of p2. That is, we compute the g;
by evaluating the parameters p; at the scale 4 = Mgygy. Then, integration of the
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RGEs is trivial, and we obtain
2 2 M82U5Y
Pi(MG ) = pi(Mgysy) — Bi In | (40)
weak

Note that this iterative solution corresponds to computing the one-loop radiative
corrections in which only terms proportional to In MSZUSY are kept. It is straight-
forward to work out the one-loop leading logarithmic expressions for the A; and
the Higgs masses. First consider the charged Higgs mass. Since As(u?) = 0 at all
scales, we need only consider A4. Evaluating 8y, at u = Mgygy, we compute

1
M) =~k | (49, + 00 = W) 455747

41
_...__.394 (T_‘z_ + L"_Z) + 392"‘3’"3} In Miysy . (4D

2mi, s% cfg s?,cfgmgv ml,

The terms proportional to the number of generations Ny = 3 and the number of
Higgs doublets Ny = 2 that remain in the low-energy effective theory at the scale
p = my have their origin in the running of ¢* from Mgygy down to my. In
deriving this expression, I have taken M, = mw. This is a somewhat arbitrary
decision, since another reasonable choice would yield a result that differs from
eq. (41) by a non-leading logarithmic term. Comparisons with a more complete
calculation show that one should choose M,.,, = mw in computations involving
the charged Higgs (and gauge) sector, and M_,,,, = mz in computations involving
the neutral sector.

The above analysis also assumes that m; ~ O(mw). Although this is a good
assumption, we can improve the above result somewhat when m; > my by de-
coupling the (¢,b) weak doublet from the low-energy theory for scales below my.
The terms in eq. (41) that are proportional to m} and/or m} arise from self-
energy diagrams containing a tb loop. Thus, such a term should not be present for
my < g < my. In addition, we recognize the term in eq. (41) proportional to the
number of generations N, as arising from the contributions to the self-energy dia-
grams containing either quark or lepton loops (and their supersymmetric partners).
To identify the contribution of the tb loop to this term, simply write

Ny = %Ng(Nc'f'l)‘_" %N¢+7}[N°(Ng—l)+N9]’ (42)

where N, = 3 colors. Thus, we identify %Nc as the piece of the term proportional
to N,y that is due to the tb loop. The rest of this term is then attributed to the
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lighter quarks and leptons. Finally, the remaining terms in eq. (41) are due to the
contributions from the gauge and Higgs boson sector. The final result is [59]

N, 4 1 1 2 2,,2 M2
A4(m¥v)=—%g2— cd [__ (ﬂ;_+':25)+ mymy In Sl;SY

3272 (3 2mi, sh 7 cf,mfy m?

6 967 LNe(Ng = 1) + Ny + }Ny — 10] g* + 159" } In —55% SUSY
(43)

Inserting this result (and As = 0) into eq. (4), we obtain the one-loop leading-log
formula for the charged Higgs mass

2 2mim? m? m M}
1 2 12 MS?USY
48 — {[ N(Ng—1)+ Ng+ 3Ny - 10] ¢* + 15¢ }ln—;p—.
w

(44)
Since this derivation makes use of the two-Higgs-doublet RGEs for the J;, there
is an implicit assumption that the full two-doublet Higgs spectrum survives in the
low-energy effective theory at g = my. This means that we must take Ny =2 in
the formulae above. It also means that m 40 cannot be much larger than mw, Of
course, eq. (44) is only a one-loop result. This result is improved by using the full
RGE solution to Ay(m?)

migs = myo — Fha(miy)(v} +v}). (45)

Although the leading-log formula for my+ [eq. (44)] gives a useful indication
as to the size of the radiative corrections, non-leading logarithmic contributions
can also be important in certain regions of parameter space. A more complete set
of radiative corrections can be found in the literature [53,59-62]. In the numeri-
cal results to be exhibited below, important non-leading corrections to the charged
Higgs mass are also included (as described in ref. 53). However, it should be empha-
sized that the radiative corrections to the charged Higgs mass are significant only
for tanf# < 1, a region of MSSM parameter space not favored in supersymmetric
models.

* If mgo ~ O(Mgygy ), then H*, H® and A° would all have masses of order Mgy 5y, and the
effective low-energy theory below Mgysy would be that of the minimal Standard Model.
Clearly, the above computation would not be appropriate in this case.
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The computation of the neutral CP-even Higgs masses follows a similar proce-
dure. The results are summarized below [54]. From eq. (5), we see that we only
need results for Ay, A2 and A3 = A3 + A + As. (Recall that As = Ag = A7 = 0 at
all energy scales.) By iterating the corresponding RGEs as before, we end up with

4 M2
/\l(m%) = [g2 +gl2]( 2 ) + [Pt In ( SUSY)
i 384 2t m?

4 2 M2
+ (121\/c i 6N 2 + P+ P+ Pm) In| 39X 1,
z% ﬁ mz

gt ”2
do(m3) = 4[9 +g ](m2)+334 ) [(Pf'*'Pg+P2H) ln( ::';SY)
Z

4

2 M2
(121\1c L — 6N ""2+P,)1n(.ivz& ,
7S m3sh ™
M,
( WNe—gty — +P¢)1 ( S‘;S")
mzsg my

94

Yol 2Y 102 4 20(en2
As(mz)=—1ls°+g ](mz)“W

+("3Nc +P,e+P’+P’,, ln( SUSY)]
(46)
where
P = N,(1-4eysk +8esly),
Py = Ny{N.[2—4sfy +8(ez+el)siy] +[2 - 4siy +8siy]} — P,
P, = —44 4 10653 — 6255y, a
P, = 10+ 34sfy — 265}y, (47)

Py = —10 + 25}y, — 25}y,
Py = 8—22s% +10sh, .

In the above formulae, the electric charges of the quarks are e, = 2/3, ¢4 =
—1/3, and the subscripts t, f, ¢ and 2H indicate that these are the contributions
from the top quark, the fermions (leptons and quarks excluding the top quark),
the gauge bosons and the two Higgs doublets (and corresponding supersymmetric
partners), respectively. As in the derivation of Ay(m%,) above, we have improved
our analysis by removing the effects of top-quark loops below u = m,. This requires
a careful treatment of the evolution of g and ¢’ at scales below u = m;. The correct
procedure is somewhat subtle, since the full electroweak gauge symmetry is broken
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below top-quark threshold; for further details, see ref. 54. However, the following
pedestrian technique works: consider the RGE for g + ¢ valid for 4 < Mgysy

(80" +59") Ny + (s +g")Nu —44g'] . (48)

a0t =gl

This equation is used to run g% 4 ¢'?, which appears in eq. (38), from Mgygy down
to mz. As before, we identify the term proportional to N, as corresponding to the
fermion loops. We can explicitly extract the t-quark contribution by noting that

40 :4 94Ng 8454 _ 1652 8]
N9(89 +3 pr [33W sw +
%

= —“i——{Nc[l + (N, = D))(1 - deys¥y + 8elsyy)
‘w

+ N Ny(1 + degsty + 8elsty) + No(2 — dsly + 833,,)} :
(49)

where in the first line of the last expression, the term proportional to 1 corresponds
to the t-quark contribution while the term proportional to Ny — 1 accounts for the
u and c-quarks; the second line contains the contributions from the down-type
quarks and leptons respectively. Thus, iterating to one-loop,

4 M2
g
[92 + ga}(Mgusy) = [92 + 9’2](’"22) + 54 Pln SI;SY
967 cyy my
(50)
M§USY
+ [Pf + (sfy + C;V)NH - 44c‘ty] In -—————mzz .

This result and terms that are proportional to m? and m{ yield the terms in eq. (46)
that contain In(MZgy/m}).

The final step is to insert the expressions obtained in eq. (46) into eq. (5).
The resulting matrix elements for the mass-squared matrix to one-loop leading
logarithmic accuracy are given by
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*meh M}
Mn = mAOSﬂ + mzcﬁ + Czﬁ [P In ( SI;SY)
mi

4
(mvc —ir — 6Nty

M?
+P_;+P +P2]1)l __S%SY ]
7%

2
!9
2 2 2 2 .2 MgUSY
M22=oncﬂ+mzsﬁ+ 6 22 Pf+})g+P2H hl

4 M2
(mrc - 6Nty mi i P,) In (_5_02&)
7% %% my

2 2

3N2PPP1M3USY
c %+f+ +2Hn"—m———22-— ,

Diagonalizing this matrix [eq. (51)] yields the radiatively corrected CP-even Higgs
masses and mixing angle a. One can check that if my = 0 and sinf = 1, then
ml, = M}, reproduces the leading logarithmic terms of eq. (35) (after putting
Mé = M,‘Z = MSUSY and mpuo = mz).

The analysis presented above assumes that m 40 is not much larger than O(myz)
so that the Higgs sector of the low-energy effective theory contains the full two-
Higgs-doublet spectrum. On the other hand, if m 40 3> mz, then only h® remains
in the low-energy theory. In this case, we must integrate out the heavy Higgs
doublet, in which case one of the mass eigenvalues of M, [eq. (19)] is much larger
than the weak scale. Then, in order to obtain the effectlve Lagrangian at M.,
we first have to run the various coupling constants to the threshold m 4. Then
we diagonalize the Higgs mass matrix and express the Lagrangian in terms of the
mass eigenstates. Notice that in this case the mass eigenstate h? is directly related
to the field with the non-zero VEV [i.e., f(m 40) = a(m go) + 7/2 + O(m% [/m%,)].
Below m 4o there remains only the Standard Model Higgs doublet ¢ = cs®;+55®3.
The potential is

v =mi(4'9) +32('6)’, (52)
and the light CP-even Higgs mass is obtained using m3, = Av?. The RGE in the
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Standard Model for X is [63,64]
o =4 20+ 7+ 4] 230 Wt (7432 50 W),
] |
’ (53)
where the summation is over all fermions with ks, = gmy,/(v2mw). The RGEs

for the gauge couplings are obtained from f#,» and fyn given in Appendix B by
putting Ny = 1. In addition, we require the boundary condition for A at m 4

A(mge) = [Cﬁ)q + 3,3/\2 + 2sﬁcﬂ()¢3 + M+ As) + 4cﬁsﬂ,\5 + 4Cpsp)n7] (m40)

4 M?
24 2 g SuUsy
= [%(gz +g’ )Czﬂ] (on) + 384320%, ln ( mzAn )

4 4 2 2
m; my my my
ok ST 2 N —_t _ %
X [mc(m‘z o ) +6Noc3p (mzz m%)
+ g (Pt Py) +(sh+ ch)( Py + Pomr) — 2555(F, + fz,,)] ,
(54)

where (9% + g'z)cgﬁ is to be evaluated at the scale m 40 as indicated. The RGE for
¢ + ¢ was given in eq. (48); note that at scales below m4 we must set Ny = 1.
Finally, we must deal with implicit scale dependence of cgﬂ‘ Since the fields ®;
(i = 1,2) change with the scale, it follows that tan § scales like the ratio of the two
Higgs doublet fields, i.e.,

1 dtan’p @i d
tan’p dt @2 dt (Qz) =n-n (55)

Thus we arrive at the RGE for cos 28 in terms of the anomalous dimensions 7;
given in eq. (B.6). Solving this equation iteratively to first order yields

m?
cgﬂ(m A0)= cgﬁ(mz) + 4c2ﬂc§s%(71 —72)In (;ﬁ;—) . (56)

The one loop leading log expression for m}, = A(mz)v? can now be obtained
by solving the RGEs above for A(mz) iteratively to first order using the boundary
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condition given in eq. (54). The result is

mi
mho mzcgﬂ(mz)%- 062 2 {[12N¢'——°—6Nc62ﬁ b +L‘2ﬂpf

+ (P + Pyyr)(sh + c§) — 2shch (P, + P;H) ln ( SUSY)

(57)
[(Cﬁ-}-Sﬂ)P“!H 2C%SﬂP2H'-P1H] ln( ) } ( ) y
where the term proportional to
Pig = -9+ (1 - 25}y + 25y )chg, (58)

corresponds to the Higgs boson contribution in the one-Higgs-doublet model. As
a check, one can verify that eq. (35) is reproduced in the limit of large tan 8 (and
my = 0).

The leading-log formulae presented above are expected to be accurate as long
as: (i) there is one scale characterizing supersymmetric masses, Mgygy, which
is large and sufficiently separated from mz (say, Mgysy = 500 GeV), (ii) m
is somewhat above mz (say, m; & 125 GeV) while still being small compared to
Mgysy, and (iii) the squark mixing parameters are not unduly large. In particular,
(ii) is an important condition—it is the dominance of the leading mj In(M2 5y /m?)
term that guarantees that the non-leading logarithmic terms are unimportantf
Under these conditions, the largest non-leading logarithmic term is of O(g°m}),
which can be identified from a full one-loop computation as being the subdominant
term relative to the leading O(g*mj In M2;5y) term in M3,. Thus, we can make a
minor improvement on our computation of the leading-log CP-even Higgs squared
mass matrix by taking

Ng*m} (0 0
M2=M{L+W-;—(O . (59)

where M?, is the leading-log CP-even Higgs squared mass matrix [given to one-
loop in eq. (51)]. For § = = /2, this correction yields the non-leading-logarithmic

* In contrast, there is no leading logarithmic contribution to m% 4 that grows with m{. Asa
result, the non-leading logarithmic terms tend to be more important as discussed earlier.
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term displayed in eq. (35). The shift of the light Higgs mass due to this non-
leading-log correction is of order 1 GeV.

In the case of multiple and widely separated supersymmetric particle thresh-
olds and/or large squark mixing (which is most likely in the top squark sector),
new non-leading logarithmic contributions to the scalar mass-squared matrix can
become important. In ref. 54, Hempfling and I show that such effects can be taken
into account by modifying the boundary conditions of the A; at the supersymme-
try breaking scale [eq. (38)], and by modifying the RGEs to account for multiple
thresholds. In particular, we find that As, A¢ and A7 are no longer zero. If the
new RGEs are solved iteratively to one loop, then the effects of the new boundary
conditions are simply additive. As an example, suppose I allow for §;-§r mixing
in the third generation of squarks. The off-diagonal squark mass squared matrix
element is given by [65]

my(Ap —
Mzn = {
my(A; — pcot §),

ptang), for EL—ER mixing, (60)

for i,-1p mixing,

where Ay and A; are soft-supersymmetry breaking parameters and yu is the su-
persymmetric Higgs mass parameter [7]. Then, if we denote the one-loop leading
log squared mass shifts obtained from eq. (51) by (Am?);y, then we obtain the
following expressions for the neutral Higgs masses in the limit of large tan g:

N.g*m?, (Atmt )4+( pmy )4
967r2M% spmw cgmw
4A,m, 2p?m?

c’chW ’

(mho = m%)ﬂmr/? = (Amio)uur, -

Ng*mi, [12.4, m,

9671'2M2 simyy 3ﬂmwcw

and

Nc92”2 A2m4
2 t
(mip — "‘A°)p.—.«/2 == ’

Abmb
96rI ML t A )’ (62)
Q

4,2
my cﬂmw

assuming that mge > mz [if mgo < mz then interchange myo and mpyo]. The
limit # — /2 should be taken such that the Higgs-b-quark Yukawa coupling
hy = ggmg,/(\/fmw%) is fixed. (I have not put sg = 1 in order to preserve the
symmetry of the above formulae.) In the above results, sz characterizes the

common soft-supersymmetry breaking diagonal squark mass.
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Fig. 9. RGE-improved Higgs mass mye as a function of tan g for (a) my = 150 GeV and
(b) m; = 200 GeV. Various curves correspond to m4e = 0, 20, 50, 100 and 300 GeV as
labeled in the figure. All A-parameters and p are set equal to zero. The light CP-even
Higgs mass varies very weakly with m4e for me > 300 GeV. Taken from ref. 54.

7. Numerical Results for MSSM Higgs Masses

In this section I shall briefly survey some of the numerical results for the ra-
diatively corrected Higgs masses. Additional results can be found in ref. 54. Com-
plementary work can be found in refs. [50,51,53,55-62]. In fig. 9(a) and (b) I plot
the light CP-even Higgs mass as a function of tan 8 for my = 150 and 200 GeV
for various choices of m 0. All A-parameters and p are set equal to zero. The
Higgs mass saturates at a maximum value, m{3**, when tanf and myo become
large. Furthermore, mpo converges to myo in the limit tang — oo, as long as
m 4o < mi**. The reason for the h9-A° mass degeneracy in this limit is easily un-
derstood. In the MSSM Higgs potential, the tan 8 — oo limit can be implemented
by setting m%, = 0 while holding m 4o fixed [see eq. (18)]. In this case, the model
possesses an unbroken global U(1) symmetry which guarantees that mjo = m 40 to
all orders in perturbation theory. That is, in this limit the radiative corrections to
mye vanish exactly. In the opposite case where m 4o > mjp*, myo m e to all
orders in perturbatxon theory, while the radiative corrections to m? he are substan-
tial and grow with m}. Note that for m 4 3> mgz, the dominant m?-contribution

* If both A # 0 and p # 0, then the U(1) symmetry is not exact and myo = mye is violated,

as shown explicitly in eq. (62).
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to mio is independent of tan # [see eq. (57)]. As a result, at fixed m 4 > m**,

the radiatively corrected mpo will reach a maximum (minimum) at tang =~ oo
(tan B = 1), due to the tree-level behavior of m%, on tan .

For fixed tan 3, myo reaches its minimum value, m}"},i“, when my — 0. In
contrast to the tree-level behavior (where myo < m o), the Higgs mass does not
vanish as m 40 — 0. Moreover, mﬁ},i“ increases as tan 3 decreases but exhibits only
a moderate dependence on m; and Mgygy. This behavior can be understood as
follows. For m40 < mz and for values of m; and Mgygy sufficiently large (say,
my R 2mzsp and Mgysy = 500 GeV), the CP-even squared mass matrix [eq. (5)]
is dominated by the matrix element M3, due to the m; dependence of A;. This

yields

232
(oY = MYy — L iz 2 (63)
M,

which is in good agreement with the results of fig. 9. One interesting consequence is
that there exists a range of parameters for which the tree-level bound, mye < m 40
is violated. In fact, the results of fig. 9 indicate that in the region of small tan 8 and
small m 40, it is possible to have myo > 2m 40, thereby allowing a new decay-mode
h® — A®A® which is kinematically forbidden at tree-level.

One other difference between the tree-level prediction for mye and the results of
fig. 9 is noteworthy. From eq. (20), we see that for tan 8 = 1, myo = 0 at tree-level.
The results of fig. 9 indicate that the radiative corrections to myo are substantial
for tan B = 1, particularly when m; is large. This is again a consequence of the
g°m} In(MZ;5y/m}%) enhancement of M32,. The tanf = 1 limit is analogous to
the Coleman-Weinberg limit [66] of the Standard Model, in which the mass of the
Higgs boson arises entirely from radiative corrections. However, in the Standard
Model, the Coleman-Weinberg mechanism cannot be operative if m; & my [67]
(and in any case, the Higgs mass that arises from this mechanism cannot be larger
than about 10 GeV, which is ruled out by the LEP Higgs search [12]). Clearly, no
such restriction exists in the MSSM [68,58]. The difference lies in the large positive
contribution to the Higgs squared mass from a loop of top squarks. From fig. 9(b),
we see that for m; = 200 GeV and tanf = 1, a value of mye as large as 100 GeV
is possible. Thus, LEP cannot yet rule out the possibility that the mass of the
lightest CP-even Higgs boson arises entirely from radiative corrections [58].

In the limit m 40 — o0, the couplings of h° to gauge bosons and matter fields
are identical to the Higgs couplings of the Standard Model so that the Higgs
sector of the two models cannot be phenomenologically distinguished. However,
supersymmetry does impose constraints on the quartic Higgs self-coupling at the
scale Mgysy, and this influences the possible values of mpe. To illustrate this
point, I have plotted in fig. 10 the range of allowed myo in the case of large m 40
(taken here to be m4o = 300 GeV). As noted above, the lower limit for myo is
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Fig. 10. The range of allowed Higgs masses for large m4e (in these plots, m4e = 300
GeV). The lower limit corresponds to tan 8 = 1. The upper limit correspends to the
limit of large tan 8 (we take tan 8 = 20). In (a) and (b) my is varied for Myyqy = 1
and 0.5 TeV, respectively. In (c) and (d) Mgy is varied and m; = 150 and 200 GeV,
respectively. The solid (dashed) curves in (c¢) and (d) correspond to the computation
in which the RGEs are solved numerically (iteratively to one-loop order). Taken from
ref. 54.

attained if tan# ~ 1 and the upper limit is attained in the limit of large tan g
(taken to be tan B = 20 in fig. 10)? Suppose the top quark mass is known and
that A? is discovered with Standard Model couplings. If mjo does not lie in the
allowed mass region displayed in fig. 10, we could conclude that the MSSM is ruled
out. Fig. 10 also exhibits the sensitivity to the choice of Mgygy. The larger the
value of Mgygy, the more significant the corrections to the Higgs mass due to
full renormalization group improvement. In fig. 10(c) and (d), the dashed lines
(labeled 1LL for one-loop leading-log) correspond to computing mye by exactly
diagonalizing the squared mass matrix given in eq. (51). The solid lines (denoted
by RGE) are obtained by solving numerically the RGEs for the J;, inserting the
results into eq. (5), and computing the eigenvalue of the lighter CP-even Higgs
scalar. For Mgygy = 1 TeV, the largest discrepancy between the RGE and 1LL
results occurs for large m; and m40. For example, for tan 8 = 1, m 40 = 300 GeV
and m; = 200 GeV, we find (mpo)pge = 96.8 GeV while (mjo);1, = 104.4 GeV.

t A second maximum for mye would arise for very small tan 8; however, this lies outside the
permitted region indicated in figs. 1 and 2.
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Fig. 11. The masses of %, H® and H#* in the MSSM for m4e = 50 and 200 GeV.
The neutral CP-even Higgs masses are obtained from a calculation that includes the
leading-log one-loop radiative corrections [based on eq. (51)]. The charged Higgs mass
is obtained from a similar calculation, but important non-leading logarithmic effects
have also been included [59]. All supersymmetric masses are assumed to be roughly
degenerate of order Mgygy = 1 TeV. The two curves for each Higgs mass shown cor-
respond to my = 150 and 200 GeV. The larger neutral Higgs mass corresponds to the
larger my choice. In the case of H¥, my+ increases [decreases] with m, for large {small]
tan .

Values of Mgygy much larger than 1 TeV would be in conflict with the philosophy
of low-energy supersymmetry.

Let us now briefly consider the predictions of the one-loop radiatively corrected
Higgs sector for the other physical Higgs bosons of the MSSM. In fig. 11, 1 plot the
radiatively corrected MSSM Higgs masses as a function of tan § for Mgygy = 1 TeV
and for two choices of m; and m 0. (As above, all A and p parameters are set to
zero.) The neutral Higgs masses have been obtained by diagonalizing eq. (51). Full
RGE-improvement, which is not included in fig. 11, would change these results by
no more than about 5%. In the case of the charged Higgs mass, important non-
leading logarithmic contributions have also been included, as described in ref. 59.
Note that the tree-level bound mys > mw can be violated, but only if tan # 5 0.5
and m o is small. The small tan region corresponds to an enhanced Higgs-top
quark Yukawa coupling. This also explains the increase of mye in this region,
which is being controlled by the mf/s?, factor in M3, [eq. (51)]. Of course, this
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Fig. 12. The neutral Higgs mass myo as a function of tan g for (a) m4e = 50 GeV and
(b) m 40 = 300 GeV, for my = 150 GeV and Ma = Mgysy =1 TeV. All A-parameters

are taken to be equal (A = A; = A}); the four contours shown correspond to g = A =0,
1, 2 and 3 TeV, respectively. Taken from ref. 54.

same factor is responsible for the violation of the bound mje < myz as described
in section 5. Indeed, for Mgygy = 1 TeV, my = 200 GeV, and m 40 R 200 GeV,
one sees that mjo > myz independent of the value of tan . Thus, there is a non-
negligible region of parameter space in which the h° is kinematically inaccessible
to LEP-II (running at /5 < 200 GeV).

The numerical results described above can be substantially modified if squark
mixing effects are large. In this case, the A-parameters and u are no longer zero,
and non-leading-log contributions to the neutral Higgs masses [e.g., see egs. (61)
and (62)] can be important. In fig. 12, the Higgs mass myo is plotted as a function
of tan B for my = 150 GeV and for two choices of m 0. All A-parameters are
taken to be equal; the four curves shown correspond to g = A = 0,1,2 and 3
TeV, respectively. The behavior of mye at large values of tan # is noteworthy: for
m 0 S myz, one sees that myo decreases monotonically with A. In contrast, in the
case mgo & mz and large tan 3, myo initially increases, reaches a maximum and
then falls off again. Both properties can be understood from egs. (61) and (62). The
consistency of the supersymmetric model does not permit arbitrarily large squark
mixing. For example, for A; 2 3Mgygy, one would find either one eigenvalue of the
top squark squared mass matrix driven negative and/or a new global minimum of
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the scalar potential that violates the SU(3) color gauge symmetry [69]. Of course,
either result would be phenomenologically unacceptable.

8. Implications of the Radiatively Corrected Higgs Sector

Using the results of section 6, one can obtain the leading logarithmic corrections
to the various Higgs couplings, and proceed to investigate Higgs phenomenology in
detail [70]. Here, I shall describe the procedure used to obtain the Higgs couplings
and briefly indicate some of the consequences. To obtain radiatively corrected cou-
plings which are accurate in the leading logarithmic approximation, it is sufficient
to use the tree-level couplings in which the parameters are taken to be running
parameters evaluated at the electroweak scale. First, I remind the reader that
tan # and m 4o are input parameters. Next, we obtain the CP-even Higgs mixing
angle a by diagonalizing the radiatively corrected CP-even Higgs mass matrix.
With the angle o in hand one may compute, for example, cos(f — a) and sina.
These results can be used to obtain the Higgs couplings to gauge bosons [eq. (14)]
and fermions [eq. (15)]. Finally, the Higgs self-couplings [see Appendix A] are ob-
tained by making use of the A; evaluated at the electroweak scale. The end result
is a complete set of Higgs boson decay widths and branching ratios that include
leading-log radiative corrections.

The Higgs production cross-section in a two-Higgs-doublet model via the pro-
cess ete™ — Z — ZH®(Zh0) is suppressed by a factor cos?(8 — a) [sin?(8 — o))
as compared to the corresponding cross-sections in the Standard Model. In fig. 13
I plot cos?(f — a) as a function of m 4o for tanB = 0.5, 1,2 and 20, for A; = A; =
p =0, Mgysy =1 TeV and two choices of m;. The behavior is similar to that of
the tree-level result: (i) for m 4 <€ mz and tanf > 1, cos?(f — a) =~ 1, and (ii)
for myo & 2myg, sin’(ﬂ —a) = 1. The fact that cos?(f — @) — 0 as m 40 becomes
large is expected since for large m 40, all heavy Higgs states decouple, while the
h%Z Z coupling [which is proportional to sin(#—a)] approaches its Standard Model
value. Nevertheless, it is interesting to note that cos?(8 — a) approaches 0 more
slowly as m, increases (i.e., as the radiative corrections become more significant).

When radiative corrections have been incorporated, new possibilities arise
which did not exist at tree-level. One example, mentioned in section 6, is the pos-
sibility of the decay A% — A%A?, which is kinematically forbidden at tree-level but
allowed for some range of MSSM parameters [61,71]. We can obtain the complete
one-loop leading-log expression for the h°A%A° coupling (assuming m 40 < myz) by
inserting the one-loop leading-log formulae for the A; into eq. (A.1) [71]
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gho A0 40

——— = —(38504a 1+_yz_ Pn ESZ_U_S_‘L +P;ln MS?USY
gmz/[2cw 96x2c, m? m%

2 a5 CaSS — SaC 2
g N {[ l ﬁ(?mg - m?,mzch,)— ———-—-—( e ﬁ)mZm% In ——MSUSY
m

lﬁarzm%vmzz c% 2%

CaC’ (casd — sac3) M}
- [#(2%} - m;"m%s%)+ ~p pl " P m?mzz In —————-—::;SY

2sg 2
S [526¢8+a(Pott + Py) = 2cash — 50c3)(Pygy + P2)] In Mgysy
1921’262“, e 9 «°p atp 2H g m% .

64
Once kinematically allowed, A% — A°A® is almost certainly the dominant d(gca)?
mode as shown in fig. 14. These results indicate the importance of the search for
h® — A%A° at LEP. As m 4o increases beyond 30 GeV, the region of parameter
space where this decay is permitted quickly shrinks.
Recent Higgs searches at LEP have begun to incorporate the most important
leading-log radiative corrections into their analyses (see, e.g., ref. [14]). However,
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Fig. 14. Regions of nonvanishing BR(h® — A®A°) for m 4 = 5,10, 20 and 30 GeV. To
the right of the solid curves, mye < 2m o, and the decay h® — A°A° is kinematically
forbidden. To the left of the dashed curve, BR(A® — A°A®) > 0.5 and between the
dotted curves, BR(h® — A%A%) > 0.8. Mgygy =1 TeV in all four graphs. Taken from
ref. 71.

if squark mixing effects are large, then important non-leading-log effects cannot
be neglected, as discussed at the end of section 6 [15]. In fig. 15 I plot the Higgs
mass mye and the factor sinz(ﬂ — a) as functions of tan @ for my = 150 GeV
and Mgygy = 1 TeV. I have fixed the sum mgo 4+ myo = myz in both plots in
order to bound mye while keeping Z — A%A kinematically forbidden. Fig. 15(a)
displays contours of fixed m 40 + mjo = mz. To the left (right) of these contours,
Z — A"R® is kinematically allowed (forbidden). In fig. 15(b) one sees that the
decay Z — Z*h°, with a rate proportional to sin?(@ — a), can be sufficiently
suppressed in the large tan # regime to escape detection. On the other hand, the
rate for Z — A%A0 is proportional to cos?(8 — a) which is near unity for large tan g
and myo < mz. Thus, Z — AA° would be observed in this regime unless it is
kinematically forbidden. Thus, in the absence of the Higgs discovery at LEP, one
can conclude that the parameter regions to the left of the respective curves (for
various choices of 4 = A) shown in fig. 15(a) are excluded. On the other hand,
at large tan g, the parameter regime to the right of the respective curves cannot
be ruled out based on current LEP data. In particular, for large 4 = A (and for
large tan ), the true experimental lower limit on myo [i.e., the dotted curve of
fig. 15(a)] can be significantly lower than the quoted Higgs mass limits of the LEP
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Fig. 15. As a function of tan 8, we plot (a) the neutral Higgs mass mys and (b) the
factor sin?(8 — a) for my = 150 GeV and M5 = Mgysy = 1 TeV. All A-parameters are

taken to be equal (A4 = A¢ = A,); the four curves shown correspond to u= A= 10,1, 2
and 3 TeV, respectively. The sum m o + myo = my is kept fixed in both plots. Taken
from ref. [54].

detector collaborations [13-14].

For the heavier Higgs states, there are many possible final state decay modes.
The various branching ratios are complicated functions of the MSSM parameter
space [72]. Plots of the branching ratios of the MSSM Higgs bosons, with all one-
loop leading log corrections included, can be found in J.F. Gunion’s contribution
to this Volume. These plots indicate a rich phenomenology for Higgs searches at
future colliders [72,73]. Although the possibility of a Higgs discovery at LEP still
remains, the effects of the radiative corrections (particularly if m, is near the upper
end of its expected range) suggest that the success of the Higgs Hunt must await
the supercollider era. Presumably, the SSC and LHC will uncover direct evidence
for supersymmetric particles, if low-energy supersymmetry exists. In this case, the
details of the Higgs sector will contain crucial information regarding the structure
of the theory—the mechanism of electroweak symmetry breaking and the nature
of the TeV scale physics that lies beyond the Standard Model.



APPENDIX A: Three-Higgs Vertices
in the Two-Higgs Doublet Model

In this Appendix, I list the Feynman rules for the 3-point Higgs interaction in
the most general (nonsupersymmetric) two-Higgs doublet extension of the Stan-
dard Model, assuming that the Higgs sector conserves CP. The Feynman rule for
the ABC vertex is denoted by ig,gc. For completeness, R-gauge Feynman rules
involving the Goldstone bosons (G* and G?) are also listed.

Interactions involving physical Higgs bosons depend in detail on the parameters
of the Higgs potential specified in eq. (1).
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o pop0 = [/\133,656{, + /\263,8‘980 +X3(333‘9 -+ cgcﬂ - %Cp-a)

(A1)
ﬁmw 3 ~
gpopop0 = T[/\]SGCp - chi.?p + )\3sacaca+p

— X632 (3cacs — 5asp) + Mrck (3sa5g — cacp)] ,

—bmy

I = [z\lc‘zcg + /\28‘18,9 + Xasacasad»ﬂ

+ /\ch (330,8;3 + cas,g) + /\7331 (3ca83 + sacg)] s
2
I HrH- = 90A°8° "‘3—,!()‘5 = A)3p-a)

2m
IHOH H = o400 — *f'-('\s ~ M)cpa,
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where 1 have used the notation
Xs EAds+ A+ A5 (A.Z)

It is interesting to note that couplings of the charged Higgs bosons satisfy relations
analogous to that of mpy=+ given in eq. (4).

Feynman rules for three-point Higgs vertices that involve Goldstone bosons
assume much simpler forms

gegeg = g%mio sin(ﬂ - (l) N
Ieg = —— cos(f — a)
G omy H ’

Gt~ = I0G°G° s

IH°G+rG- = IH°G G

-9
904060 = m(mg ~ mip)cos(f — ), (A3)
9 a0 = 5o(my — ml)sin(B — a),

2mwy

I gtaE = gngt—w'(mﬁ* — m}o) cos(B — a),

yHOH*G; = %(m;}* - m;lo)sin(ﬂ -_ a),
t9 o 2
A HEGF = m(mﬂ* — My).

In the rule for the A H*G¥ vertex, the sign corresponds to H* entering the vertex
and G* leaving the vertex.

One can easily check that if tree-level MSSM relations are imposed on the );,
Higgs masses, and angles a and B, one recovers the MSSM Feynman rules listed
in Appendix A of ref. 1.
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APPENDIX B: Renormalization Group Equations

- In this Appendix, I have collected the one-loop renormalization group equa-
tions (RGEs) that are needed in the analysis presented in this paper [74,17,54].
Schematically, the RGEs at one-loop take the form

%— i(p1,p2,..), where t = In 4?, (B.1)

where p is the energy scale, and the parameters p; stand for the Higgs boson self-
couplings A; (i = 1...7), the squared Yukawa couplings h} (f =t, band 7; the two
lighter generations can be neglected), and the squared gauge couplings g} (=32
1) corresponding to SU(3)xSU(2)x U(1) respectively. The g; are normalized such
that they are equal at the grand unification scale. It is also convenient to define

9=9,, 9’-=- \/-%Tglﬁ (B'2)

where g and ¢’ are normalized in the usual way for low-energy electroweak physics,
i.e. tanfyw =g'/g.

- I now list the f-functions required for the analysis presented in this paper.
Two cases will be given, depending on whether u is above or below the scale of
supersymmetry breaking, Mgygy.

“’? 2 2 16 2 2 13

hi
By = 5oz (6] + hi + B2 — Ko - 3¢ - 147

h?
B = == 16 - [4h2 + 3h} — 3¢% — 3¢"]
. (B.3)

By = [10N,+ NH]
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By = _48 - [6N,+ NH-—IS]
A= s [o%s 1.

Here Ny = 3 is the number of generations;.N ‘g = 2 is the number of scalar doublets,
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and the Higgs-fermion Yukawa couplings are given by

gmy

A
2my sin
h " oms ﬂ di=b B4
“= Py’ H=HT)
2. p < Mgysy
Br = 16 2[7112 1h2—893 -—-y ——- ]
Bry = 16 =3 [ghf +3h7 +h2 — 8¢ — ? -~ 559"
P = 16;2 [357 + 3k - 39" — 4"
o (B5)
B = gz |3Ns + %NH]
| 1
By = a7 [N + }Nu - 22|
4 .
g
B = gz [ty - 33]

The notation is the same as in the previous case. Moreover, in writing down
the RGEs for the Higgs-fermion Yukawa couplings, I have assumed that the Higgs-
fermion interaction is the same as in the MSSM; namely, &, [®5] couples exclusively
to down-type [up-type] fermions.

Finally, I list the RGEs for the Higgs self-couplings of the general two-Higgs
doublet model (with the Higgs-fermion couplings as specified above). First, I need
to define the anomalous dimensions of the two Higgs fields:

n= ———6 [9y + 34" —42thd}

1 . (B.6)
72 = 5;—-[99 +3g 42Na ] ;

where the sum over i is taken over three generations of quarks (with N, = 3) and

42


http:generations,.NH

leptons (with N, = 1). The f-functions for the Higgs self-couplings in the gen-
eral CP-conserving non-supersymmetric two-Higgs-doublet model (with the Higgs-
fermion couplings as specified in section 2) are given by

By, = o 2{(» + 203 4 2030 + A2 + A2 4+ 1223

+3[20* + (¢ +9?) -2 Nc,-hfi.,} —2am
i

Py=15 2{6* + 205+ 20he + A + AF + 120
+3[26* + (8 +”)"] - 221\%&&} — 2
i
B = = 2{()‘1+A2)(353+A4)+2)‘ + 22402+ 222 + 202 + 8)g)7

+3la0*+ 6" - o] -2 h’}—)\s(71+7z)

B, = (M + A2 + 403+ 2X0g) + 402 + 502 + 522 4+ 2067
16 1672

+30%0" +2 3 Nahhd] - M(m1 +7)
i

By

I

-)‘E(Al + A2+ 403 +6Xq) +5(03 +A3) + 2)\0)\7] =Xds(n+7)

- 36(371 +72)

B,

1
162
1 .
Bru = ooz [Ma(631 +3a + 4 + 535) + Mr(Bhs + 2 + »)]
1
1672

——Ma(62 + 323 + 4 + 52s) + As(3hs + 20 + ,\5)] ~La(n +372).
‘ (B.7)
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APPENDIX C: MSSM Higgs Sector Contributions
to the S, T and U Parameters

In this Appendix, I record the exact one-loop contributions of the MSSM Higgs
bosons to 85, 6T and éU [see eq. (32)]. These contributions are defined relative
to the Standard Model in which the Standard Model Higgs boson mass is taken
equal to mye [38]. First, for 65 and 6U I find

68 = -—r%—{sm?(ﬂ a)Baa(my; mbp, m%e) — Baa(my; mbya, mba)
z

+cos?(f — a) [Bn(m%; mio, mio) + Baa(my; m}, min) — Baa(m; m%, md,)

- ol i) + )|

1
U = —6S + W{Bzz(mfy; mio, m}#) - 2822(111%‘,; qug,mglt)
Z

+sin?(B — a)Baa(miy; mbp, mbya)

+ cos?(f—a) [Bzz(m'i’v; mio, mira)+Baa(miy; miy, mip ) —Baa(miy; m¥y, m3,)

— iy By, i) + oy By oy )|

(C.1)

The following notation has been introduced for the various loop integrals
Baa(g*;mi, m}) = Baa(g*; mi, m3) — Ba(0;m}, m}), (C2)
Bo(¢*;mi, m3) = Bo(g*; m}, m3) — Bo(0; m}, m3), (C3)

and Bj; and By are defined according to ref. [75] (up to an overall sign in some
cases since I use the Bjorken and Drell metric [76]). Explicitly,

1
ng(qz;mf, mg) = %(A +1) [mf + m% - 2¢°] - %/ dz X In(X —ie), (C4)
0

1
Bo(¢};m},m}) =A— / dz In(X — ie), (C.5)
0
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where
X =miz +mi(l-1z)—q’z(1 - 1) (C.6)

and A is the regulator of dimensional regularization defined by
2
A= 4—-__—"-+1n(41r)+7, (07)

n is the number of space-time dimensions and + is Euler’s constant. Of course,
in the calculation of physical observables, terms proportional to A must exactly
cancel. The following two relations are particularly useful:

4322(0; milza m%) = F(m‘f! m%) + Ao(m%) + Aﬂ(mg) s (08)
Ag(m}) — Ag(m3)
Bo(0;m}, m3) = "i.f —? 2, (C9)
where
2.9 — 2 2 mfmg | mf C.10
F(m}, mj =7(m1+m2)‘m%__m§ n —n_zg ’ (C.10)
Ay(m?) =m?}(A+1-Inm?). (C.11)

Finally, consider §p = aéT. I find:

T ! 5 { F(m¥s, m%0) +sin?(8 — a) [F(m}ys, mip) — F(m’o, mbo)]

=161rm§‘,sw
+cos?(B — a) [F(m}ys, mho) — F(mho, mio) + F(miy, mipo)
—F(mgw m%") - F(m%, m%{“) + F(mzz: m%")]

+4m?% [Bo((); m, mip) — Bo(0; mzz, mﬁo)]

- 4m¥y [Bo(o; m%y, m%{o) — By(0; m%Vx mio)] ,

(C.12)
where sy = sinfyw.

Note that these expressions for 85, 6T and 6U are valid for an arbitrary two-
Higgs doublet extension of the Standard Model [39-41]. In the MSSM, tree-level
relations exist among the Higgs masses and angles o and § as discussed in section
3. By virtue of these relations, the numerical values of S and 6T in the MSSM
are much smaller than 1. For example, by taking m o 3> myz and applying the
various MSSM tree-level relations, one easily obtains the asymptotic results quoted
in egs. (33) and (34). Moreover, one can check that §U < 65, 6T.
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