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O. 	INTRODUCTION AND MOTIVATION 

Generating functional is a powerful and elegant formalism which proved itself to be 

most useful to the understanding of quantum field theory. The perturbative expansion 

and the Feynman diagrams algorithm is a good example of the efficiency of this functional. 

However, the general non perturbative structure of the theory is far from being under

stood and for instance general features like renormalization properties (although much 

progress has been performed there) and phase transitions are difficultly obtained from the 

functional. 

One reason for this situation is that the generating functional appears more like a 

"formal" entity than a well-defined mathematical object. Two important steps exist be

tween the generating functional in continuous space-time and a well-defined mathematical 

object like the generating functional over a finite lattice of sites. The first step is the 

infinite lattice of sites, the so-called thermodynamic limit with the appearance of phase 

transitioIls; the second step is the so-called continuous limit where the infinite discrete 

number of sites become infiuite continuous with the appearance of ultraviolet divergences 

when the lattice spacing goes to zero. 

The general non-perturbative structure of field theory must first be understood at the 

level of a finite lattice of sites where we stand on strong mathematical ground. Let us 

consider the generating functional over a d-dimensional rectangular lattice with Nl x N2 X 

... x Nd sites, for a scalar field theory consisting of a nearest neighbour interaction and a 

potential on each si te 

00 

(0.1)Z(J) =1: I} d¢, exp (- [~E (~, ~j)' +~;:v + ~J'''.) 
The potential V is such that the integrals exist at infinity and (ij) means that sites i and 

j are neighbours. 

In one dimension, the general non perturbative structure of these integrals is well

known thanks to the existence of a transfer matrix. The interaction between two neigh

bouring sites i and i +1 is described by a matrix Tj,j+1 80 that, assuming periodic boundary 

conditions, the partition function is obtained as 

Z = Z(J)b~=o = Trace TN 	 (0.2) 

This is what I call a one-dimensional matrix formalism. This formalism is based on the 

existence of eigenvectors Iv"p) and eigenvalues rp of T. Although the numerical problem of 

finding the lFs and the rs from the potential V is highly difficult, the general structure 
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of the Green functions is always the same for any potential V. For instance, the partition 

function is 

ZN = Lr: 	 (0.3) 
p 

and the two point Green function between site i and site j is 

G.. "" 0' r1i-jl0' rN-li-jl 	 (0.4)IJ L.....t pq q qp p 
pq 

where the matrix 0' is defined as 

(0.5)O'pq 

Such general forms allow, for instance, the understanding of the thermodynamic limit in 

a potential independent way. Froebenius-Perron theorem says that the largest eigenvalue 

1'0 is never degenerate (absence of phase transition in one dimension) provided that all 

elements of the transfer matrix is positive; then, when N --+ 00 

ZN --+ r~ (0.6a) 
-1;-;1 

G jj --+ r~ L O'Oq ( ~ ) O'qO (0.6b) 
q 

Such general forms show explicitly the exponential decrease of the two-point Green 

function when Ii - jl --+ 00 or equivalently, it says that in one-dimensional continuous 

field theory, the propagator in momentum space is a sum of single poles. Let us remind 

here that all Feynman graphs can be analytically calculated in one dimension and that 

the propagator in momentum space is a sum of products of multiple poles; it is interesting 

to know from the existence of a transfer matrix that the sum of the perturbative series 

transforms these infinitely many multiple poles into a sum of single poles. 

This publication is a first step towards the two-dimensional structure of the partition 

function. Unfortunately, as soon as two-dimensional lattices are considered, such general 

structure is far from being known. We do also have a transfer matrix formalism between 

two neighbouring lines of sites but clearly there is a much richer structure because there is 

in fact two such transfer matrices: a vertical and a horizontal tranfer matrix. Necessarily, 

the eigenvectors and eigenvalues of one transfer matrix are very much constrained by the 

existence of the other transfer matrix. This is for instance well observed when considering 

the eigenvalues of the Ising model and their characteristic factorization properties. Another 

unsatisfactory feature when using a unique transfer matrix is for instance the expression 

obtained for the Green function between two points of coordinates i, k and j, e: similarly 
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to (0.4), the translational invariant Ii - il dependence appears but the analog translational 
invariant Ik - II dependence is completely destroyed (without speaking of the rotational 
invariance of the continuous limit). 

It looks evident to us that the elementary description of two-dimensional interactions 
lies in the existence of a plaquette operator S. I call two-dimensional matrix fonnalism the 
procedures which permit from S to construct the horizontal and vertical transfer matrices 
and to construct the two-dimensional partition function and Green functions. 

In Section I, we describe the plaquette operator S and the two-dimensional matrix 
formalism. At the end of this section (and for the following sections) we restrict ourselves 
to the case of 2 x 2 matrices. In Section II we describe the vector space. In Sections III-A 
to III-D we give the solution for the eigenvalues of the transfer matrix of four models of 
increasing difficulty (models III-D contain the Ising model as a very special case). Finally 
in Section IV we give the expression for the partition function of these models. 

Let us mention here that our main result concerning the 2 x 2 matrices is stated at 
the end of Section I, from (1.58) to (1.61). 

I. TWO DIMENSIONAL MATRIX FORMALISM 

We define a plaquette operator S SII as a sum 

Sll=LAi·Bi (1.1) 

where Ai a.nd Ba are square matrices defined in two different vector spaces and where . 
means nothing but a separation between the A~ which operate vertically while the B~ 
operate horizontally. 

For instance, the two-horizontal plaquettes operator is 

S12 =L [Ai ® Aj] . BiBj (l.2) 
i,j 

where the B~ multiply by usual matrix product while the A~ operate by tensorial products. 
Similarly the two-vertical plaquettes operator is 

S'll = L A,Aj. [Bi ® Bjl (1.3) 
i,j 

By generalization, the N horizontal plaquettes operator reads 

SIN L [Ail ® Ail ® ... ® AiN] . Bil Bil· .. BiN (1.4) 

{i"... ,iN} 
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while the M vertical plaquettes operator reads 

SUI = L AjIAiJ·..AjM· [Bjl ® Bjl ® ... ® BjM} (1.5) 
(it ...·.jM) 

Using the commutativity of matrix product with ten80rial product 

AB®CD =(A®C)(B®D) (1.6) 

we get the N x M plaquettes operator as a sum over any choices of a tableau of indices 
iji (j from 1 to M, k from 1 to N) 

SUN = L {[AiuAiu·..AiMl] ® [AiuAiu .. ·AiM.] ® ... ® [AilNAiaN ...AiMN]} 
(1.7){i.; .. } 

. {[Bill Biu· ..Bitlv] ® [Bill Biw ..Bi,N] ® ... ® [BiM1BiMI .. ·BiMN]} 

This terrible result is the two-dimensional equivalent of TU in one dimension. The two 
dimensional equivalent of the partition function Zu =Trace TU becomes (with periodic 
boundaries) 

ZUN = L {Trace[Aill' ..AiMl )· Trace [AiU' ..AiMll ..... Trace [Ai1N ...AiMN} .} (l.B) 
, Trace [Biuoo.BilN] . Trace [BiI1 ... BiIN] ..... Trace [BiMl ...BiMN]

{I';" } 

Clearly ZUN is unchanged if we change the vertical and horizontal basis: A~j =UAijU-1 , 

B~j =VBij V-I. Such a structure is clearly generalizable to a lattice of any dimension. 
However, this result seelIlB completely useless (except may be for numerical calcula

tions) unless we can generalize the fonnalism of eigenvectors and eigenvalues in some 
powerful way. Such a way may arise from the understanding of the vertical or horizontal 
transfer matrix. The vertical transfer matrix i8 obtained as 

TN T= L Trace(B'I···B'N) All ®AII ® ... ®AIN (1.9) 
til ",iN} 

and similarly the horizontal one is 

Tu L Trace(Ajl· .. AjM)Bjl ® Bjl ®oo. ® BjM (1.10) 
(it ...jM) 

Clearly, a change of horizontal basis B~j =VBij V-I does not change TN t while a change 
of vertical basis expresses TN t in another basis (without changing its eigenvalues). 
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Let us mention an important property of these transfer matrices. The property of the where D. and Ej are diagonal matrices. From this transformation, we obtain a new (but 
trace to be invariant by cyclic permutation creates automatically in TN t partial sums of 
the type 

[Ai. ® A., ® Ai. ® .. , ® AiN +Ai, ® Ai. ® ... ® AiN ® Ai. +Ai. ® ... ® AiN ® Ai. ® Ai, +...] 
(1.11) 

Let us define the unitary operator CN, called cyclic permutation operator, as 

CN [Ail ®Ai, ® ... ®AiN]C'tt = Ai, ® ... ®AiN ® Ai. (1.12) 

for any choice of Asi then, 

CNTNC'tt =TN (1.13) 

or 

[CN, TN] =0 (1.14) 

Of course C~ = 180 that the eigenvalues of CN are N'''-root of unity but the degeneracy 
of the eigenvectors is tremendous. This operator CN is studied in more details in Section 
III-B. 

To give a better understanding of the situation, we now give one trivial and one easy 
example which never appears in field theory. First, there is only one A and B matrix 

511 A· B (1.15) 

Then, 
SMN [AMf&lN. [BN]®M (1.16) 

80 that if the eigenvalues of A are r, and the eigenvalues of B are PI 

(1.17)
ZMN= [~>:r [~>:r 

which is a trivial generalization of (0.3). In this case, if ro and Po respectively are the 

largest eigenvalues, the thermodynamic limit is 

limit(M and N -- OO)ZMN "'" (ropo)MN (1.18) 

The second example is when all As on one side and all Bs on the other side commute. 
Then, we may choose a common set of eigenvectors on each side; there exists U and V 
matrices such that 

U-IA.U = Di (I.19a) 

V-I BJV =Ej (I.19b) 
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equivalent) plaquette operator: 

Su =LDi·E, (1.20) 

If we decompose the matrices Di and Ej over their orthogonal projectors 

D, =Lri,P, (1.210) , 
Ej = LPj,Q, (I.2lb) 

We get the system 

Su =L a,.P,· Q, (1.22) ,. 
where 

a,. =L ri,pi, (1.23) 

Clearly enough 

StN = L L a",ap" ...aPN , (P,. ® PI" ® ... ® PpN)' Q, (1.24) 
{"',,'N) , 

and the vertical transfer matrices 

(1.25)TN t= L (L a", ...a'N') p,. ® P" ® ... ® P'N 
{P, .. ·pN} , 

so that 

ZMN = (1.26)L (L.,......,..)M 
{pi,,·pH} , 

Similarly 

SMI = L La,..a,., ...a,..,Pp. (Q,. ®Q" ® : .. ®Q,.. ) (1.27) 

h, ..·.." I' 

and the horizontal transfer matrices 

'PM = L (L.,,, ......,,) Q" ® Q" ® '" (1.28)®Q." 
{" ...,.,) I' 
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so that 

(1.29)ZMN = L (L ap9t ...aP911)N 
{q1···9I1} P 

A synunetric way of writing the partition fWlction is 

N M

ZMN = L L llrrapi9i (1.30) 
(PI···PH) {qt ... 9I1} i=1 j=1 

Of course a tremendous degeneracy occur in the eigenvalues of the transfer matricesj for 
instance in (1.25-26) we may write 

(1.31)ZMN = L ~ (LIT ai;)M
r' } rl····rn· 9 i=1{ 5 

where the sum runs over all rs such that 2:?=1 ri = N and where n is the dimension of 
the matrices Di and Ej. Also, in a symmetric way (1.31) can be written 

N 
M' nZMN=L-,-·-, Llla~ (1.32)

tl .... tn. ( . )
{,~ } P J=I 

where the sum over {ts}is such that 2:7=1 t j = M. A completely synunetric result gives 

_ '" '" N! M! nn nn ri'iZMN - L L -,-'-I-, aij (1.33) 

{ 
rl } {" } rl····rn· tl····tn. i=1 j=1
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We now give an expression of the plaquette operator in terms of matrices, the element of 

which are matrices themselves. 

Suppose that we decompose the matrices Bi as 

Bi = Lb!.Pj, (1.34) 
j' 

where the matrices Pj' are 

[Pj.l tm = bjtb.m (/.35) 

Then, we define the matrices 

Aj. = Lb~.Ai (1.36) 
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The plaquette operator Sl1 is now written as 

SII = L Ai'· pj' (1.37) 

i' 

which we denote by a matrix Stl of matrices Aj. 

AOO Ao• 

S~I = : (1.38).,. 2:][ 
A,o 

where p is the dimension of the matrices Bi. 
Of course we could have defined similarly an operator Sr. the elements of which are 

linear combinations of the matrices Bj S~I and Sr. are necessarily correlated. 

With this representation, the elements of S~2 are obtained as: 

[S~2]jt =L Aj. ® Ail (/.39)

• 
which means that we combine the A~ like in a usual matrix product but multiplicatioD8 

of elements A are tensorial products. 

The transfer matrix 

TN = Trace S~N = E , [S~N]" (/.40) 

To illustrate this step, we give the example of the Ising model. The plaquette operator for 

the Ising model can be obtained under the fonn 

SII = (Ch~ 0). (chI' 0) + (0 v'sh~Ch~). ( 0 VShJ'chJ') 
o sh~ 0 shJ' v'sh~ch~ 0 vshJ'chJ' 0 

(/.41) 

Clearly 

( Ch~ 0) (/.42)TI f= ell 0 sh~ 

and 

ZIM =eM"(chM~+shM~) (/.43) 

Similarly 
ch~ 0)02 ( . /""'i"""\"I"\ 02T2 f= ch2J' ( + sh2J' 0 VSh~ch~) (/.44)o sh~ v'sh~ch~ 0 

etc ... 
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Now 
S' - [ChP (chlPo + shlPd v'ShPchpJShlChlS] (1.45)

Jl - v'shpchpJshlchlS shp (ch.\Po + shlPd 

where the well known matrices Po, PI and S a.re given in (11.3,5). Then, 

ch2p (chlPo + shlPd02 JZ ( chp (chlPo + shlPI ) 0 S ) 1 
Sit _ +Z S0S +shpS 0 (chlPo +shlPI ) 

12 - [ ..Ji ( chpS 0 (chlPo + shlPI) ) sh2P (chlPo +shlPI )®2 
+shp (chlPo + shlP.) 0 S +z S0S 

(1.46) 

where z = shpchpshlchl. The traces of Sri and of S~2 give back T. t and T2 1 . 
The end of this publication is devoted to two by two matrices. We postpone to a later 
time the general structure of n )( n matrices. A plaquette operator built with two by 
two matrices depends upon 16 parameters. We shall restrict ourselves to those plaquette 
operators which have the property of parity conservation. 

The property of parity conservation is the following: if we look at (1.41), we may write 

Sll = L VXi+,(.\)Xi(lh/xt._,(p)xt,(p)P"S',P",SP (1.47) 
pU' 

with 

Xo(l) = chl (1.48) 

Xl (l) = shl (1.49) 

If we calculate the matrix transfer TN t, due to the tra.ce property we have 

Trace {p", SPI P", S'., ,,,P,,, SPN} = 0 if P. +P2 + ...PN is odd (1.50)
, ., N 

Then TN 1 is a sum of terms of the type 

p", SPI 0 P",S" 0 ... 0 P"N SPN (1.51) 

with PI + P2 +... +PN even. 
Consequently, if 

0' = Po - p. (1.52) 

then, 

0'00'0 ... 00' T (1.53)
[ --n-----" N t] = 0 

and the orthogonal projectors 

1
0:1:: = '2[1010 I ... 0 1 ± 0' 00' 00'... 00'] (1.54) 

define two orthogonal sectors conserved by TN t . This property is generalizable to n )( n 
matrices with cyclic interaction between nearest neighbour. 
We shall restrict our investigation to the subclass of plaquette operators which conserves 
parity 

Sl1 = L• 
a,u' P"S'.P",S' (1.55) 

,""'=0 
and this reduces to eight the number of free parameters. Such a plaquette operator can 
be written &8 

Su = oPo'Po +e' p •.Po + ePo.P. + 0' p•. p. (1.56)
+PPoS.PoS + 4>' p.S.PoS + 4>PoS.p.S +p'PI S.p.S 

Vertical and horizontal developments of the plaquettes and corresponding transfer matrices 
are related by the exchange 

e --.. e' 
(1.57)

4> --.. 4>' 

This plaquette operator can also be written &8 

S" - [ oPo + e'PI PPoS + 4>' PIS] (1.58)
n - 4>PoS +'PIS ePo+o'PI 

We now state our result: 

If we impose to the eight parameters the following condition 

00' +ee' = 4>4>' +pp' (1.59) 

then, 

i) the even and odd parity transfer matrices separately are tensorial products of 2 )(2 

matrices VN (or M) 

ii) the corresponding eigenvalues have a characteristic fa.ctorization property(I,2! 

iii) the partition function is the sum of four quantities (due to the mixing of parity 
in the horizontal and vertical directions). Each quantity is the product of elementary 
expressions over N.},! plaquettes, in Fourier spa.ce. 

Namely, we get. from the plaquette operator S:I in (1.58) the partition function 

ZNM = Zu +ZIO +Zo. - Zoo (1.60) 
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with 

" [11' ] , 1/'a 2 + a,2 + e" + e'2 - 2(ae - a'e')C08 (2S + 01) N 

N-IM-l -2 (ae' - ea') cos [(2S' +02) ~] 
(/.61)Z616, = II II 

-2(aa' - ee')c08 [(2S +OJ) ~] cos [(2S' +02) ~] 
-2( ~~' fJfJ' )sin [(2S +01 ) N] sin [(2S' +02) ~] 

5",,05'=0 

This result is completely symmetric in the exchange e ~ e', ~ t--+ ~', N t--+ M, 
01 ~ 02 and S t--+ S' so that Zll, Zoo are self symmetric while ZIO t--+ ZOJ. 

The simplicity of S~l and ZN M hides a very cumbersome demonstration which we 
perform in Section III with four models of increasing difficulty. This fact means that the 
mathematics of the two-dimensional matrix formalism is far from understood. Also the 
condition (1.59) remains obscure for the present time. 

In the Ising model, the condition (1.59) is automatically satisfied since 

aa' = ee' = fJfJ' = ~~' shpchpshAchA (/.62) 

Also, a simplification occur in Z61 6, since the products of vertical-horizontal cosines and 
sines disappear to give the well known result(3} obtained from the statistic of dimen. 

We wish finally to indicate that the thermodynamic limit of the functions Z616, are 
easily obtained as 

lim Z. NM 1211' 1211' 
V1 62 = exp-- d (/.63)N, M --+ 00 811'2 0 x 0 dy Log z(x, y) 

with 

z(x, y) = a 2 + a'2 + e2 + e,2 - 2(ae - a'e')cosx - 2(ae' - a'e)cosy 
(1.64)

-2(aa' - ee')cosxcosy- 2(~~' - fJfJ')sinxsiny 

II. THE STATES 

a) Definition of the states on one site 

We calculate the transfer matrices Tl f and TI and we choose the horizontal and 
vertical basis such that TJ f and Tl are diagonal matrices. Then, two by two matrices are 
defined in a two dimensional vector space. We define conventionally the vacuum state as 

(~) =In > (II.l) 
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and the excited state as 

(~) =1; > (11.2) 

The projectors 
1 

Po = -(1 +0') 1= (~ ~)2 
(11.3) 

PI = -(I - 0')
2 
1 O'=(~ ~1) 

are defined in such a way that 

PO In> =10> 
PI 1~ > =1; > (/V&){ 
Po 1~ > = PliO >= 0 

Moreover the Pauli matrix 

(11.5)s=(~ ~) 
is such that 

Sin> =1 ~ > (11.6){ SI ~> =10> 

b) The states in position space 

We now define a 2N dimensional vector space corresponding to all possible states over 
N sites 0,1,.", N - 1. The vacuum is a direct product of each vacuum 

1 n >N=I n > 0 1 n > 0 ... 0 In> (11.7) 

For simplicity we also write In>Nasi n > without any ambiguity in the understanding. 
A state corresponding to excited states in the sites lob lo" ... , lo, is denoted by 

l~il,i2, ...,i,)=ln>®... ® 1~>®ln>® ... ® I~>®· .. ® I~>®IO>® ... (I1.8) 

f f f 
lol lo, lo, 

where all ... on the right hand side means a vacuum state In> except in lo3, k., ...,k,_1 
which have an excited state I ~ > . It is important to note that our notation implies 

necessarily I~il <'2<&:.<"'<") with lol 2: 0 and k, S N - 1. We denote by n+ and n- the 
subspaces or sectors of even and odd number of excited states. 

By definition, the cyclic permutation operator CN is defined as 

CNln) = In) 

CN ~il,i21 ....t ) = l~il-Ili2- .......,-I) for k. > 0 (11.9)
{ 
CN I~o.tal....t') = l~t2-.,t,-.I,,,,.,-IIN-.) 
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Of course 

cfJ = I (1/.10) 

so that the eigenvalues of CN are qk = e~; k = 0, ... , N - 1. Since the vector space is of 

dimension 2N, the degeneracy of the eigenvectors of CN is enonnous. We show in Section 
Ill-B that these eigenvalues can be constructed in n+ and n- respectively, by factorization 
of N values since CN, in each sector, is a tensorial product of 2 x 2 matrices. 

Since the degeneracy is so large, the eigenvectors of CN are of little help to diagonalize 
the transfer matrices TN; however eigenvectors of TN are necessarily linear combinations of 
eigenvectors of CN with the same eigenvalue. Let us organize somewhat the eigenvectors 

OfCN. 

c) The Fourier states 

By Fourier states, we mean a Fourier expansion of the states over the N sites. Let us 

consider the state l4>o.k, ....•k,); then, we define 

N-l 

IF.'.kl .....k, ) = _1"N ""L- q-,tc'l"-N Y'0.k2 .....k, }, 8 -- 0, ... , N - 1. (11.11) 
VH t=O 

The Fourier expansion conserve the number of excited states. Clearly 

CN IF,;k" .....,) =q' IF,;k2.....k,) (1/.12) 

and the Fourier states are eigenvectors of CN. By inverse Fourier transfonn we have 

N-l 

l4>k1 .•2.....k'} ~ L q-dt IF,jk2-kt .....k,-k,) (1/.13) 
V iY ,::0 

Note that our notation (11.11) for Fourier states might be misleading since different nota

tions can represent the same Fourier state. 

d) The Jordan-Wigner states 

The Fourier states are eigenvectors of CN. However, for a given eigenvalue 8, the 
eigensubspace constructed from the Fourier states is very large. For instance, as soon as 
N = 4, in the even sector, for 8 = 0, we have two Fourier states 

IFojl ) = 2
1 
14>01 + 4>12 + 4>1.3 +4>03) (11.14) 

IFoil ) = 14>01 +4>13) 

(Note that IFoi3 ) = IFo;I»' 
We wish to organize further this large degeneracy and we use the fact, proved in 

Section III-B, that CN in each parity sector is a tensorial product of 2 x 2 matrices. 
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For a matrix, to be a tensorial product is an intrinsec properly, but this property 
appears clearly in a certain subclass of basis. The Fourier states does not define such a 
privileged basis; the Jordan-Wigner states does. It U8e8 creation and annihilation opera
tors. 

The excited state is defined as 

14» = c+la) (1I.15) 

and because in each site there is only one excited state, we impose 

(C+)2 =o. (1/.16) 

Also, we wish to have an annihilation operator 

cl4» =10) (11.17){ cia) = 0 

Such a realization can be achieved by defining 

c+ = PIS (11.18) 

The conditions (11.16) and (11.18) show clearly the fermionic character of the creation and 
annihilation operators since we have 

cc+ +c+c = I (1/.19) 

The generalization of this construction to several sites has been achieved by the so-called 
Jordan-Wigner construction(41. \Ve refer the reader to the corresponding referencesl2•4J and 

simply specify the relations needed for our purpose. There exists a creation operator in 
each site satisfying 

+ + + + U"c. Cj = -Cj Ci vI,) (11.20) 

An excited state is defined as 

l4>ka,kll ......,) = II
, 

9(k. - ki-d ctct, ...ct, 10) (11.21) 
;=2 

The action of the operator CN is 

CNctCt =ct_I.(I®I® ... ®I®O') fork>O 
(11.22){ CNc;Ct = Ct_l'(O' ® 0' ® ... ® 0' ® I) 

us 



80 that 

eNCt ...ct,. et 41 -1· ..cl,-dl ® I ® ... ® I ® 0") if all kt ;i: 0
{ + + (11.23) 

e NCkl ",CO 
+",Ck, eN+ 

ckl_I",cN_I",ck,_1+ (10\ 10\ 10\ 10\ ,-1)( ),-1 + + - 0''010''01''''010''010' 

Equations (11.23) are compatible with (11.9), (11.21) since 

e + + + e+ - + + + (10\ 10\ 10\ ,-1)10\NCo ck2 .. ·Ck, N - Ck,_I''' Ck,_I CN_I 0' '01 0' '01 ••• '01 0' '01 0' (11.24) 

In order to take care of the factor (-),-1 in (11.23), we introduce the Fourier transform of 
the creation operators as 

N-l 
d+ = _1_ '" q,(2.+I)kc+ (1l.25)• .IN L..t k

k=O 

where q' = eirr/N and 6 = 0 in the odd parity subspace while 6 = 1 in the even parity 
subspace. The factor 6 takes care of the periodic boundary conditions so that the Jordan
Wigner states defined below (11.27) are eigenstates of eN. Consequently, 

, N-l , 

I'" ) - II8(k' k· ) 1 '" II [ '-(2••+6)k'd+] In) (11.26)'I'k l ,k2.... ,k" -. 1 I-I N,/2 L..t. q 'i U 
1=2 .1 ...• ,. .=1 

and conversely, the Jordan-Wigner states are defined as 

= _1_ '" .A {II' q'(2•• +6)k/} I'" ) (11.27)d'JI ..·a:, N,/2 L..t 'I'k l ...k, 
kl ... k, i=1 

where by definition I~kl'" .,k,) is non zero provided kl < k2 < ... < k, and where .A is the 
complete antisymmetrization operator: for instance, 

.A f (kll k21 k3) = f (kl' k2, k3) + f (k2! k3, kl ) + f (k3 I kll k2) (11.28)- f (k31 k21 kJ) - f (k2! k., k3) - f (kit k31 k2) 

.A must be introduced to get rid of the 8~ in (11.26). We use in Section III-B the following 

example with N = 4 

-i i
4dtlO) = 2v'21~01 + ~12 +~23 +~03) - 21~o2 + ~13) 

(1l.29)-i i{ dTdilO) = 2v'21~01 + ~12 +~23 +~03) + 21~02 + ~13) 

From (11.25) and (11.23) we get 

t+ t+ 10) , E~ (2.,+6) t+ t+ 10)eNail ... ai, U = q ,-, ail· ..ai, u (1l.30) 
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where we have used the property 

b = 0 if poddq'-N6( _ ),-1 =1 for (1l.31){ 6=1 if peven 

We may define the Jordan-Wigner space as the space of states 

, 
(1l.32)I~'I"''''') =II8(Si - Si-l)4!"I .. ·4!", 10) 

i=2 

and clearly, these states are eigenstates of eN 

e I;. ) - ' E~ 1(2••+6) I;. ) (11.33)N '1'.1.' ....' - q ,- '1'.1 .. ·.' • 

We now come back to a tensorial product representation as 

I~'I''''') = 10) ® ... ® I~) ® ® 10) ® I~) ® 10)... (11.34) 

T T 
SI S, 

where ... means only vacuum state I 0 > except in S2,S3 ...S,-1 which have a state I~). 
In each Fourier site we may define two orthogonal projectors such that 

PolO) = 10) 
(11.35)PI~) = I~) 

Then 

Po ® ... ® PI ® ... ® Po ® PI ® Po ... 110 ) (11.36)I~'I''''') = 
T T 

8 1 S, 

where PI operators occur in 81,82! "'! S,_II Sp. 


Clearly, the transformation from position space to Jordan-Wigner space is different in the 

even and in the odd sector (6 =0 or 1) so that, for each 6, half of the corresponding Jordan

Wigner space is acceptable (the other half being only useful to formulate the property of 

tensorial products; this is the source of the constraint upon the number of ± signs in the 

eigenvalues of the Ising model(2). 
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e) The plaquette operator in position space 

The action of the plaquette operator, as developed in Section III, mainly uses the 
position space (it is only with the transfer matrix that we work in Fourier or Jordan
Wigner spaces). The plaquette operator (1.58) can be decomposed into two parts 

S~I = So + 51 (11.37) 

with 
Sol,p) 
5110) 

= 0 
= 0 

(11.38) 

We write 

[
(10)

5010) = P'I,p) 
,p'I,p) ]
tlO) (11.39) 

S. PIO) ]
a'I,p) (11.40) 

where the matrices in (11.39), (11.40) are matrices of vectors. Let us describe by the same 
symbol ® the same operation for matrices of matrices and for matrices of vectors; then 

the operation (1.39) generates four relations 

S®21f!} = [a2I O} + P',p' l,po.) a,p' l,pl) + t,p' l,po)] (1/.41)o ap' l,po} + tP' l,pl) P',p' l,pol) + e210) 

where, here I0 > means 10) ® 

So ® 51 l,pt} = [a~' ,I,p,) + ,p,p' l,po) aPlfl) + a',p' l,pol)] (11.42)Pe l,pol) + e,pIO) PP'I,po) + a't l,pl) 

t'a l,po) + PP' l,pl) t',p' l,pod + tPlfl) ] (11.43)51 ® So l,po) = [ a,pIO) + a' P' l,pol) ,p,p' l,p)) + a'e l,po) 

t,211/101) + P,pIO) e'Pl,po) + po' l,pl)]
SI®SI (11.44)l,pl) + a',p l,po) 0'2 l,pol) + P,plfl) 

The transfer matrix in position space follows as 

T2 10) = (0
2 +t2

) 10) + 2P',p' l,pod 
T2 1<pI) = (at' +at) l,pl) + (PP' + ,p,p') l,po) (11.45)T21,po) = (at' + a't) l,po) + (PP' + ,p,p') l,pl) 
T2 1,pol) = (0'2 +t'2) l,pol) +2P,plfl) 

In Section III, an intensive use of this construction is constantly performed. 
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III-A. MODELS OF TYPE I 

These models are defined from the following plaquette operator 

Stl = [aPo ~t'PI (III - A.l)
ePo ~ a'P.] 

These models belong to the class of the commuting matrices described in Section 1(1.19

33). Clearly 

StN = [(aPo +~,p.)@N (III - A.2)
(tPo +~,PI )@N ] 

and the vertical transfer matrix is 

TN r= (aPo + t'Pd@N + (tPo + a'Pd@N (III - A.3) 

This matrix is diagonal in the position space defined in (11.8) and the eigenvalues are of 
the type 

aie,N-i + eia,N-i, k=O, ... ,N (III - A.4) 

with the degeneracy ~. The partition function is 

N NI 
ZNM = L, . I (aie,N-i + tia,N-i)M 

i=O k.(N I.). 


N N'
ZNM = L . M! aU'e,(N-i)i'ti(M-i') ,(N-i)(M-i') 
u'=o k!(N I.)! k'I(M - I.')! a 

(III - A.5) 

This result is the simplest illustration of (1.33). 
From 

TN r I,;.Y'il.i" ... ,i. ) - ( - aN-,e"+ t N-'a") I,;.Y'i1.il, ... ,i.) (III - A.6) 

we may use the degeneracy to change the basis into Fourier states 

TN r IF..ii, ....,i. ) (aN-'e" +tN-'a") IF..iil,....i. ) . (111- A.7) 

Moreover, the eigenvalues being independent of 1.1 ,1.2 , ... , I." we may also consider the 
Jordan-Wigner basis and use transformation (11.25) to write 

TN r d~I ....r"lfl) = (aN-'t" + tN-'a") .r,1 ...d~.IO) (III - A.8) 
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To understand the condition (1.59) at the simplest level, we now impose 

00' +ee' =0 (III - A.9) 

The eigenvalues become 

- (_)6eN] (f) P (III - A.IO) 

where 6 = 1 for p even (even sector) and 0 = 0 for p odd (odd sector). If we define in 
Jordan-Wigner space the orthogonal projectors (II.35) 

PolO) =10) 

Pl~IO) ~IO) (III - A.l1) 

and if we use the well known decomposition 

N-l 

aN - (- )6,N = IT (a _q'(2.+6),) A.12)(III 
.=0 

where 
q' = el'tf/N (III - A.13) 

then, we may write the even and odd transfer matrix separately as 

N-l [' ]TN(a) T= ~ (a q'(2.+6),) Po +~Pl (III - A.14) 

or equivalently 

N-l 

TN(6)T= (8) [(a q'(2.H),) Po + (C'+ql(2·+6)a')P1] (III - A.IS) 
.=0 

It is that structure which is generalized throughout models of type (III-B-C-D). 

We note that in this model, the property of factorization is already valid in position 
space provided that the condition (III-A.9) is true: 

N-l 
TN(6) T= (8) - q,(2.+6),) Po + (c' + q,(2.+6) a') p. ] (III A.16) 

.=0 
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III-B. MODELS OF TYPE II 

These models are defined from the following pla.quette operator S 

aPo ~'PIS]
Stl = [ ~PoS a'P. (III - B.1) 

The cyclic permutation operators eN defined in (11.10) are the transfer matrices generated 
from the above plaquette operator in the special case where a =a' = ~ = ~' =1. 
We now show that, under the condition 

#'=00', (III- B.2) 

the even and odd transfer matrices TN(6) generated from S are both tenaorial products; 
this property is explicitly obtained in Jordan-Wigner states. 

We introduce the operators So and 51 defined in (11.39-40) 

S~l = So +SI (III - B.3) 

with 

Sol~) =SdO) =0 (III - B.4) 

Here, 

(10)
5010) = 0 ~'~~) ] (1/1- B.5a)[ 

Sd~) [~I~) Q,~~d (III - B.5b) 

From (III-B.4-5) we get 

S~kIO) =ak- 1 [ a~{l) (Jk~' I~k-l)] (III B.6)6k (10) 

with the conventions 
Ok = 0 (or Ie :F 0, 60 = 1 
Ok + (Jk = 1 Vie> 0 (III - B.7)

{ S~o = [I~) I~] 
We get successively 

k I [(Jk~~' I~k-I) (Jka'~' I~k-Ilk)]S~k ® 51 I~k) =a - oka~IO) 6kaa' I~o) (III - B.8) 

k 
51 ® S~k I~o) = -

I [a~~O) (Jk~~' I~k) ! Okaa' I~o) ] (III - B.9)a 
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6...,01fJ1fJ' IlfJk,-I) 6kJJk.,IfJIfJ/'IIfJ...,-I,...,H.) ] 
+0... 6...,00/1fJ/ IlfJk.,-I ....,)".+k.,-,S~k2 ® SI ® S:k. IlfJk.,) = 0 ok,o'lfJlfI)

[ 0...,6... 01fJ1fJ' 11fJ... ) 
+0...,0".0'0' 11fJ0)

(III - B.10) 
If we calculate the transfer matrix at this level by setting k. +k, +1 = N, we get 

TN 1 11fJ.. ) =6N_l oN-'IfJIfJ'CN 11fJ..) + ON-IO/ 11fJ0) (III B.11) 

which shows that the corresponding Fourier (or Jordan-Wigner) eigenstate of one excited 

state has for eigenvalue oN-'IfJIfJ' for N > 1 and 0' for N = 1. This discrepancy disappear if 

condition (1I1-B.2) is satisfied. We now show, on the example of T. 1 that this discrepancyI 

propagates and that although Fourier states are always eigenstates of the system, condition 

(l1I-B.2) makes Jordan-Wigner states to be eigenstates and makes the even sector of T.. 1 
to be a tensorial product of two by two matrices. 

If we calculate 

s®ka KJ\ S KJ\ S®k, iO\ S iO\ co®k. I~ ) _ ok. +k,+"a-3 [Ao '0' 0 I '0' .:10 Y'''a,ka+k.,+1 - C ~] (III-B.12)I '0' '0' 

with 

= 6I.;a6I.;,o{IfJIfJ')'llfJl.;a-l,kaH,) + 6kaOl:2020'1fJ1fJ' IlfJka-l,... ) 
(III - B.13){; _ 01.; [6"1 6..,0 (1fJ1fJ,)2 11fJ.."k,+l:1 +I) + 0"1 6I.;J o'0' 1fJ1fJ' 11fJ..."I:.,+!)] 

- a +0I.;,6kl o'0'1fJ1fJ' 11fJ0,1.;1+!) + 0..,01.;10 o"llfJol) 

The transfer matrix reads 

TN t IIfJI:a,I:aHdl) = 6N_,oN- .. [61:,6ka HI (1fJ1fJ')' + (01.;,6...+k. + 6k,0"'+"1)00'1fJ1fJ'] . 

.CN IlfJk.,I:aH,+I) + ON_,0'211fJ01) 
(III - B.14) 

If we apply (111-8.14) to T. 1we get 

T. 111fJI:,k+l) = 00'1fJ1fJ' IlfJk-l,I:) for k = 1,2 
T.. t 11fJ0J) = 00'1fJ1fJ' 11fJ03) (III B.15)

{ T.. 111fJ03) = 00/1fJ1fJ/ 11fJ23) 

but 
T. 111fJ0,) = (1fJ1fJ,)2 11fJ13) (III - B.16){ T. lll/l13) =(1fJ1fJ')'11fJ02) 

Then, the Fourier states 1.1";1) = 111fJ01 + i'lfJ12 + i"IfJ'13 + i 3'1fJ03) are eigenstates of T. 1 
with eigenvalue i'oo'IfJIfJ' while the Fourier states 1.1'%;2) = 11fJ0, ± 1fJ13) are eigenstates 
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of T. 1 with eigenvalues ±(IfJIfJ')'. Clearly, the Jordan-Wigner states (11.29) cannot be 
eigenstates of T. 1 unless 00' = 1fJ1fJ/. In that case, taking into account the fact that 

T. 1 IfI) = o·lfI) (III - B.17)
T. 1dtcJt4Jtlfl) = 0/·dtcJt4Jtlfl) 

and, since Tc l= (00/)' Cc for two particle states, we may use (11.33) and write 

3 

Tc 1= ® [oPo + q"'+lo 'PI] (III - B.18) 
.=0 

with q' = e'fr/". 

We now consider (11I-B.2) as true and prove for all N the ten80rial product structure 

of TN 1 (even or odd) in Jordan-Wigner space. Equation (1I1-B.10) is now rewritten as 

S~k2 ® SI ® S:"I 11fJ..,) = okIH.,-1 [61.;.,00
1 

11fJ1.;2-1) 6"20 '1fJ' IlfJk2-1 ,k2HI)] 
ok,olfJlfI) Ok200' IlfJkl) 

(III - B.19) 
This result can now be easily generalized into 

®I:' I co®".i co®.. , iO\ S iO\ S®I.;· I~ "J+I.. . I)SO ®SI®.:10 ®···®.:10 0 Y'''i+I,I.;HI+''j+I,... 'Lti.' '+JJ+ '0' 1'0' 

"~H "i-; [A B]OLt'.1 C D 

(III - B.20) 
with 

A = 61.;, (00'); IIfJ "HI L • ) 
J+l ..i+t-I,l.;j+I+l.;j ..... Lti.' "'+J-2 


B 6 ( ,);-1 '1fJ'11fJ '+1)

I.;i+t 00 0 ..HI-I ...HI+l.;j .....E!.1 k.+;-1 

(III - B.21) 
C = 0. (00,);-1 01fJ IIfJ j._ )

"J+t ..j.kj+l.;i-1+1 .....Ei.' kj+J , 

D = OkHI (00')' IIfJ"j'''iHJ-I+I'.'''E~•• l.;i+;-I) 

Taking the trace of the matrix (111-8.20) and using 

HI 
Lk.+i=N (III - B.22) 
.=1 

With the appropriate change of variables, we get 

TN I~ - 0 /jc Y'k ....." ) B.23)Y'... ,k." ....kj ) - oN-j N I~ ... ,kj (III 
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with CN defined in (11.9). As in Section III-A, the eigenvalues are only j dependent; 
Fourier states and Jordan-Wigner states are eigenstates of TN since from (11.33) 

TNdt ...dt, 10) =oN-Pa"q' E~_1 (2.;H)dt ...d1;, 10) (III - B.24) 

Again, the factorization of the eigenvalues is such that the even and odd part of the transfer 
matrix can be written as the tensorial product of 2 x 2 matrices 

N-I 

TN(e) = ® [oPo +q'2.Ho'PI ] (III - B.25)
.=0 

ei7f / N •with q' = 
It is interesting to see that the cyclic permutation operator CN, the eigenvalues of 

which are Nth square root of unity with a tremendously large degeneracy, can be organized 
into a factorized structure 

N-I 

CN(e) = ® [Po +q12.HPI] (III - B.26)
.=0 

III-C. MODELS OF TYPE III 

These models are defined from the following plaquette operator S 

S = [aPo + f'PI 4>'PIS ] (III - C.l)
4>PoS ePo +o'PI 

These models contain models of type I and II; they have the property of conserving the 
number of excited states. It is easy to convince oneself that the transfer matrix TN is, 
by construction, a polynomial of degree E ( .If) in 4>4>'. We wish to show that, under the 
condition 

4>4>' = 0'0' + ff' 	 (III - C.2) 

the even and odd transfer matrices T~ generated from S are both tensorial products of 
2 x 2 ma.trices; this property is explicitly obtained in Jordan-Wigner states. 

Here, 

[(10) 4>'14» ]SolO) = 0 	 (III C.3)elO) 

[e'I4» 	 (III - CA)SII4» 4>10) o,f4» ] 

From (III-C.3), we get 

S~I:10) = [ot~O) 4>'IXo.-t}] (III C.5)etlO) 
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with 

Hi 
IXi,Hi) = Lo,-ieHj-, 14>,) (III - 0.6)

,=j 
IXl:tt,) =0 for k2 < kl 	 (III - 0.7) 

we get successively 

ote'I4>I:) 0'4>' IX"-I4>I:) 1 
~I: ® SI l4>t) = +4>4>' IX"-I} (IIl- C.8)

[ el:4>lfi) el:a'I4>I:) 
e'4>'I4>ox1.) 1 (Ill -C.9)SI ® sfft 14>0) = [::~l~)) a'el: 14>0) + 4>4>' IXa) 

and finally 

01:1 +tIe' 14>1:,) 	 01:'£'4>' 14>I:,x.,.l'.,••I} 
+01:14>4>' IXOI:,-I) +et1 0'4>' IXUI-I4>t,) 


s~t, ® SI ® S~l:l l4>t,) = 
 +4>4>'2IXo.,_1 X',+1'.' ••I} 

aI:1el:'4>10) 	 eI:1+t,o' J4>t,) 
+et, 4>4>' IX.,.I .•,••,)

(III - C.lO) 

It is now simple, if operating one more time by SI ®, to find the action of T: upon two 
excited states. 

T: 14>01) = (a2f'2 + £20'2) 14>01) + u'4>4>' 14>12) + 00'4>4>' 14>03) 
+ 0"£4>4>' 14>02) + oe'4>4>' 14>13) 	 (111 - C.ll)

T: 14>02) = (02f12 + e20'2) 11/>02) + oe'4>4>' 11/>01 + 4>23) 
+ 1/>24>'214>13) + eo'I/>I/>' 14>12 + 4>03) 	 (III - C.12) 

The action of T: over the other two excited states can be easily deduced from (UI-C.lI) 
by action of the cyclic permutation operator C •. 

Then, we get for T: over the Fourier states 

T.+ IFljl ) = 102e'2 +e20,2 +i(oo' -U.')4>4>'IIFli1 )T: IF3il) = 02e'2 + e20'2 - i (00' - ee') 4>';' IF3jl) 
T.+ IF2il ) = [02e'2 + e20 12 - (00' + ee') ';4>'] IF2il ) 

+ ( 0' e - oe') 4>4>' IF2i2)T: IFojl ) = [02e'2 + e20'2 + (00' + ee') 4>4>'] IFoil) 
+(0'e +oe') 4>';' IFo;2) 
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Tt IF'j') 	 = (a'e" +e'a" - ,;',;") IF'i2) 
where+2 (ae' - ea') ~tJ>' IF".) 

(III - C.13)Tl1Fo,2) 	 = (a'e" +e'a" + tJ>2tJ>'2) IFo,,) S~iIO) = MO,i-l and Mo.-. = Mi.i-l = (~ ~)
+2 (ae' + ea') ~~' IFoi.) 
 (III - C.19) 

Clearly, Fourier states for s = 0 and 2 are not eigenstates of Tl and in general, the 
 I [ Q";'" ~]R. = 
eigenstates are non trivial combinations of Fourier states. However, if (III-C.2) is satisfied, 

By iteration, we may now writeJordan-Wigner states become eigenstates since 
i 

0iJ +1 S S0 J S "" "" S0i 
2 "" S "" S0i 

t I" "'H') =T4+ atat10) = (a' - ie2) (ia" + e'l) atat 10) So ® 1® 0 ® 1101 ... 101 0 101 1101 0 Y'iHhiHt+i/+l •...•L..'.2i.+j-l 

T4+ dt410) = (a2+ it') (-ia" + e,2) dit410) 
 L MO,ii+t-1+'i R'i MiHl+'i.iHl+iJHJ-1R,i-l·
T.+ ditat 10) = (a' + v'2ae + E' ) (a" + v'2a't' + E") ditdt 10) {'i-Ojl) 

Tldt410) = (a' - y'2ae + e' ) (a" - y'2a'e' + e") atdt 10) .Mi'+l+i'·+'i -I +I.iHI+ij +lrj -I Hi -2+l"'R" M",j +1 i'+'l+j-l.'EJ,+: i.+j-I 


I L..'.2. (III _ C.20) 

T+ d+at 10) = - fa' + i V2ae - e2) (a'2 iv'2a'e' - e") d+ d+ 10) 	 This equation which is generally true for all values of Ie~, can be transfonned to calculate 
.01 	 01 (III-C.14) 

2	 the transfer matrix over N sites. With the appropriate change of variables, we obtainTldtdtlO) = 0'2 - iv'2O'e - e) (0"2 + iv'2a'e' - e") dtdtlO) 
j 

The factorization of the eigenvalues is characteristic; this structure is compatible with the TN 1~1r1.1r2 .....lri) = 9(N lej) II 9(1.. - 1.._.)9 (lei +1). 
tensorial product i=, 

3 . L Tr {MO.IrIHi-lR'iMilHi,i:aHi_l-.R'j_1Mi:aHi_l,i.HJ_2-1 ...R.,MIrjH,.N-I} 

Tt = ® [(a - q,2·+le)Po + (t' +q',·+la') PI] (III - C.15) {'i=O,l) 
.=0 	

(III - C.21) 

which is simply
where q' = eiw/ •• j 

From now on, we consider the condition (III-C.2) satisfied and prove in general that T~ TN ltJ>it ,i2,...,ii) = 9(N - kj ) II 9(1.. - Ie._.) 9 (I.I + 1) 
and TN are tensorial products. From (III-C.10) and (III-C.2) we have 

Ir1 +a 1a'IX0*2_ t ) 0" tJ>' IXo.2-t X'2" 2+'t) 
+O'lrl e' IXo.,) +e'tJ>' IX0*2X'2+t"2+'I) 

S~Ir, ® SI ® S~Ir, 1~Ir,) = 0" 
a lrl +le Ir2 'fIO) i, 	, I )e a X':a"2+"

i2 1 
+a1r1 ei ,+I 'f 

e' 
10) +e	 + e' IX.2+t"2+'1 ) 

In order to generalize this result we use the foUowing property 

Sll~) = [SolO)) [l ~~, 	 ~] + [a'~tJ>' ~] [SolO)) 

provided that condition (I1I-C.2) is satisfied. 
Then, 

S:1r2 ® SI ® S~lrl ltJ>i,) = 	L MO.1r2-IHR.MIr,H,i2Hl 
'=0.1 

i,+',; 10) ~'=I' ) ] [0 IL Tr a Y' XO.*I+'i- 1 ® a,j e' E••l·' 
{ [ i1H	 :] ®{';=O.l) 0 e ,; 10) l' (0") IZIr1Hj.IrJH1-1) 

N-i,;-'IIO) ", I )]}® a Y' X'j+'t. N(III - C.16) 	 - 1 

[ o eN-Ir,;-'IIO) 
(III - C.22) 

where 

IZi1+.j .ii +'1-1) = lx" +'i .'2+'i-,-a X'2+'J_l .•• +'j_2-t ,,,X'j_t+""j +,a-1) (III - C.23) 

Finally, 
(III - C.17) 

TN ltJ>il.i2 .....lri) = 9(N - kj) II
j 

9(1., - lei -.) 9(1.. + 1) 
t==' , 'Ei •. (III - C.24)

'"" 'j (e) i.l· [ N-Ir -'1 I 	 )L.., a 	 a' a j Xo.*I+'raZlra+'j.ii+'I-1 + 
{',=O,I )(111- C.18) 
+ ilHi IZ 	 )]e il+'J,lri+'I-IX'J+'l.N-l 
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Using the result of Appendix A which transfonns the right hand side of equation (UI-C.24) 
over Jordan-Wigner states, we may sum over all variables 6i =0 or 1. We get 

; 

TN l<,t.k l .k3 •••• ,ki) =8(N kj ) II8(ki - ki - I ) 8 (k l +1). 


i=2 

1 j [ q'-(2,;+6)t:' +a' ]
[aN - (- )6t;N] Nj/2 L n q'-(2'1+6)k; 

(2 -+6) a:1 ..·a:·10)q'-" a - t; I
't""i 1=) 

(111- C.25) 
where 6 = 1 for j even and 0 otherwise. It is now clear that Jordan- Wigner states are 
eigenvectors of the transfer matrix: using the definition (11.21), we naturally obtain the 
eigenvectors of TN with the following eigenvalues. 

; [q'-(2,;H)t;' +a'] 
(111- C.26)TNdt ...d~ 10) = [aN - (- )6t;N] g q'-(2"H)a _ t: ~a:2'''~ 10) 

where 6 is zero in the odd sector and one in the even sector. This result shows clearly that 
TN in any of the two sectors can be written as a tensorial product 

N-I 

TN(6) = ® [(a - q'(2,+6)t;) Po + (t;' +q'(2,H)a') PI] (111- C.21) 
.=0 

and that the eigenvectors are independent of the parameters ;,;' provided condition (111
C.2) is satisfied. 

III-D. MODELS OF TYPE IV 

These models are defined from the following plaquette operator 

S - [ aPo + t;' PI PPoS +;'PIS] (111- D.l) 
- ;PoS + fJ'PIS t;Po +a'P) 

These models contain all models of type I, II and Ill; they do not conserve the number of 
excited states but only the parity of this number. 

We wish to show that under the condition 

fJfJ' + ;<,t.' = aa' + t;t:' (111- D.2) 

the even and odd transfer matrices TN(6) generated from S are both tensorial products of 
2 x 2 matrices; this property is explicitly obtained in Jordan-Wigner states. Let us remind 
here that Ising model belongs to this type with the special property that aa' = t;t;' = 
fJfJ' = <,t.;'. 
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As usual, we define So and SI such that 

Sol<,t.) =SIlO) = 0 (lll- D.3) 

and 

aln) ;'1;)]Soln) = [ P'I<,t.) (lll- D.•)t:ln) 
t'I<,t.) PIO) ]

SII<,t.) = [ ;10) (lll- D.S)a'I;) 

Clearly, S~k has its elements which are polynomials of degree E(k/2) in {J';'. We write 

IZ~I:_I} ;' IYOlr-I)] (111- D.6)s~"ln) = [ II' !YJI:-l} IZu-I) 

where 

E( !fL) , i lr lr .. 

IZo.. ) =t:'+1 10) + L {J'; L L ... L 


[ ;=1 (aE) ,,~. Po=' ,,,_. 

2i B( ) (a)EJ .v.n'J-EJocId'J I )]II P; - Pj-I - ;"" ...,,, 
;;2 t: (111- D.7) 

.. E( f) (fJ';') i" ..lr

IYo..) =t: L. -at: LL'''L 


1=0 '0.0 '1=0 'If-O 

2i B( __ . ) (~)E; .".n,;-Ejodcl'J IA. )
PJ PJ-l '#'Po"""2;II

j=1 t: 

and IZ~k)' IYJ.. ) are obtained from IZolr), IYolr) by exchanging a and t:. We use the con
vention IZo-l) = IZ~_I) = In) and IYo- I ) = IYJ-l} =O. 

From (III-D.6) we obtain 

TNIO) = IZON-l) + IZ~N_I} (111- D.S) 

This calculation is perfonned in Appendix C (C.17-l9) in tenns of Jordan-Wigner creation 
operators and factorizes. We find 

E(¥) [ 2;fJ';'sin(28+ 1)* a:dt-,-l] In) 
TN Ill) = (aN +EN) !! 1 +a' - 2oEcoo(2. + l)-k +E' (Ill _ D.9) 
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C 

This is the first sign of the tensorial factorization in tenns of 4 x 4 matrices (10), dtIO), 

4_._110 ), dt4_._110». 
Using (111-0.5) and (111-0.6), we may now write 

e' IZ~I:_I4>I:) + 4>4>' IYOI:-1) pIZ~k_l) + 0'4>' 1Y01:-14>,,)]
Sfk ® SI l4>k) = [p'e/ !Y~k-l4>k) + 4> IZol:-l) P{J' IY~k-l) + 0' IZo"-I4>,,) 

(111- D.10) 

SI ® Sfk 14>0) = [e' 14>oZ:k) + (JP' IY:,,) f' 4>' l4>oYu) + PIZu) ] (111- D.ll)4> IZ;k) + 0'P' 14>0 YI',,) 4>4>' IYik) + 0' l4>oZu) 

and finally 

sfl:, ® SI ® sfl:, 14>1: , ) = [~ ~] 	 (111- D.12) 

with 

A = e' IZ~k2-I4>k,Zt'+I,k'H') + o'P'4>' !yOk,-I4>"'Y.,+I,k,HJ 

+PP' IZ~k'_1 Y.a+I'''aH,) + 4>4>' IYok,-IZt,+I.k2+k,) 


B = e'4>' IZ~.,_,4>k'Yk,+I.k,H,) + 0'4>' IYok,-I4>k,Zk,+I,I:,+k,) 


+P IZ~"'_IZk'+I,k'H') + 4>4>'2IYok,-I Yk,+I.k,HI) 


e'P' IY~k'-I4>kIZt'+I,I:'HI) + 0'(J' IZok,-l4>k, Yk,+I,1:2+kl) 
+pP'2IY~k2_IY.'+I,k'HI) + 4> IZOk,-IZt,+I,I:,HJ (111- D.13)

D 	 = e/p'4>' IY~k'-l4>k,YI:a+I.I:'HI) + 0' IZok,-I4>I:,Zk,+I,"2HI) 

+PP' IY~I:'_IZk'+I,k,+I:I) + 4>4>' IZ01,-1 Y1,+I.1,+I:,) 


Various forms can be given to these expressions using the relations of Appendix B (B.3). 

We choose 

,[1 +eI z' 
" 

) 1-eIz' y" )]A 	 = 0 -2- Y01,-1 k l,+1:1 + -2- 01, 1:,+1,1:,+1:, 

+e' [1; e\Z~I:I-1 Y.,.1:2H,) + 1 ; e1YOI:,Zt,+I,I:,HI)] 

+~ (4)4>' + PP' - 00' - ee')(IZ~I:'-IYll+1.1a+1, + YoI:,-I Z1,+I,1:2+1:,»)

/(1 + e 	 1-{I ' »)D 	 = 0 -2-IZol:l-1 YI:"I:,H,) + -2- YOI:,ZI:2+1,l,+1:1 

+e' (1; eIY~I:I-IZI:2.11+kl) + 1 2 eIZu,YI:,+I,1:2+1:,») 

+~ (4)4>' + P{J' - 00' - ee') (IZu2-1 YI:2+1,l:a+l:, + Y~1:2-1 ZI:,+I,l:a+I:,») 
(111- D.14) 

where 
4>4>' - {J{J' (111- D.15)e= -0-0-'--ee-' 

Similar expressions can be obtained for B and C. Of course condition (11I-D.2) is a great 

simplification. Let us give another approach to this result which will be used in the general 

proof: we look for two matrices such that 

010) 4>'14»] [01 PI] + [00 (JO] [010) 4>'14»] (III-D.16)SII4» = (J'I4»[ elO) 71 61 70 60 P'I4» flO) 

Two such matrices exist only if 

00' + ef' =4>4>' + {JP' 	 (III - D.17) 

Then, for any x and II, 

01 PI] _ 1 [0 e/p'] + 1-{ [0 o'/P']
[ 1'1 01 - X - 'II 0/4>' 0 -2- e' /4>' 0 (111- D 18) 

00 Po] = _ 1+ [0 O/{J'] +.!..±1 [0 e'/p'] . 
[ 1'0 Do x 'II e/4>' 0 2 0'/4>' 0 

In the calculation of Sfk, ® SI ® sf11, using (11I-D.16) and (111-0.18), x and II disappear 

(Appendix B.5-6) and we get (11I-D.14) without the tenn vanishing with (111-0.17). 

Then, 

TN /4>1:) = 0' [1; eIY01-1Zt,N-1 + ZOl-1 Y1,N-I) + 1 ; eIZ~I:Y.+I,N-l + Y~I:Zl:+l.N-l)] 
+e' [1; eIZ~l-lYk,N-1 + Y~I:_IZI:,N-I) + 1; e\YOI:Zt+l,N-l + ZOI:Yl:+l,N-l)] 

(111- D.10) 

We now use relations (B.13) to show that 

TN 14>1) = UI: IZ~N-l) + U: IZON-I) (111- D.20) 

where 

, 1-1 k-I , 1-1 N-I , 
_ e + e ,"" (0) + 0 , "" (e) + (111- D.21)U1 - -;;CI: + 01:+14>4> 	 L.", E C, + eHI PP L., ;; C, 


,=0 ,=1+1 


and U: is UI: with 0 +--t e, 0' +--t e',4> +--t p, 4>' +--t p'. We transfonn (111-0.20) into 
Jordan-Wigner space 

TNd;IO) = U.IZ~N_l) + U: IZON-l) (111- D.22) 

with 

U fJ. d; 
• 	 02 _ 20ecos2"W + e'l (111- D.23) 

_ (~) N - 1 L [4>4>' {JP' ]
.' (q-·'o e)(q·e - 0) + (q-.'e - o)(q·o - e) cIt 

U: = U.(o +--t e,o' +--t e',4> +--t P and 4>' +--t P'), 
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2i q = e - IN and 

fI, = oe' - eo' + (00' - ee') cos 2~1f' + i(4)4>' - (J{J') sin 2~1f' (III - D.24) 

Finally in Appendix C (C.22) we prove that the sum over 8' in (111-0.23) cancel by sym
metry in (111-0.22) so that 

tTNcr.ln) = 2 2 fI,d 2n + 2 IZ~N-l - ZON-I) (III - D.25) 
o - OeC08/iT e 

The state IZ~N-l - ZON-l) is calculated in the odd sector in Appendix C. We obtain by 
(C.17) and (C.19) 

( N N) d+ E( ¥) [ 2'(J' A." 2,' - 1T d+ln) - 0 e fI" , 't" SlDrr cI!.d+ In)
N, - 0 2 _ 20ecos 2, .. + e2 IT 1 + 02 _ 20ecos1L!: + e2 " N-.'

/iT ,'=0 N 
(III - D.26) 

which is compatible with the 4 x 4 tensorial factorization since the operator in 8 operates 

only on the (s, N - s) part of the product. 

We are now ready to give the general proof for the factorization in terms of 4 x 4 

matrices. Using (111-0.16) and (111-0.18) we may write 

5~k3 ® 51 ® 5~k, l4>k,) = L MO,k,-1+.R.MkIH,k,+k, (III D.27) 
'=0,1 

with 
MO,k-1 = 5~k\n) (III - D.28){ Mo,-I = Mk,k-I I by convention 

and 

1 +(- )'e [ 0 (III - D.29)R. = 2 o,l-I ,. Q":'-' ]e

We generalize (111-0.27) in a similar way as for the models of type III and equations (111

C.20) and (1I1-C.21) are unchanged. We now calculate the right hand side of (III-C.21) 

',e'l-, )]
o'l-'e" \YOk-H') o IZ~k-1H 

(III - D.30)- 11-' ,.MOk-lHR. - e. 0 e IZok-IH)[ 0'6e'I-'IY~k_1H) 

. h & .!.±i.=.tl ThWit ... = 2 • en, 

(III - D.31)MO,kIH,-IR"Mk,+",kIH.-I R '1 = e.,e'l [c14>' Bit'] 

with 

A = 0'2-'I-"e"I+" IYok,-1+6,Yk,+6,.',-1+6,) 
Oil-II +"e'I+6,-6J 

+ (J'4>' IZ~k.-lHJZklHII."-IH.) 
B = 01l-61+'·e'I-61+'J IYok.-l+IJZ~.+6JI'J-I+'I) 

"1+', '2-.,-6, Iz' Y/ ) (III -D.32)+0 e Ok,-1+'1 k,+'"k,-I+I. 

and C and D are obtained from B and A respectively by the exchange 0 +--+ e, 0' +--+ e' , 
4> +-+ {J, 4>' +--+ {J', }' +--+ Y', Z +--+ Z'. Now, we use Appendix B, (B.13), (B.23) to 
show that 

A = Uk, (62)0'1-I'e'" IYOkl - H ") 

B =Uk. (62)0"'e'I-•• IZ~kl-IH.) (III - D.33) 

where 

0',e,I-6 
Uk(6) = --p;r [9HloCk-1H +6Hleeo} 

+ o" e,I-. (~)HI E (=-)' c+ + oll-'e" (=-)kH H'-1 (~)' c+ (III - D.34) 
o eo' eo L e',=k+. ,=0 

and 

(J'4>' [ 0 k N-l e' e I; k-I 0' 1 
D.35)ek = Ck - QE (i) '~1 (;;) c: - (;;) ~ (e-) c: (III 

Consequently, 

MO,kl+la-IR.,MkIH"I;,+lI-IR'1 = 
0"1,11-.. ] 

_ [Ukl (62 )01l-ll e"1 IYOI;I-I+lI) UI;I (6:d a. IZ~kl-lH.) 
- e'a e'l 0'1-'1 e". 

U• (I:.) II, 'I-Illy.' )U'I (6:d .L' \ZOI;I-IHI) k, 02 0' Ok,-I+', 
(III - D.36) 

where U· is equal to U with 0 +--+ e, 0' +--+ e'. Equation (111-0.35) may now be applied 
recurrently as many times as wishes 

MO,kIHj-1R" ...Mkj_IHJ,kjHI-IR6, = e'r·e6.' 

Uk, (6;) ...Uk,_, (62)0'1-' l e'" IYoki -1+1,) UI;, (6;) ...U.i _, (62) o"'e,I-11 IZOllj -IH. )1 
. o'I-I'e'"[ U'I (6;) ",U'j_, (62) A.I IZOkj-IH,} U" (6;) ,,,U'I_. (62) 0'·'e'I -

6
• IY~'J -IH.) 

(III - D.37) 

32 33 
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We now perform the last operation ® with W1IeiH"N-I' The same kind of operator U 
appears again as seen from Appendix B, (B.13), (B.23), we finally get 

MO,klH,-IR'i ...R".l\tI"iH"N_I = 
UI: I (OJ),,,U''i (odIZ~N_I) UI:, (OJ) ",UI:; (6d t,6'IYON-l)] 

={6j ...e'l [ Uti (6j ) ...Uij (od/J'IY~N_I) Uti (6j ) ...Ut, (6.) IZoN-dII _ D.38) 

In this last proof, we used the relation (proved in Appendix B (B.22» 

CI: IZ~N_I) = 0 (III - D.39) 

It is now easy to sum over all o~ =0, 1; we have 

(J D.40)'" L- e,UI:(6) = UI:• =UI: + "iCI: (III 
'_0.1 

where UI: is defined in (1I1-D.21). In the proof of (1I1-D.40), we use the fact that (OCI:_I - eele) 
anticommutes with UI:'>I:, with CI:', and finally gives zero over IZ~N_I) by (11I-D.39). 
The generalization of (1I1-D.20) is 

j 

TN 1t,6I:ItI:, .....Ie/) = 8(N - kj ) II8(k, - ki _ I)8(kl + 1) 
(III - D.4l)i=2 

[UI:I ...Ul:j IZ~N_I) +U:,,,,U:s IZON-I)] 

Note that for one excited state, the difference between Ule and Ule is zero upon IZ~N_I) by 

(III-D.39). The new property in these models of type IV is the presence of the annihilation 

operator ele in (1I1-D.40). In Appendix D we calculate (11I-D.41) and find that 

UIeI ...Ulej IZ~N_I) +U:""U:j IZON-I) = [AIe, .•.Alrs +c.d.p.] l.zoN-I) (III - D.42) 

where IZoN-I) is defined in (C.17), where 

ONUIe +(_)'£NU;
A (III - D.43)

Ir = oN -(-)'eN 

and where c.d.p. means the sum over all possible contractions of dispoint pairs k", ki, i kit' ki4 ; ... : 

k',._l1 k.,. with k" < k., < ... < k.,. and with the contribution 

A A ,(1) ({Jq,) ,A A A1:,... Ie" ...AIe, ... Ale, ...AIe, ...Alel (-) • - .
L "1" -I 2., oe 

(III - D.44)
oN (!)L:.I(Ie'21-1e.,._,) _(_)'eN (7)E:.,(l:iu - tc'21-1) 


oN _ (_)'eN 
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In (III-D.44), .41: means that this tenn is ommitted to be part of a contracted pair, and 
s (I.) is zero or one depending of the number of anticommutations to perfonn when taking 
all A', to the right of Alej' Now, we wish to transform (11I-D.41-42) over Jordan-Wigner 

states. Using the definition (11.21) of the Jordan-Wigner states 8l\d the anticommutativity 
of the operator AI:, we get 

TNat. ...d~ 10) = [A" ...A'i +c.d·p·1IZ0N-l) (III - D.45) 

where 

N-l d.!' 
A - _1_ '" ,(2,H)1: A = FI, , (III - D.46) 

41 - Vii L- q I: 0 2 _ 20ec08{2" +6)fl +£2 
Ie-O 

with FI, given in (1I1-D.24) and where c.d.p. means now the following: we swn over all 

possible contractions of pairs "i, "" i "i."'4 etc ... such that 

(III - D.47)"iU-l +"'U = N - 6. 

Since the operators A. anticommute, we can choose in (III-D.45) the order "I < "2 < ... < 
"j' Then the contribution for the contractions is now 

A" ... A" ... A"2 ...A"2 ...A.......A.sb" ", b,II'1 ...b" 2 1 ". (III - D.48)
I I I ,-I 'I' 1 • ,-., 

with 
h,. = 2i/3t,6sin{2"1 +6) fl (III _ D.49) 

I 2 0 2 _ 20ecos{2"1 +6) N+e' 

The result we have obtained shows that the transfer matrix expressed in Jordan-Wigner 

states can be written as a tensorial product of 4 x 4 matrices each matrix being attached 

to states 10), dtlO), cIt_,_IIO), dtcIt_,_,IO). We define the matrix 'i, as 

0 2 1- 20£cos(2" +6)~ +£2 o o 2i{J'q,/sin(2" +6) ; 
• 0 o 0Fl.T. = 0 o FlN-,-' . 0[ 11" 

-2i/3t,6sin(2" +6) N o o 0'2 +20'e'c08(2" +6)..!. +6'2 
(I~ -D.50) 

where 

FI, =oe' - eo' +(00' - EE')cos(2" +6)..!. +i(q,q,' - {J/3')sin(2" +6)..!. (III - D.5l)N N 
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If a = N a - 6 modulo N, t. reduces to a 2 x 2 matrix 

n) ] - [Q ± e (111- D.52)d~) - 0[I e' ~ Q'1 [ 
Now, the eigenvalues of the 4 x 4 matrices are 

";"1,"'/11=~=6e:t:.l'" "1,,"1N-,-6 (111- D.S3) 

with 

a 2 + a,2 +e2+e,l - 2(ae - a't') cos(2s +6)11 (111- D.54) 
ch21, = ch21N-,-6 = nJ"1,"1N-.-6 

Consequently the 4 x 4 matrices are themselves tensorial products of 2 x 2 matrices which 
we denote 

(J"1N-,- 6e'Y' Po + .jij;e-'Y· PI) ® (.jij;e" Po + J"1N-,-6e-" P.) (111 D.55) 

In the case where s = N a 0, the two terms in (111-0.55) reduce to one term. 
Finally the transfer matrices TN (0) are 

N-I 

TN(o) = ® (J"1N-,-6e" Po + Jij;e-" PI) (111- D.56) 
,=0 

Another form can be given to TN(O); we write 

'I, = ";"1."'/11=~=6e21'. ../X,XN _,_6e2j,. (111 D.57) 

• a_eq'2.+6
with x, = ~_u,-/2.HI "1" 

at' - tQ' + (£la' - u')cos(2s +0) 11' 
oo~~= N 

"/"1,"1N -,-6 
• (</></>' (lfJ') sin(2s +6)N

sm29, (111- D.S8)
"/"1,"1N-,-6 

Then, 
N-l 

TN(O) = ® [y'X'; (e,·-i'. Po +e-,·+i'. PI)] (111- D.59) 
,=0 

We remind that the eigenvalues of TN(O) correspond to a number of operators PI with the 
same parity as 0 + 1. These eigenvalues possess the announced factorization properties. If 
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If we set in (111-0.59) {l = {l' = 0 and ff' = (U~, +ee', we recover the result (11I·C.27) 
with the choice 

Ql - 2QeOO8(2s + D)W + e2 
el ,. = (111 - D.60)

a'l +2a'e'008(2" +D)W +e,2 

We finally note that in the bing model where 

1
£la' = ee' = ff' = fJfJ' = -sh2psh2..\ (111- D.6l)

4 

the angle 8, is nul and all "1, are s independent 80 that 

N-l 

TN(IS) = "1N/2 ® (e" Po +e-" PI) (111- D.62) 
,:;:0 

with 
1

"1 = -sh2"\
2 

ch _ 
21, -

ch2pch2"\ - sh2pc08(2s +6)W 
sh2"\ (111- D.63) 

and with the well known parity condition over E, (±1,)(1). 

IV. THE PARTITION FUNCTION 

Although the eigenvalues might appear to be intricate, their factorization properties 
permit to reconstruct a completely vertical-horizontal symmetric partition function u the 
sum of four products of N M relatively simple expressions, each expression being charac
teristic of a plaquette in the Fourier space. 

If we take for TN(O) the expression (111-0.56), we obtain 

N-l 

(TN(O»)M = ® (lJ"1N-,-6e,.]M Po + [/ij;e--r·]M PI) (1v'1) 
,=0 

and 
N-l 

Trace[TN(6)]M = II ("1;!.!_6eM,. +"1:'/le-M"r') (1v'2) 
,=0 

Of course, we have to take into account the parity of the eigenvalues. If we define 

N-I 

Z6 6 = II [nM/2 eM,. - (_)62 nM/2e-M"r']
1 2 'IN-,-6t 'I' (1Y-3) 

,=0 
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then, 

Trace (TN):!ea = Zu + ZIO 


Trace (TN]!:d = ZOI - Zoo (IVA) 


We now calculate the functions Z : 

N-I M-I 

Z6,62 = II n ['1.e2"1' + '1N_._6,e-2"1. - 2J'1.'1N-.-6\ cos (2,' + 62) ~] 1/2 (IV.5) 
.=0 .'=0 

We have successively, using symmetries 

N-1I\I-1 
Z6,62 = n n ['1.'1N-.-6\ (eh • +e-4"1.) + '1~ +'1'1.t-.-6\ + 4'1.'1N_._6,COS2 (28' + 62) ;{ 

.:::0 ,'=0 

11" ] 1/4
-2J'1,'1N-,-6\ ('1. + '1N-.-6 t ) k'''l· +e-h .) c05(28' + ch) M 

(IV.6) 
N-IM-I 

Z6\62 II n [z! + ('1. - '1N_,_6\)2 - 2 ('1. + '1N-.-6,) z.cos (2" + 62) ~ 
.=0 .'=0 (IV.1) 

2 11" ] 1/4
+4'1,'1N-,-6,COS (28' + 62 ) M 

with 

2 J2 + e2z, 2J',.'1N -.-6\ ch2-y. a + a + E'2 2 (aE a'E') cos (28 + 6.) ; (IV.S) 

Then, using symmetry again 

N-l M-I 1/2 
Z6,62 = II L [z.-('1.+'1N-.-6)cos(28'+62) ~ +i('1.-'1N-.-6\)sin(2"+62) ~] 

.=0 .'=0 
(IV.9) 

The partition function can now be written 

This result is completely symmetric in horizontal and vertical directions, that is by ex

changing N and M, 8 and 8', E and !:, • and .' (Zll and Zoo are symmetric and ZIO 
exchanges with ZOl). We obtain four expressions characteristic of the mixing of the two 
parities in the horizontal direction and of the two parities in the vertical one. Finally, in 
the Ising model, the products of horizontal-vertical cosines and sines are absent and we 
reproduce a well-known result(3) obtained from a statistic of dimers. 

with 

N-l M-I 

Z6,62 II n 
.=0 .'=0 

Z = Zit + ZIO +ZOI - Zoo (IV. 10) 

11" ] , 1/2
0 

2 + a'2 + e2 + E'2 - 2(aE - a'E') cos [(28 + 6.) N 

-2 (aE' - a'e) cos [(2" + 62)"'!'] 
(IV.U) 

-2(aa' - EE')COS [(28 + 61) ~ cos [(28' + 62) ~] 
-2 (••' - flfl') sin [(28 + 61) N] sin [(28' + 62) ~] 
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APPENDIX A 

RELATIONS IN THE MODEL OF TYPE III.C 

We now use the decomposition over Jordan-Wigner states 

- 1 N2:-1 q,-(2,H)1'a",-1. - q,-(2,+6)1Ie"'-1'
IX•• ,- •) - -Vii . 1....J...tI\ d+ln) (.04.1)1 - , ., 

,=0 

where 6 = 0 or 1 depending of the sector, we are in. 
Consequently, we have 

N-lj-'l I Z ) + 11+6j IZ ) a XO'.'''j-' "'+'j,l,+'I-1 e tl+6j.lj+'I-IX.j"I.H-l

1 ~1 q,-(2,H)(1IH;)aN+1IHj-'1 _ e"tH;aN-li-6t + 

. 'N L...J _,_{2".jL _ Id. Zt1H;.t;Ht-1) 

VJ'W ,=0 


1 ~ (- )6e" 1Hj a N - lj -'1 -:- q,-(2,H)(liHdeN+1IHj -lJ -6. 
+ 'N L...J q,-(2,H)a _ e IZl.Hi,ljHI-ldtl 0) 


VJ.Y ,=0 

(.04.2) 

Clearly, the commutation between d+ and Z depends upon the number of anticommuting 

variables in Z : we have 

Z dt = (- )6dtZ (.04.3) 

The above expression becomes, in a first step, 

1 N-l q,-(2,H)(1IHj)aNHIHj-l;-'1 _ (_)'q,-(2,H)(ljHd NHIHj-1J-'1 + ~ e 
2: q'-(2,H)a _ E Id. Z'I+'llljH,
,=0 /

(.04.4) 
Now we must proceed recurrently with the transformation of Z into Jordan-Wigner atates 

using the relation 

IZll +6i ,li +'1- 1) = IX.1""i ,.,+';-1-1 Zl,+., _1.1; +'1-1) = IZll+'j ,1, -I+',-1 X.1 _ """'.1 +'1-1 ) 
(.04.5) 

Using the antisyrnmetry properties of the operators d+ , we may write 88 a second step, 

N-l .-.!.. "" q,-(2'IH)(1IH;)q,-(h,H)(1,H;_t)aNH,HI_.-lj-" . 


N L...J In'-(2,.+n~ ...\ In'-(h.. +6l~ _ ... \ r,.a:, IZ1'+'i-hlIHt-1)

'1,,=0 

~ q,-(2'IH)(1;HI)q'-(2"H)(lj-IH')eN+11H;-lJ_I-" 


+N L...J (q,-(2,.H)a _ e) (q,-(2"H)0 _ e) IZl l H i,lJ-IH,-Ia:,r,.)
'1,,=0 

(.04.6) 
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The step before the last one reads 

1 j-I [q'-<2,"+6)(I:IHij_'+I)]
~ 	 oN+l:j-l+6t-I:J-6I d+ a!'.
NLj! L n q,-(2'i+6)a-t 	 '1'" ,j-IIXlJ_I+".li+'I-I)

•• ·.. ·j-I.=I 

. 1 j-I [q'-(2.;Hi)(I:;_,+I+6J)] I 
_ J-l__ 	 N+I:I+6J-I:,-6J-I +

+() N9 L 11 q,-(:h1Hi)a _ t t XlI+,;.lJ+'i_I-ld'i_I· ..dt)
.1 ...• ;-1 .=1 

(A.7) 

Finally, the last step gives 

1 j q,-(2'1+6)(I:,+6; -/+1) 
[aN (- )6 t N] Nj/2 L 11 n,-'211+6)", _ r d;' ..,d~ 10) (A.S) 

'I· ..'i 1=1 
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APPENDIX B 

VARIOUS RELATIONS ABOUT THE MODEL OF TYPE (III-D) 

From (111-0.4) and (1I1-D.6) we obtain when operating So on the right 

o IZ~I:_I) +fJ'~' 11'01:-1 ~I:) = IZ~I:) 
t IZOI:-l) + fJ'~' IY':I:_I~I:) = IZol:) (B.1) 
t IYOI:-l) + IZ~I:_l~l:) = 11'01:) 
a IY':I:-I ) + IZOI:-l~l:) = IY':I:) 

Similarly, when operating So on the left, 

a IZ:I:) + fJ'~' l~oY:I:) = IZ~I:) 
t IZu) + fJ'~' l~oYiI:) = IZol:) (B.2)
a IYu) + I~OZll:) = IYOI:) 
t IY:I:) + l~oZ~I:) = /Y':I:) 

From (B.1) and (B.2) we may write 

IZ~I:-l~I:Z~+l 1:') IYOI:Z~+l 1:') - t 11'01:-IZ~+l 1:') 
Z~I:-l Y~I:') - t IZ~I:_1 Y~+l 1:') 

fJ'~'IYOI:-l~I:Y~+II:') IZ~I:Y~+lI:,)-0IZ~I:_IY1+l1:') 
(B.3)11'01:-IZ~I:') - a IYOI:-1Zk+l 1:') 

IZ~I:_1 ~I:YI:+1 1:') IYoI:YI:+l 1:') - t IYOI:-l YI:+1 1:') 

= fJ~~' tlZ~I:-lZU') -tIZ~I:_IZl:+ll:')} 

11'OI:-l~I:ZI:+lI:') fJ,l~, (lz~I:Zl:+ll:')-oIZ~I:_lZl:+ll:')} 
= IYOI:-IYU') - a 11'OI:-lYI:+l 1:') 

The other four relations are obtained by the exchange Y ~ Y', Z ~ Z', a ~ t. 

From (B.1) and (B.2), we also have 

IYOI:-l~I:Z:'+l 1:') 	 = fJ~~' {IZ~I:Z~+l 1:') - 0 IZ~I:_1 Zk+l I:')} 

= 11'OI:-lY~I:') - t 11'OI:-lYt+l 1:') 

IZ~I:-l~I:Yt+l 1:') 	 = IYoI:Y1+l 1:') - t IYOI:-1Yt+l 1:') (B.4) 

= fJ~~' {lZ~I:_IZh,) -0 IZ~I:-IZk+lI:')} 
fJ'~'IYOI:-l~I:YI:+1I:') 	 = IZ~I:Yl:+ll:') -aIZ~I:_IYl:+ll:') 

= 11'01:-I ZU') - t 11'Ol:-lZl:+l 1:') 
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IZ~i_l<PiZHI i') IYOtZHU') -eIYOt-lZHl i') 
= IZ~A:_IYu') - a IZ~i_1Yt+l t') 

The other (our relations are again obtained by the exchange Y +--t V', Z +--t Z', a +--t e. 
From (B.3) we get 

a IYot Zt+. t') + eIZ~tYk+. i') = el1'Oi-lZti') + a IZ~i_1Y:i ,) (B.5)
ap'<p' IYokYt+l i') + eIZ~A:ZHI i') = ep'<p' IYOi-IYU') + a IZ~t_IZu') 

and two other relations with the exchange Y +--t Y', Z +--t Z', a +--t e. 
From (B.4) we finally obtain 

IZ~iZk+l i,)+P'<p'IYOA:Yk+l i') = IZ~i_IZh')+P'f'IYOk-IY:t') (B6) 
IZ~kYi+l A:,)+IYOiZA:+l i') == Z~A:_IYu')+I1'Oi-IZUI) . 

and two other relations with the exchange Y +--t Y', Z +--t Z', a +--t e. 
We consider the operator S~k given in (111-0.16) and we write 

S0kI0)- [ IZ~'_I) <P'IYo,-d]®[ alO) <P'lf,)]® IZ~+I A:-I) <p'IY,+l A:-I)] 
o - P' IYJ,-I) IZo,-I) P'I<p,) elO) IY;+l i-I) IZ,+l i-.) 

(B.7) 
We now operate the creation operator ct upon (B.7) to get 

[ ct IZ~t_l) f'ct IYot-I)] =[ ,IZ~'_I) -<p'I1'O,-I)]®[al<P,)plct !Y~t-I) ct IZOk-l) -P IYo,-I) IZo,-I) 0 e,~,d 
® [ IZ~+l t-I) <p'IY,+l A:-I)] 

P' !Y:+ I t-I) IZ,+l i-I) 
(B.8) 

where we have used the anticommutation properties of c+ . 
From (B.8), we may write 

ct !Z~i-l) = a IZ~'_lf,Z~+l t-I) - p'<p'e IYo,-I<P,Y:+l i-I) (B.9)ct IYOi-l) == a Z~'_I<P'Y'+l A:-I) - eIYo,-I<P,Z,+l A:-I) 

and similar expressions for IZot-l) and IY~i-I)' 
Using (B.3) we get 

{ct IZ~i_l) = a IYo,Z~+1 A:-I) - eIYo'-IZ~ i-I) (B.10)ct IZ~t_l) == -e IZ~'Y;+l A:-I) + a IZ~'_IY; A:-I) 

ct IYot-l) == a IYo,Y,+l t-.} eIYo,-1 Y, i-I) 
(B.ll){ct l1'Oi-.) - P:<P' IZ~,Z'+l i-I) + P~f' IZ~'_IZ, i-I) 
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with the special cases 

{ ct IZ~k_l) = a I<POZ;k-.) = a IY~i-l) - ae !y.'i-I)

ct_1 Z~k_l) = Q Z~k-24>l-.) = a l1'Oi-l) - ae IYOA:-2) 


a aect IYoi-l) = a l4>oYu-I) (B.12)= P'<p' IZOi-l) - {J'<p' IZU-l)
{4-1 IYot-l) = -e !YOi-24>t-l) = - {J;f' IZ~i-l) + {J~;' IZ~A:-2) 

If we apply (B.ll) and (B.12) recursively, we arrive at 

, a,+1
L (~)' ct IZ~i-l) == e' !yo,Z~+t i-I) , OSpS.-l
,=0
i-I e,+lL (~)' ct IZ~i_l) = ~ IZ~,Y;+t A:-I) , -lSpS.-2 

,=,+1 


L, (a), a,+t 

e- ct l1'Oi-.) = tp IYo,Y,+t i-I) , OSpSk-l 

9=0
i-I = _~ IZ~t_l) e,+l ,L (~)' ct IYoi -.) ai-I P'<P' + a,p'f' IZO,Z,+l t-I) , -1 S p S k - 2 

,=,+1 
(B.13) 

In a similar fashion 

c,IZ~t_l) 4>'C,!YOt-l)] _[ IZ~'_I) -<P'IYo,-I)]®[ 0 <p'~O) ][P'c, IY~A:-I) c,IZot-l) - -P' IY~'_I) IZo,-I) {J'IO) 

® [ IZ~+l i-I) <P IY,+I i-I)] 
{J' IY~I i-I) IZ,+I i-I) 

(B.14) 
which means that 

c, IZ~i_l) = -P'<P' (l1'O'-IZ~+l i-I) -IZ~'-IY;+l i-I») (B.15){ c, !YOk-I) = -P'<P' !YO,-IY,+I i-I) + IZ~'_IZ'+l i-I) 

Using (B.3) we may write 

c, IZ~i-l) = p~<p' (IZ~'_IY; i-I) -IYo,Z;+1 A:-I») 
(B.16)

{ c, IZ~i_l) = P'f' (/Z~'Y;+I i-I) -IYo,-IZ; i-I») 
a 

and finally 

a'-I k-l e' e,-I ,-I a 9 1 
c, IZ~A:_I) = P'4>' [ e,+l L C;) ct - a,+l L (e-) ct IZ~A:-l)' for 0 S p S k-l 

9=,+1 ,=0 
(B.17) 
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Similarly, 
~~ I 

cp 1Y0k-l) = --!YOpYP+1 k-I) + -IZ~p_IZp 1-1) 
(B.18)

{ Il~' 1Cp IYok- l ) =--IYo,-IYp k-l) + -IZ~pZ'+1 1-1)
o 0 

which gives 

ek-,-I [0'-1 k-l e)' e,-I ,-1 (0)' ] 
c, IYok-l) = ok-, IZ~k_l) +fJ'~' eP+1 L (; ci - 0,+1 L E ci IYol-I)'

,=,+1 ,=0 

for 0 ~ p ~ k-I 
(B.19) 

As a result of (B.17) and (B.19), we can eliminate the sum over q from p + I to k - 1 in 

(B.13) by writing 

p-I p-I ]" _ ~ _e_ ~'+ , O~p:5k-1IZopy,+1t-I)- [ p'~'cp+ oP ~(E) c, IZOk-I) ' 

e t:,+1 p+1 (0)' ]
IZ~pY;+1 k-I) = [ p,~,CP+1 + op+2 ~ t ci IZ~k_l) ,0:5 p+ I :5 k I(B.20) 

p_I,-1 ]

IZ~pZp+I t-I) = [0 cp +p' ~,EoP L (~)' ci 1Y0t-l) , 0:5p:5k-1 


,=0 

p+1 p+1 ]

IZ~pZp+1 k-I) = [e Cp+1 +P'~' :P+2 L (~r ci IYok-l) ,0 ~ p + I :5 k - I(B.21) 
,=0 

Finally, we introduce the operator cp defined in (I1I-D.35) and which satisfies (by I1I.D.35 

and B.17) 
Cp IZ~N-I) = 0 , Vp:5 N - I (B.22) 

Then, equations (B.20)-(B.21) may be rewritten as 

, N-I ]

IZ~pY:+I 10-1) = [ P~.,c, + t::+I L (;)' ci IZ~k_l) O:5p:5k 1 
,=,+1 
P N-I ]

IZ~pY;+I k-I) = [ p:~,CP+I + t::+I L (~r ci IZ~k_l) , O:5p+l:5k I 
,=p+1 

p N-I ]
IZ~pZp+I 1-1) = 0 C, + fJ'~' t::+I L (~r ci !YOk-l) , O:5p:5k-l

[ ,=p+1 
N-I]IZ~pZp+I A:-I) = t: c,+J +P'.' E::I L (~r ci IYol-l) , 0:5p+l:5 k - 1 

[ ,=,+1 
(B.23) 
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APPENDIX C 

CALCULATION OF IZON-l) AND IZ~N-l) 


First we calculate 


P 
eN E... Eit 6(p; - p;_.) (~)El .".n PI (;)EJ odd ; 1~'I''''21) (C.1) 

'1=0 PII=O J=2 

We introduce the Jordan-Wigner states from (11.26) 

I,J. ) - ~ " q'-(2.,+.)" q,-(2.'i+6)"Id! d!. 10) (C.2)
""1 .."" - Ni L- ... '1'" '21 

'1""21 

and we first sum over indices p; with j odd using the fact that 

N-I P2;+2-1 
L 6(P2H2 - P2HI) 6 (P2HI - P2;) = S(P2j+2 - P2;) L (C.3) 

P21+1=0 P2/+t=P2; 

where the equality P2HI = P2j is added by antisymmetry of dtl/dt'J+t' We obtain 

N N-I N-I N-I i '{"'" [ ,-(2't+')P2 (L)P2 -1].:..... " " " II 6 ( '- '_) (~) £J; ...n PI" q 0 q,-(2'2+')'3
NI L- L- L-, P2J P2J 2 t: L- q'-(21 t+6).!. -1

P2=0 P4=0 '21=0 J=2 't ...• 21 0 

i-I [q'-(2'2;+I+6)PII+2 (.1)P21+2 - q'-(2'2Ht+')P2; (.!.)'2/ ] 
0 0 q,-(2'2J+2+6)P2;+2d! d! 10)II. (q'-(2'2,i+1 +6).!. I) 't'" '21 

J=I 0 

(C.4) 
We note that 

q'-(2.1+6)P2 (;)PI -1 q'-(2,,+6)'4 (;)'4 _ q'-(2.,+6)PI (;)P2 

q'-(2'1 +6); _ l' q'-(2.,+6); - 1 
(C.5)q,-(2'1+6)p, (! )P' _ q,-(2'1+6)P4 (;)'4 


q,-(2,,+6); - 1 


is equal to (by antisymmetry 8., 83) 

q,-(2'1+6)P2 (~)'2 _ I q,-(2,,+6)P4 (;)P4 -1 q,-(2,.+6)p, (;)" _ q'-(2••+6)P4 (;)P4 


q,-(21 1 +6); _ 1 . q'-(21,+6); - I' q,-(2,.+6); - 1 

(C.6) 

and also equal to (by antisymmetry 83,85) 

q'-(21 I +6)P2 (;)" -1 q'-(2.,+6)P4 (;)'4 -1 q'-(2'1+6)p, (;)P' - 1 
(C.7)q,-(2. t +6); -I . q,-(2.,+8); -1 . q'-(2'1+6); - 1 
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and so on ... . Consequently, we get which is zero by antisymmetry a2i+l, 82j+2' To proceed further, we note that 

N N-I N-I N-I i 

~i L L L L :n 9 (P2j  P2j-2) 
.1·· .• '1"=0'.=0 P'i =0 J=2 (C.8)

i-I [ql-(2.21+1+6)'21+2 (.!.)'2i+2 - 1 ( 0)P2J+2] 
a: 1-(2'21+2H) - d+ d! 10)n ,-(2'2j +1 +6).!. 1 q e '1 ... '21 

j=O q a: 

Now, the blocs [d't21+1 dti+2] are commutative. As usual with commutative variables, we 
can eliminate the constraints 9 (P2i - P2j-2) i we note that the cases of equality P2i+2 = 
P2jl +2 can be added in the construction since they contribute nothing by antisymmetry 
82j+2,82j'+2. We get 

N i-I [ N6 ( )6 (a:) NIl_e_ '21+1+'2i+2H - -; - d+ a!: 0 
i!Ni L. [I (q'-(2'2i+IH)£ -1) (q'-(2'2i+1H)£ -1) (q'-(2'2i+2H).2 -1) '1'" • 2i l ) 

.1 .. ·.'. J-O Q eQ 

(C.9) 
which, by antisymmetry gives 

eN '"' In-I [ 6'2i +I +'2;+2+6 1d+ a!: 
L.,. (q,-(2' 2;+1 +6) £ _ 1) '1'" '21 

.1···.2i J=O Q 

( N 6 N) i-I i-I [ 6 ]
_( _)6 0 - (-) e '" '" n ,,.+1+,,.+2+6 • 

i!N L., ~ (q,-(2'''+I+6); 1) (C.IO) 
.1·...,; J=O {!; ~ 

--:-~~-:-:;:-----;:-a.: . ...dtJlIO) 

In (C.g) and (C.IO), 6. = 1 if a = 0 or N and 0 otherwise. We now prove that the second 
term cancels when we associate the combination [lZ~N_1 - (_)6 ZON-I)] . First we must 
note that 

'" 6'1+.,+6 d! d+ = '" 6'1+'2+6 d+ a!: (C.lI)L., q'-(2' I H)£ _ 1 '1'2 L., q'-(:1I1+6).2 _ 1 '1 '2 
'1" a: '1'2 e 

The term coming from IZ~N_I) is obtained from the term coming from ZON-I byexchang
ing 0 and e. Thus, by (C.IO), we have to sum terms of the type 

'"' {Ill
L., (q'-(2'2i+t+6) £ _ 1) (q,-(2' 2i+ 2+6).2 - 1) + (q'-(:b2i+1 +6)!! 


'2i+l'2i+2 Q e e 
 (C.I2) 

(qH2'''+~H)~ -1) } tit,,.. dt.,+> 

'" 6'1 +',H.N d! d'! = '" ioesin(2, + 6)* d!at (C.I3)L., q'-(2'IH)£ _ 1 '1'2 L., 0 2 - 20Eoos(28 + 6)" + E2 • N-.-6
'1" a: • 11 

(where dt =dit if 8 =6 = 0). The first line in (C.IO) becomes 

EN '" rri [ iOEsin (28j + 6) * cl! cit ] 10) (C.I")if L.,. 02 _ 20EC08(2'j + 6) -6 + E2 'i N-'J-'
.1···./ J=I 

In the same way, the second line is 

2_( _ __ i (0 - E2) OE (qI2.H - q12a'+.) dt c.r.;)6 _(o_N ~.~.(-....;,)_'E_N..:...). 
rv L - .- _. -,..' r 

lL rri
- [ iOEsin(28j + 6) 'h ] 

.1 ...•I-li=l 02 -20ECOS(28j +6)'h +e2 at;cJt-.;-. 10) 
(C.I5) 

Finally using the expression of ZON-I from (III-D.7) we may write 

EN (_)' 

IZON-I) = [oN _ (_)6 EN - N' 


2I (02- e ) {J' ~' ( qI2.H - qI2.,H) dt(; ] (C.16) 
, IZON-I)~ [02 - 20Ecos(2a + 6)';' + E2] [02 - 20ecos(2s' + 6)';' + e2] 

where 

E(¥) [ 2i{JI~lsin(2s+6)N d!cIt ]10)
IZON-I) = [oN - (- )6eN] n 1 + 0 2 _ 20tcos(2s + 6)i + e2 • N-.-. 

~O (Cln 

Using the exchange 0 +--t e we obtain 

, [oN 1 
IZON-I) = oN _ (_)6eN - N' 

i (02- e2) fJ'~' (qI2.H - qI2.,+,) dtd:' ] (C.18) 

. ~ [02 - 20fOOS(28 + 6)"k + e2] [02 - 20ecos(2s' + 6)"k + e2] IZON-l) 

80 that 

IZ~N-l - (-)'ZON-l) == IZON-I) (C.19) 
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Let us define 

)-I Z~N-l ZON-l)IXON -I - -;r:r- - --;;r- (C.20) 

which is antisymmetric in the exchange 0' t---t e. From (C.16), (C.17) we get 
(_)'(O'N -(-)'eN ) 

IXON-I) = 2NO'NeN . 

(0'2 - e2) P',p' ('l'hH - '1'2" H) dta:. (C.21)

'L
,,' 

'_'I ft _____ IIL. ~'tr • _'1\/_" UL'. to'tr • _,,\ lEoN-I) 

We have the property (by antisymmetry) 

L q'-(h+~)O' _ edt IXON-I) =2: _,-12... 
1
,\_ _ dt IxON - I) =0 (C.22). , 

From (C.19), (C.20) we get 

, O'N (_)'O'NeN 
IZON-I) = ~N ~-)'EN lEoN-I) - O'N -(-)'eN IxoN- I) 

eN O'NeN 
IZoN-l) = N ( )' N lEoN-I) - N ( )' NIxON-I) (C.23)

a -e 0'--£ 

Relations needed in Appendix D 

We define the operator U as 

u = (C.24)(~G), c:)(~ (~)' 0:) 
We have, from (II.25) 

(-)'O'e ( N , N)2", 1 d+d+ (C25)
U=-NO'N£N 0' -(-)£ L.,('l'-(2'+"O'_£)(q,-(2.,+,,£_O') ••, .... 

so that 

U2 = U IXoN -.) = 0 (C.26) 

We have from (C.16) 

£N [P',p' O'N ] 
N UIZON-I) = N ( )' N 1 - N ( )' lEoN-I)

0' - - £ 0'£ 0' - - £ 

oN [ P',p' £N ]
IZON-I) = N ( )' N 1- (-)' N ( )' N U IZoN-I) (C.27)

0' --£ 0'£0' --£ 

and from (C.20) 
P'tP' 1 

IXON_I)= N ( ), NUIZON-.) (C.28)
O£O' - - £ 

Finally with the operators ut and U; from (0.1), we have 

utu = U;U =0 (C.29) 
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APPENDIX D 

CALCULATION OF [iJlca ..:OIc.IZ~N_l) +iJka·..iJkp IZoN-l)] 


We first define the operators ut and U. 88 


UI +u; = ut +U. 


l
u: =~~' (~)'~ (~)' c: 

(D.1) 

u; = ~' (~)'E (~)' c:
,=0 

We note the anticommutators 

{el,UI') = ,p,p' (,:,)1'-1 Vk' > k 
0'£ 0' 

{cI,ut.l = ,p,p' (.:.)1'-1 Vk,k' (D.2)
0'£ 0' 

so that 

{el,UI' - Ut.l = 0 Vk' > k (D.3) 

Consequently, if we write 

- + P- +Ulj = Ulj - Uli + "iCI} +Uli (D.4) 

then, all operators (f.el + ut) can be taken to the right and we obtain 

UI1·- ..UI,- -- '"L.,(-).(I) II (UI, -UII+) II (P"iCI,- +UI+), (D.5) 
I I,el I,el 

where / is an ordered subsequence of kl ... kp , I its ordered complement and sell is 0 or 1 
depending of the number of anticommutations. It is a trivial matter to prove that 

+U+)lz' )_{aljlll:tal,'I..... al,J .._lli,.. IZ~N-I) (D6)II (t- I· ON-I - U+ IZ') ..I..,Cljliel Y" lio al'l II, ... alj:tn_1 Ii,.. ON-I 

depending of the parity of Ii in (0.6) we have 

au' = p,p (:..)1/-1 (D.7)
0'£ 0' 
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http:r:r----;;r-(C.20


We sum over all j with even parity as 

[(Ulrl - uta) ... (UIr~ - U~) +c.d.p.] (D.8) 

where c.d.p. means the sum over all possible contractions of disjoint pairs. We have 
obtained the following result 

Ulrl···UIr, IZ~N-l) = [(Ulrl - uta) ..· (UIr, - U~) + c.d.p.] IZ~N-l) 

+ L
, 

(Ulrl - Ut.) ... (Ulri_ l - U~_.) U~ [(UIr.+! - U~+!) ... (UIr, - Ui,) + c.d.p.] IZ~N_I) 
i=1 

(D.9) 
The remaining part of the proof is a recurrence over the number of contractions. We first 
examine the terms with no contraction. We define 

Air = QNUIr + (-)'eNU: 
QN _ (-)'eN 

Bir = QNU: +(-)'eNU; (D.IO)
QN (-)'eN 

which are both antisymmetric in the exchange Q t--+ e, Q' t--+ e' , ~ t--+ p, ~' t--+ p'. 
Then, 

Uir - U: = Air - Bir (D.ll) 

We note from (D.lO) and (C.27) that 

(U: -BIr) IZ~N-I) +(-)'(U; +BIr)IZON-I) =0 (D.12) 

because, from (C.29) 

u:U = U;U = BIrU = 0 (D.13) 

where U is defined in (C.24). Consequently, when we sum Ulrl",UIr, IZ~N_l)+U:l· ..li:, IZON-l) I 

it remains for the terms with no contractions 

P 

(Alrl - Blrl)'" (Air, - BIr,) + L(AIrI - Blrl)'" (Alri_l - Blri_l) BIr; (AIr,+l - BIr;+l)'" 
i=1 

... (Air, - BIr,) 
(D.14) 

and the corresponding term over IZON-l)' Using the fact that 

BlrBIr.Blrll =0 (D.15) 
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we get 

Atl···At, - L Alrl ..·Ati_1BIr,At'+1 ...AlrJ_l BtJAlrHI· ..At,· (D.16) 

(Ptrs 
) 


We now look for the terms with one contraction. The first term we have is of the form 


L (Alrl - Btl)'" (AIr,-=-BIr,) ... (AlrJ-=-Btj) ... (Air, - Bt,) (- );-i-lalr'.J 

(Ptrs 
) 

(D.n) 
where .- means ommission of the corresponding terms; let UI define 

QNai; - (_)leNajj • 
(D. IS)hi; = QN _ (_)le N = hi; 

where * means the exchange Q ~ e, Q' t---t e', ~ t--+ p, ~' t--+ p'. Then, from (0.18), 
(D.7), (D.10), (C.24) and (C.27) we have 

(aj; - hi; - BiB;) IZ~N-l) - (_)6 (at; - hi; - BiB;) IZON-l) = 0 (D.19) 

Consequently, the term (D.17) and the corresponding term over IZON-l) gives 

L (Atl - Blra) ... (Alri-=-Bti) ... (Al,;-=-Btj ) ... (Air, - BIr,) (-);-i-l (blr.lrJ + B•• Blrj) 

(Ptrs 
) 

(D.20) 
and the corresponding term over IZON-I)' Of course the term Blri BIr, in (D.20) cancela 
the last term in (D.16). We now look at the terms 

(Alra - Bll ) .. · (Ati _a - Bli_a) U~ [(Al i +a - Blrota ) ... (Alp-=-Bl.) 
(D.2l) 

... (Al,--=-Bl.) ... (At, - BIr,)] (- )_-r-Ial•t , 

First we note that 
a U+ = P~U+ (D.22)Ir.l, to Qe l,+l.-Ir. 

Then, we use (D.12) for U~+Ir._t. to get 

(Ala - Blr l )· .. (AIr._ l - Bti_a) !:Blri+lr.-tp [(Al i +l - BlrHa) ... (Alp--=-Bt.) 
(D.23) 

... (AIr.--=-BIr.) ... (Air, - BIr,)] (_y-r-l 
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Let us write 
P4»
-B..i+... -Ir. =B...blrilr. +B..,b ...... - B... b... Ir. (D.24)
at 

so that (0.23) can be rewritten as 

(A.. , - B.., ) ... (A ..i _, - B ..,_,) B .. , (A..,+, - BIr.+I ) ... (AIr.-=-BIr.) ... (A...-=-B... ) ... 

(A .., _B..,)(_)·-r-1b ...... +(A.., -BIr.) ... (A ..,_a-B..i_a) (A...--=-BIr.) 

(A..i+, - B"'+I) ... (A...--=-B... ) ...B ...... (A .., - B ..,)(- )r-i-1b... Ir. + (Alra - B..a) ... 

(A"._ l - B..._a) (~lri--=-Blri) (A"'+I - BIr'+I) ...B ...... (A...-=-B... ) ... (D.25) 
(A.., - B..,) (- )'-1- 1b.. /... 

Consequently, when we swn (0.23) over all ki' k. and kr' we reconstitute for a given blr.lrj 
a situation where B .. is successively at all places k < ki < kj, at all places k. < k < k j and 

at all places k. < kj < k. If we sum (0.16), (0.20) and (0.23), we have obtained for the 
terms without and with one contraction 

" A ;-i-lAA..l· ..Al, + L...J At•...Al; ...Ali ...AIr, ( - ) blr.tJ 

(p~rs ) 
(D.26) 

A A • •I: A.. l· ..Blm·..A ...... Atj ...Bl..... A ..,( - )'-'-
1 
blltJ 

2 pairs 
(i,j)(m, n) 

in all possible positions of i, j, m, n. 

We now prove this result from q to q + 1 number of contractions. We suppose that 

we have obtained for the sum from no to q contractions 
• ,'-I

I: (P4») I: A A A A ,(1,,)All ...", + - A..l· ..A ...... A ... ...Al._, ,,,.Ali2 ,· ..A..,(-) bK - K+ 
at I' -, -, " " ,'==1 I" , , 

,.,4»/:I )'-1 •• ,(I ) 
- - "AIr,,,.AIr ....Bm ...At, ...Bn ...A", ".A......A..,(-) 'bK- K+( at L...J " , 

A 

,,-I 
A 

2, " 'f 
,fu(m,n) 

(D.27) 
where I, is a set of q ordered pairs (ili2; i 3 i.i ... j ;2,-li2,) , s(1.) is the signature of I, 

s(l,) = ( I: i I: i) -q (D.28) 
• even Elf • odd Elf 

and 

r+=Lk;I, • evell Elf 
(D.29) 

Ki = I: k. 
, • odd Elf 
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In (0.27) the pair (m, n) may be in any position in comparison with the elements which 
describes the pairs in I •. 

We first consider in (0.9) a term with (q +1) contractions 

(A" l - B ..a) ... (Alri.-=-B...,) ... (Al'"H--=-BlrI2,+2) ... (Air, - BIr,) (- ),(/,+a) (D.30) 
xa"ia"., ... al'2,+a lrl',H 

and we use the fact that 

(D.31)a.., .., ... a ..." +1 Ir.,,+, = (!!),aKi,+! Kt.+1 

Then, we use (0.19) to write (0.30) as 

(Alrl - Bta) ... (At,,-=-Bt'a) ... (Atl,'H-=-Btl,'H) ... (At, - BIr,)( _ ),(I,+a) (!!)' 
x [bK- K+ +BK- BK+ ]',+I ',+a ',+, ',+, 

(D.32) 

It is proved at the end of this appendix that the above term in BK- B K+ cancels',+, ',+,
exactly the last term with Bm... Bn in (0.27). Now, we consider the terms with (q +1) 

contractions and one operator ui, 
(Ai, - Bt,) ... (Al._, - Btl_a) U~ [(Atl+1 - Bt,+,) ... (At,,-=-Bt,,) ". (At'"H--=-Bt ,+,)

" 
... (Air, - Bt,)( - ).(/,+,)atl, Irl, ...atlll+,tI2'+2] 

(D.33) 

which can be rewritten, using (0.31), (0.22) and the relation (0.12) as 

P4»)'+l ( _ )
( - (Att - Bt ,) ... (Al/_, - Btl_') Bir +K+ -K- (Ati+1 - Bt,+,),,, At" - Bt" 

at i ',+1 ',+, 


... (Ali -=-Bir. ) ... (Air, - Bt,) (- ),(1,+.)
,,+2 "+' 
(D.34) 

Again, at the end of this Appendix, we prove by a generalization of (0.24) that (0.34) can 
be redistributed into 

( P4»)' - af: (At, - Bt,) ... (At,_, - Bli_,) Btl (Ati+1 - Bt.+,) ... (At" - Btl,) ... 

... (At"'H-:-Bti,,+,) ... (At, - Bt,)(_),(/,+i)bK,- K,+,+, ,+, 
p.;)'2'+2 __ 'I 'I 

+ ( af: ?: (All - Bt,) ... (Ati_' - Blrl_ l ) (At I - Bt,) (Ati+' - Bt,+,) ...II···lj-1 
1=1 

A A (r )
B .... ij+l ...i 2,H'" (Ai, - Bt ) (-)' ,+I 6K- K+ 

,+I "I '" t+l 
(D.3S) 
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where i means (Ai-=-Bi) and I~+! {ki' kip"" kii _lI kii+II .'" ki"H} . When we swn 
over ki• kit etc ... the terms of (0.35), the terms linear in B cancel with the terms linear 
in B of (0.32) while the terms quadratic in B change sign in comparison with those of 
(0.32). Consequently we have proven (0.27) with q --+ (q + 1). 

We now explain the end of the recurrence. If p is even, then the end of the recurrence 
consists of equation (0.32) with all (Ak - Bk) contracted. The terms BK- BK+ cancels 

1,./2 1,/2 

with the corresponding terms with ~ contractions. Consequently, we get 

'-jJ 
-PtIJ) bK - 1(+ (D.36)( oe 1,./2 1,./2 

If p is odd, then the end of the recurrence consists of equations (0.32) and (0.33) with 
.I!j! contractions. From (0.33-34-35) the terms linear in B cancel in (0.32); the difference 
now is that in (0.33) there is no (Ak Bk) and in (0.32) there is only one (Ak - Bk) so 
that we do not generate terms in B.B and this ends the recurrence. 

We have obtained 

Ukt".uk, IZ~N_I) +U;....O;, IZON-d = [Akl".Ak,. + c.d.p.] IZON-l) (D.37) 

where c.d.p. means the sum over all possible contractions of disjoint pairs iI, i2;i3, i4; ".j i 29- 11 

i21 (with i 1 < i2 < i3 ... < i 21 ) and with the contribution 

~ ~ A A ,(1 ) (PtIJ) IAk.". Ak•...Ak; ... Ak' ... Ak· ...Ak,(-) , 
I' " I ",-I "', o£ 

(D.38) 
X oN (!)E:.t(ki,,-ki,,_.) - (_)'£N cnE:.I(ki,l-k;,.-I) 

oN (_ )'£N 

Proof of the equality of (D.34) and (D.35) 

The operators (A - B) are irrelevant to the proof except for an overall sign which is 
defined in the signature. Let us consider an odd number of indices i l < i2 < ... < h,+I; 
one of these indices carry the operator B while the remaining indices define q disjoint pairs. 
We now concentrate over three consecutive indices i,_1 < ij < i]+I' When B is on the 
index i j _ 1 we have 

Bk.. b _ + = [oN tlJtIJ' (=-) k'i _ ~ (~)' c+ +(_ )'eN PP' (~)kii_1 ~ (=-)' c+] 
'1-1 K, K, o£ 0 L..., £' o£ £ L..., 0 ' , ,. 

PtIJ [ N (£ ), ..+kiHI-k.j +... , N (o)".+kiHI-kii+"'] ( N 6 N -2 
.- 0 - -(-) £ - 0 -(-) £ )
o£ 0 e 

(D.39) 
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Similarly, we have 

NtlJtIJ' (£)k'i ~ (o)P + , NPP' (O)kll ~ (e)p +]
Bk'i bK ; Kt = - [ ~ ~ 7 e c, + (-) £ -;;£ e '7 ~0 Cp 

PtIJ [ N (£) ...+k'itl-kl.i_I+'" , N (O) ...+&:Ii+I-&:li-a+...] (N ()' N)-I 
.- 0 - - (-) £ - ° - - e 
oe ° £ 

(D.40) •
and 

Bk" b _ + = [oNtlJtP' (=-)k'.l+ 1 ~ (~)' c+ +(_)'£NPP' (~)kll+t ~ (=-)' c+] 
'1+1 K, K, oe 0 L..., £' o£ e L..., ° p • 

PtP [ N (£)".+kll-k'I_I+'" 
, 

, N (O) ...+&:II-&:II-a+...] ( N 
, 

, N)-I 
.- 0 - -(-) £ - 0 -(-) t 
oe 0 e 

(D.4l) 
In (0.40), the - sign comes from the signature. Clearly, the part of the numerator which 
contains 02N and £2N cancels between (0.40) and (0.41); also, the part of the numerator 
which contains oNeN cancels between (0.39) and (0.40). 

When we sum over all indices from il to i29+!, everything cancel except the terms in 
02N and £2N in il and the terms in oNeN in i29+!j this gives 

kl
02N ~~ (~) k' i +ki.-kl,+...+ii't+a- " L (~)' ctI 

PtIJ , N' N -2 ... [ _<2N?' (~)".H,.-.,.+...H'"+.-.,,, ~CD' ct (.. -(-). ) 
-( - )'oNeN tPtIJ' (~) kl,-kl l+...+k." (=-) k",+1 ~ (~)' c+I

PtIJ oe e 0 L..., t ' I+- , oN __ '£N 
o£ , N N PP' (£) ki,-kia +...+k", (0)kI2'+1 L (t)' ( (»[ +(-) 0 £ - - - - c+

o£ 0 £ 0', 
(D.42) 

Now, (0.42) is nothing but 
PtIJ
-B... K- K+ (D.43)o£ ...+ ,- t 

which is (0.43). In (D.39-40-41-43), K: are defined like in (0.29) over the set of indices 
which define the q contracted pairs. 

Proof of the cancellation of the quadratic terms in B of equation (D.27) with 
.. 

the terms in BK - BK + in (D.32) 
"'+1 Iq+1 


The proof is based on the result (0.43) and On the fact that 


(- )'oNeN PP'tPtIJ' [(=-) m-n _(~)m-n] U (D.44)BmBn (oN _ (_)'£N)2 (0£)2 0 £ 

57 

1 



is function of m - n; the operator U in (D.44) is defined in (C.24). 

Again the operators A are irrelevant to the proof except for an overall sign. We 

consider an even number of indices i. < i2 < ... < i2,+2 where two of these indices carry 
an operator B while the remaining indices define q disjoint pairs. 

Consider all terms where the index i. carries operator B. Then by (D.43), we get 
,

p~ 	 p~
-Bit;, BIt,,+K+-K- = -BIt" +K- BIt.,+K+ (D.45)
at 	 at 

• 	 where 
K+ = k•• +k., +... +k"t+' (D.46)
K- = kil +k•• +... +k"t+1 

Now, we consider all tenns where the index i2 carries an operator B. Then, we anticommute 

Blti, to the left to take care of the signature and we apply (0.43) on the indices i. < i3 < 
i4 < ... < i2,+2; we get 

p~ 	 p~
--BIt•• BIt• +K+-K- = --Blti +K- Blti +K+ (D.47)

a£ • 1 a£' 1 

If we proceed the same way with i 3 , we get 

p~ 	 p~ 
(D.48)a£BIt.,BIt.,+K+-It;,-(K--ltil) = ntBIt.,+K- Blti,+K+ 

which cancels (0.47). In the same manner the contribution to the indices i" and i5 cancels, 

etc... up to the contribution of the indices i 2, and i2,+1 which cancels. Finally the 

contribution of the index i 2,+2 is 

P~B 	 B - P~B 
at lti.+K--ItI,-(K+-It"t") Iti't" - at 1t11+K- Blti,+K+ (D.49) 

Of course our counting from (0.45) to (D.49) is a double counting of the quadratic terms 

in (0.27). Consequently, the quadratic terms in B of equation (D.27) are 

P~B B + 	 (D.50)-- K;+I K,.+,a£ • 

• which cancels the corresponding term of (0.32). 
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