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1. Introduction 

Driven diffusive lattice gas systems are known as non-equilibrium models which have interesting 

stationary states [1-9]. They belong to a broader class of systems, including growth processes 

[10-12] and models exhibiting self-organised criticality [13,14], which evolve according to 

microscopic dynamical rules that are local and stochastic. The absence of detailed balance 

conditions for the dynamics of these models implies that their steady states usually cannot be 

described as the Gibbs measure associated with any reasonable energy function. It is expected 

that such systems should, in general, present long range correlations in their steady state 

[13,15,16] . 

In the present paper, we report some exact results on the correlations functions of an 

asymmetric one dimensional exclusion model [8], which is a particularly simple example of a 

driven lattice gas. For this system, particles are chosen for update at random and can then 

jump to their neighbouring site to the right, only when this site is not occupied. This model has 

been considered recently by various authors in different geometries [10,6,7,8]. The simplest case 

is that of periodic boundary conditions, where the dynamics conserve the number of particles 

in the system. It has been shown [10,17] that steady states correspond to having an equal 

weight for all possible configurations (with the right number of particles). Thus for periodic 

boundary conditions, the occupation variables of the different sites have no correlation and 

the correlation functions are trivial. The time dependence is more complicated, nevertheless 

the eigenvalues of the Master equation can be computed by the Bethe ansatz method [17,9]. 

Another situation which has recently been considered [7] is that of the system with periodic 

boundary conditions, but with a blockage inserted to break the translational invariance. The 

blockage takes the form of a special bond where the hopping rate differs from the value it takes 

for the other bonds. The presence of this single impurity, which can be thought of as a kind 

of boundary condition, is sufficient to create long range correlations in the system. 

The case of open boundary conditions where particles enter at the left end and leave at 

the right end has also been studied [18,6,8]' and is the situation we consider here. Again, the 

effect of the boundary conditions is to give rise to power law decays in the density profile (the 

time average of the occupancy as a function of the position along the chain). 

The model we consider, which is exactly the same as in [8], is defined as follows: each site 

i (1 :::; i :::; N) of a one dimensional lattice of N sites is either occupied by a particle (Ti = 1) 

or empty (Ti = 0). The evolution of this system is governed by the following rule: at each 
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time step t -+ t + 1, an integer i is chosen at random between 0 and lV (i.e. the probability 

of choosing i is 1/(N + 1)). If the integer i is between 1 and N 1, the particle on si te i (if 

there is one) jumps to site i + 1 (if this site is empty), i.e. 

(1) 

If the integer chosen is i = 0, then if site 1 is empty it becomes occupied with probability 

a, whereas if it is occupied it remains occupied. Similarly, if the integer chosen is i = lV, then 

if site N is occupied it becomes empty with probability j3 whereas if it is empty it remains 

empty. The values of a and j3 define the (open) boundary conditions and phase transitions 

can occur as a and j3 are varied [6,8]. 

The exact solution of this model [8] was obtained by writing a recursion which gives the 

steady state of a lattice of N sites in terms of the steady state for a lattice of N -1 sites. This 

recursion is recalled in the Appendix, however, it is rather complicated and the calculation of 

observables like correlation functions is not straightforward. In reference [8], the expression 

for the density profile {Ti)N (i.e. the one point correlation function) for all system sizes N, was 

derived in the case 

a=j3=1. (2) 

In this case (and more generally when a = j3 ::; 1) one can show that the dynamics of particles 

moving to the right is identical to that of holes moving to the left. This particle-hole symmetry 

implies that in the steady state 

(3) 

where { .. .)N indicates an average in the steady state of a system of size N. 

The main purpose of this paper is to present, for the same values of a and j3 equal to one, 

a similar result for the two point correlation function and to propose a conjecture (that we 

checked on the computer) for the three and the four point functions. A main consequence 

of our results is that for this exactly soluble model, we can show the existence of long range 

correlations. 

The paper is organised as follows. In section 2, we recall the exact expression of the one 

point correlation function [8], and we give our main results: the exact expressions for the pair 

3 



correlation functions and conjectures (that we checked on the computer) for the three point 

and four point correlations. In section 3, we obtain the expression of (T(ij) N in two continuous 

limits of this problem: firstly, the boundary region, for which N becomes infinite first, and 

then (TiTj) N is estimated for i and j large; secondly, the bulk of the chain, where N becomes 

large with i = N x and j = Ny, x and y being fixed. In section 4, we use the equivalence of this 

one dimensional exclusion problem with that of a growing interface to interpret our results in 

terms of height variables. 

2. Exact Expressions of the Correlation Functions 

The key to obtaining exact expressions correlation functions is to consider the steady state of 

the weights fN( T1, •.. TN) of occupancy configurations {T1,'" TN}' The stationary probability 

PN(T1,· •• TN) of an occupancy configuration is then given by 

(4) 

The steady state of the weights may be written in the form of a recursion [8] which we provide 

in the Appendix. In principle the knowledge of the correlations of arbitrary order n follows by 

computing the correlation functions 

2:1"1=1,0' •• 2:1"N=l,O Til Ti2 ••. TinfN( Tl, ••. TN)
( Til Ti2 ... Tin ) N = () , (5) 

2:1"1=1,0' •. 2:1"N=l,O fN TI, ••• TN 

however the recursion is sufficiently complicated that the way to do this calculation is not 

immediately obvious. 

The 1-point correlation function (Ti)N was obtained from a generating function formed by 

summing over indices i and N [8]. The result could be written in two forms: as a sum 

1 N-k 

h)N = A(N + 1) ?; A(p)A(N - p) (6) 

where 
A() (2m)! (7)

m = rn!(m + 1)! ' 

or alternatively as a closed expression 

T - ~ ~ (2k)!(N!)2(2N - 2k + 2)! (N _ 2k + 1) (8)
( k)N - 2 + 4 (k!)2(2N + 1)! [(N - k + 1)!]2 . 
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We have followed the same generating function approach to obtain the 2-point correlation 

functions. However, because the derivation is rather tortuous and gives no physical insight to 

the problem we do not present it here. The result we obtained is 

where kl > k2 • 

We checked this expression against a direct evaluation of (5) on the computer for system 

sizes up to N = 10 and found a perfect agreement. On comparing the expressions (6) and (9) 

for (Tk) and (Tkl Tk2 ), we conjectured the following expressions for higher order correlations 

1 N-kl N-l-k2-Pl 

A(N +1) p~o A(P1) p~o A(P2) 

N-2-k3 -Pl -P2 
X L A(P3 )A( N - 2 - PI - P2 - P3) (10) 

P3=O 

where kl > k2 > k3, and 

(11) 


N-2-k3-PI-P2 N-3-k4 -PI-P2-P3 
X L A(P3) L A(P4)A(N - 3 - PI - P2 - P3 - P4) 

P3=O P4=O 

where kl > k2 > k3 > k4. 

As before we checked these conjectures against the computer and found that they are indeed 

in excellent agreement. 

A convenient way of writing (9,10,11) is in a form similar to (6) 

N 
(Tkl Tk2 )N - A(N 

1 
1) L A(q)A(N - q)(Tk2)q-1 (12)

+ 	 q=k1 

N1 
(Tkl Tk2 Tk3 )N - A(N + 1) I~, A(q)A(N - q)(Tk,Tk,}q-1 (13) 

N1 
(Tkl Tk2 Tk3 Tk4 ) N A(N + 1) q~, A(q)A(N - q)(Tk2 'Tk, Tk, }q-1 , (14) 

and we believe that all other correlation functions are similarly given by 

1 N 
(Tk1 Tk2 •.. Tk.,JN = A(N 1) L A(q)A(N - q)(Tk2 ... Tkn)q-l where kl > k2 ... > kn • (15)

+ q=kl 
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We feel that there should be a physical reason for (15) (that would in turn furnish a more 

direct derivation for the solution of the model) although we could not think of it. 

A simple relationship between the 1 and 2 point correlation functions was derived in [8]: 

(16) 

This relationship expresses a conserved current of particles along the chain. To see that (6) 

and (8) satisfy (16), we rewrite (6) as 

A(k)A(N - k) 
(Tk)N = (Tk+l)N + A(N + 1) . (17) 

and (9) as 

A(k) N-k-l 


(Tk+2 Tk+l)N + A(N 1) 2: A(p)A(N - 1 - k - p) (18)

+ p=O 

A(k)A(N - k) 
(19)- (Tk+2 Tk+l)N + A(N + 1) , 

where we have used the identity 

N 

2: A(m)A(N - m) = A(N + 1) , (20) 
m=O 

which follows from the fact that 

f: A(m)xm = 1 - v'1- 4x . (21) 
m=O 2x 

Subtracting (19) from (17) then gives 

At the right hand boundary (TN-l)N, (TNTN-l)N have the simple expressions (17),(9) 

A(N -1) 
(23)- (TN)N + A(iV + 1) 

A(N - 1)
- (24)

A(N+l)' 

so that (16) is satisfied when k = N - 1. Application of (22) then implies that (16) is satisfied 

for 15k 5 N - 1. 
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From now on we will focus on the 2-point correlation functions. From these we can calculate 

the fluctuations in the total number of particles M in the system, which is given by 

(25) 

The average (M)N is equal to N /2 because of the particle-hole symmetry in the problem which 

implies from (3) 

(26) 

The mean square particle number is given by 

(M2)N = ~ + 22]TjTk)N' (27) 
i>k 

The second term in this expression may be evaluated by using (9) and rearrfillging the sums 

to give 

1 N-I N N-j N-k-I-Pl 

--- L L L A(pd L A(P2)A(N - 1 - PI - P2) 
A(N + 1) k=l j=k+I Pl=O P2=O 


1 N-2 N-Pl-2 (N - PI l)(N )

'" A( ) '" P2 -2 - PI + P2 A(P2)A(N 1 - PI - '1ln) • - -A-(N-+-1-) P~O PI P';:O r. 

1 {N-2 N-2-Pl (N - PI - l)(N - PI) 
- A(N + 1) p~o A(Pl) Eo A(p2)A(N - 1 - PI - ]12) 2 

N-2 N-2-Pl (P2 + 1)p2 }-p~o A(PI) Eo 2 A(P2)A(N -1 PI - P2) . (28) 

The labels PI, P2 may be interchanged in the second term on the r.h.s. of (28) which allows 

the two terms in (28) to be combined to give 

1 N-Pl-2 

] A(Pl) I: A(P2)A(N - 1 PI - ]12). (29) 
P2=O 

Use of the identity (20) and 

N NL mA(m)A(N - m) = 2A(N + 1) , (30) 
m=O 

which follows from (7) leads to 

N N(N + 1) A(N) 
(31):?=(Tj'Tk)N = -2 + 2 A(N + 1) . 

J>k 
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We then obtain 

lV(N2 +N +1) 
(32)

2(2N + 1) 
N(N + 2) 

- (33)
4(2N +1) . 

In the limit of large N the leading behaviour of (M2)N (M)'j..; is N/8. This is to be compared 

with the value N /4 that would be obtained for the leading behaviour if correlations were 

ignored. Clearly, long range correlations due to the presence of the boundaries have a significant 

effect in reducing the fluctuations of M. Our aim in the following sections will be to analyse 

in more detail the form of these correlations in the large N limit. 

3. The Continuous Limit 

For large system sizes, there are two simple regimes one may consider for the density profile 

(Ti)N, which is the average occupation number as a function of position along the chain. Firstly 

we have the boundary regions where the profile decays rapidly from the boundary values. 

Secondly there is the bulk where the density profile approaches a plateau with corrections to 

occupancy 1/2 that follow a power law in N [6]. An analytic form for the density profile has 

been obtained in these two regimes [8] by considering two continuous limits of (8). For the 

boundary region one lets N --+ 00 first and then lets the distance from the boundary become 

large. For the bulk [19] one considers distances from the boundary that are proportional to N 

and lets N -+ 00. A result of [8] was that in the bulk the corrections to the occupancy 1/2 are 

N-l/2 rather than N-l as would be predicted by the mean field theory [6,8]. This suggests 

that the effect of the boundary conditions extends beyond the boundary region into the bulk. 

In the present section we shall repeat this kind of analysis for the 2-point correlation functions. 

The Boundary Region 

For the boundary region we consider sites at a fixed position relative to the left hand boundary 

and let N -+ 00. The behaviour at sites near the right hand boundary can be related to the 

behaviour near the left hand boundary via the particle-hole symmetry (3) which implies 

(Tk1Tk2)N - (Tkt )N(Tk2 )N - (TN+l-k2TN+l-kl)N - (TN+l- k2)N(TN+l-k1)N (34) 

- (TN+l- k2TN+l- kt)N - (1 - (Tk1)N )(1 - (TkJN) . (35) 
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In the following we shall make use of Stirling's approximation which determines the large N 

behaviour of A(N) as 
1 4N 

A(N) = .JiN3/2 [1+ O(N-1
)] . (36) 

On letting N -+ 00 in (9), kl and k2 being fixed with kl > k2' we find 

(37) 

We now assume kl' k2' kl - k2 are large so that we may replace k2 - 1 by k2 and kl - 1 by kl 

on the right hand side of (37), and use 

m A(p) 1 1 
I"V ­~ -- - for large m, (38){;:o 4P+1 - ~ 2v'7rm 

to give 

(TN+l-k2 TN+l-kt)N ~ 4'
1 

(39) 

The sum in (39) may be written as 

(40) 

for which the first term may be evaluated as an integral, after using (36), and the second term 

is given by (38). Eventually we find 

(41) 

The average occupancy in the boundary region is given from (8) when N -+ 00 by 

(Tk) ~ ~ + _1_ + O(k-3/ 2 ) (42)
00 2 2y'ik , 

so that as N -+ 00 the connected correlation (35) becomes 

(43) 

It is worth noting that expression (43), which was obtained for kl » 1, k2 » 1, kl - k2 » 1, 

remains valid when kl - k2 = 1. This may be checked by making use of the relationship (16) 

in the limit N -+ 00. 
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The Bulk 

To take the continuous limit of (12) in the bulk, we will make N large keeping the ratios kl/JV 

and k2/N fixed: 

kl = Ny, k2 = N x, where kl > k2 , y > x . (44) 

We first rewrite (12) as 

k]-k2-2 A(N - 1 - k2 - q)A(k2 + 1 + q) 
(Tk]TkJN = (Tk2+1 Tk2)N - ~ A(N + 1) (Tk2)k2+q (45) 

k]-k2-2 A(N - 1 - k2 - q)A(k2+ 1 + q) 
- h,)N - (TN)N - ~ A(N + 1) h,)k,+q. (46) 

In going from (45) to (46), we have used the relationship (16). The mean occupancy in the 

bulk is given from (8) (in the limit defined by (44) and N -+ 00 by (8) ) as 

_ ~ 1 1 - 2x -3/2
(TNx)N - 2 + 2ftNl/2 [x(1 _ X)]1/2 + O(N ) , (47) 

whereas the mean occupancy on the right hand boundary is given from (6) as 

N +2 1 3 -2 
(48)(TN)N = 2{2N + 1) = 4+ 8N ~ O(N ). 

On inserting (36,44,47 ,48 ) into (46) we have 

1 1 1 - 2x 3 
(TNyTNx)N = 4" + 2ftNl/2 [x(1 _ x)]1/2 - 8N 

1 N(y-x)-2 1 
3 2

-4ft-N-3/""'-2 ~ (1 _ x _ Z)3/2(X + Z)3/2 (TN",}N(",+z) + O(N- / ) ,(49)
7r 

where 

q=Nz. (50) 

We now make use of the bulk expression (47) for the average occupancy in the final term of 

(49). At first glance this does not appear justified for the small values of q in the sum. However 

the error produced by using the bulk expression (47) in these terms is O(N-3
/ 

2
). Thus, as long 

as we are ultimately interested only in orders up to O(N-l), this substitution is valid and we 

find, after replacing the sums by integrals, 

(TNyTNx)N = 
X1 1 {I 1 - 2x 1 f Y

- dz }
4" + Nl/2 2ft [x(1 _ X)]1/2 - 8ft Jo (1 - x - z)3/2(X + z)3/2 

~ {_~ ~ f Y
-

X 
dz x - z } 0 N-3/ 2 (51)+N 8 + 87r Jo {I - x - Z)3/2{x + z)3/2 [xz{x + z)]1/2 + ( ) . 
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The integrals in (51) may be evaluated and one finds that within the connected correlation 
2the terms up to order O( N- I / ) in (51) are cancelled. The leading term for the connected 

correlation is then given (for y > x) by 

(TNyTNx)N - (TNy)(TNx)N = 
1 { 3 [( y - x ) 1/2] 3 1 (y x) 1/2 [ x 1 - y]
N 47r arctan x(1 - y) - 8" - 47r x(1 - y) 1 - 1 - x - -y­

_~ (2y - 1)(2x - 1)1 2} + O(N-3/ 2 ) • (52) 
47r [y(1 - y)x(1 - x)] / 

One should note that on replacing x by k21N and y by kIlN in (52) and taking the limit 

N --+ 00, (43) is recovered. As for (43), one can also check that (52) remains valid when 

N(y'~ x) = 1 even though it was derived for N(y - x) --+ 00. 

4. Equivalent Growth Model 

There is a.well-known equivalence between one-dimensional exclusion models and single­

step growth models [10,11,7] which in the case of the asymmetric exclusion process may be 

formulated as follows: the occupancy configuration {T1, •.• , TN} represents a surface interface; 

the presence of a particle Ti = 1 represents a decrease in the surface height of one unit at 

position i whereas Ti = 0 represents an increase in surface height of one unit. The surface 

height h(k) at site k relative to the left hand boundary is then related to number of particles 

in this region by 
k 

h(k) = L: [1 - 2Ti] . (53) 
i=1 

When the total particle number is N12 so that h(N) = 0 the two boundaries are at the same 

absolute height. 

The dynamics of the asymmetric exclusion process describes the growth of the surface as 

follows. When a particle moves from site i to i + 1 a local minimum of the surface height 

between sites i and i + 1 has become a local maximum. A deposition event has thus occurred 

between i and i + 1. Deposition at non-boundary sites can only occur if the site is at a lower 

height than both of its neighbours, whereas deposition at a boundary can occur if the boundary 

site is at a lower height than its single neighbour. The boundaries can thus be thought of as 

inhomogeneities in the deposition process [20,18,21,7]. The parameters a and f3 represent 
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the deposition acceptance rate at the two boundaries and varying a: and f3 corresponds to 

varying the inhomogeneity in the deposition model. For the case a: = f3 = 1 considered here, 

the two boundaries are on average at the same absolute height, however the bulk is at a lower 

absolute height. The boundary region of the density profile of the asymmetric exclusion process 

corresponds to the decrease in the height of the surface from the boundary value, whereas the 

bulk density profile corresponds to the shallow minimum of the surface height about the middle 

of the interface. We find on integrating (42,47) that the mean height in the boundary region 

IS 

(h(K)) = _~Kl/2 (54)
Vi 

and in the bulk is 
2 1/2(h(Nx)) = - vii [Nx(~ - x)] . (55) 

One should note here that the average height at a site in the bulk is governed by the O(N-l/2) 

corrections to occupancies 1/2 in the asymmetric exclusion model (47). It is thus in the growth 

model interpretation that the long-range correlations implied by these O(N-1
/ 

2 
) corrections 

become most significant. 

To see this further we shall consider fluctuations in the relative height between different 

positions on the interface. These fluctuations are related to the fluctuations in particle number 

between two sites in the asymmetric exclusion model by 

([h(j) - h(i)]2) - (h(j) - h(i))2 

(56)- 4 [((kEl Tk)2) - (j~l (rk))2] 

j-l j j 
2 = 8 L L [(Tk1 Tk2) - (Tk1 ) (Tk2 )] + 4 L [ ( Tk) - (Tk) ] (57) 

k2 =i+1 k1 =k2 +1 k=i+l 

To determine the fluctuations in particle number in the boundary regions and in the bulk we 

can integrate (43) and (52) respectively. The task is straightforward if tedious, and we obtain 

for the boundary (1 < k2 < k1 < N) 

([h(kl) - h(k2)]2) - (h(kl) - h(k2))2 

1 
1"-1 -8 [kl dq2 J.k dq1 ( 1)1/2 [1 _(1 q2) 1/2] + 4{kl dq [~ __1 ] (58)

Jk2 q2 47r qlq2 ql ik2 4 47rq 

- 4k2 [A G-~) -G +~) +~VX 2:vT=l+~ (~+ 1) arctan(vT=l)] (59) 

12 



where ,\ = kIf k2' 

and for the bulk 

([h(Ny) - h(Nx)]2) - (h(Ny) - h(Nx))2 

- 8N2{ da t db [(TNaTNb) - (TNa) (TNb)] + 4N { da [(TNa) - (TNa?] + O(NI/2)(60) 

- 4N { ~(y - x) [1 - ~(y - x)] + 2~ [y - x + 3x(1 - y)] arctan [ (Xrl-=-Xy)) 1/2] 

2~ [x(1 - y)(y - X)]1/2 - ~ ([Y(1 y)]1/2 - [x(1 - x)]1/2/ } +O(NI/2) . (61) 

If we consider the limit of y - x small in (61), which corresponds to two sites well separated 

microscopically but close to each other on the scale of the interface, then we find that 

[h(Ny) - h(Nx)]2) - (h(Ny) - h(Nx))2 ~ N(y - x). This is the result one would obtaIn 

from considering the interface as random walk by assuming the steps of the interface to be 

uncorrelated. Locally, therefore, the correlations do not significantly affect the shape of the 

interface. However on larger scales the interface is significantly different from a random walk 

because (55) indicates a curvature of the interface and (52) implies non-trivial fluctuations in 

the surface height. Thus the apparently weak connected correlations, which in the bulk are 

of magnitude O(N-I) (52), accumulate over large scales to lead to a smoothing effect on the 

interface. This is reminiscent of what has already been found for a Toom interface [22] ( there 

the smoothing effect was even stronger since the power of N of the height fluctuations was 

altered by the boundary conditions). 

5. Conclusion 

To summarise, we have given an exact expression for the 2 point correlation functions of a 

simple asymmetric exclusion model and have conjectured expressions for all higher correlations. 

The effect of correlations is highlighted when the model is mapped onto a growth process, for 

then the leading behaviour is different from mean-field predictions. This implies that long 

range correlations exist and play an important role in the model. The origin of these long 

range correlations can be traced back to the boundary conditions. It would be interesting 

to investigate the effect of different boundary conditions, for example by considering general 

values of a and f3. To this end an easier route to the exact solution would be most desirable. 

At the time of finishing the present manuscript, we found with V. Hakim and V. Pasquier an 
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alternative way of writing the steady state which may hopefully give a more direct derivation 

of the correlation functions and be extended to more general values of a and f3. 
In the context of growth, it would be useful to know whether the continuum limits of the 

height profile and height fluctuations of a microscopic model, as considered in the present 

work, could be obtained directly from a continuous description, like the KPZ equation [12] 

with an inhomogeneous deposition at the boundary [20]. 
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Appendix A: Recursion for the Weights 

In [8] it was shown that for the model described in the introduction, the weights !N(T1 ..• TN) 

can be calculated explicitly for all N. Ref [8] gave the following recursion of the steady state 

of the weights: 

If =1 

!N(Tl,' .. TN-I, TN) a!N-I (TI, . •. TN-I) (AI) 

If TN = TN -1 = ... := Tp+1 = 0 and Tp = 1 

!N(T1, .•• , Tp_}, 1,0, ... 0) = a{3 [!N-1(T1,"" Tp_}, 1,0, ... 0) 

+ !N-1 (T}, ••. ,Tp-b 0, 0, ... 0)] (A2) 

If T1 = T2 = ... TN = 0 

!N(O, ..• O) = (3!N-1(0, ... 0) . (A3) 

14 



This recursion together with the initial conditions 

(A4) 

determines the steady state for all system sizes and for all choices of a and f3. 
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