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ABSTRACT 

Thermodynamical properties of Reissner-Nordstrom black holes are described in anti

de Sitter space. It is shown that the black hole solution. exists at any finite temperature 

and satisfies the so-called area theorem of the horizon. It is also argued that there is no 

limiting mass beyond which microcanonical equilibrium Co~'figuration is not materialized. 

It has recently been argued [1 - :3] that the N = 4 super Yang-Mills theory exhibits 

a large N phase structure related to the thermodynamics of Schwarzschild black holes in 

anti-de Sitter [AdS] space. It is worthwhile mentioning that the existence of the phase 

transition of a AdS Schwarzschild black hole has been long substantiated by Hawking and 

Page [4] in the quantum gravity approach developed by Hawking and his collaborators 

[.5]. In the present communication, the thermodynamics of AdS Reissner-Nordstrom black 

holes is described aLa ref. [4] in sharp contrast to statistical mechanics of black holes in 

asymptotically flat space [6 - 8]. 

The AdS Reissner-Nordstrom metric of a cosmological constant A can be expressed as 

ds 2 = )..2dt2 _ ).. -2dr2 _ r 2d0,2 (1 ) 

in natural units, i.e. 1i = c = G = 1 as well as k = 1 , where 

122m 2 A 
A =1--+!.. 2 (2)r r2 - "3 r 

and d0,2 reads the line element on a round two-sphere. Here m and q denote the mass and 

charge of the black hole, respectively, and the radius b of the AdS curvature is described 

as b = J-3/ A ; A < 0 [4]. The horizon of the black hole appears at r = r+ , where 

q2 r2 ) 
r+ ( 1 + r! + b~ = 2m (3) 

The surface area A+ of the horizon evidently reads A+ = 47lT! . The inverse Hawking 

temperature i3H on the horizon r + is determined by 

211" 411"b2r + 
(4)

i3H = )..£D.I = b2 _ b2q2/r! +3r! 
dr r=r+ 

Accordingly the extremal black hole has the horizon at r = rE , where 

3r~ + b2r~ - b2q2 = 0 (5) 



~~.. 

011 	 which o. 
Let us suppose the case of -b < q < b , herea.fter, since our purpose is to 

clarify consequences of the AdS curvature on the Reissner-Nordstrom bla.ck hole 

III asymptotICally flat space. We then obtain 

:3 q2)
rE-:::=q ( 1-:2b2 

Thus the mass mE of the extremal black hole reads 

1 q2)
mE ~ q ( 1 +:2 Iii 	 (7) 

A nonextremal black hole exhibits the concavo~convex structure of PH as a funciton of r + 

for Iql ;S r + ;S b. It is indeed straightforward to confirm that PH decreases monotonically 

from PH 00 at r = rE and has a minimum value which is given hy 

f3H;m ~ 6J3 7rq (1 _ 27 
2 

<l)
b2 

at 

rm -:::= v3 q (1 + ~ <l)
2 b2 

and then shows a maximum value M which is expressed as 

'" 2 ( 3 q2) (10)lit - M 7rb 1 + - 
v:3 2 b2 

at 

r /If ~ 1 b (1 _~ <l) 	 (11)
2 b2 

At r == rm , in addition, the mass is descrihed as 

mm -:::= 4
r:l q ( 1 +- -9 q2) ~ 4 b (1 _~ <l)]

v:3 2 b2 	 2 b2 

For sufficiently large values of r + ,i.e. r+ :::p b; Iql , on the other hand, PH decreases 

indefinitely with the mass m ~ r!j2b2 
• As a consequence, the AdS Reissner-Nordstrom 

solution exists at any finite temperature in sharp contrast to the AdS Schwarzschild 

solution [4] which is assured if PH 27rbj Vi . 
The Euclidean action for the AdS Reissner-Nordstrom black hole of period P yields 

the contribution of thermal radiation to the partition function:=: of the grand canonical 

ensemble as follows: 

7rr!(b2 + 3b2q2 jr! - r!)
In:=: 

bZ - b2q2 jr'i + 3r'i 

which is reduced to 

7rr5(b2 r5) + 0 (b2q2 )In:=:~ 	 -b < q < b ,
b2 + 3r5 r5 

where 

ro (1 +~) = 2m 

The expectation value of the energy is written in the form 

a ~ r+ ( r!)- q(J)+) In.::. 2 1 + + b2 == m , 	 (16) 

where (J) + q/r+ reads the electric potential of the hlack hole on the horizon r+ . Equation 

(16) turns out to he 

r 	 ( r2) (q2)~--; l+ii +0 ;;;- -b < q < b . 	 (17) 

The Bekenstein-Hawking entropy S is then determined by 

SIn:=:+ = ~ A+ 	 (18)
4 

which eventuates in 

s ~ 7rr5 +0 (b~r) -b < q < b. 	 (19) 
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Thus the so-called area theorem of the horizon is confirmed for the AdS Reissner-

Nordstrom black hole in the same way as for the AdS Schwarzschild black hole The 

specific heat Cl , is determined by 

C\, = - .)_1rr+ . 2 :-:::-_--,-=---..:.--1...~_-r-

which is reduced to 

C!~, :::::: -b < q < b (21)+0 C~r) 
at sufficiently la.rge values of r + ,i.e. r + )}> b; Iql . Consequently the specific heat Cv is 

positive not only at r+ > ru but also at rE < r+ < r", . At rm < r+ < rM , on the other 

hand, C~, is negative. The fact mentioned above will be paraphrased as follows: The 

AdS Reissner-Norclstrom black hole has positive specific heat Cv and is therefore at least 

locally stable not only at m > mM""" 4b/3V3 but also at q '" mE < Tn < mm "-' 4q/../3 in 

sharp contrast to the pathological situation [6 - 8] for black holes in asymptotically flat 

space. At 4q/VJ '" mm < m < mM ,...., 4bj:3../3 , on the other hand, the AdS Reissner

Nordstrom black hole has negative specific heat Cv and is therefore unstable to decay 

either into pure thermal radiation or to the stable black hole in the same fashion as the 

AdS Schwarzschild black hole [4] in equilibrium with thermal radiation. 

Let us turn our attention to the quantum degeneracy p of the AdS Reissner-Nordstrom 

black hole. As a consequence of Eqs. (18) and (19), we then obtain 

. [1P"-' C f'Xp - c exp (22)
:I 

which is reduced to 

(23)P "'" c exp "'" c exp 

for sufficiently large values of m . Thus the grand canonical ensemble of AdS Reissner

Nordstrom black holes is always well defined in full agreement with the canonical ensemble 

4 

of AdS Schwarzschild black holes [4] and yields sharp contrast to the pathological situation 

[6 - 8] for Reissner-Nordstrom as well as Schwarzschild black holes in asymptotically flat 

space in which the (grand) canonical partition function diverges at any temperature 

than (41rm )-1 since the exponential factor of 

p""" c exp [1r + Jm2 
- qzr] '" c exp Iql ~m (24) 

dominates over the Boltzmann factor at 0 :s; f3 .;S 41rm in the statistical sum. 

Let us now discuss a dilute gas of AdS Reissner-Nordstrom black holes. The micro

canonical density ORN of such states is then described as 

f2 RN ( E, Q ; A) = L On (E, Q ; A) (25) 
n=l 

where the density f2n of the n black hole configuration is asymptotically expressed as [6 

8] 


1 n {'X) fb

On(M,Q;A) , II Jfi dm; dqj ;A) 

n. ;=1 rna -b 

x8(M L
n 

m;) 8(Q - I: qi) 
i=l i=l 

at high energy. Here we have set up E = .M and mo reads the minimum allowed mass for 

each black hole. The Bekenstein-Hawking entropy Sn for such a gas of n AdS Reissner

Nordstrom black holes is written in the form 

n n 

Sn(M,Q;A) = qi;A); Lmi=M; Lqi Q (27) 
i=1 ;=1 

where q; A) 1/4 . A+(m, q ; A) and the corresponding Hawking temperature 

is in turn expressed as 

dS(m,q; A) 41rb2r+ 
(28)q; A) = dm b2 _ b2q2/r~ +3r~ 

.5 



in full consonance with Eq. (4) as well as (:3). As an inevitable consequence of the 

asym ptotic behaviour of A+ rv 41r( 2b2m )2/3 at large Tn , the ~nost probable configuration 

in association with the maximum of the entropy Sn is to realization aLa Frautschi 

[6 (1992)J at thermal equilibrium, i.e. the equipartition configuration with lnj 

and qi 1," " n , in sharp contra.'3t to the single-massive-mode dominance 

scenario [6 10] for black holes in asymptotically fiat space. Accordingly microcanonical 

equilibrium configuration of AdS Reissner-Nordstrom black holes is always guaranteed for 

any finite value of energy M at least such as AI ~ b; !Q! which yields contrast to 

the microcanonical ensemble [6 (1992), 8] of black holes in asymptotically fiat space. It is 

pat'enthetically mentioned that the N behaviour of the most probable microcanonical 

configuration nR is asymptotically described by the self-consistency condition 1) 

In c» 1 , i. e. lv'::::::. c» 1 . 

Thermodyncamica.I properties of AdS Reissner-Nordstrom black holes have been stud

ied in proper reference to ref. and ref. [6 (1992)] as well as ref. [8]. Principalobserva

tions are as follows: Firstly, the black hole solution exists at any finite temperature and 

satisfies the so-called area theorem of the horizon. Secondly, the black hole is at least 

locally stable if the radius of the horizon is either not less than~hat of the AdS curvature 

or of the order of that of the extremal horizon in a.'3ympt6tl'cally fiat space. Thirdly, 
r 

there appears no limiting mass beyond which microcanonical equilibirum configuration 

of black holes can never be materialized. The fruitful thermodynamical investigation of 

stri ng excitations yet remains to be elaborated aLa ref. however, within the general 

framework of Matrix thermodynamics. 
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~ 

In a previous paper [lJ of one of the present authors [H. F.J, the thermodynamics of 

Reissner-Nordstrom black holes has been studied aLa classic work [2J of Hawking and 

Page in anti-de Sitter space. It has been shown that the black hole solution exists 
1 

"'... at any finite temperature and satisfies the Bekenstein-Hawking relation [3J between the 

entropy and the surface area of the horizon without loss of generality. In the present 

communication, the Kerr-Newman metric is derived in AdS space through direct appli

cation of pioneering works [4, 5J of Newman and his collaborators in asymptotically flat 

space, and then such thermodynamical properties as mentioned above are examined for 

AdS Kerr-Newman black holes in proper reference to the momentum of the black 

hole. 

Let us start with the AdS Reissner-Nordstrom solution of a cosmological constant A, 

written in standard coordinates, as follows 

ds2 )..2dt2 )..-2dr2-r2(d(P+sin2 

in natural units, i.e. 11, = c = G = 1 as well as k = 1, where 

\2 2m q2 A 
A =1--+- 2 (2)r r2 '3 r 

m and q are the mass and of the black hole, respectively, and the radius b of 

the AdS curvature is described as b j-3/A; A < O. Let us perform the coordinate 

transformation 

du = dt - )..-2dr (3) 

where u labels the null surfaces [4, 5J. Equation is then rewritten in "null" coordinates 

as 

ds 2 = )..2du2 +2dudr - r2(d(P +sin2 Od({J2) (4) 

The contravariant components of the metric can be paraphrased into the alter

nate form [4, 5J 

http:04.70.Dy


gl-<I/ = ff'n" +£"nl-' - ml-'m" m"ml-' (5) 

where a pair of real null tetrads £1-' and nl-' are expressed as 

rf} 61-'£11 = Si ; nl-' = 6[; - ~ {I m U: + + r..
rf+b2 ] 

and a pair of complex-conjugate null tetrads ml-' and ml-' are desqibed as 

.) 1
mil + -~- SI-' . ml-' = -- (7) 

f sinO 3' J2 r sinO 

Here the radial coordinate r is allowed to take complex values and f reads the complex 

conjugate of r. 

Let us now introduce the complex coordinate transformation [-I, 5] 

u' = u ia cos 0 ; r' = r + ia cos 0 , (8) 

where u' and r' are allowed to be real. We then obtain the contravariant form of the 

metric 

g'l-'lI £'I-'n'" +£'lIn '/-I m'/-Im'" m'"m'l-' (9) 

where 

•1-' .£'/-1 VI , 

1 t 
m'/-I V2(r' + ia cos 0) {iasinO (6t;- +S~ + sinO 

21 { 2mr' - q2 r12 +a cos 2 O}
n'll 6t; - - 1- + SI-' (10)

2 r12 + a2 cos2 0 b2 1 


Let us next carry out the coordinate transformation 


di du Adr j d1' Bdr , 

where 
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A = V-I. (r2 + B _V-I. a 

and 

V = r2 _ 2mr + a2 + q2 + b-2 • (r2 + a2cos2 0)2 . 

Here r' has been replaced with r. We are then eventually led to the AdS Kerr-Newman 

solution in Boyer-Lindquist coordinates [6] as follows: 

ds 2 U2de V-I. (r2 +a2 cos2 (r2 + a2cos2 

2 2
2 2 ( 2mr - q2 r2 + a cos 0) 2' 20} . 20 

- r +a + 2 2 2 0 a sm sm{ r +a cos b2 

2+2a ( 2mr - q2 r2 + a cos 2 
2 0)

r2 + a2 cos2 0 b2 sin 0 dtd1' . 

where 

2mr q2 r2 +a2 cos2 0 
U2 = 1 - + ---- 

b2r2 +a2 cos2 0 

Here i and rj; have been replaced with t and 1', respectively. It is of crucial importance to 

note that a plays the role of a measure of the angular momentum per unit mass, i.e. 

a = jim of the black hole ,and consequently the "geometrical" angular momentum is 

described as ma [= Gjle3 ] . 

The horizon of the AdS Kerr-Newman black hole appears at r = r+, where 

a 2 +q2, (r! +a2) 
2 

}
2m = r+ { 1 +--2- rt b2 2 (16)

r+, r+ 

The inverse Hawking tempe~ature PH on the horizon r + is determined by 

PH 21l' [u dU I ]-1
dr T=T+ 

21l'(r! +a2)2 

m(r~ - a2 ) - q2r+ +b-2 • r +(r~ +a2 )2 


Accordingly the extremal black hole has the horizon at r = rE, where 
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m(ri; a2) - q2rE + b-2 . rE(ri; + a2)2 =0 

on which = O. Equations (17) and eventually turn out to be 

21r(r2 + a2)
i3H = + 

r+ - m +2b-2 . r+(r~ + a2) 

and 

2rE - m +2b- 2 
• + a ) 0 , (20) 

respectively, after straightforward but rather tedious arithmetic. Let us suppose the case 

of 0 ~ a < b ; 0 ~ Iql < b, hereafter, since our principal purpose is to clarify physical 

consequences of the AdS curvature on Kerr-Newman black holes in asymptotically flat 

space. We then obtain rE '" m. A nonextremal black hole will exhibit the concavo-convex 

structure of i3H as a function of r + for m ~ r + ~ b. For sufficiently large values of r +, 

i.e. r+ ::;:;p b; Iql; a, i3H decreases indefinitely with the mass In ~ r!/2b2. Thus the 

AdS Kerr-Newman solution will exist at any finite temperature in full consonance with 

the AdS Reissner-Nordstrom solution [lJ which in turn gives sharp contrast to the AdS 

Schwarzschild solution 

The Bekenstein-Hawking entropy S is associated with i3H through i3H = dS/dm which 

inevitably yields 

S = 1r(r: + 

where the full use has been made of 

dr+ a2 a2(r2 +a2)}
2 1 +-- +2----'-'+'--{dm mr+ b2mr+ 

a2+ +a2 (r!+a2)2}-1 
xl{ + - b22 (22) 

r+ 


The surface area A+ of the horizon is written in the form 


(23)A+= 11 
4 

which eventuates in 

A+ = 21r Jl Zl/2dz , (24) 
-1 

where 

a4 a6 8 

Z = { r! + a 
2 + + [;2(Z2 1)3 _ a _ 1)4 

Thus we are inevitably led to 

2A+ ~ 41r(r! +a ) + 0 (~) ~4S , (26) 

or equivalently S ~ . A+, where equality holds if and only if the angular momentum 

a per unit mass is negligibly small in comparison with the radius b of the AdS curvature. 

In striking contrast to the AdS Reissner-Nordstrom black hole [lJ as well as the AdS 

Schwarzschild black hole therefore, the so-called Bekenstein-Hawking i.e. 

S = 1/4·A+, is broken for the AdS Kerr-Newman black hole unless the angular momentum 

of the black hole is sufficiently small. It is parenthetically mentioned that Eqs. (21) and 

(26) are asymptotically reduced to 

S ~ Tiro 
2 
~ -

1 
A+ (27)

4 

at large values of r +, i.e. r + ::;:;P Iql ; a, where [1) 

ro (1 +~) = 2m (28) 

The specific heat Cv is determined by 

(:!) -1Cv 

a2+q2 r!+a2 (r!+a2)2}
-21r(r! + . 1 --+4-----'--'--~-{ r~ b2 b2r~ 

x [(3 +4~:::) { 1 a 
2 

+ + 

2 2-2 {I + !(3r2 +a2)} {I +~ +2a (r! + a )}]-1
b2 + m~ b2m~ 

which is asymptotically reduced to 

5 



Cv ~ 27rr5 

at sufficiently large values of r +, i.e. r + ~ b ; \q\ a in full agreement with AdS 

Reissner-Nordstrom black holes [1] as well as AdS Schwarzschild black holes [2]. We are 

now in a position to touch upon the quantum degeneracy p of the AdS Kerr-Newman 

black hole. We then obtain 

prvc +a2 
)] 

which is reduced to 

p rv C exp[7rr5] rv C exp[7r(2b2m )2/3] 	 (32) 

at sufficiently large values of m. Consequently the grand canonical ensemble of AdS 

Kerr-Newman black holes is well defined in harmony with AdS Reissner-Nordstrom black 

holes [1] in the same fashion as the canonical ensemble of AdS Schwarzschild black holes 

It is, by way of parenthesis, noted that microcanonical equilibrium configuration of 

AdS Kerr-Newman black holes is brought to realization in the sense of the equipartition 

configuration in consistency with AdS Reissner-Nordstrom black holes [1] as well as AdS 

Schwarzschild black holes [2]. 

The AdS Kerr-Newman solution has been derived on the basis of the AdS Reissner

Nordstrom solution [1] with the aid of the null tetrad formalism (lla Newman and others 

[4, 5] in asymptotically flat space. Thermodynamical properties of AdS Kerr-Newman 

black holes have then been described in proper reference to the angular momentum of 

the black hole. The most salient observation is as follows: In striking contrast to AdS 

non-rotational black holes [1, 21, the AdS Kerr-Newman black hole satisfies the Bekenstein

Hawking relation between the entropy and the surface area of the horizon if and only if 

the angular momentum per unit mass is sufficiently small in natural units as compared 

with the radius of the AdS curvature. Let us conclude by emphasizing that the elaborate 

investigation of the thermal string ensemble in various D-brane backgrounds [7,8] will be 

6 

prerequisite for building up the fruitful AdS thermodynamics or equivalently for clarifying 

physics underlying the gravitational dynamics on AdS-type spaces. 
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