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1 Introduction 

This set of lectures extends a certain unity between cognition, neuro-biology and theoret­
ical modeling, see e.g. [1], to some consequences it implies for the concomitant learning 
processes. I will proceed from some experiments in neuro-physiology to the type of mod­
els which may account for them. I will argue that experiment indicates that conventional 
ideas about the boundary between computation and learning are not implemented in 
the operation of brains. Hence learning on a realistic substrate and the type of internal 
representations it can produce is an essential step in capturing cortical computational 
principles. 

From the point of view of artificial intelligence the brain may not be a bad source of 
ideas for future development. The constraints discovered in following closely the func­
tioning of live brains, or of devices trying to imitate them may narrow significantly the 
immense space of possible intelligent machines that should be studied in order to reproduce 
brainy function. 

The first lecture will be devoted to discussing the experimental evidence for attractor 
behavior (reverberations) in the cognitive processes of performing monkeys, as observed 
in neurophysiology and to the type of models which can capture attractor behavior in a 
neural network. In the second lecture I will discuss the concepts of learning and memory in 
attractor neural networks (ANN). The third lecture will be devoted to the description of a 
material substrate, in electronics, which can learn attractors from an incoming data flow. 
This will lead to a discussion of the special constraints imposed on learning and memory 
in a material structure. The last lecture will formalize and generalize the constraints and 
draw the theoretical consequences which in turn reflect on the engineering of the device. 

1.1 Experimental evidence for the existence of attractors 

In the basic experiment performed by Miyashita et ale [2] a set of computer generated 
images is prepared and a monkey is trained to perform delayed visual image matching. 
In order to avoid correlations in the geometric structure, the pictures are generated using 
fractal algorithms which produce presumably uncorrelated images. The task of the monkey 

1 




is as follows: following a short warning signal, one of the generated pictures is shown on 
the screen for a short time (200ms). Next, the screen is blanked and, after as long as 16 
seconds, another picture is presented and the monkey is trained to respond differentially 
if the second image is the same as the first or is different. When the monkey begins to 
perform well and gives a high percentage of correct answers the recording starts. 

Miyashita's group was able to find a very small area (lmm2 some 100,000 cells) of 
the anterior ventral temporal cortex (AVT) where selective activity takes place even in 
the absence of the stimulus, i.e. during the 16 second delay. The first remarkable fact is 
that the selective persistent activity goes on in a very localized area. This fact constitutes 
experimental evidence for the existence of a localized mechanism which is able to maintain 
a reverberation for as long as 16 seconds. Furthermore, when following training the pic­
tures are presented in a random order, one observes that the spike rate distributions are 
reproducible: the same image produces the same persistent elevated activity distribution, 
even if between the two presentations many other images were shown at random. 

In Fig. 1 there are four displays from ref. [3]. The rasters above each histogram 
constitute a representation of spike activity of a certain neuron recorded during twelve 
different repetitions of the same picture. The reproducibility is quite clear in all the four 
cases. Furthermore this figure is an experimental manifestation of the effects typical of 
collective behavior of systems with a large number of degrees of freedom. For example, in 
case (a) a neuron active during the presence of the stimulus maintains high activity in the 
delay period; in case (b): during the 200 ms when the external stimulus is on, the activity 
level is very low. However, when the stimulus is removed, this neuron's activity goes up 
and reaches the same level as in case (a). The interpretation of this instance in terms of 
attractors and reverberations is quite simple: during the period in which the stimulus is 
on it maintains some activity distribution. But when the stimulus is removed, the high 
activity level is maintained in the reverberations which are governed by the structure of 
the synaptic connections. Actually the system is correcting the 'error' on the basis of 
the acquired past experience which has structured the attractors by forming the synaptic 
structure. A similar, though reversed reading is given to the neuron in case (c) that is 
activated by the stimulus but is quiescent in the reverberation. It is the opposite type of 
error. The interpretation of (d) is left as an exercise. 

This connects to the properties of associative memory. Partial information in a stim­
ulus is sufficient for the retrieval from memory of a full description of the memory item 
connected to the stimulus. It is in this context that we interpret the modification of the 
activity of the neuron in case (b). 

There is another interesting behavior which characterizes this particular part of anterior 
ventral temporal cortex [2]: varying the size, the angle of rotation or the color of an image, 
one finds an internal activity distribution which is essentially the same. This means that 
in this part of the cortex the attractors are already an internal representation of some 
prototypes and stimuli which differ for size, angular position or color have essentially the 
same internal representation and all of them flow into the same attractor. 
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Figure 1: Four types of neuronal behavior (in each part of the figure there are 12 rasters 
and a spike rate histogram below): a) Active in presence of stimulus and persists in 
absence; b) Neuron active in the delay period of a different stimulus; c) Active in presence 
of stimulus, inactive in absence; d) Inactive in presence of stimulus and active in delay 
period. (From ref. [3]). 

Conversion of temporal to spatial correlations 

In the second experiment [4] the pictures are shown in a fixed order during training: each 
picture is ahvays followed by the same picture. A sanlpling of the internal representa­
tions is reconstructed by recording the activity of single neurons from the AVT cortex. 
Subsequently, the correlation between internal representations corresponding to different 
patterns is calculated off-line. It is found that the correlation between representations 
depends only on the distance separating the two patterns in the training sequence. 

In order to prevent accidental correlations in the internal representation of the images~ 
two monkeys ,vere trained on the same set of images but the patterns were presented 
in a. different order. For both monkeys the sanle result was obtained: the correlation 
between two internal representa.tions beconles insignificant at the separa.tion of about 5 in 
·the training sequence. \Ve therefore conclude that in this pa.rt of the corte:~ the synaptic 
structure created during learning has correlated attractors even though the items le~rned 
were uncorrela.ted. In other ,vords, presenting uncorrelated pictures in repeated, fixed 
teillporal order produces correlated internal representations~ the attractors. that preserve 
infonnation concerning the temporal order. 

2.1 Lessons from Miyashita's monkey 

• 	 There are long-lived elevated spike rate distributio115 select.iye to the stilllUlus. Ergod­
idty is broken and selectivity is possible. The acth'ity distributions are self-sustained 
as they persist long after the disappearance of the stinlulus. 

• 	 The reverberations can be observed in localized nl0d nles (1 rn.1Tl.2 ,.1 05 neurons) 
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• 	 The reverberations are reproducible on the single unit level. The activity of a single 
neuron depends only on the stimulus leading to the reverberation and it is always 
the same when the same pattern is presented. A particular neuron may be shared 
by several different representations. 
-

• 	 Persistent high rates are not single neuron properties (collective behavior). 

• 	 The internal representations are of prototypes: in this area they do not depend on 
angular position, size, color etc. 

• 	The internal representations are distributed, i.e. many neurons participate in repre­
senting a pattern. 

• 	 The reverberations are attractors in the sense that some neurons which are activated 
during the presentation of the stimulus stop during the delay period. So the network 
is able to perform error correction. A class of similar stimuli leads to the same activity 
configuration. 

• 	The internal representations code for temporal correlations: patterns which are tem­
porally correlated in the training phase have correlated internal representations. 

2.2 Cognitive psychology implications: priming and false alarms 

It is not too surprising that if two uncorrelated objects appear very often in temporal 
contiguity, then thinking about one, the other can be easily evoked. There is a very 
familiar phenomenon in cognitive psychology called priming. Subjects are asked to identify 
distorted visual patterns and the time for the identification of the correct patterns is 
measured. This time is compared to the time required to identify distorted images preceded 
by a pattern that is cognitively correlated with the image to be identified. For example, 
showing first the full word "chair" and then a distorted version of the word "table", the 
identification time is significantly shortened. 

The interpretation in terms of attractors is quite straightforward: when the cortical 
module is in an attractor which is correlated w'ith the internal representation (the attrac­
tor) of the incoming stimulus, then the time the .system takes for moving into the new 
attractor is much shorter than the time required for a transition from an uncorrelated 
state. This interpretation immediately makes a prediction about a neuro-physiological 
experiment. One can measure prinling on the level of AVT cortex by observing transition 
times between internal representations. 

What is of great relevance is that here we find a potential embryo of context sensitivity. 
In other words, the internal representations of learned items depend not only on what the 
corresponding stimuli had been, but also on the context in which they had been learned: 
who appeared shortly before or after during learning. This is a significant fact since it 
displaces a part of 'syntax' from the application of rules to the formation of representations 
during learning. Moreover, the development of these correlated representations is also a 
potential opening in the direction of 'semantics~. 'Vhat I mean by that, in a very tentative 
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way, is that semantics is in part the spectrum of other experiences in which a perceived 
object is interpreted by the perceiving subject. 

But before embarking on these slippery extrapolations, I would prefer to lower the 
sights and follow more closely the phenomenology of the findings and of the candidates 
for a theoretical description. This implies focusing on two aspects: 

• 	 The presence of persistent states of stimulus selective activity in an assembly of 
neurons, in the absence of the provoking stimulus; 

• 	 The formation of the synaptic structure which can sustain these internal representa­
tions, i.e. the corresponding dynamics of unsupervised learning or self-organization. 

3 Toy models 

Miyashita's experiments have raised two essential problems: the first one concerns the type 
of dynamics which can Inaintain a selective distribution of neuronal activity in absence of 
the stimulus. The second problem is the way the system creates correlated attractors from 
patterns that are uncorrelated. In order to solve these t,vo problems I will describe some 
toy models which reproduce the main features of the Miyashita experiments. Toy models 
are a powerful tool for investigating very complicated systems and turn an untractable 
problem into a tractable one. They represent the essential features of the systems, indicate 
certain phenomena and make predictions. If the results are satisfactory, their robustness 
to the removal of the simplifying assumptions can be tested. 

3.1 The Hopfield model 

The Hopfield model[5, 6] provides a solution to the first problem, that is how to maintain 
selective activity distributions. The distribution must be sensitive to the stimulus but not 
too sensitive, in the sense that internal representations of very similar stimuli must lie in 
the same basin of attraction so that the system is able to perform error correction. On 
the contrary, if two stimuli are different enough, then the system has to evolve to different 
attractors enabling the possibility of discriminating between two different representations. 

In the nehvork, the Hebbian assembly, corresponding to the module observed in th~ 
A/Iiyashita experilnents, ,lv neurons are connected by synapses. A state of the network at a 
given moment is a distribution of +l,-l's which specifies which neurons are emitting spikes 
and which are not. The state of the N neurons belonging to the network can be completely 
specified by assigning an N-bit word to each time slice. The dynamics of the network is 
as follows: first a neuron computes its depolarization relative to its threshold, due to the 
incoming signals from the other neurons. The synaptic yariable Jij is the depolarization 
of neuron number i due to a single spike in neuron number j. This is the synaptic efficacy 
and it can be positive or negative - excitatory or inhibitory. We will imagine them to be 
randomly mixed. 
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The difference between the depolarization and the threshold is: 

N 

hi(t + 8t) = :L: JijSj(t) . (1) 
i=1 

which determines the subsequent state of the neuron, according to: 

(2) 

The new state of the neuron is +1 if the depolarization is above the threshold (hi > 0), 
i.e. the neuron emits a spike, and is -1 otherwise, no spike. We consider the process to be 
deterministic. In reality there are many noisy processes which affect the time evolution 
of the activity (See e.g. ref [6]). We shall ignore them for the purposes of the present 
discussion. 

For this simple model[5, 6] it is possible to construct a specific synaptic matrix Jij 
which has an arbitrary set of uncorrelated patterns as attractors. In other words, it is 
possible to choose the states one wants as attractors among the very large set of random 
uncorrelated N-bit words in which each bit is chosen at random, with equal probability, 
to be either +1 or -1 and to construct a Jij which has them as attractors. This is done as 
follows: defining ~r as the state neuron i should be in when the network settles in attractor 
number Jl, the connection between neuron i and neuron j will be the sum of the products 
of activities of neuron i and neuron j in each one of the p patterns to be memorized in the 
network: 

1 ~ I-' I-'Jij = N L...J ~i ~j (3) 
1-'=1 

To see that this synaptic matrix maintains the activity distribution in everyone of the 
patterns that compose the synaptic matrix, one considers the signal and noise parts of 
the quantity hisi produced by this synaptic structure when the network is in one of these 
states, number 1/ for example, i.e. when Si = ~r. The condition for stability is hiS;. > 0, 
which implies that with the dynamics Eq. 2, the new Si ,vill be equal to the old one. The 
relevant quantity is therefore, 

1 p 

~rhi = :L: JijSjSi = N:L: L ~r~'J~ier =1+ Ri. (4) 
j j 1-'=1 

The first, the signal term is the contribution of the ternl J.L = v in the synaptic matrix. 
It is also the average of hi~r over all the sites. R;. is the part contributed by the p - 1 
patterns ~I-' with Jl 1= 1/. It is the noise ~escribing the fiuctuationa fronl site to site: 

Ii; = ~ L: L: emejej (5) 
j 1-':F1I 

Since all the bits of the patterns are uncorrelated, 8;. is a one-dimensional randonl walk 
of (N - l)(p - 1) steps of size N-1. Its RMS is: 
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R2 ~p/N. 

If p is much less than N, then R cannot change the sign of hi., which is just the sign of 
er. This means that starting in a state er, stored in the synaptic structure, the network 
remains there for an indefinite time, until a new st~mulus arrives. FUrthermore, these 
fixed points are true attractors with a certain basin of attraction. Starting from a state 
which resembles one of the stored pattern, the system is able to perform error correction 
by relaxing into the nearest attractor and remaining there. The system works as an 
( auto) associative memory even in the presence of noise in the dynamical process of spike 
emission, see e.g. ref. [7, 6]. 

This is expressed in Fig. 2 where the time development of the network is followed by 
monitoring the overlaps with the stored patterns, defined as: 

1 N 
ml' = -LSier. (6)

N i=1 

These are natural variables which measure the macroscopic distance between the present 
state of the network and each of the stored patterns (see e.g. ref. [6]). Note that they can 
vary from +1, when the network state is identical (bit-by-bit) to one of the patterns, to 0 
when the network state is uncorrelated with the pattern to -1 when it is anti-correlated 
with it. It is a simple transformation of the Hamming distance per bit. 

The network of 400 neurons stores 7 patterns in the form Eq. 3. The overlaps are 
plotted for two different initial configurations, which have significant resemblance to the 
first stored pattern eJ. The initial state has an overlap (ml = 0.35 - 32% errors, m1 = 0.20 
- 40% errors) with the first stored pattern. The spike dynamics increases the overlap with 
the first pattern rapidly to 1 and all the errors are corrected dynamically. The overlaps 
with other patterns fluctuate around 0 and their value is negligibly small when compared 
to overlap with the first stored pattern. This happens also in the second case in which the 
number of "errors" in the initial state is significantly larger than in the first case. 

Note that the network relaxes into a fixed point. This does not imply that the system 
is quiet. At a fixed point half of the neurons are emitting a spike every 2ms and half 
the neurons are quiescent. The definition of the model implies that at a fixed point the 
neurons which are 1 emit a spike in every interval of time discretization, i.e. in every 2ms 
(the absolute refractory period). Neurons which are fixed at -1 emit no spikes. Thus the 
fixed point is a very active state of the modeled neural system, in which a selective half 
of the neurons emit 500 spikes/sec. Two factors determine this distribution of activity: 

• The synaptic matrix - the learning process; 

• The initial state - the stimulus. 

3.2 Capacity and performance in associative retrieval 

The signal-to-noise analysis described above was a simple way of arriving at an estimate 
of the number of random patterns of ±1 bits in a network of the Hopfield type. That 
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Figure 2: Time development of overlaps of a nehvork of 400 neurons with 7 stored patterns 
in two sitnulations of the Hopfield model with noiseless asynchronous dynamics. (From 
ref. [6]) 

analysis can be deepened and extended as follows: 

• 	 If the actual gaussian probability probability distribution of the neural input, hi is 
considered, it can be shown[8, 6] that no errors will occur in the retrieval of any of 
the patterns provided p < O(N/ In N); 

• 	 If errors are allowed, but one requires that there be stable attractors near to the 
memorized patterns (in the Hamming sense), then in the absence of noise in the 
neural dynamics, the system \vill function well until 

p ~ 0.14N. 

The fraction of errors in retrieval at extrenle melnory loading is less than 1.5%[9, 6]; 

• If one does not restrict the synaptic matrix to the Hopfield form, one can show that 
syna.ptic l11atrices exist such that 2N random patterns ca.n be st.ored as attractors 
with no errors[10]; 

• 	 Storing patterns with 0-1 bits, sparsely coded (i.e. with low fra.ction of l's) one can 
reach a storage capacity of (N/ In N)2 patterns, as the coding rate tends to zero, yet 
keeping a finite infonnation storage per synapse[l1. 10, 12, 13]. 

It can further be sho\\7n that in many cases these properties of the networks are rather 
robust to various types of noise and synaptic disruption. See e.g. ref. [6] ch. 7. 

4 Correlat'ed attractors and uncorrelated patterns 

The second question raised at the beginning of this section concerned the correlations 
between internal representations of patterns which are presented in a fix~d .order during the 
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training period. It turns out that it is possible to reproduce correlations of the Miyashita 
type in a very simple toy model[14]. Take the uncorrelated patterns er = ±1 as the 
distribution of activities in the stimuli to be learned. The dynamics of neural activity is 
described again by Eqs. 1, 2. However the synaptic matrix includes a term that reflects 
the special training process of fixed order presentation: 

Jij = ~ tlerer + a(er-1er +erer-1)] (7) 
p=l 

The idea is that in the synaptic matrix the information concerning temporal correlation 
is stored by the second term in the square brackets. If a = 0, then we have the Hopfield 
matrix. Otherwise there exists a term which connects the structure of one pattern to the 
preceding one. The last term preserves the symmetry of the Hopfield matrix so that all 
attractors are fixed points in the absence of noise and therefore the analysis is simple. 

The additional term can, in principle, be set up in a learning scenario. During the 
training period the pattern number 11-1 is always shown before pattern number 11. First 
the network learns the uncorrelated stimuli as uncorrelated attractors. When stimulus 
11-1 is presented the network relaxes into the attractor number 11-1, and persists there. 
When stimulus 11 is shown the network makes a transition to the next attractor, the 
one representing the consecutive stimulus. During the transition the information of both 
patterns is available and can be used for learning the mixing term in Eq. 7. Note that this 
type of information is available due to the framework of attractor dynamics which I have 
discussed in the previous section. When stimulus 11-1 is removed the information about 
it is stored and maintained active in the corresponding attractor. 

This picture implies in particular that if the monkey has not been trained long enough, 
one should expect uncorrelated stimuli to produce uncorrelated internal representations. 
That is a prediction that could be verified neuro-physiologically. 

The neural dynamics driven by the synaptic matrix 7 is as follows: the difference 
between the depolarization and the threshold, Eq. 4, in terms of the overlaps Eq. 6, 
reads: 

hi = L:
P 

mll(t)[er +a(er+1+er-l 
)]. (8) 

1'=1 

Starting from a state identical to pattern el, i.e. which has overlaps m2 = 1, and m ll .:.­

o \Iv =1= 2, the expression for the depolarization, Eq. 8 becomes: 

hi = ~2 + a(~? + ~f). 
JLIf a < 1/2, then the original uncorrelated patterns e are still attractors because it the 

first term on the right hand side which dominates the sign of hi. On the other hand if 
0.5 < a < 1 the uncorrelated patterns er are no longer stable points. Indeed, starting from 
m2 = 1, there is a probability 0.25 that the second term dominate. So, after one step of the 
dynamics one finds[14] that there are three non vanishing overlaps: m 2 = ml = rn3 = 0.5. 
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But now, at the next step, two new terms will contribute to the sum in expression (8) and 
therefore also the overlaps with patterns at distance two from el will be non zero. 

The fixed point attractors of this network, corresponding to the stimulation by one of 
the original uncorrelated stimuli can be found exactly[14, 15]. Each attractor has exactly 
5 non'"'!:ero overlaps. Starting from a state identical to one of the stored, uncorrelated 
patterns, one obtains the following iterations for the overlaps with the stored patterns: 

0 0 0 0 0 1 0 0 0 0 0 

1 1· 10 0 0 0 	 0 0 0 0'2 '2 '2 

3 5 3 1!0 0 0 	 0 0 08 8 8 8 8 

1 3 13 19 13 3 10 0 	 0 032 32 32 32 32 32 32 

1 3 13 51 11 51 13 3 10 	 0128 128 128 128 128 128 ill 128 128 

_1__1_ ...L .E. .!!.. IL .!!.. 13 2...0 	 0128 128 128 128 128 128 128 128 128 

From those it is posssible to calculate the exact correlations between different attrac­
tors. The correlations between one generic attractor and the attractors corresponding to 
the patterns neiboghring in the training sequence are: 

4 11 32 85 170 170 85 32 11 4 
- - - - 1 - - ­... 256 	 256 ...256 256 256 256 256 256 256 256 

The resulting attractors are correlated beyond the first neighbor memorized in the synapses 
and become small at a separation of 4-5. It is remarkable that this result does not depend 
on the value of the constant a: the only requirement is that a lie in the interval [0.5,1]. 
Moreover, these results capture the qualitative features observed in the experiment[4]. 

In Fig. 3 we display side by side the correaltions of attractors found in the experi­
ment of Miyashita[4] and in the toy model calculation. There is a surprising qualitative 
agreement. The actual values of the correlation coefficients are different, but this seems 
to be attributable to the way in which correlations are computed in ref. [4], Le. as rank 
coefficients. 

Learning attractor neural networks (LANN) 

The preceding discussion underlines the following essential points: 

• 	 Attractors are employed by cortex and can be considered as active internal repre­
sentations of learned external stimuli; 

• 	 In the structure of the attractors is enlbedded infonnation about the context in 
which learning took place, which in turn expresses already a partial computation of 
certain tasks; 
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Figure 3: Correlations between attractors: left, delay activity population correlations[4] ; 
right, attractor correlations in the ±1 model [14]. 

• The structure of the attractors is the result of learning, during attractor formation; 

• 	The context dependence of the attractors, or the internal representations, may be 
lnodified if the structure of the input flow changes; 

• 	The training process is unseparable froln the perfonnance, Le. the recognition efforts 
of the monkeys. 

These considerations have led us to consider a material systeln in which learning of 
attractors can take place in a nl0de \vhich is indistinguishable from retrieval. The natural 
substrate is silicon and the formulation of the requirements has been the following: 

• 	 Learning, as synaptic dynamics, should be continuous. No learning vs fUllction 
phases; 

• Learning unsupervised; 

• 	 Network able to handle a. natural flow of inconling stilnuli with no constrain~.s pn 
ordering or telnporal distribution of arriving stinluli; 

• 11enl0ry 	nlaintenance for long times~ even in absence of stinll11i and of network 
activity; 

• End product of learning classification capability of the network; 

• The network .must be implenlenta.ble in hardware; 

• OV'erloading must not lead to Inenlory bla.ckout catastrophe (paliInpsest property). 
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Figure 4: The pilot LANN with 3 neurons and 3 synapses in discrete elements with 
asynchronous stochastic refresh.. For details see ref. [16]. 

This project, carried out by a ROlne I Ronle II collaboration, see e.g. refs. [16, 17], has 
completed several stages of design and developlnent and has brought forth several basic 
constraints of learning in realistic devices. Neurons inlplemented by high gain operational 
anlplifiers and synapses by condensers. The benchmark device which has been cOlnpleted, 
at the ,vriting of these lines is shown in the photograph in Figure 4. It is a network 
of 3 neurons and 3 synapses which performs in perfect accordance with with theoretical 
expectations of stochastic learning and retrieval, \Vhen exposed to a natural stream of 
stinluli. It essentially satisfies all the requirements listed above. 

A network of 3 neurons and 3 synapses is a far cry froln the 1011 neurons in the cortex or 
the 10~ neurons in the module registered by Miyashita. For us it has been a drawing board 
for the exploration of dynamical principles connecting learning with retrieval, principles 
that had to be assinlilated before a large scale project is embarked upon. It has been so 
designed that it naturally expands into a 27 neuron network with the accompailying 27~13 
synapses (see e.g. [16]), ,\~hich is the last step before VLSI integration. Yet, however snlall 
this nehvork it has already produced Inany lessons~ which we proceed to discuss. 

Learning in this net,vork is affected in a Hebbiau fralnework[18] , which provides a natu­
ral mechanisnl for learning attractors. I belieye~ as a nlatter of fact. that Hebb introduced 
his learning paradigln precisely in order to describe the learning of attractors, which he 
ternled re·verberation.s. In other words. if an afferent activates select.ively certain set.s of 
neurons in an ·a.'5s~lnbly', then nlodifying eadl synapse by sonle average correla.tion of the 
activity of the two neurons connected by it. will lead to the creation of a corresponding 
attractor. One of the attractions of the Hopfield nlodel[5] was the fact that the synap­
tic nlatrix could be viewed as a linear ac.cull1ulatioll of t.he patterns to be Inenlorized, 
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producing those same patterns as the network's attractors. 
If synapses had the analog depth required by the Hopfield matrix, one could envisage 

a network learning that matrix by acquiring the patterns one at a time. One would then 
also have the high storage capacity, both in terms of number of retrievable patterns and in 
terms of information per synapse. But, the synapses would be required to have a temporal 
stability for the multiplicity of values arrived at in the course of this one shot learning, 
both for the intermediate values as for the final ones. But even in this ideal case, such a 
network would suffer from the 'blackout catastrophe', namely learning too much produces 
total memory loss. 

6 The problem of analog depth problem 

6.1 Sompolinsky's solution 

The problem of the analog depth of the synaptic values 'vas treated by Sompolinsky[19, 6]. 
He has evaluated the performance of a Hopfield network, following a clipping of all the 
synaptic values to one of three values. Given a synaptic threshold, each synapse whose 
absolute value is above the threshold is given a prescribed uniform value, preserving only 
its sign. A synapse whose value is below the threshold, is set to zero. This is described 
in Figure 5a. In this case one ends up with a diluted network: a fraction of the synapses, 
that depends on the threshold are eliminated. The performance of the network is then 
calculated and can be compared with performance of the intact network. 

Starting from a synaptic matrix like Eq. 3, i.e. 

one defines the non-linear transform of each' element as: 

The function F{x), for the 3-'way clipping has the form depicted in Figure 5. Following 
this operation each synapse has one of three values, one of which is O. The synapses which 
have zero efficacy are effectively disconnected. Following the clipping the connectivity of 
the resulting network is diluted. 

Sonlpolinsky has shown that for p large, the network with 3-way clipping is equivalent, 
as an associative memory, to the original network with quenched (static) Gaussian noise 
on each synapse. In other words, the attractors of the nehvork with the synaptic matrix 
Tij, above, are the s~e as those of a network 'with the synaptic nlatrix: 

Jij + 'f}ij 
where J ij is given by Eq. 3 and 'f}ij is with the following characteristics: 
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Figure 5: (a) Clipping function (b) Performance of clipped network vs the corresponding 
dilution. From ref. [19]. 

where 

and 

Co=l-erf(~). 

The quantity Co is the renlaining connectivity in the net\vork. Tha.t is the fraction of 
synapses which have not been severed by the clipping process. 

Figure 5(b) shows the performance of the clipped network as a function of the clipping 
threshold. The curve pointing left is the storage capacity and the one pointing right is the 
retrieval qualit.y, reaching unity at nlaxinlunl. One sees that the properties of the network 
vary rather gently \vith t.he clipping and dilution. Moreover, the storage capacity even 
ilnprOyes at the beginning and rea.ches a nlaximum at xo=O.62 where the dilution level is 
about 62%, i.e. 38% of the synapses of the original network have been cut off. At· this 
point the capacit.y of the network is only about 15% lower than that of the intact net.work. 

6.2 The practical problem of continuous refresh 

The above discussion \vould have been a solution to the analog depth problenl, proyided 
one could affect learning by first acculnulating linearly, and stably, the Hopfield synaptic 
values. Then~ once a desired set of patterns has been learned, clipping interyenes to 
produce a network that can store that set of patterns and yet have only three values for 
its synaptic efficacies. The practical problenl, electronic or biological, is nlore difficult.. 
It nlay be the case tha.t the synapses do not have the analog depth to nlaintain the 
intennediate yalues at any tinle. Or it Inay be that a fully analog synapse, as would be 
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a condenser, may not be able to stabilize its acquired values for long periods. What is 
common to both cases is that the synapses must be clipped, or refreshed, all along. 

One could assume that a synapse has an electronic, or biochemical refresh mechanism 
which pushes the synaptic value towards some saturation, whenever that value is above 
some threshold, and allows the value of the synapse to decay to zero if it is below the 
threshold. This is one option for stabilizing a structured matrix for indefinitely long times. 
But new questions present themselves. The properties of the resulting network strongly 
depend on the dynamics of the learning process and not merely on the informational 
content of the data and on its statistical distribution. In fact, the rate of arrival of the 
data to be learned, as well as the time of presentation of each pattern, relative to the 
time constant of the synaptic clipping (refresh) are found to be crucial. We shall see that 
consideration of some simple relations between these time constants leads to performances 
much below those of the static clipped network. In this case the results of information 
theory, as well as those of statistical mechanics, give a grossly inaccurate upper bound. 
On the other hand, the simple arguments introduced here, show several ways in which 
things can be improved. Those can be introduced in the dynamics of data presentation, 
in the dynamics of the clipping, or in the coding of the data. Surprisingly, it seems that 
nature has implemented in cortex some of these options. 

One immediate consequence of such learning is that more recently presented pattern­
s are privileged relative to older ones, much as in 'palimpsest' scenarios [20, 21]. But 
palimpsest effects are due to the presence of an upper cut-off on the synaptic values, or 
alternatively, of the exponential decay of the contributions of older patterns[22]. As we 
shall see below, the refresh mechanism is significantly more restrictive. It does roll memo­
ries froln the present into a disappearance in the past. But the refresh nlechanisms to be 
discussed here do the rolling faster, because they represent an very low effective cutoff on 
the synaptic value, and consequently the storage capacities are significantly reduced. 

The basic learning scenario, to be elaborated upon below, is one in which random 
patterns are presented at low rate, with at most one pattern per refresh period. If learning 
is deterministic, the resulting network is found to be very limited: patterns have to be 
learned in a single shot, and no more than In N attractors can be stored in a netw'ork 
of N neurons. Things improve significantly when the rate of presentation is increased. 
This is expressed by a scenario in which the patterns are grouped into subgroups, each 
presented within one refresh period. In this case the capacity is increased with the nUlnber 
of patterns presented per refresh period. The extreme case of fast presentation is the one 
in which all patterns are presented in a single refresh period, in which case one would run 
into a 3-,vay clipped net described in the previous section. 

Next we discuss a stochastic refresh mechanism, in which synapses which should be 
modified due to the stimulus being presented, are modified with a probability lower than 
unity. In this case, learning can be made much slower, and a single presentation of a 
corrupt pattern, for .retrieval, has essentially no effect on the synaptic structure, provided 
the probability is low enough. The lo\ver the probability the higher the capacity, \vhich 
can become as high as Vii, even for slow presentation of patterns. Finally, we show tha.t 
if low refresh proba.bility is combined with sparse coding in the stimuli performance can 

15 



be further improved, reaching O«N/lnN)2) patterns. 

7 Learning in material devices 

I would like to devote the last part of this exposition to the type of constraints that emerge 
when one tries to implement a LANN, a learning attractor neural network, in a material 
device. Such constraints show up in a context of the development of a project of the 
type mentioned in the previous section. The system'has two sets of dynamical variables: 
neurons and synapses. Neurons vary on a much shorter time scale than synapses. This 
feature provides the possibility of performing retrieval with quasi-static synapses. The 
neural variables Si have effectively two states (high gain). They obey the dynamics: 

Si = sign (2: JijSj + Hi)
jf.i 

where Jij are the synaptic variables and Hi are external currents representing the stimulus. 
The synapse has two behaviours depending on the time scale: 

1. 	Fully analog on short time scales: the growth of a given synaptic efficacy is driven 
by the correlated activities of the two neurons connected by the synapse. This 
correlation acts as input to an integrator. The potential across its capacitor stores 
the synaptic efficacy. 

2. 	 On a longer time scale (of the order of the capacitors decay time) intervenes the . 
refresh mechanism which discretizes the synaptic efficacy: whenever the synaptic 
value crosses a threshold Jo, a current Jc is injected into the synapse, driving the 
capacitor towards saturation. The synaptic value is allowed to decay to zero if it 
is between the positive and the negative thresholds. Thus the elementary situation 
(see ref. [25]) would be one in which patterns are presented slowly, at most one 
per refresh period, and the learning is deterministic, i.e. a synapse which receives 
two correlated bits moves up and one which receives anti-correlated bits from its 
neighboring neurons it moves down. We first study this toy model for the learning 
dynamics. 

7.1 Slow pattern presentation with deterministic refresh 

In a slow deterministic learning process, of ±l-neurons, the scenario nlust be as follows: 
when the network is forced into one of its neural states, ei, every synapse will get either 
a +1 or a -1 (=eiej). Since the presentation of the last pattern the s~-napses have been 
refreshed and the first question is whether the new stimulus will provoke any change. 
This depends on two things only: the preceding state of the synapse and the value of the 
arriving bit source. Defining by Clip(Jij('\)) the clipped synaptic value following the A-th 
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refresh cycle, it can be shown that the only case in \vhich patterns can be learned is[25]: 

Clip(Jij(..\» = +Je 	~ Clip(Jij(..\ + 1» = +~e if ere; = +1 
~ clip(Jij(..\ + 1» = 0 if ere; = -1 

clip(Jij(A» = 0 	 ~ clip(Jij(A + 1» = +Je if ere; = +1 
~ Clip(Jij(A + 1» = -Je if ere; = -1 

(9) 

clip(Jij(..\» = -Je 	~ clip(Jij(A + 1» = 0 if ere; = +1 
~ clip(Jij(..\ + 1» = -Je if ere; = -1 

Essentially every synapse is subjected to a random walk of equal steps of both signs 
by the stimulus, due to the fact that we are assuming that the patterns to be learned are 
random and uncorrelated. This is an extremely simple instance of the more elaborate case 
of learning uncorrelated patterns with other types of information coding, or on synapses 
with general number of states, or stochastically rather than deterministically. We will 
discuss the more general case subsequently. 

7.1.1 The basic 	constraint 

If a sequence of p patterns (ef, /-L = 1, ... ,p) is presented, then synapse Jij ,vill see the 
random sequence: 

p p-l 1 
aij, aij , ••• , aij 

at = efej is the correlation of neurons i and j in pattern number /-L. For random patterns 
the sequences arriving at different synapses are independently and uniformly distributed. 
But given the learning scenario Eq. 9, only 2 out of the possible 2P sequences can preserve 
any trace of memory of the synaptic values preceding the presentation of the last p patterns. 

Indeed, any sequence that contains two consecutive equal bits (e.g. a i = Q i+l) erases 
any memory of the preceding synaptic value. Given the scenario 9, two consecuth-e +1 
bits will drive the synapse to +je, irrespective of its preceding value, according to 

J(i - 1) = +Je ~ J(i) = +Jc -:-+ J(i + 1) = +Jc 

J(i-I) = 0 ~ J( i) = +Jc ~ J(i + 1) = +Jc 

J(i -1) = -Jc ~ J(i) = 0 ~ J(i + 1) = +Jc 

Similarly, two consecutive -1's will push any synapse to -Je• So the only nlemory pre­
serving, p-Iong, sequences are: 

P 1 p-l 1 2 1 1 1aij = + , aij = - , ... , aij = - ,aij = + 

p 1 p-l 1 2 1 1 1aij = - ,aij = + , ... ,aij = + , aij = - . 
Consequently, following the presentation of p patterns, only a fraction 2/2P of the totality of 
the N2 synapses can maintain any memory of what preceded the sequence. When 2(p-l) = 
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N 2 , no synapse has any memory and the maximal storage, pc that can be achieved[25] is 
bounded by: 

Pc < C . InN. (10) 

ThIS is a very extreme bound. It relates not to the ability of the network to retrieve 
what has been learned, as we have done in Sec. 3.1. It relates solely to the question of 
whether any tr~ce of the first pattern has been preserved in the synapses. 

7.2 General features of signal-to-noise analysis 

A more meaningful tool for testing the end result of the learning process is to consider 
the signal-to-noise ratio in the retrieval attempt of a pattern which has been presented 
for learning. If that ratio is much higher than 1, retrieval will be successful. But the 
considerations of Sec. 3.1 were restricted to a Hopfield matrix. Here we require a more 
general approach. See e.g. [26]. 

Consider the presentation for retrieval of pattern number 1, the oldest in the sequence 
of p patterns that have been learned. If it has a good signal-to-noise ratio, then patterns 
shown subsequently will be retrievable a fortiori. When the pattern is presented the 
synaptic feed-back in the network creates an input 'post synaptic potential' at each neuron 
which is 

h1?("~) = "'"" JP."~ (11),I.:., L...t 'JI.:.J' 
j 

where the superscript p indicates the value of either h or J following the presentation of 
p patterns. The argument of h indicates the sign of the i-th bit in the pattern ~1 being 
retrieved. The signal can be defined as: 

SP = (hf(+1)} - (hf( -I)}. (12) 

If this difference is significantly greater than the sum of the noises around each of the two 
values of ~, then a threshold can be found which will separate correctly the two outcolnes 
to reproduce the retrieved pattern. 

The noise can be estimated as follows[26]: For the situation under discussion it will 
clearly be the saine around the two values of hi conlposing the signal. Hence, apart fro~ 
a factor of 2, it will be 

1 
R2 =(hf - (hf) )2) - (N 2 L J&JI'k~J~l) - (hf}2 

jk¢:i 

- {~2 2)J~)2} ~ ~. (13) 
J 

Next we turn to the signa.l. For this purpose ,ve consider the conditional probability 
that the coupling J& after the presentation ofp patterns be J if in the first pattern 've 
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had el and e], Le. 
Pr(Jij(p) = JleLej) =pp(Jlei,ej). 

In terms of this probability we can write 

(hf( ei)) =L J~ej = L L Pree)pp(Jlei, e)Je 
j J=O,±Je (=±l 

=0.5Jc(pp(Jclei, +1) - pp(Jclei, -1)) - 0.5Jc(PP( -Jclei, +1) - pp(-Jclei, -1)) 

where we have made use of the fact that the bits arrive with equal probability 0.5. Taking 
el = 1 and making use of the 'fact that our problem has a symmetry that ensures equal 
probabilities for the simultaneous reversal of J and e1

, we find: 

(hf) = Jc[pP(Jcl + 1,+1) - PP(Jc\ + 1, -1)]. (14) 

Our signal SP is twice this quantity. 
Note that the first p on the right hand side is the fraction of all synapses which received 

0:=+1 when the first pattern was presented and ended with a value of +Jc for the synapse 
after all p patterns have been presented, while the second one is the fraction of those 
synapses that received 0:=-1 on the first presentation and ended having the value +Jc• 

The probability distribution of synaptic values after p learning steps, pP( Jle, e), is 
subject to a master equation describing the stochastic process of learning the random 
patterns, i.e. 

pp+l(Jle,e) = L TJKPp(I{le, e), (15) 
K 

where TJ[( is the transition matrix from state I{ to J. As p becomes very large this 
probability distribution reaches an asymptotic form dominated by the largest eigen-value 
of the corresponding transition matrix, T, ,vhich equals 1. That limit is independent of the 
initial conditions and hence is devoid of all memory. But this asymptotic part cancels on 
the right hand side of eq. 14. The behavior of the signal for large values of p is dominated 
by the next leading eigen-value, AAf. After p presentations this part of the probability 
distribution will be proportional to (AM)P and factors connected with the corresponding 
eigen -vector. 

As was argued above, the dependence of the conditional probability distribution PP( Jle, e) 
on the first pattern decreases like (Al\1)P. Conlbining this observation with the fact that 
the number of synapses which preserve the same conditional dependence of the synaptic 
value on the first pattern as p is N 2 • p, Vle conclude that the number of memory carrying 
synapses is proportional to N 2 (AM )P, and fronl there to 

. In(N2) 
(16)Pc < C· _ In(AMr 

This result corresponds to Eq. 10. But the context is much wider and allows for treatnlent 
of a. variety of situations~ as we show below. 
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Inserting the behavior of the leading memory preserving part of the probability distri­
bution we have, using Eqs. 14 and 13, that the ratio of the signal-to-noise upon presenta­
tion of the oldest pattern is 

(17) 

To allow for retrieval with a vanishing number of errors, even when the number of patterns 
and the number of bits in each pattern increase with N to infinity, we should have 

See e.g. [8]. This gives for the corresponding storage capacity, 

In(C· N/lnN) 
(18)Pc < -2ln(AM) . 

Note that in general the constant C, independent of P and N, may depend on various 
parameters of the learning process, such as the coding level of the presented patterns f 
and/or the synaptic transition probability q in a stochastic learning scenario, and/or on 
the rate of pattern presentation, etc.. 

7.3 Deterministic slow presentation of ±1 patterns 

In this case the transition matrix is: 

T=(l~i)· 

The elements ~ represent the probability that at any step the synapse get a +1 to go up, 
or a -1 to go down, in the 3-state ladder of possible synaptic stable states. This matrix 
has the eigen-values 1, !, -!. Its eigen-vectors are independent of the parameters of the 
problem, i.e. p, N etc. 

In the present case AM = ~. Hence the non-asymptotic part of the probability di~­
tribution vanishes as 2-p • Combining this observation with the fact that the number of 
synapses which express the same conditional dependence (of the synaptic value on the first 
pattern) as p does, we arrive imnlediately at the result of the previous section, i.e. that 
the number of memory carrying synapses is proportional to N 22-P, and from there to 10, 
i.e. Pc < In(CN2

). 

Inserting the behavior of the leading memory preserving part of the probability distri­
bution we have, usiIl;g Eqs. 14 and 13, that the ratio of the signal-to-noise upon presenta­
tion of the oldest pattern is 

(SP)2 > C. N2-2p (19)112 - • 
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For this ratio to be larger than In N, see discussion above, we must have 

Pc < 21 
In(CN/lnN). 

7.4 Logarithmic limitation for multi-state synapses 

The severe logarith~ic restriction on the number of patterns that can be learned in a slow 
presentation scenario, exposed in the previous section, may appear to be a consequence of 
the small number of stable states available to each synapse. We now proceed to show that 
this constraint persists for networks with synapses with arbitrarily many stable states, 
provided the number of stable synaptic states is kept fixed as the number of neurons N 
or the number of patterns P grows. 

Consider a network with synapses that have n possible stable states. Let the neurons 
be ±1 again and hence the synaptic source is always either +1 or -1. The refresh will 
be taken deterministic and the presentation of patterns to be learned slow, one pattern 
per refresh cycle. Upon presentation of a pattern a synapse which is not in one of its 
extreme states will go one step up (down) with probability !, depending on the sign of 
the arriving source bit a. Synapses in the two extreme states will remain unchanged 
with probability! or move one step away. Again, the process of presentation of random 
patterns is a random walk on the synaptic values, described by a probability distribution 
pP(mle, e), m = 0,1, ... , n - 1, where m stands for the synaptic state Jm and e, efor 
the source bits at the first presentation. p1'(mle, e) is an n dimensional vector for fixed 
a = e· e. The transition matrix, describing the dynamics of p is a simple extension of T of 
the previous section. It is tri-diagonal with !'s along the two side diagonals; zeros along 
the main diagonal except in the first and last positions ,vhere it is !. 

The signal is: 

S1' - (h1'(+1)} - (h1'(-I)} 
1 n-l 1 n-l 

- 2L Jm [p1'(rnll, 1) - p1'(rnll, -1)] - - L Jm [p1'(ml-l, 1) - p1'(ml-l, -1)] 
m~ 2m~ 

n-l 

- L Jm [p1'(rnll, 1) - p1'(m\l, -1)], (20) 
m=O 

where the 2 coming fronl the symmetry of p under the change of sign of both e's cancels 
against the! which is the probability of getting a ±1. In the difference of distribution 
functions on the r.h.s the asymptotic part cancels out and the leading term, expressed, in 
terms of the distribution following the presentation of the oldest pattern, pI, is: 

n-1 n-1 

S1' ~ (AM )1'-1 L L Jm VKVm [pl(J(ll, 1) - pl(Kll, -1)], (21) 
K=Om=O 

where til{ are the components of the eigen-vector of the matrix T corresponding to the 
eigen-value AM. 
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This expression becomes much simplified when the initial distribution is the asymptotic 
one, since the latter is uniform, i.e. pO = ~. Upon presentation of the first pattern, the 
difference between the two conditional probabilities can only appear at the extreme values 

a lof Jm • = +1 pushes all synaptic values one step up, leaving the probability of all states 
invariant, except the lowest state which is emptied and the top one which is doubled, it 
becomes ~. a l = -1 does the opposite, and thus 

n 

/(KI1, 1) - /(KI1, -1) = (~,O, ... ,0, -~). 
Inserting in Eq. 21 we have, 

2 n-1 
SP ~ (AMy-1- L Jmvm[VO - Vn-1]. (22) 

nm=o 

Next we use the fact that[26] 
\ 2· 2 7f'AM = 1- sln­

2n 
and the corresponding eigen-vector has 

Vo = /"t;" Vm =Vo cos (n1r~1)-Vn-l ::::l (23) 

when n is large. Substituting in 22 one finds: 

(24) 

One immediate conclusion from this result is that the signal will decrease with increasing 
n, at least as n-1 • This result is independent of the choice one makes for the synaptic 
values. It is a consequence of the fact that the learning process has a uniform asymptotic 
distribution of values. Even after the presentation of a single pattern, on the background 
of the asymptotic distribution, the signal will decrease as n-1 • 

As far as the noise is concerned, it is contributed mainly by the asymptotic part of the 
distribution. Hence: 

(R2) = N
1 LP(mI1~)(Jm)2 ~ .!. L:(Jm)2 

m n m 

The square noise is therefore independent of n, since the sum will- be proportional to n 
and to the square of the scale of the Jm • Since also the square of the signal is proportional 
to the square of the scale of the J's, we find that the signal-to-noise ratio is decreased by 
a factor of ~ relative to the 3-state case. But there is an important change in the eigen­
value. It approaches. 1 like n-2 when n becomes large. Hence the final signal-to-noise ratio 
beha.ves like 
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which leads, in turn to 
In(~) 2 (N)

Pc ~ 1 ( a ) ~ n In 2' .2n1-ji2 n 
2This is an improvement of a factor of n • Note that this factor can approach N if n is 

allowed to approach N 1/2. In fact, this is the upper allowed limit for n since for larger 
values of n the logarithm in the numerator becomes negative, which is a reflection of the 
fact that even a single pattern cannot be recalled in these conditions. 

8 Going beyond the logarithmic constraint 

8.1 Elements of leverage 

The logarithmic constraint on the number of storable patterns in a network with synapses 
with a fixed number of internal states is severe enough to warrant a special attention as 
to the determining factors. The above discussion points to the following ones: 

• 	The speed of the pattern presentation; 

• 	The generic distribution of synaptic values upon presentation of a pattern; 

• 	The fact that in a learning step all synapses are affected in an identical way. This is 
consists of two components: 

-	 The coding type in which we have ±1 with equal probability; 

-	 The deterministic action of the refresh mechanism. 

8.2 Stochastic learning of sparsely coded patterns 

In ref. [26] we have discussed the effect of fast pattern presentation. Clearly, if as many as 
O(N) patterns are presented in a single refresh period, and at the beginning the synapses 
were all zero, then one can reproduce the Sompolinsky case, that is memorize O.12N 
patterns[9, 19, 6]. With its good news and its bad news: capacity is large but one invites 
the blackout catastrophe, i.e. that if by chance too many patterns were presented in a 
refresh period all is lost. Moreover, patterns which are presented slowly act to reduce the 
capacity of those that have been learned fast. Finally, in a network of a realistic size it is 
rather unrealistic to have O(N) patterns presented in a single refresh period. 

If one is more modest, allowing the speeding up of presentation up to a rhythm of a 
fixed finite number per refresh period, an improvement of the capacity is achieved: the 
logarithmic constraint remains but is multiplied by the number of patterns presented in a 
single refresh peri6d[26]. 

The type of remedies one should rather look for are those which improve the worst 
case - slow learning, and consequently will not require special conditions on the input 
stream. Next we can take up the question of the generic synaptic distribution upon the 
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presentation of a new pattern. If the number of synaptic states is finite, the stochastic 
process will typically be ergodic and the asymptotic distribution, following the presentation 
of a large number of patterns will be independent of the initial patterns and will be uniform 
over the synaptic states. This is also the way that 'palimpsest' behavior is brought about. 
As patterns move into the past they are washed out into the uniform distribution and 
new patterns are inscribed on top of them. There is no blackout catastrophe. This was 
effectively what was observed in the studies of refs. [22, 21] of memories that forget. 

Thus we consider a network with 2-state synapses. Recall that in order to learn random 
±1 patterns with a deterministic refresh mechanism we had to have at least three states. 
With two states every pattern would have determined all the synapses, thus erasing all 
previous memory. Its asymptotic distribution will be uniform. The options left open are 
the last two in the list above, namely the coding type and the transition probability in the 
refresh mechanism. The first option is to code the pattern by 0-1 states for the neurons, 
with states of coding rate f, where f is the mean fraction of 1 's in a pattern. In this case, 
for f small, upon presentation of a pattern, a synapse will see a +1,+1 pair source with 
probability f2, a 0,+1 pair with probability 2f(1 - f) and 0,0 with probability (1 - f)2. 
The Hebbian dynamics implies that a small fraction f2 of the synapses is to move up, 
a somewhat larger fraction, those that see anti-correlated neural activities, 0,+1, should 
move down. And the majority, (1 - f)2 of them, remains unchanged. 

The second option is to postulate that the synapses which are expected to change, 
either up or down will not do so deterministically, but rather stochastically, with corre­
sponding probabilities q+ and q_. The probability distribution of synaptic values has two 
components and the transition matrix T will be a 2x2 matrix. It is: 

(25) 

This matrix has the eigenvalues 1 and 

One can compute the left and right eigen-vectors and hence all the statistical properties 
of the network. In particular, the asymptotic distribution is 

where a = 2f(1- f)q-, b = f2 q+. The two components of pas are the fractions of synapses 
with values J+ and J_, respectively. 

The signal can be written as: 

SP - (hP(l)) - (hP(O)) = fL:J[PP(JI11) - PP(JI01)] 
J 

- f(AM)P-l L: JAJBJI[pl(J'111) - pl(J'101)] (26)
JJI 
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in which AJ and BJ are, respectively, components of the right and left eigen-vectors 
corresponding to the eigenvalue AM and pI is the distribution function resulting from 
thr asymptotic distribution upon presentation of a single pattern. The solutions for the 
eigen-vectors are A = 1, -1 and B = (a:b' a!b)' 

Hence, 

and because p(J _) = 1 - p(J+), replacing in the above difference J+ by J_ simply reverses 
the sign. Finally, 

(27) 

For the noise we calculate the asymptotic part. Namely, 

R2 = (~2 t:J'jJ'kTJjTJk) - ((~ ~J,j17i) \ = ~2 (~((J,j)2TJj) - ~(JijTJj?) 
-> ~ [~J2p••(J)- (~JP••(J)r] = ~ (p+J~+p_J:-f(p+J++p_L)2) 

Combining the two and substituting a = 21(1 - I)q-, b = 12q+, and neglecting the last 
term ( proportional to 12) on the right hand side one has for the signal-to-noise ratio: 

Auto-associative retrieval requires that (SP)2IR2 > inN. 

8.3 Performance: absolute maximal storage in a palimpsest 

1. Low coding rate, finite transition probabilities and non-zero synaptic values, i.e. 

In this case: 

(~r Rl Nf(>'M?(P-l)q~(J+fJ- -1? 
And the capacity is limited by: 

In(N1lIn N) N 
(29)Pc R:i ( I) < .-21n 1- 2 q_ 4q_lnN 
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In other words, in this case as in the following one, going to very low coding rate 
one looses a factor of N in capacity relative to the maximal capacity of the Willshaw 
model[11], where for coding rate f = N/lnN the network can store N2/(lnN)2 
patterns. 

2. 	The most interesting case arises when one imposes that the lowering transition prob­
ability be proportional to the (low) coding rate, i.e. q+ = 0(1), q- = q-f. In this 
case: 

(SP)2 ~ C . Nf(A )2(p-l)
R2 ~ M, 

where C is independent of f and of N and is 0(1). The factor fN in this expression 
implies that f > N-l. But the important change is in the eigenvalue AM which 
becomes: AM ~ 1 - Qf2. The result is that 

In(NflInN) 
(30)Pc ~ -2In(1 - Qf2) , 

in which Q is a constant depending only on q+ and q_. Now when f ~ InNIN, the 
capacity reaches its ultimate value N2 I (In N)2 . 

There is though an important advantage, namely that the learning scheme presented 
here can function indefinitely, while the Willshaw scheme, as well as the Hopfield one break 
down after a long enough process of learning different patterns. Both undergo a blackout 
catastrophe: if learning had been excessive nothing can be retrieved. 
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