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Abstract 

Hebbian type learning is discussed in a network whose synapses are analog, 
dynamic variables, whose values have to be periodically refreshed due to pos­
sible exponential decay, or other instability of continuous synaptic efficacies. 
It is shown that the end product of learning in such networks is very sensitive 
to the relation between the rate of presentation of patterns and the size of 
the refresh time interval. It is shown that in the limit of slow presentation, 
the network can learn at most O(ln N) patterns in N neurons, and must learn 
each one in one shot, thus learning all errors present in a corrupt stimulus 
presented for retrieval. " 

It is then shown that as the rate of presentation is increased the perfor­
mance is increased rapidly. Another option we investigate is that in which the 
refresh mechanism is acting stochastically. In tills case the rate of learning can 
be slowed down very significantly, but the number of stored patterns cannot 
surpass ¥'N. 

1 Introduction 

Modeling brain function is largely concerned with exposing constraints. This holds 
for the study of brain, as well as for technological implementations. Constraints 
may include storage capacities, for a memory; retrie'val quality at various storage 
levels; operation times, in memory retrieval or learning; tolerance to correlations~ 
etc etc. The origin of constraints may be found in information theory; in statistical 
inference; in statistical mechanics, or in dynamics. Often the context in which the 
constraints are initially found seems over-simplified. Experience has been that as 
often as not the constraints captured general features of a much wider class of 
computational systems. Moreover, the corresponding approaches and techniques 
have turned out to be effective in much less simplified situations. 

Here we would like to open a discussion of constraints intrinsic to unsuper­
vised learning in attractor neural networks (ANN). We have come across these 
constraints in connection with the design of an organically learning ANN, imple­
mented in silicon[l]. Attractors are learned in associative cortex [2]. Moreover, 
since attractors are learned in cortical regions that are far removed from the input 
and output regions, it is likely that they are learned in an unsupervised fashion. 

IOn leave of absence from Racah Institute of Physics 
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The general Hebbian framework provides a simple mechanism for affecting such 
learning of attractors[3]. In other words, if an afferent activates selectively certain 
sets of neurons in an 'assembly', then modifying each synapse by some average 
correlation of the two neurons connected by it, is a candidate for the creation of a 
corresponding attractor. One of the attractions of the Hopfield model[4] was the 
fact that the synaptic matrix could be viewed as a linear accumulation of the pat­
terns to be memorized, producing those same patterns as the network's attractors. 

If synapses had the analog depth required by the Hopfield matrix, one could 
envisage a network learning that matrix by acquiring the patterns one at a time. 
Moreover, the synapses would be required to have a temporal stability for the 
multiplicity of values arrived at in the course of this one shot learning, both for the 
intermediate values as for the final ones. The problem of the analog depth of the 
synaptic values was treated by Sompolinsky[5]. He has evaluated the performance 
of a Hopfield network, following a clipping of all the synaptic values to one of 
three values. Given a synaptic threshold, each synapse whose absolute value is 
above the threshold is given a prescribed uniform value, preserving only its sign. 
A synapse whose value is below the threshold, is set to zero. In this case one 
ends up with a diluted network: a fraction of the synapses, that depends on the 
threshold are eliminated. The perforn1ance of the network is then calc.ulated and 
can be compared with performance of the intact network. 

This would have been a solution to the analog depth problem, provided one 
could affect learning by first accumulating linearly~ and stably, the Hopfield synap­
tic values. Then, once a desired set of patterns has been learned, their number may 
be arbitrarily large, clipping intervenes to produce a network that can store that 
set of patterns and yet have only three synaptic efficacies. The practical problen1, 
electronic or biological, is more difficult. It may be the case that the synapses do 
not have the analog depth to n1aintain the intermediate values at any time. Even 
a fully analog synapse, as would be a condenser, may not be able to stabilize its 
acquired values (See also e.g. [10, 11]. What is comn10n to both cases is that the 
synapses must be clipped, or refreshed, all along the learning process. 

The Sompolinsky clipping can be assumed to take place in some soft form, with 
its own time constant, which may be the RC of a condenser. In other words, one 
could assume that a synapse has an electronic, or biochemical mechanism which 
pushes the synaptic value towards some saturation, whenever that value is above 
some threshold, and allows the value of the synapse to decay to zero. if it is below 
the threshold. In this case, new questions present themselves. The properties of 
the resulting network strongly depend on the dynamics of the learning process 
and not merely on the informational content of the data and on its statistical 
distribution. In fact, the rate of arrival of the data to be learned, as well as the 
time of presentation of each pattern, relative to the time constant of the synaptic 
clipping (refresh) are found to be crucial. We shall see that consideration of some 
simple relations between these time constants leads to performances much below 
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those of the static clipped network. In this case the results of information theory,as 
well as those of statistical mechanics, give a grossly innacurate upper bound. On 
the other hand, the simple arguments introduced here, show several ways in which 
things can be improved. Those can be introduced either in the dynamics of data 
presentation, or in the dynamics of the clipping. 

One immediate consequence of such learning is that more recently presented 
patterns are privileged relative to older ones, much as in 'palimpsest' scenarios[6, 
7]. But palimpsest effects are due to the presence of an upper cut-off on the 
synaptic values, of alternatively, or the exponential decay of the contributions of 
older patterns[12]. As we shall see below, the refresh mechanism is significantly 
more restrictive. It does roll memories from the present into a disappearance in 
the past. But the refresh mechanisms to be discussed here do the rolling faster 
and consequently the storage capacities are significantly reduced. 

The basic learning scenario is one in which random patterns are presented at low 
rate, with at most one pattern per refresh period. The resulting network is found to 
be very limited: patterns have to be learned in a single shot, and no more than In.lV 
at tractors can be stored in a network of N neurons. Things improve significantly 
when the rate of presentation is increased. This is expressed by a scenario in 
which the patterns are grouped into subgroups, each presented within one refresh 
period. In this case the capacity is increased very fast as the number of patterns 
per refresh period increases. Finally we consider a stochastic refresh mechanism, 
in which synapses which should be modified due to the stimulus being presented, 
are modified with a probability lower than unity. In this case, learning can be 
made much slower, and a single presentation of a corrupt pattern, for retrieval, 
has essentially no effect on the synaptic structure. Provided the probability is low 
enough. Moreover, in this case the capacity of the network can become as high as 
.Ji[, but not higher. 

In section 2 we define the network and the three learning models. In section 
3 we demonstrate that if the patterns are presented at low rate, i.e. with large 
intervals in between, then the network can learn at most O(ln ;V) patterns. Then, 
in section 4, it is shown, by a signal to noise analysis of retrieval, that the capacity 
of the network can be expressed in terms of a single parameter: the fraction of the 
synapses which retain a dependence on every pattern in the sequence of learned 
patterns. Using this result, in Section 5 the storage capacities for all learning 
scenarios are analyzed. The expressions for the relevant fractions are derived in an 
appendix. The results are supported by simulations. 
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2 The model 

The elements 

In what follows we shall concentrate exclusively on the dynamics of the synapses, 
so in principle there is no need to specify the neural variables. But, in order to 
bring the discussion closer to the familiar retrieval models, we describe both sets 
of variables. Thus, we choose a set on N discrete neurons, each taking values ±l. 
The synapses are also discrete, and can take three values: Jii = +Je , 0, -Je . The 
number of neurons will be considered very large. And any two neurons can have a 
potential synapse. 

Comments: 
1. The choice of the neuronal variables serves only to indicate that in every 

learning step, of a Hopfield type learning, all synapses receive a contribution which 
is either +1 or -1, depending on the state of the neurons in the network. Thus, if 
the network is in state ~t, at that time the synapse.ij will receive the contribution 

(1) 

2. In comment 1, the states of the neurons can be those imposed by a strong 
stimulus, or those maintained in an attractor. In neither case can the variables take 
other values, i.e. the internal representation employs all the neurons of the network. 
Thus even a stimulus with a partial content of information affects all neurons and 
consequently all synapses. This is a severe limitation of the ±1 formulation. One 
way of avoiding the constraints to be discussed here is to allow for an updating 
of a partial set of synapses. This nlay imply a different formulation of the neural 
variables, or some other stratagem, as will be discussed below. But the sinlple 
formulation is very effective in exposing the problem. 

3. The actual values that can be attained by the synapses are not intended to 
be just the three values mentioned above. We have in nlind a situation in \vhich 
the synapses can take a continuous set of values. But if synaptic values decay with 
time, they have to be refre!lhed, e.g.: increasing the values of the positiye ones 
above threshold, decreasing the negative one which are below a negative threshold~ 
and allowing the intermediate efficacies to decay to zero. Similarly, the internal 
synaptic dynamics may already include the refresh. In both cases, if there is a long 
interval between two different configurations of the network, the synapses reach a 
situation of three-state clipping, as defined above, with Jc the saturation value of 
the refresh mechanism. 

Thus, in what follows we will assunle just this simple situation in which patterns 
are learned at low frequency, in a Hopfield fashion. They are clipped or refreshed 
following every single pattern. The question will be how many patterns can be 
learned this way. 

Finally, we shall assume that the patterns to be learned by the network are 
N-bit words of independently chosen ±ls, with equal probability. 
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The learning situation - slow presentation 

Observing the period between two refresh operations, we denote the beginning by 
,X and the end by ,x+1. \Ve assume that at ,X the distribution of the synapses has 
the following features: 

• The synapses have a 3-way clipped distribution (Jij +Jc, 0, -Jc ); 

• The positive and negative values appear with equal probability. 

This will be the case if the initial matrix were zero. As will be shown in section 8.3, 
it is also the situation for an arbitrary initial condition, following several refresh 
steps. The fact that the synaptic distribution converges rapidly onto this general 
form, allows us to treat a sequence of p consecutive patterns, placed anywhere in 
the total stream of input, as if they were the first p patterns presented. 

Since in the learning step all synapses receive contributions which are equal in 
absolute values, there will be four possible types of lea!ning steps, depending on 
the choice of Jc and Jo: 

1. Stimuli do not affect the synaptic matrix at all: 

(2) 

Note that this is the case in which no positive synapse is brought below 
threshold and no zero synapse is brought above the threshold. The same is 
true for the negative values, due to the symmetry. 

2. 	 Stimuli are learned, erasing all previous memory in the system. The synaptic 
change is the following: 

Jij(,X) = +Jc 	 -t Jij(,X + 1) = +Jc if ~i\~; = +1 
-t Jij(,X + 1) = -Jc if (\~; = -1 

Jij(,X) = 0 	 -t Jij(,X + 1) = +Jc if ~t~; = +1 
(3) 

-t 	.]ij('x + 1) = -Jc if ~i\~; = -1 

Jij(,X) = -Jc 	 -t Ji}(,X + 1) = +Jc if ~t~; = +1 
-t Jij('x + 1) = -Jc if ~i\~; = -1 

Note that the first two lines imply the last two by the sign symmetry. ~Iore­
over, the second line implies the forth, as the fifth implies the third. The 
resulting set of synapses is independent of the original set and stores the last 
pattern. 
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3. If the threshold for refresh is high, the zero synapses, in the previous case 
may remain unchanged. The outcome then is: 

-; Jij(A + 1) = +Jc if ere~ = +1 
-; Jij(A + 1) = 0 if ere! = -1 
-; JiY( A+ 1) = 0 if ere; = +1 
-; Jij(A + 1) = 0 if ere; = -1 (4) 

Jij(A) = -Jc 	 -; Jij(A + 1) = 0 if ere; = +1 
-; Jij(A + 1) = -Jc if ere; = -1 

In this case the last pattern merely cuts the synapses that were learned 
previously and are inconsistent with it. If the patterns presented are uncor­
related, the number of non-zero synapses is reduced by a factor of two with 
every new presentation. Following the presentation of several patterns, the 
synaptic matrix will become all zeros. 

4. 	 Finally, there is the relevant case in which the stimulus changes synapses, 
but retains their previous history. This case is represented by the following 
learning step: 

Jij(A) = +Jc 	 -; Ji;(A + 1) = +Jc if ~/\~j\ = +1 
-; Jij(A + 1) = 0 if ~i\~) = -1 

Jij(A) = 0 	 -; JiAA + 1) = +Jc if ~i\~} = +1 
(5 )

-; 	Jij{A + 1) = -Jc if ~/~} =-1 

Jij(A) = -Jc 	 -; J'J(A + 1) = 0 if ~i\~;\ = +1 
-; Jij(A + 1) = -Jc if ~i\~} = -1 

Essentially, in this case. the new pattern is learned by the zero synapses: 
retains the convenient non-zero ones and zeros the contradicting non-zero 
synapses. 

The learning situation - fast presentation in groups 

As we shall see below, the slow learning - at most one pattern per refresh cycle 
- leads to a very constrained situation. First, because every pattern presented 
must make a finite change in the synaptic matrix, or be ignored. In other words, 
slow presentation requires rapid learning. Second, only a very small number of 
patterns can be learned in attractors. The first escape from the very stringent 
constraints discussed above is to speed up the presentation of the patterns, so that 
out of the totality of p patterns, n patterns appear in a single refresh period. \Ve 
shall still keep the simplification that during the period in which the subgroup of 
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n patterns are presented, the temporal decay of the synaptic values is neglected. 
Typically, there will be an exponential decay within the subgroup, producing the 
result that the contribution of earlier patterns to a synapse have an exponentially 
weaker amplitude the further they go into the past. This effect, in a complete 
group of patterns, was studied by Mezard et al [12], and its effect in the present 
context will be discussed later, in Section [12]. 

In the present case, in every period, the contribution to the synaptic value is: 

n 

."1= Loij. 	 (6) 
p=l 

Gh'en values for Jo and Je , there will be a threshold value, Ao, for A such that 
upon clipping, the synapses can learn, e.g., 

Jij(A) = +Jc 	 -+ Jij(A + 1) = +Je if A > -Ao 
-+ Jij (A + 1) = 0 if A < - Ao 

Jij(A) = 0 	 -+ Ji)(A + 1) = +Je if A > Ao 
-+Jij (A+1)=O iflAI<Ao (7) 
-+ Jij(A + 1) = -Je if A < -Ao 

JiJ(A)= Je 	 -+Jij(A+1)=O ifA.>Ao 
-+ Jij(A + 1) = -Je if A < Ao 

See the discussion in Section 2. There, the value of n was 1 and the value of A.o 
was lower than 1. In practice Ao should satisfy: 

Ao = max( Jo, Je - Jo). 

The consequences of this learning scenario are discussed in Section 5 as well as 
in the Appendix 8.1. 

The learning situation stochastic learning 

Another way of avoiding the strict constraints controlling slow presentation of 
patterns, is to affect the synaptic changes, implied by every presentation, on a 
fraction of the neurons only. This can be viewed as the following type of mechanism: 
The synaptic dynamics, during the presentation of a pattern, drives the synaptic 
value towards a saturation value determined by the strength of the stimulus. If this 
value is lower than the threshold for the activation of the refresh, no pattern will 
be learned. But, if the value at saturation is not far from the threshold for refresh, 
noise in the refresh mechanism then drives the synaptic value across the threshold, 
with a given probability q, determined by the noise. In this manner learning can be 
significantly slowed down and the capacity of the network significantly increased, 
but only from In N to ViJ. This fact has also been observed by Horner in a different 
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context [9J. The consequences of this learning scenario will be discussed in Secion 
5 and in Appendix 8.2. 

The basic constraint 

Clearly, of the four learning situations listed in the previous section only the forth 
is of interest. This is a statement about the choice of the parameters Jc and Jo, 
given that the contribution of the pattern being learned has been normalized to 
unity. The dynamics ensures that the presentation of a single pattern modifies 
the synaptic structure, keeping a good memory of the preyious structure. But in 
trying to memorize many patterns, one must confront the question: How long is 
the memory of the learning process. In other words, giyen a sequence of p patterns, 
each modifying the synaptic matrix as described .. can the network remember its 
structure preceding the entire sequence. 

In the course of learning a flow of bits arrives at each synapse: the synapse ij 
gets a flow of bits a:fi' defined by 1, where J-1 enumerat.es the pattern number in 
the sequence of presentation. If a sequence of p patterns is presented, any synapse 
will see one of 2P different possible sequences of bits, vt.'hich it will use one-by­
one in the dynamics described in case 3. The origin of the constraint we shall 
demonstrate is in the fact that the special synaptic dynanlics, implied by clipping 
following every presentation, allows only a fixed number of the 2P p-bit sequences 
to preserve a memory of the synaptic value preceding the last p presentations. 
This implies that the probability of obtaining a useful sequence of bits arriving at 
a given synapse is proportional to 2-p 

. Since the sequences are independently and 
uniformly distributed, 2-P will also be the fraction of the synapses which \yilliearn 
from the p patterns and not loose the information acculllulated prior to this last 
sequence. Thus, one arrives at the conclusion that one can learn patterns at nl0st 
as long as 2P ~ N2 , or p ~ In J.l. 

This result follows fronl the fact that: 

• 	 given any synapse, the only strings of p bits which will produce a final value 
for the synaptic efficacy that depends on the value of the first bit in the 
string, are those which have no consecutive pair of equal bit~ following the 
first one. 

For any p, there are only 4 such strings, depending on the signs or'the first two 
bits in the sequence. 

If there are two consecutive equal bits in a sequence, for example, if in the 
sequence a:p = {a:P,a:P-r, ... a:1} one has a: i = a: i +1 (i = 2, ... ,p-1), then J(p) is 
independent of J (0).2 The subscripts ij are implicit. For a: i = a: i +1 = +1, all three 
synaptic values we become: 

2Note that here pattern number 0 can be considered to be the begining of a sequence which can 
start anywhere in the total stream 
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J(i - 1) = +Jc --+ J(i) = +Jc --+ J(i + 1) = +Jc 

J(i - 1) = 0 --+ J(i) = +Jc --+ J(i + 1) = +Jc 

J(i - 1) = -Jc --+ J(i) = 0 --+ J(i + 1) = +Jc• 

While for a i = ai+l = -1, the resulting value of J(i +1) is -Jc , for all three cases. 
As a consequence, the probability that a synapse receives a sequence which does 
not erase previous memory is 2-p+2 • 

This proves our assertion that presenting one pattern in any refresh period one 
2can learn at nl0st PM patterns, with 2PM - ::::: ]\.l'2. 

The above argument does not prove that the stored patterns can be properly 
retrieved. This question we study next. 

General features of signal-to-noise' analysis 

Given a synaptic matrix. following the learning of a set of P patterns, the question 
of the possible retrieval of these patterns is composed of two parts: First, do the 
synaptic values depend on the values of the different patterns in the sequence. 
And if they do. is a pattern recovered when presented to the network, i.e. is the 
signal appearing on neurons which should have a given value in that pattern large 
enough to reproduce the pattern, even in the presence of interference due to the 
memorization of the other patterns. 

In the case of slow learning, in presence of refresh. we have found in the previ­
ous section that even the first requirement, the weaker one, allowed only O(ln _V) 
patterns. Next one should calculate the signal-to-noise ratio. to check that retrieval 
is indeed possible for all these patterns. Since we shall next proceed to learning 
modes which induce much weaker restrictions, we first develop a general scheme for 
computing the number of patterns that can be memorized in one of the follo\ving 
three senses: 

• 	 That the synaptic matrix depends on all the patterns; 

• 	 That the signal-to-noise ratio in a pattern state is much higher than 1: 

• 	 That the probability of an error on any neuron tends to zero with increasing 
N, in the sense of Weisbu~h and Fogelman-Soulie[8]. 

To derive the general results, we use the fact that: 

• 	 In the subspace of synapses which depend on the value of the oldest learned 
pattern, the conditional probabilities for a given synaptic value given a value 
of the input a from the oldest pattern Pr(J(p)Ja1 ), is independent of P and 
of N. 
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In the appendix we sho"r that this holds for all cases under consideration. 
Denote by d the fraction of synapses, out of the totality of N2 synapses, which 
depend on 0 

1
. The first condition for memorization is simply: 

Next we argue that the signal, defined as: 

(8) 

is proportional to d, while the square of the noise, 

(9) 

is proportional to 1/l'l. 
Before proceeding to the demonstration of the above assertions on the signal 

and the noise~ ,ve draw the conclusions: 

1. Naive signal-to-noise analysis has it that retrieval is possible while 

S2 C 1\7' d2R2 == ..1\. »L (10) 

where C is a constant independent of .:V and p. 

2. The condition for vanishing probability of errors in retrieval. a' la ref. [S]. is 

~: = eN· d2 » In X. (11) 

We now demonstrate the assertions for the dependence of the signal and the 
noise on Nand d, and then, using the expression for d in three different learning 
scenarios, we shall exhibit the behavior of the capacity of the resulting networks. 

Note first that the signal can be written as: 

S == L L Pr(Q) Pr(Jla)Ja, (12) 
J=±Jc c.r=±l 

where Pr( J 10) is the conditional probability of finding the value JP == J, given 
that 0

1 == o. Note that the sum is only over non-zero values of J. For random 
patterns, Pr(a) == ~. Moreover, 

Pr(Jlo) == Pr(-JI- a) 

and 
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Pr(JI- a) = Pr( -Jla). 

The signal is therefore, 

S = Jc [Pr(Jc ll) - Pr(.lcl- 1)] . (13) 

If we denote by Pr( Jla) the conditional probability in the subspace of aI-dependent 
J's, then 

P(Jla) = d· Pr(Jla), (14) 

and hence Eq. 13 can be written as: 

Since the Pr have been assumed independent of p and .i.~T, and the signal must be 
positive, on the right hand side of the last expression we have d multiplled by a 
constant independent of p and JV, as asserted. 

The mean square noise can be written as 

R2 = (( ,~2 t: JdJ,kCY.ijCY.,k)) - S2 = , 

= ( ( ~ 2 L Ji~)) :5 ~, (15) 
J 

This is just the form we have asserted for the noise. 

Results for three learning scenarios 

The previous section derived a limit on the number of patterns that can be learned 
in a learning process with refresh, that arrives to tri-modal distribution of synapses, 
±Jc , O. In section 3 we have seen that for slow learning, of one pattern per refresh 
period, even the most liberal constraint gave very low storage, e.g. p of order In lV. 
U sing the results of Section 4 we now proceed to derive the storage capaci ty in three 
different learning scenarios: the slow learning of Section 3; fast learning, in which 
the p patterns are presented in groups of n patterns in each refresh period; and 
finally, probabilistic slow learning, in which the threshold operation of the refresh 
is noisy and induces learning changes in every refresh cycle on a fraction of the 
synapses only. For each of the three learning scenarios we shall exhibit the results 
for the three criteria discussed in the previous section. Since the performance of 
the network depends only on the value of d, the fraction of synapses whose value 
depends on the oldest pattern, d will be given in this section for each of the three 
cases, then the consequences will be drawn. The derivation of d will be left to the 
appendix. 
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Capacity for slow learning 

In this case~ at most one pattern is presented per refresh cycle. The value of d, 
given in terms of p, is (see e.g. 8) 

d= C 
2p 

Using the general results of Section 4, we find: 

• 	 For at least one synapse to depend on the value of 0li: 


N 2d ~ C => p < 2log2 .1V 


• For naive signal-to-noise stability, 

2
N d ~ C '* p < ~log2 N 

• For vanishing error probability: 

(16) 

Note that the first constraint is already so tight, that the stricter requirement 
of signal-to-noise reduces the linlit only by a constant factor of 4. 

Fast learning in groups 

Here the p patterns are presented in groups of 11 per refresh cycle. It is aSSU1l1E'd. 

for simplicity, that each pattern is presented only once. In eyery period the analog 
contribution to the synaptic value is: 

n 

A = L orj · 	 (17 ) 
p,=l 

For simplicity we take 2Jo = Jc , in order to symmetrize the situation for synapses 
whose value is moving towards the threshold for refresh from above and from below. 
Given Jc , there will be a threshold value, Ao, for A such that upon thresholding. 
the synapses can learn. E.g., 

Jij ()..) = +Jc 	 -t Jij ().. + 1) = +Jc if A > -Ao 
-t Jij ().. + 1) = 0 if A < - Ao 

Jij ()..) = 0 	 -t Jij ().. + 1) = +Jc if A > Ao 
-t Jij ().. + 1) = 0 if IAI < Ao 	 (18) 
-t Jij().. + 1) == -Jc if A < 	-Ao 

Jij ()..) = -Jc 	 -t Jij{).. + 1) = 0 if A > Ao 
-t Jij ().. + 1) = - Jc if A < Ao 
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See the discussion in Section 2. There, the value of n was 1 and the value of Ao 
was lower than 1. In practice Ao should satisfy: 

...4.0 = max( Jo, Jc - .]0). 

Defining Xo Ao/n, the fraction of synapses depending on 0'1, is (see e.g. 8) 

1 [( l)l-XO ( 1)1+xOj-nI2 ( (x ))~-l
d :: C . 2-;- Vn=1 1 - Xo - :;; 1 + Xo - :;; 1 - erf ~ 

The constant C depends on the initial connectivity, but not on N, n, p, Xo. 
Consider the case Xo = 0, i.e. when the number of patterns per group is large 
compared \vith the refresh threshold and n odd. For even n there is a slight 
complication due to the appearance of a fraction of A = 0. This fraction decreases 
rapidly as n increases. If we keep fixed the number of patterns per group, n, as we 
increase p, we find: 

• For at least one synapse to depend on the value of O'L: 

iV )
=? P < 2nlog2 ~( 

• For naive signal-to-noise we find 

• For vanishing error probability 

=? < -10n .2 
( 1'1 ) (19)

p 2 g (n - 1) In .Y 

Note that when n becomes of order p, the first condition limits p only by ..V 4 , 

while the second limits it by Iv. This is a reduction to the Hopfield matrix, which 
preserves some synapses depending on the values of anyone of the p patterns until 
p becomes of order N4. On the other hand, for snlall values of n, one obtains a 
linear increase in capacity. The ratio between the signal to noise capacities for 
n = 1 and 2 is about 2. 

If instead it is the number of groups, 9 = pin. that is kept fixed, one finds 
(listing the cases in the same order as above): 

1. 
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3. 
N 

Nd2 ~ C ·lnN :::} p < C· g4-0 -­
In Iv 

Note here that as 9 increases, one is approaching the case of slow learning, one 
per refresh. It is the factor 4-0 which restores the very strong restriction on the 
capacity found for this case. 

Learning with stochastic refresh 

Finally, we consider the case in which the network is presented one pattern at a 
time, but not all synapses, which would be modified-in the scheme 5, of are actually 
modified. Instead, those synapses are modified with probability q. The picture is. 
basically, that the learning mechanism, when saturating. brings a synapse to just 
short of the threshold which determines which way it will be refreshed. A source 
of noise in the refresh mechanisn1 then drives the synaptic yalue, \vith a given 
probability across the threshold. For simplicity we take again 2Jo == Jc~ as was 
done in writing Eqs. 18, to equalize the probabilities of learning by the charging 
and the discharging synapse. 

The fraction of synapses dependent on the oldest pattern is (Appendix 8.2): 

q) p-1 
d==C·q (1 ;;_/ 

One therefore finds for the three cases: 

1. 
21n.:Y + In

N2d~C :::} p<----­
In( 1 - ~ ) 

2. 
N d2 ~ C :::} P < _ In.IV" + 2111 q 

21n(1 - ~) 

3. 
N d2 ~ C .In.iV:::} InC,Y/ln N) + 2ln q - (?O 

P < - 21n( 1 - ~)' .... ) 

The second case, signal-to-noise, gives a lower limit on the probability for mod­
ification. Since the ratio must be positive, q >N-l/2. When q reaches this limit~ 
the capacity becomes proportional to N 1/ 2 • A similar result was found by Horner 
in a different context of stochastic learning [9]. 
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6 Simulations 

vVe have performed simulations to corroborate the analytic results derived above. 
The simulations were restricted to the case of retrieval with no errors in all three 
modes of learning - slow, multi-pattern and stochastic. In all three cases the theory 
predicts 

p(N) '" a In (h~V ) + b. (21) 

The constants a and b are independent of the number of neurons, but vary from 
case to case and may depend on the number of patterns presented in a refresh 
inten'al or on the refresh probability in the stochastic case. The constant a is 
evaluated in the theory, while b is not. Thus, in what follows, we will be fitting 
the data (see below) by adjusting the parameter b and using the theoretical value 
for a. In fact, if p( 1'v) is the measured value of the number of retrievable patterns 
for a given learned matrix we shall be considering the quantity (p(.2\T) - b]/a as a 
function of In( J.V/ In 1'1). 

vVe can read from Eq. 16, for slow learning, 

1 
a=--. 

2ln2 

From Eq. 19 we read, for learning in groups, 

n 
(22) 

where c = c(n, xo) is the fraction of synapses changed by the presentation of a 
single group, Eq. 26. Note that for n=l, c=l and the expression for a reduces to 
that for slow presentation. Finally, from Eq. 20 we have. for stochastic refresh. 

1 
a = - 2ln (1 _ ~) . 

In the simulations we generate sets of random ~V -bi t patterns of ± l's chosen 
with equal probability. Those patterns are presented in groups which contain a 
single pattern for slow and stochastic learning and which contain a variable number. 
n, of patterns for the case of fast learning in groups. Refresh, as described above 
is affected after each group. Each pattern is presented once in a learning sequence. 
The synaptic matrix is updated and clipped according to one of the three learning 
scenarios. See e.g. Section 2 slow learning, fast, group learning and stochastic 
learning. 

Following every group, the synaptic matrix is frozen and the patterns are pre­
sented for retrieval. The patterns are presented, as initial states, starting from the 
last learned pattern going sequentially into older and older patterns. The network 

15 



is allowed to relax for each pattern until it arrives at a fixed point. The overlap 
with the original pattern is computed and the particular pattern is counted into 
p(.lV), if the overlap is greater than 0.99. When a larger fraction of errors is found 
in a group of past patterns of the size of a learning group, the checking is inter­
rupted. A new group is presented for learning and the process of retrieval testing 
is repeated. For each learning scenario and for each choice of the corresponding 
parameters, such as N, n, q, we obtain a value of p. This value fluctuates from 
sample to sample, i.e. as more and more patterns are presented to the network for 
learning. The fluctuating values are averaged and the R11S is taken as a measure 
of the error. 

In the simulations the number of groups for any scenario and fixed set of pa­
rameters is 40, i.e. we used 40 samples for every network, scenario and set of 
parameters. To check the N -dependence we have used networks containing from 
100 to 1000 neurons. The parameter b in Eq. 21 was determined by averaging 
the values of p(N) over the 40 samples and fittin'g Eq. 21 as linear function of 
In(N/ In N), we determine the parameter b using the analytic result for a. The 
same procedure was repeated without the In J.'f\;" in the denominator, i.e. as if for 
naive signal-to-noise, with In(N/ In N) replaced by In ..:\,r. The differences are not 
very marked, but to our judgement, the presence of the extra InN improves the 
fit and the scatter of the data. We have not expanded on this issue and present 
only the data analysis with In(.lV/ In .l\"). 

In Fig. 1 we present the data for stochastic learning (see below). The empty 
squares represent the case with a refresh probability 1, i.e. slow learning - one 
pattern per refresh. The points represent the mean of In(1\"/ In ",iV) over the 40 
samples for any given N. The bars around the points represent the error as de­
scribed above. The line is just In( .lv/ In};) and the agreement of the line with the 
data captures both the functional form and the theoretical coefficient a. 

Fast presentation in groups 

Here for every value of N we have allowed the groups to contain 11=2, ...9 patterns. 
The dependence on n is predicted by the theory and is contained in a, Eq. 22. 
In order to reduce the presentation of the results to a universal curve, we h8,"e 
proceeded as follows: For every value of n and given AT we computed the average 
over the 40 samples. These averages were used in a linear fit to deduce b(n). Since 
a(n) is given by the theory, we could plot [p(..TV) - b] / a as a universal curve for all 
values of n. These results are presented in Fig. 2. For each N the different symbols 
represent data for different values of n. The plurality of bars reflects the fact that 
fluctuations increase with n. The line is again just In(N / In N). The agreement is 
quite satisfactory. 
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Figure 1: Network capacity vs number of neurons (for 100 < N < 1000). For 
stochastic learning, with q = 0.2, ... ,1.0. q=l, corresponds to deterministic slow 
learning (empty squares). Successful retrieval is defined as a stimulus leading to 
an attractor having overlap >0.9 with the nlemorized pattern. Data points are 
averages over 40 samples. Different symbols for the same N are averages over 
values of n. Error bars are R:NIS fluctuations among the samples. 
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Figure. 2: Storage capacity for fast group presentation. The statistics and the 
networks are as in Fig. 1. The different symbols for the same N represent different 
values of n. 
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7 

Stochastic learning 

This case is represented in Fig. 1. The patterns are presented for learning one at a 
time and the synapses are modified, according to 5, but the modification is affected 
with probability q. The simulations were done for values of q = 0.2, ... , 1.0. For 
stochastic learning one does not expect the patterns to be perfectly learned in a 
single presentation. Especially, for low values of q. Thus our criterion for failure and 
success in retrieval has been slightly relaxed. We have noticed that the distribution 
of overlaps, at the fixed points had a large maximum near 1 then a deep trough 
and then a second maximum towards zero overlaps. These distributions became 
sharper as the number of presentations increases, but here we concern ourselves 
with a single presentation od each pattern. We have, therefore, chosen the lowest 
value (over q) of the overlap at the high end of the trough in the overlap distribution 
as the lov.rer limit of successful retrieval. It turned out to be about 0.90. Patterns 
leading to attractors with lower overlaps were considered unretrievable. 

Then we proceeded to the presentation of the results as in the case of group 
learning. The coefficient a(q) is knov.rn theoretically, and b(q) is determined by a 
linear fit of the averages over the san1ples. All the data was the brought to the 
universal form by elimination a and b. The different symbols representing the data 
for the same N are for different values of q. The dashed line in Fig. 1 is again of 
slope 1 and agrees with the data within the error bars representing the R11S of the 
statistical fluctuations. Here the fluctuations are larger the smaller the value of q. 

Discussion 

This study has attempted to delineate some of the constraints implied by a refresh­
ing mechanism which is protects learned synaptic information from its eventual 
decay. The refresh mechanism assumed here is rather restrictive, in that synapses 
are refreshed to one of three values, depending only on whether the learning has 
made the synapse cross a threshold, either increasing in amplitude or decreasing it. 
One may assume other mechanisms, which preserve a more detailed distribution 
of synaptic values. Such has been the case in the learning n~odel of Shinomoto[lOL 
at the price of assuming a special distribution of uninterrupted inputs. Another 
option has been suggested by Dong and Hopfield[11], where the saving agent is the 
persistence of the network in a selective activity attractor. 

We have considered a situation in which those escapes are not assured. To 
preserve learned synaptic information in synapses whose efficacy decays with time, 
even if during long periods the network receives no input and neuronal activity 
may die down, one is led to a scheme of the type considered here. The reason 
is that if the neurons are silent for a long enough period, all synapses will reach 
the saturation values of the refreshing mechanism, except those which may remain 
unrefreshed because they have been below some threshold and they will decay to 
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zero. 
The good news is that such a minimally selective mechanism, which selects 

synapses for refreshing only by a threshold (not by their actual efficacy, nor by their 
learning history) even when acting continuously, can preserve learned information 
about attractors. This can provide a scenario for the neuro-biological process of 
longer term fixation of synaptic efficacies by PKC enzymes generated in the cell 
body (see .e.g. [14]). One of the problems of this attractive mechanism has been 
the recognition of synapses which have recently learned, and the selectivity of the 
reinforcement to the synaptic value. These features are not necessary, we have 
shown. It is enough that the fixation mechanism be sensitive to a threshold, and 
otherwise treat all synapses in the same manner. 

),loreover, we have shown that despite the constant intervention of the refresh­
ing mechanism, learning of a given pattern can be made very slow on the time scale 
of the refresh period. This feature is quite important if one would like to preserve 
the separation of dynamical time scales between retrieval and learning. What was 
needed for slowing down learning was a mechanism which ensures that not all the 
synapses which should be modified to learn a given pattern be actually modified. 
This for ±l-neurons is problematic, because all synapses get an input of the same 
amplitude. We therefore had to make recourse either to the interference between 
a multiplicity of patterns presented in a single refresh period, or to a stochastic 
refresh mechanism. 

This problem points to other, perhaps more natural solutions, which seem to 
have been preferred by the biological system. These are a combination of the facts 
that there is no ±1 symmetry in cortical dynamics. Neurons are either active or not 
active, and a natural internal representation of a pattern is by the selective group 
.of neurons which are active in the corresponding attractor. Such a representation 
would imply a significant fraction of neurons to have zero variable, and the others 
positive, discrete l's, or analog. Moreover. it seems that in cortex the coding rate. 
the fraction of neurons with enhanced activity~ is low. This reduces even further 
the fraction of synapses which will be affected upon learning a pattern within a 
refresh period. Learning, and its restrictions for (0-1) models. or for neurons with 
analog-rate variables, is presently under study. 

The bad news is that storage capacities are significantly reduced. The number 
of remembered attractors is no longer proportional to the number of neurons, as 
it is for stable analog synapses even if their values are clipped at the end of a long 
train of learning. These new constraints follow from rather general arguments~ 
which are made available by the fact that the synaptic distribution becomes very 
much simplified following every long interval in which neural activity stops. In fact 
we have found that as long as the number of patterns presented in a single refresh 
period is small compared to the number of neurons, the best one can do is store 
O(v'li) patterns. 

In dealing with multi-pattern presentation in a single refresh period we have 
been making the simplifying assumption that within the period there are no effects 
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of exponential decay. If the decay is made to be as weak as in ref. [12], i.e. the 
relative coefficient of two consecutive patterns is O(exp(-liN)), effectively there 
is no decay as long as the number of patterns per cycle is small compared with 1v 
and our considerations hold. \Vhen the number of patterns becomes of O(N), as in 
the model of Mezard et aI, one is presenting in a refresh cycle an extensive number 
of patterns. Then, the clipping due to the refresh will introduce some effects of 
noise and leave the capacity at O(N). If patterns are presented at a lower rate, i.e. 
there is more significant decay between consecutive presentations, the constraints 
become even more severe than in the case of low rate presentation discussed above. 
These assertions will be demonstrated elsewhere[15]. 

It may be that this storage capacity is sufficient. If it is not, and if neural 
networks, biological or electronic, must survive long periods of neural inactivity~ 
then some escape route is called for. One such possible route has been mentioned 
above, i.e. rate coding at low coding rate. It may be that the analog nature of 
the neural variables is essential, perhaps even the operation at rates much below 
saturation. But those are topics for future studies. 
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8 Appendix 

We derive the expressions for the fraction of synapses \,'hich depend on an early 
stimulus, for the cases of fast (group) presentation and for the case of stochastic 
refresh. 

8.1 Fast pattern presentation 

Section 2 described this learning scenario, neglecting the intra-group exponential 
decay. The total contribution of a group can be written as: 

A = L 
n 

orj = Oij + alj • 

/.L=1 

For the noise due to the other patterns, a, not to destroy the imprint of pattern 
number 1, within the group, we must have: 
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± A.o - 1 < a < ±Ao+ 1. (23) 

Since the distribution of a is binomial, for the type of patterns employed, the 
probability that this condition be satisfied is: 

1 ) (1) n-ln - (24)~nr = ( n;l + ~ 2" 

Using Stirling expansion and expressing the result in terms of Xo = Aoln, we find, 
for the probability that a pattern internal to the first group be recorded in the 
synaptic value: 

1 [( 1) I-xo ( 1) I+XO] -n/2
:t:>r ~ C . 1 - Xo - - 1 + Xo - - • (25) 
tn ~ n n 

In order to calculate the probability that the memory of the patterns of the 
first group is not destroyed by the subsequent groups, we proceed as follows. We 
have seen in Section 3 that memory is destroyed by consecutive refresh changes 
which act in the same direction. Thus, we are restricted to sequences of groups of 
n patterns which do not impose two consecutive changes of the same sign. But, in 
contrast to the slow learning case, here there may be intermediate refresh periods 
in which there is no modification, i.e. in which the condition 1.041 > Ao is not 
satisfied. Thus, we must consider all group sequences of alternating signs, that 
may have any number of intervening no-modifying refresh cycles between any two 
effective refresh cycles. 

Let r be the number of modifying refresh cycles out of the pin - 1 cycles 
following the first one. The number of memorizing sequences is the number of 
sequences which have (pin - 1) - r zeros, standing for the non-modifying groups, 
and r alternating modifications. Suppose that the arriving sequences of randonl 
patterns have a distribution of bits such that 

c 
Pr(A> Ao) = Pr(.4. < -Ao) = :2 

Pr(-Ao < A < AD) = l-c, 

then the fraction of sequences with exactly pin - 1 - r zeros is: 

Among those only sequences with alternating sign modifications keep the menl0ry 
in a synapse. Their probability, for a sequence of r modifications is proportional 
to 2-r. Thus the probability that the memory created by the first group is not 
erased by the pin - 1 subsequent groups is: 
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p/n-l (/ 1 ) ( ) £-1Pr = C 2: 2- r P n - cr (l - cy/n-l-r = C 1 _:. n 

out r=O r 2 

The total fraction of memory maintaining synapses is given by: 

1 [( 1) l-xo ( 1 ) l+XO] -n/2 ( C) 2.-1d = Pr· :pr ~ C . 1 - Xo - - 1 + Xo - - 1 _ _ ntn.;n=-r • 

out n n 2 

c is the probability that a group will effect a modification. It can be expressed in 
terms of the n and the modification threshold Xo. A modification will take place if 
A > Xo. If It is the number of positive bits, out of a group of n, 

A=k-(n-k) 

and the corresponding probability is 

1 
Pr(A = k - (n - k» = ( p ~ 1 ) 2". 

Consequently, the probability for a modification is: 

~ (P-1)1c(n, xo) = 2 L..t k ,)n' (26) 
k>n(xo+l)/2 ..., 

where the extra factor of 2 represents the fact that there are negative as \\'ell as 
positive modifications. 'Vhen n becomes very large, 

:1'0 ) c(n, xo) = 1 - erf ( V2 . 

8.2 Stochastic refresh dynamics 

In this case there is a probability q that a synapse changes upon presentation of a 
modifying pattern. Any synapse sees a different history of modifications, even for 
the same incoming set of input bits. One finds a situation similar to that discussed 
in Appendix 8.1, in which different synapses may receive varying numbers of non­
modifying inputs among the p arriving bits. The fraction d is again the sum over 
all possible numbers of zeros in a sequence of p - 1 bits, with the remaining bits 
of alternating signs. The difference is that in the present case the probability of 
modification, q, is fixed, while in the group presentation it was to be calculated 
from the properties of the group. The result is: 
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8.3 Asymptotic synaptic distribution 

Whatever the initial distribution of synaptic values, after a long period of inactivity, 
the refresh mechanism will produce a three-way distribution ±J,O. Suppose that 
after k refreshed learning steps the clipped distribution of the synapses has: 

k k k kc+, c- and c0 = 1 - (ck 
+ +c-,) 

for the fractions of synapses with the values indicated by the subscripts. Since the 
arriying patterns have a symmetric distribution of positive and negative values, in 
a learning situation, after the presentation of the next pattern the distribution will 
be: 

k+1 k k+1C = !(1 - c ). C = !(1 _ ck ).+ 2 -, - 2 + 

This distribution converges, exponentially fast, to c+ = c_ = Co = ~. 
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