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Abstract 

It is shown that a simple modification of synaptic structures (of the Hop
field type) constructed to produce auto-associative attractors, produces neural 
networks whose attractors are correlated with several (learned) patterns used 
in the construction of the matrix. The modification stores in the matrix a fixed 
sequence ofuncorrelated pattems. The network then has correlated attractors, 
provoked by the uncorrelated stimuli. Thus, the network converts the tem
poral order (or temporal correlation) expressed by the sequence of patterns, 
into spatial correlations expressed in the distributions of neural activities in 
attractors. 

The model captures phenomena observed in single electrode recordings in 
performing monkeys by Miyashita et al. The correspondence is as close as 
to reproduce the fact that, given uncorrelated patterns as sequentially learned 
stimuli, the attractors produced are significantly correlated up to a separation of 
5 (five) in the sequence. This number 5 is universal in a range ofparameters, and 
requires essentially no tuning. We then discuss learning scenarios which could 
lead to this synaptic structure as well as experimental predictions following 
from it. Finally, we s eculate on the cognitive utility of such an arrangement. 
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1 Introduction 

Temporal to spatial correlations in monkey cortex 

The remarkable sequence of neuro-cognitive experiments by Miyuhita et al[l, 2, 3] is 
the most direct evidence of the relevance of attractor dynamics in cortical cognitive 
processing. It is at the same time detailed and structured enough to guide and 
confront attractor neural network (ANN) modeling. In the first experiment[I], the 
monkey is trained to recognize and match a set of visual patterns. As a result, 
one observes selective enhancement of neural spike activity, which persists for 16 
seconds after the removal of the stimulus. The fact that selective, stimulus related, 
enhancement of neural activity persists for 16 seconds in the absence 'of the provoking 
stimulus, is incontrovertible evidence of non-ergodic attractor dynamics. The same 
encouraging evidence has forced a confrontation on the question of activity rates upon 
retrieval by attractors. The rates in the Miyashita attractors was many times lower 
than what models of the Hopfield type[4, 5] predicted. This fruitful confrontation led 
to a .tudy[6] which .howed that when neural description i. taken in greater detail, 
as well as the conditions prevailing in cortex, attractors can appear having .tochastic 
behavior and low rates. 

The second study[2] went further to provide information about coding in the 
particular module of the anterior ventral temporal cortex of the monkey: It was dis
covered that, despite extreme precaution in producing visual stimuli uncorrelated in 
their spatial form, .patial correlations appeared in the patterns of su.tained activi
ties, evoked by the .timuli, during the delay period. These persistent activities we 
interpret as the structure of the attractors. There was one kind of correlation that 
was preserved in the stimuli, the temporal order of their presentation was maintained 
fixed during training. What the monkey's brain appears to be doing, is to convert the 
temporal correlation into a .patial one. Namely, .patial correlations were observed 
among the attractors, corresponding to the stimuli that were close temporally in the 
training session. These attractors are the result of retrieval dynamics. The spatial 
correlations between the activities of the neurons investigated persisted to a fifth 
neighbor in the temporal sequence. The correlation figure of ref. [2] is reproduced in 
Fig. 1. 

Modeling correlation conversion 

The main result of the Hopfield program has been to connect the intuitive call for 
selective (stimulus dependent) attractor dynamics (associative memory) with specific 
constructions of synaptic matrices, and therefore a bridge to unsupervised learning. 
The program was limited by the requirement that the attractors be as close as possible 
to the patterns of which the matrices were constructed, i.e. the presumed items in 
the learning process. This went under the name of auto-association. 

Here we shall show that a simple modification of the synaptic matrices used for 
auto-association in ANN's leads to a relaxation dynamics that associates with stimuli 
near one of the random, uncorrelated underlying patterns, an attractor which is 
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Figure 1: Spatial correlations between att.ractors, in monkey's anterior ventral tem
poral coriex, corresponding to structurally uncorrelated patterns, u a function of the 
dift'erence in the position of the learned stimuli in the fixed training sequence. From 
[2] 

correlated with several patterns. The patt.erns which have the largest correlations 
wit.h a given attra.ctor are the neighbors of the .timulus leading t.o t.he att.ractor, 
in t.he lequence of stored patt.erns. It. t.hen follows that. at.tract.ors are correlated 
among t.hemselves. Again, the attract.ors that. are correlated are the neighbors in the 
sequence of the underlying pattems. These are just the type of correlations observed 
by Miyuhita. In fact, the number of attractors that are found to be correlated 
significantly in the model, is the same &I in t.he experiment. 

The extended model is discussed in two different variants: one is the original 
formulation of ±1 neurons, with the artificial symmetry between active and passive 
states of neurons; the second is a 0-1 formulation [7 , 8], in which this symmetry is 
removed and which can naturally be interpreted in term of high and low activity ra.tes 
of neurons in attractors. The results di1£er in detail, but the main qualitative features, 
of converting sequential order among un correlated pattems to a set of correlated &t
tractors, is present in both. Both models have symmetric synaptic matrices, which 
are unrealistic but convenient. The study of auto-associative ANN s, over the last sev
eralyears, has made it clear that most ~f the attractor properties of these extensively 
connected networks are rather robust to the introduction of synaptic asymmetry (see 
e.g. [5]). 

We then proceed to interpret the proposed synaptic matrices in terms of learning 
dynamics. It is argued that rather plausible synaptic dynamics, accompanying the 
relaxation in the ANN, may produce a synaptic matrix with correlated attractors for 
un correlated external stimuli. Within such learning scenarios, one is led to predict 
that the presentation of uncorrela.ted patterns in a random sequence, would produce 
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attractors which are uncorrelated, and are each close to the representation of the 
original patterns, as would be the case in the Hopfield model. 

Finally, we discuss the potential utility of such conversions of temporal correlations 
to spatial correlations in modeling several aspects of cognitive behavior. 

2 The model with ±1 neurons 

The original way of pursuing the Hopfield ANN program was to choose the variables 
describing the instantaneous states of each neuron S.(t)=±l, where i labels the neu
ron, (i = 1, ... , N). The patterns, to be stored in an N neuron network, are N-bit 
words of ::1:1 '., the value of each bit chosen independently, with probability 0.5. De
noting the components of the activity of neuron number i in pattern number p., er, 
the proposed synaptic matrix is written as: 

J'j = ~t [(f(j +a«(f+1(j + (:'(j+1)] I (1) 
101=1 

where p is the total number of patterns stored in the connections. The patterns, 
p. are considered to form an ordered sequence, which corresponds to the order of 
presentation in the training phase. For simplicity, the tequence is taken to be cyclic. 
Each pattern in the construction of the matrix is connected to one preceed.ing and 
one succeeding pattern. Note, in particular, that this extended matrix still preserves 
the symmetry of the Hopfield matrix, which implies that all attractors will be fixed 
points, and makes analysis 10 much simpler. How this relates to a learning scenario, is 
discussed in Section 4. The matrix of Eq. 1, for 4=0, reduces to the original Hopfield 
matrix. 

This matrix is accompanied, as usual, by a schematized spike emission dynamics 
which, in the noiseless case, determines the new state, Si(t), of the neuron according 
to: 

(2) 

( where 
N 

hi(t + 6t) =L Ji;S;(t). (3)
;=1 

hi mimics the value of the post-synaptic potential, relative to the threshold, on neuron 
i. The linear superposition of bilinear terms in the neural activities of the stored 
patterns, is sometimes referred to as a Hebbian learning from a 'tabula rasa'. We 
shall return to the question of learning later. 

The natural variables for the description of the non-ergodic a.symptotic behavior 
of the network are the 'overlaps' m"'(t) of the current state of the network, Si,(t), with 
the stored pattern p.. They are defined as: 

m~ = ~ I:S,ef (4) 
l 
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See e.g. ref. [9, 5]. The value of overlap m'" measures how close is the state of the 
network to the stored pattern 1'. If m"'=l, the state is identical, as a binary word to 
the pattern 1', i.e. Si = (r for all i. If m"'=l for the asymptotic state, the attractor, 
then the corresponding pattern is retrieved perfectly. 

With the matrix Eq. 1, the 'field' hi can be expressed in terms of the overlaps[9], 
which implies that so can the dynamics of the network as well as its attractors. 
Namely, we can write Eq. 3 as 

f 

v 
(5) 


from which one derives the mean-field equations determining the attractors. For a 
symmetric matrix, those are simple fixed points. They read, in the limit of a network 
of a large number of neurons with a relatively low number of stored patterns: 

(6) 

The double angular brackets imply an averaging over the distribution of the bits in 
the patterns (see e.g. [9, 5]). 

Auto-association was the interpretation of the fact that, in the absence of noise, 
for low loading, the equations 6 had lolutionl with one lingle mil ;&0, which attracted 
a wide set of initial states in the neighborhood of each pattern. A way from these large 
basins, 'spurious states' were found to exist[9]. Moreover, the artificial symmetry of 
the +1 and -1 states, produced attractors of the sign reversed states of each pattern. 
These, retrieval properties of the Hopfield ANN have been found very robust to 
extensive noise and synaptic disruption, including asymmetric disruption. 

If one tries a pure pattern solution for Eqs. 6, with 1'=2 for example, one has3 : 

(7) 


For a <0.5, it is the first term in the square brackets which dominates the sign of the 
argument of the sign-function and m 2=1 is a fixed point solution, as in the case a=O. 
For a. >0.5, this is no longer the case. For 25% of the sites (3 = (1 = _(2 and the 
argument has the sign opposite to that of (2. Starting from a state with m 2=1, and 

1all other overlaps 0, one arrives, after one step to a state with m2 = m = m3=O.5. 
This ia no fixed point either. 

The IOlutions of Eqs. 6 have all overlaps ditTerent from zero. The previous dis
cussion suggests a numerical procedure for arriving at the solution: start from a pure 
pattern state and iterate until convergence. This is what the network would do, if 
given one of the pure patterns it learned, Si = (II, as an initial state, until it relaxes 
to a fixed point. The symmetry of the dynamics under patt~rn permutations implies 
that this has to be done for one pattern only. 

The equations were solved in this way. One finds that starting from a pure pattern, 
one arrives at a stable solution after several iterations. The solution reached is a state 

3The 2'. are superscripts not squares. 
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Figure 2: Overlaps between an attractors ud stored patterns, as a function of the 
separation of the pattern in the sequence from the pattern underlying the attractor . 
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with nonzero overlaps with all stored patterns, symmetrically distributed around the 
pattern, which served as the stimulus. Only a small number, actually 5, of these 
overlaps are significantly large, provided 4 >1. This distribution of overlaps in an 
attractor, corresponding to one of the underlying patterns, is shown in the Figure 2. 
In this case p=13 patterns are stored, and 4=0.7. 

It is remarbble that the structure of the attractor does not depend on the number 
of patterns p, nor on the value of 4, in the entire range 0.5 < 4 < 1. For 4 >1, 
the network develops attractors which have overlaps with all stored patterns. The 
values of the overlaps decrease as the number of patterns increases. This means that 
after learning sufficiently many patterns, the network loses it's ability to associate 
attractors with the stimuli. 

One can read from Figure 2 that the retrieval attractor has substantial over
laps with several patterns, symmetrically disposed, before and alter, in the sequence 
relative to the pattern corresponding to the stimulus. Clearly, if each attractor is 
correlated with several patterns, then the attractors corresponding to di.ft'erent pat
terns must themselves be correlated. These correlations would correspond to the 
correlations measured by Miyashita[I], Figure 1. The correlation of activities in two 
attractors, tTl'- and tT"', is defined as: 

. 1 N 

C(p., II) = ICI ~(tTf - 0:)( (T~ - 0:), (8) 
,=1 

where "if is the average a.ctivity in a. given attractor and the normalization constant 
101 is chosen so that O(p., p.)=1. In the present case, 0:=0, and ICI = N. Hence, the 
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correlation of attractors I' and v can be written as: 

1 L: /.J v0(1', v) = - (1. (1. 
N . ' 1, 

- ~ ~ sign(hr)sign(hi) = «sign(h")signW))), (9) 
• 

where hr is the local field on neuron i when the network is in attractor number 1'_ The 
last equality is a.n expression of self-averaging, giving a.n average over the distribution 
of pa.t.t.ems. Finally, subst.ituting the fields from Eq. 5 in Eq. 9, we arrive at the 
correlation coefficient: 

O(I',v) = ((sign(Et'(m:+am:+l+am:-l)sign(E(If(me+ame+l+ame-l»)) (10) 
Q If 

where m~ is the overlap of the attra.ctor corresponding to Itimulus number I' with 
pattern number p. 

These attra.ctor overiapi are illustrated in Figure 3, where we plot the correla
tions among di1ferent pairs of attra.ctors VI the dista.nce between their corresponding 
patterns. Figure 3 clearly demonstrates that while Itored patterns are completely ran
dom, and hence uncorrelated, the states reached by the network upon presentation of 
these lame patternl, have a substa.ntial degree of correlationl, which decreases with 
the separation of the patterns in the sequence. Note that while an attractor 'sees' 
two-three patternl on each side, it lees five attra.ctors on each side. The qualitative 
form of the correlations captures the experimental trend, Figure 1. The absolute 
values of the correlations differ. This can be due to a different normalization used 
in ref. [IJ, where the normwation is not given explicitly_ It may also be that the 
ablolute values will be different in a more realistic networks. 

Finally, the a.nalysis given above is based on the exact symmetry of the matrix 1, 
in which case the system has only fixed point attractors. Asymmetry can enter in two 

( 	

ways: either as a local, ra.ndom disruption of the synaptic elements, or as a coherent 
asymmetry of the two transition terms in the symmetric matrix. The first type of 
asymmetry is in the realm of the robustness of the attractor dynamics of the network. 
Concerning the lecond type: The mean-field equations 6 hold even if t.he coefficients 
of the two transition terms in Jt; are not equal. We have found that the behaviour of 
the network is robust against some amount of asymmetry between the two coefficients. 
However, if the asymmetry becomes two large, Eqs. 6 first acquire another solution, 
with the ma.ximum overlap shifted to a.nother pattern. At. still higher asymmetry, the 
fixed point. solution is lost, in favor of a time.dependent attractor. In this attra.ctor 
the network moves from one pattern to another, in a direction determined by the 
major non-diagonal term in the matrix 1. 
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Figure 3: Correlations between attractoH as a function of the aeparation in the 
sequence of the patterns to which the attractoH belong. 

3 ANN with discrete 0-1 neurons 

The a.bove description was extended to deal with a 0-1 representation of informa.tion, 
allowing for the removal of the symmetry between active and refractory states of the 
neurons[7, 8]. This description hu several further advantages: its terms are very 
dose to a representation in terms of .pike rates, which are positive analog variables; 
moreover it allows for very efficient storage of patterns as the coding rate, i.e. the 
fraction of 1's in the patterns, becomes very low - spa.rse coding. Since it is important 
to show that the correlation effects to be discussed take place also for this case, we 
shall recall that formulation as well. 

The dynamics is described in terms of instantaneous neural variables, Vi(t), which 
take the values (0,1) as 

(11)V;(t + cSt) = e (~J;;V;(t) -1/) , 
where 9(z)=1 for z >0, and 0 otherwise, and 8 is a neural threshold. These varia.bles 
can be directly interpreted as high and low activity (spike rates) of each neuron. Such 
would be a description in terms of analog rates, in a high gain limit. 

In this case the patterns to be stored by a learning dynamics, '1~, are chosen as 
N-bit words of independently chosen 0,1 's, i.e. 

l1r = 0; 1 p, = 1, ... , p (12) 

where the probability for a I,O-bit is I, (1 - I), respectively. 
An extension of the symmetric synaptic matrix, appropriate for aut.o-association 

[7, 8], to our requirements would be: 
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and the corresponding overlaps are generalized to: 

m"(t) = N f(: _f) ~(T/r - f)V;(t). (14) 

With the couplings 13, the dynamics can be expressed in terms of the above overlaps 
and so ca.n the fixed points of the retrieval attractors. The latter have the form: 

m" = ((('1" - f)9 (~m"{('I" - f) +a[('1,,-1 - f) + ('1"+1 - f))}))). (15) 

When 4=0, the system of equations reduces to that of reu. [7 t 8]. ~ this case, 
at low loading, the exact stored patterns are the retrieval attractors of the network, 
i.e. the equations admit solutions with a single non-vanishing overlap, which in turn 
is equal 1. These attractors persist until 4 reaches the critical value of, 

I+() 
4Ct' = 2(1 - I)" 

Above this value of 4, the pure patterns are unstable a.nd the network, having a 
symmetric synaptic matrix, finds new fixed points. The Eqs. 15 have to be solved 
numerically for the values of the overlaps in the retrieval attractors. This we do, 
again following the network, as was explained in the previous section. 

A typical solution is shown in Figure 4, for parameter values: 1=0.01, ()=0.2, 
p=ll a.nd 4=0.25. Figure 4( a) represents the overlaps vs the pattern number in the 
sequence, relative to the pattern of the stimulus. Figure 4(b) is the correlation be
tween the attractors. Note that in distinction to the ±1 case, the significant overlaps 
here, of which there are five in total, are all equal. They are all unity, up to terms of 
0(/). This implies that the attractor is approximately the union of the I-bits in the 
five patterns centered aro~d the stimulus. In particular, the mean spatial activity 
level in the attractors is higher than in the pure patterns. A fact that ca.n be tested 
experimentally. 

The correlation figure 4(b) may seem somewhat simple compared with the ex
perimental one of Fig. 1. Clearly, the experimental correlations are not a straight 
line going to zero at a separation of five patterns. We find the appearance of the 
correlations as well as their clear trend to decrease with the separation in the training 
sequence, down to very small values at a separation of five, very significant. All that 
was put in was the synaptic structure connecting successive patterns in the sequence. 
The remaining differences may be attributed to several factors, all of which are under 
study. These factors are: 
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Figure 4: Correlations between attra.ctors (a) and overlaps of attractor with patterns 
(b) vs the separation in the sequence of the patterns to which the attractofl belong. 

• 	 The neurons in the experiment are analog neurons, represented by spike rates, 
and not discrete 0-1 neurons; 

• 	In the experiment the neurons operate in the presence of noise, while here for 
simplicity we dealt with a noiseless situation; 

• 	 The matrix we chose is surely not the matrix in the monkey's cortex. One 
consequence is that all our attractors are identical; 

• 	 In the experiment the sample groups of neurons are small and are chosen in 
special ways. This leads inter alia to large fluctuations. Our correlations are 
ideal in that they take into account an infinite number of neurons. 

All these effects can be studied either by an extension of the above reasoning to analog 
neurons with noise, or by simulations. These studies are under way. 

The pattern to pattern correlations are computed according to Eq. 8. What 
remains is to determine 7i and lei for this case. H the mean proportion of I-bits in 
the attractors is g, then (j = 9 and IeI = Ng( 1 - g). It is rewarding to see that the 
correlations between neighboring attractors are monotonically decreasing with the 
separation in the sequence, and are disappearing after the fifth neighbor, as in the 
experimental data. 

In the present case, the number of condensed patterns, those having large values 
of the overlap with the attractor corresponding to a stimulus, depends on the value 
of a. This variation leaves finite intervals of a in which the attractors are invariant. 
Increasing a, we observe a sequence of bifurcations, where the number of condensed 
patterns increases by two. Correspondingly, the number of significantly correlated 
attractors, increases by four upon crossing a bifurcation value of a. Between any 
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two bifurcation points the solution does not change, i.e. the number of significantly 
correlated attractors, as well as the magnitude of the correlations, remain invariant. 

Learning· 

In this section we will try to discuss possible learning scenarios, which could lead to 
a synaptic structure of the type considered in the previous sections. At the present 
time there is not enough information about the learning mechanism and memory 
preservation in the cortex, and our discussion can at beat be tentative. We feel 
though that such a discussion may not be completely premature, just because of the 
level of specific detail provided by the experiments of Miyuhita et al, and the ability 
of theory to approach a similar level of detail. Moreover, it is our feeling that a 
discussion of the implications to learning, of such findings, may lead to experiments 
which through neurophysiological correlates of behavior may shed additional light 
upon constraints on learning. 

It is plausible to describe the synaptic dynamics as: 

(16) 

where 7 is the rate of decay of the synaptic nlue and Ki, LJ are, respectively, the 
post- and pre-synaptic contributions ,to the synaptic efficacy. Both K and L depend 
on the activity of the corresponding neuron. 

A simple mechanism which would lead to the matrix 1 could be to apply a usual 
Hebbian modification rule, with both pre- and post-synaptic terms as linear combi
nations of the current and preceding patterns, e.g., 

Ki(t) - K1(t)er + K2(t)er- 1 
, 


Li(t) - L1(t)er + L2(t)er- 1 
• (17) 


This form may result from two different scenarios. In both we assume that strong 
presentations of the individual, uncorrelated patterns create attractors for those pat
terns themselves. Then, during training, which consists of many repeated presenta
tions, the network, which remains in an attractor between presentations, is made to 
move to the next attractdr by a new presentation. It should be emphasized, that 
in this description the role of the attractors is quite crucial. Before the patterns 
themselves are stored in the synapses as attractors, at the presentation of a consec
utive pattern (to be learned) in the sequence during training, there is no memory 
of the previous pattern. This is especially true if the time between presentations of 
consecutive patterns is as long as in the experiments of Miyashita et ale 

The dift"erence between the two scenarios is in the way we view the origin of the 
source terms, K and L, for the synaptic change. 

In the first we assume that the values of the neuronal spike frequencies repre
sent, in an analog way, the transition between the two attractors. In this picture, 
Kl(t) = L 1(t)=O, before the transition starts, which is a.bout when the next pa.ttern is 
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presented. When the network is well established in the new attractor, KJ{t)andL2(t) 
tend to zero. 

In the second scenario, one assumes that it is the local synaptic variable which re
memben some short history of the pre- or post-synaptic activity of the corresponding 
neuron. For example, it may be the cue that the synaptic mechanism may modify 
its effectiveness depending on the mean of the neuron's activity in lOme prior time 
window ".. The pre- or post-synaptic change may be enhanced, or suppressed, by a 
history of high average mean activity. Since the moving mean of the activity history 
is a linear combination of the activity in two consecutive patterns, while the network 
is moving from one attractor to the next, the end result is the .ame. Provided, of 
course, that the averaging window is short in comparison with the time of presence 
in each attractor. But this does not seem to be a strong requirement, given that the 
network stays in these attractors for many seconds. 

As a simplest assumption we ca.n take K =L, as functions of the pre- and post
synaptic activities, which implies Kl =L 1 , KJ =L2 • Relaxing this constraint would 
lead us to asymmetric synaptic transition terms, of the type discussed in Section 2. 
If the resulting asymmetry is not large we expect the performance of the network to 
be robust. In the symmetric ease, the contribution to the synaptic dynamics is:. 

As one pattern follows the other, these contributions sum up, when equation 16 is 
integrated. If we neglect the exponentia,J decay, "'(, the summation is direct and alter 
a long time, when all patterns have been presented many times in a fixed order, the 
resulting matrix would be proportional to: 

Jij ~ ~ (f dt[K:(t) +K:(t)Jem + / dtKt (t)K2(t)[er+1e: + e:+1en) , (19) 
IJ 

where the time integration is over an interval 1", in which synaptic modification is 
taking place. 

This matrix has the same form as the one we introduced in the previous sections. 
It corresponds though to a case in which a $0.5. This fact should not be considered 
too adverse. Synaptic decay, for example, is sufficient to raise a above 0.5. In the 
final analysis one should consider analog neurons, towards which the 0-1 neurons are 
an intermediate stage. Even for the discrete 0-1 neurons, the critical value of a is 
much lower than 0.5, while the heuristic learning mechanism can remain essentially 
the same. 

Finally, if the p.atterns a.re presented in a random order during training, one caD 
expect every pattern to be followed by a.ny other one, given that a large number of 
presentations is required for satisfactory learning. This implies that the transition 
terms in Eq. 19, containing any pa.rticular pattern will be multiplied by a sum 
over all other patterns. That sum vanishes on the average and the transition terms 
become negligibly smalL No correlations are then generated by the network, from 
uncorrelated patterns. 
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5 Experimental predictions and Some specula
tions 

Given that a synaptic matrix, which can be learned without supervision, is able to 
convert temporal correlations into spatial ones, one is tempted to make some prelim
inary speculations about the computational a.nd behavioral utility of such synaptic 
development. One, directly measurable, application had been pointed out in ref. [3]. 
In this experiment the monkeys are trained to recognize 24 visual pattems, organized 
in 12 fixed pairs. The pairs are presented in a random order. Correlations are gener
ated among the two members of each pair, only. Those correlations are then shown 
to be correlated with the ability of the monkey to retrieve the second member of a 
pair, after being presented with the first. The basic nature of this type of usociation 
for the construction of cognitive behavioral pattems is quite immediate. What is 
special about this particular experiment is that the usociative retrieval of the paired 
member is directly connected to the presence of the correlations in the representation 
of the pairs of attracton in the pari of cortex under electro-physiological observation. 

The interpretation of this experiment does not require speculation. To go one step 
beyond, one can expect the generation of such correlations to underlie the effect of 
priming[10]. In other words, if the network is in one of its attractors, and a new stimu
lus is presented, the transition between two attractors which are highly correlated (i.e. 
have a particularly large number of active neurons common to their representations) 
is much faster, than the transition between less correlated attractors. This effect was 
observed in a simulation with realistic neurons[ll], when the pure pattems, involved 
in the construction of the synaptic matrix, were included explicit correlations[12]. 
This effect can be directly measured in a Miyashita[2} type experiment. One would 
expect that the transition time between different attractors would increase with the 
distance of the two patterns in the sequence of presentation. 

In cognitive psychology the effect is familiar in experiments in which the reac
tion time is measured for the recognition of distorted words, or other images. This 
reaction time is significantly shortened if the pattern to be recognized is preceded 
by a cognitively correlated pattem.[IO] In the language of the model we would say 
that the 'priming' image leads the network into its corresponding attractor . That 
attractor is correlated with the attractor corresponding to the test stimulus. Hence, 
the transition between the two is faster than the transition from some other state in 
which the network may find itself in otherwise. Complementing this scenario with 
the suggeition that at least part of our basic cognitive correlations are related to 
temporal. contiguity of afferent stimuli, completes this speculation. 

This interpretation can be extended one small step further. As attractors get 
increasingly correlated, there is an increase in the probability that noise would cause 
transitions between them, transitions of the Buhmann-Schulten type[13]. This opens 
the way for the scenario in which such transitions can be provoked in a cortical 
network by random afferent activation of the module. The transitions will tend to 
take place between correlated attractors, which in the present model are related to 
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temporal proximity during learning. Note that this process C&D. also be observed in 
the experiments of the Miyashita type, though their cognitive content is more difficult 
to investigate. 

One could hope to be able to investigate the process of learning the matrix which 
generates the correlations. We have argued in Section 4 that the process will go 
through the intermediate stage of learning the pure pattern attractors first. This was 
based on the assumption that there is autonomous learning in the particular module 
under observation. This is not self evident, and it may be that the pure patterns are 
quickly learned as attractors in a different area, as hippocampus, for example, and 
those attractors then assist in learning the correlated attractors. Since the question 
is open, one could attempt to clarify it by presenting different parts of the training 
sequence, in an experiment such as [2], with dift'erent frequencies. !I'hen, if learning 
actually first goes through the creation of individual attra.ctors for the pure patterns, 
one should observe lower correlations in the parts shown less frequently, u well as 
lower coding rates. In other words, pure patterns are expected to use less neurons 
than the composite patterns correlated by the dynamics. See e.g. Section 3. On 
the other hand, if the module learns the correlated attra.ctors direCtly, DO group of 
patterns should show the appearance of uncorrelated attractors. 
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