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Abstract 

A learning attractor neural network (LANN) with a double dynamics of 
neural activities and synaptic efficacies, operating on two different time scales 
is studied by simulations in preparation for an electronic implementation. The 
present network includes several quasi-realistic features: neurons are represent­
ed by their afferent currents and output spike rates; excitatory and inhibitory 
neurons are separated; attractor spike rates as well as coding levels in arriving 
stimuli are low; learning takes place only between excitatory units. Synaptic 
dynamics is an unsupervised, analog Hebbian process, but long term mem­
ory in the absence of neural activity is maintained by a refresh mechanism 
which on long time scales discretizes the synaptic values, converting learning 
into an asynchronous stochastic process induced by the stimuli on the synaptic 
efficacies. 

This network is intended to learn a set of attractors from the statistics of 
freely arriving stimuli, which are represented by external synaptic inputs inject­
ed into the excitatory neurons. In the simulations different types of sequences 
of many thousands of stimuli are presented to the network that performs in­
discriminantly retrieval and learning. Stimulus sequences differ in preassigned 
global statistics (including time dependent statistics); in orders of presentation 
of individual stimuli within a given sta.tistics; in lengths of time intervals for 
each presentation and in the intervals separating one stimulus from another. 

We find that the network effectively learns a set of attractors representing 
the statistics of the stimuli, and is able to modify its attractors when the input 
statistics change. Moreover, as the global input statistics changes the network 
can also forget attractors related to stimulus classes no longer presented. For­
getting takes place only due the arrival of new stimuli. The performance of 
the network and the statistics of the attractors are studied as a function of the 
input statistics. Most of the large scale characteristics of the learning dynamics 
can be captured theoretically. 

This model modifies a previous implementation of a LANN composed of 
discrete neurons, in features of networks of more realistic neurons. The different, 
elements have been designed to facilitate their implementation in silicon. 

lOn leave of absence from Racah Institute of Physics 
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1 Introduction, motivations 

A Learning Attractor Neural Network (LANN) composed of essentially discrete ±l 
neurons accompanied by organic, unsupervised learning dynamics on synaptic effi­
cacies has been implemented in electronics[l, 2]. The motivation for the material 
implementation of such a network was to obtain a physical system that organizes 
itself to represent internally the global statistics of a natural (free) inflow of external 
input (stimuli). The learning process, which is unsupervised, hebbian dynamics on 
the synaptic efficacies, is expected to translate the large scale statistical features of 
the input stream into dynamical attractors of the neural dynamics of the network. 
These attractors constitute internal representations of the statistics. They are ex­
pected to be both robust and plastic, in that small, ever present fluctuations in 
the input should modify them slowly if at all, but they should follow the temporal 
changes of the large scale statistics in the input stream. Such large scale changes in 
the input stream may provoke the elimination of some attractors and the generation 
of new ones, expressing forgetting in a palimpsestic context. 

The double dynamics of the target network is unsupervised not only due to the 
absence of a computational paradigm (see e.g. discussion in ref. [2]), but also in 
that there is no external control separating learning from retrieval, or computational 
phases. Learning dynamics is affected exclusively and continually by neural activi­
ties (rates). These, in turn, may vary depending on whether a stimulus is or is not 
afferent on the network, and which stimulus was last presented. The implemented 
network 'forgets' only due to the creation of new representations. Therefore, in 
the absence of arriving stimuli, synapses are stable indefinitely. This stability is 
achieved at the price of a refresh mechanism, which on longer time scales maintains 
a discrete set of stable values for a synapse, even though on the short time scale 
synaptic dynamics is analog. 

Due to the refresh mechanism learning related to long term memory becomes 
a random walk among the discrete states. The synaptic matrix formed by such 
a process results necessarily[3, 4J in a palimpsest memory with an extremely low 
memory span. In the context of the first implementation only partial remedies 
to this problem are available. In the present implementation the network can, in 
principle, reach absolute maximal memory spans. 

The first LANN has also pointed out several limitations of the discrete neural 
implementation. The new network is a step more realistic in the sense that a 
set of biological requisites are implemented in it. It turns out that most of the 
implemented biological features are quite desirable also from the functional, as well 
as the electronic points of view. 

In the present LANN there are two types of neurons, excitatory and inhibitory; 
neurons are analog elements characterized by a current-to-rate gain function (al­
lowing operation at low spike rates); a very low fraction of the excitatory neurons is 
activated by a given stimulus (low coding level); excitatory neurons are coupled by 
a plastic synaptic matrix, which is to be structured by learning; inhibitory neurons 
are coupled in a fixed way to and from the excitatory neurons, to maintain a low 
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level of overall activity in the excitatory network. 
The corresponding advantages of the present network are: the separation into 

two types of neurons allows one to consider all synapses as positive and eliminates 
the need for four-quadrant multipliers[l]. It also reduces the sensitivity of the 
network's function to fluctuations in the fraction of active neurons per stimulus (see 
e.g. [26] and Section 6 below.) The analog nature of the neural variables allows the 
amplitude of the neural activities themselves to express in their rates the presence 
of a stimulus or its absence. It also allows the network to express unambiguously 
the fact that a given stimulus is unfamiliar, by leading the network to a state of no 
activity[5]. The option of low coding levels in the stimuli is the key to resurrecting 
optimal storage with palimpsest[4]. 

The operation of the network is similar to the first LANN: First an input string 
is generated by defining class representative patterns with a given coding level. 
Around each representative, a class is defined as a set of patterns with the same 
coding level but with a given range of variation about the representative. A stimu­
lus sequence is determined by prescribing 1. the order of presentation of, randomly 
chosen, members of each class; 2. the distribution of time intervals for the pre­
sentation of each stimulus; 3. the distribution of time intervals between every two 
consecutive stimuli. A typical sequence includes about 200 presentations of stimuli 
from a given class. In this first study the class representatives are uncorrelated. 

What we expect and indeed observe is that after a sufficiently long sequence 
of presentations the synaptic modifications stabilize reverberations (stable activity 
distributions) which correspond to the classes: if a member of a class is briefly p­
resented, the network maintains an activity distribution corresponding to the class 
after the stimulus is removed. The speed of learning can be controlled by varying 
the transition probabilities between the synaptic states in the stochastic learning 
process (see e.g. ref. [2]). These persistent distributions (attractors) are the in­
ternal representations of the classes and in this sense of the statistics of the input 
string. They fluctuate somewhat as different members of a class cause somewhat 
different synaptic modifications and due to the fact that the learning process is 
stochastic. But as long as the classes remain fixed the attractors are rather robust, 
despite the interjection of many stimuli which belong to no class. These persistent, 
selective activity distributions are sustained by the learned synaptic matrix. If a 
given stimulus does not belong to any of the classes, it is not recognized by the 
network. The signature is that all activities decay to zero and the network remains 
silent[5, 6]. 

Since some synaptic modifications occur for the presentation of every stimulus, 
if members of certain classes stop to be shown to the network, those classes are 
forgotten. Such classes are replaced by representations of new classes shown to the 
network. 

In Section 2 we describe the network and its elements. In Sections 3 and 4 we 
concentrate separately on the neural dynamics with a fixed synaptic matrix, and 
on the synaptic stochastic dynamics with fixed neural variables, in order to develop 
the appropriate tools and intuitions. In Section 5 we present the simulations of the 
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Ej Jii v: Excitatory network 
HertInput 'I Output

-T Vi = ¢(li) 

Inhibitory unit EiVj 

T = tP(linh) 

Figure 1: The LANN network. The excitatory network receives current from the 
input (stimulus), from the feedback collateral connections and from the inhibito­
ry network. The computational outcome (attractor) is realized on the excitatory 
network. 

model with the double dynamics. In the last section we discuss the statistics of 
learned attractors. 

2 The model 

2.1 Composition of the network 

The basic units of the network are N excitatory neurons i (i = 1, ... , N), char­
acterized at time t by their incoming current li(t) and their firing rate Vi(t). A 
network composed of only excitatory elements is highly unstable, so we include 
inhibitory neurons to control the global activity in the excitatory network. If the 
synaptic weights to and from inhibitory neurons are fixed and uniform, the network 
of inhibitory elements can be represented by one equivalent inhibitory unit[ll]. For 
simplicity, and in view of the electronic implementation, we use one inhibitory unit. 
Its activity (spike rate) is T(t) and its synaptic input is proportional to the global 
activity in the excitatory network A(t). 

The connections between the different elements are 

• Excitatory neurons are connected by plastic synapses Jij(t); 

• 	The inhibitory neuron receives fixed uniform synapses from the excitatory 
network of strength l( and sends its spike rate, T(t), as inhibitory synaptic 
input to all excitatory neurons. 
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Fig. 1 presents schematically the different components of the network and their 
connection. 

2.2 Dynamics of excitatory neurons 

The dynamics of the afferent currents of excitatory neurons is described by the 
equation 

Texct(t) = -li(t) + ~ JijVj(t) +Hixt(t) - T(t) (1) 
j:Fi 

where Texc is the time constant of the currents charging the soma; Hiext (t) is the 
external synaptic input (the stimulus); Jij is the synaptic efficacy of the collateral 
synapse from neuron j to neuron i. It modulates the presynaptic afferent rate 
Vj(t) to produce the synaptic input to neuron i; T is the synaptic input from the 
inhibitory neuron, which has the effect of a time-dependent threshold. A biological 
interpretation of these equations is given in refs. [8, 9, 10]. 

The firing rate of neuron i, Vi(t), is determined by its mean afferent current (see 
e.g. [8]), via the transduction function tPexc: 

(2) 

A realistic tPexc would have the following properties: when the current is lower than 
the threshold 8exc the firing rate, Vi(t), tends rapidly to zero. Above threshold tPexc 
is a continuous, increasing function, saturating at Vi=Vmax, which would be of order 
of the inverse absolute refractory period, for very high currents. In the following all 
rates are expressed in units of Vmax • 

Since the inhibition prevents the rates of the neurons from approaching sat­
uration, we choose below a function which does not saturate and is particularly 
convenient for the electronic implementation: 

tPexc(I) = { gexc ln (8e~c) if I > ~exc (3)o otherWIse, 

This simplified neural function is represented in Fig. 2a together with the trans­
duction function of a leaky integrate-and-fire neuron [8]. The comparison allows 
a calibration of the rates of the simplified function. The scale of the rates in the 
function Eq. 3, in the absence of a saturation, is arbitrary. Thus we use the more 
complete function, in the low frequency region where it approximates well the sim­
plified function, to justify reading the values of the simplified function (Eq. 3) 
as a fraction of the maximal firing rate. The replacement of the more complete 
(integrate-and-fire) function by the simplified one in the functional -region where 
they have qualitatively similar shape will produce the same behavior. 

Note that here it is not our objective here to reproduce rates as low as observed 
in cortical neurons. 
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Figure 2: (a) Excitatory transfer function, with gexc=0.15 and Bexc=0.033 (full). 
Integrate-and-fire transduction function[8] for rate calibration (dotted), with pa­
rameters J.l=O, 0'=0.004 and B=0.04. (b) Inhibitory transfer function: ginh=l and 
Binh=0.05. 
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2.3 Dynamics of the inhibitory element 

The inhibitory neuron has a similar evolution equation 

rinhA(t) = -A(t) + I( 2: Vj(t) (4) 
j 

where A(t) is its afferent current and K is a uniform excitatory to inhibitory synaptic 
efficacy. The integration time constant rinh is chosen to be much shorter than the 
excitatory time constant, for the inhibition to effectively play its role. Since rinh 
will be the smallest time constant for the different elements, we will express all 
other time constants in terms of this unit. Thus we set rinh=l, and typically in the 
simulations rexc=5. The response of the inhibitory neuron T(t) is 

T(t) = q)inh(A(t)) (5) 

where q)inh is the inhibitory transduction function. q)inh is also a continuous increas­
ing function that vanishes below the inhibitory threshold, (Jinho For simplicity we 
take a threshold-linear function of the type 

q)' (A) = { ginh(A - (Jinh) if A > ~inh (6)
mh 0 otherWIse 

with ginh=l, (Jinh=O.05. It is shown in Fig. 2b. This simple transduction function 
models, in a schematic way, the reaction of a population of inhibitory neurons to 
an increase in its afferent excitatory currents. Its role is to represent qualitatively 
the inhibitory control of the activity in the excitatory network via the response T. 

The inhibitory response T is then fed back as an inhibitory (hyperpolarizing) 
input to the excitatory neurons in Eq. 1. Since the source term in Eq. 4 is propor­
tional to the global excitatory activity, when the global activity in the excitatory 
network exceeds the inhibitory threshold, the response of the inhibitory neuron 
increases linearly with the excitatory activity. In this way the inhibitory neuron 
provides an efficient control of the activity in the excitatory network and prevents 
the percolation of the excitation to the entire network[12] . Also the details of the 
inhibitory function are not essential. A different function with similar features pro­
duces essentially the same performance, except possibly for the absolute values of 
the stable rates. 

2.4 Synaptic dynamics and long-term memory 

A plausible form of the synaptic dynamics that is also naturally implement able in 
electronics, can be the following: ,. 

(7) 

It is basically an integrator with a time constant rc. The integrator has a structured 
source Ci;(t), representing hebbian learning. This source is given in terms of the 
neural rates, Vi(t) and Vj(t), of the two neurons connected by this synapse as 
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Cij(t) = '\Vi(t)Vj(t) - p[Vi(t) +Vj(t)] (8) 

,\ and p are positive parameters separating potentiation from depression. Their 
values are chosen so that when the rates of both neurons are high Cij >0; if one is 
high and one is low Cij <0; and if both are zero, or very low Cij is negligible. 

The last term on the right hand side of Eq. 7 is the refresh mechanism discussed 
in detail in ref. [2]. It represents one way of preventing the loss of memory due to the 
decay of the integrator when no source is present. If at any given moment the source 
Cij(t), of any given synapse asynchronously, exceeds the fluctuating threshold Wij(t) 
a refresh source turns on to drive the synapse to the high value J. If the refresh 
charging rate is fast, on the time scale of the high frequency cutoff of the fluctuating 
threshold, the synaptic value will not turn back and that synapse will be driven to 
the value J. In the absence of a source this synaptic value will remain above its 
threshold and the efficacy J will be stable, indefinitely. On the other hand, if the 
instantaneous synaptic value is low, either because it started low, or because it 
was high and the learning source was negative enough, the refresh source turns off, 
asynchronously again, and in the absence of a source that synapse decays to zero. 
This is the other long-term, stable state of a synapse. The transition of a synapse 
from the lower stable state to the upper one is identified with LTP. The opposite 
transition is LTD. 

As a consequence, each synapse has two asymptotically stable values, 0 and J, 
and the synaptic dynamics, which is analog on the short time scale, is converted to 
a stochastic process between discrete stable states. The conversion of the analog to 
the discrete dynamics and the stochastic process itself will be discussed in further 
detail in Section 4. In the simulations to be presented we restricted ourselves 
to the stochastic transitions between the stable synaptic states. The electronic 
implementation of the corresponding analog dynamics is discussed in ref. [2]. 

The corresponding stochastic process is defined as follows: at time t the activities 
of the neurons i and j are Vi(t) and Vj(t). They determine the value of Cij(t) given 
by Eq. 8. If Cij(t) is above a threshold for potentiation 8+, and the synaptic efficacy 
Jij=O, then Jij -J. J with probability p+. If Cij(t) below a threshold for depression 
8_, and Jij=J, then Jij -J. 0 with probability p_. For a detailed discussion of this 
point see e.g. Section 4. Effectively, potentiation (O-J.J) occurs with probability p+ 
when both post and presynaptic neurons are significantly active. Depression (J -J.O) 
occurs with probability p_ when only one of the two neurons is significantly active. 

2.5 Analog learning and short-term memory , 
Focusing on the behavior of the network with the discrete values of the synapses, 
learned in the above stochastic process, overlooks the combined neural-synaptic dy­
namics driven by the analog synaptic values. Analog synaptic dynamics generates 
intermediate values for the synaptic efficacies. With the removal of the stimulus, 
and in the absence of neural activity in the network, the synaptic efficacies will relax 
exponentially to the discrete values of long term memory, with a time constant Te. 
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However, when neurons are active and the synapses remain modified for a couple 
of TeS following the removal of the stimulus, the behavior of the network may be 
modified. Especially since the number of synapses modified by the analog, deter­
ministic dynamics is much higher than the number of discrete transitions provoked 
by the low-probablity stochastic process, which may compensate for the fact that 
the analog synaptic changes are of smaller magnitude than the discrete changes. 
The effects related to these transient analog values we call short term-memory. For 
example when a stimulus is presented to the network all synaptic efficacies connect­
ing a pair of active neurons will increase. Only a fraction of them will cross the 
threshold for potentiation and be driven to J. The synapses which do not will have 
enhanced efficacies during presentation and after the stimulus is removed. Similar 
(but negative) changes will occur for synapses connecting an active neuron to an 
inactive one. 

The short term memory is of course correlated, in a hebbian way, with the 
last stimulus presented. This raises the question whether the transient synaptic 
efficacies could not support a neural activity distribution similar to that of the s­
timulus, which in turn may produce analog short term synaptic modifications in a 
self-reproducing way. Such a possibility may generate a stationary state in which 
neurons and synapses support each other to maintain the activity of the last stim­
ulus. Experiment[19] shows that this is not a typical case. A stimulus not shown 
during the training stage of the experiment does not produce a lasting neural activ­
ity distribution following its removal. This does not exclude the possibility that the 
effect is totally absent. In simulations we have run we find that in some condition­
s, before attractor behavior is manifested in the absence of the short-term effects, 
the analog synaptic changes can stabilize an attractor, which is an attractor of the 
double dynamics. 

In the present study we do not discuss or study in detail the short term mem­
oryeffects. First, because dealing with the discrete, long-term synaptic part is the 
generic case. Second, a detaied study of the full analog double dynamics is extremely 
time consuming in simulations. It might better be done on the electronically imple­
mented network. This approach is permitted since the long-term synaptic changes 
are not affected by the dynamics provoked by the short-term analog memory, since 
during the inter-stimulus interval no transitions occur. 

2.6 External inputs - the stimuli 
A stimulus is presented to the network as an injection of a distribution of synaptic 

,. 	 inputs. Neuron i receives input {Hixt(t)} (Eq. 1) lasting for an interval of length 
t p , the presentation time of the stimulus. Each presentation is followed by an 
inter stimulus interval of length tT in which the external currents are set to zero. 
In a simulation a long sequence of stimuli (several thousands) is presented to the 
network separated by inter-stimulus intervals. The sequence of time interval lengths 
(stimulus and inter-stimulus) is either fixed or random. A stimulus is presented to 
the network at time t=O as 
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a. 

4 5 2 2 8 

b. 

1 2 6 8 R 

c. 

3 4 R 3 5 R 8 4 6 7 

d. 

Figure 3: Stimulus stream: set of 9 prototypes. Each line shows the activation 
of the external synaptic inputs versus time during a particular run. The symbol 
above each bar indicates the class to which the stimulus belongs. In each example 
the presentation intervals are fixed. a. Fixed sequence, fixed inter-stimulus (IS) 
intervals. b. Random sequence, random IS intervals. c. Random sequ~nce with 
random stimuli interjected (indicated as R), fixed IS intervals. d. Random sequence 
with varying statistics, fixed IS intervals: at the beginning only classes number 1-6 
are shown. At the end only classes number 4 to 9 are shown. 

(9) 

\vhere H is the strength of the external synaptic input, and {1]i} is the N-bit word 
characterizing the stimulus. 

2.7 Statistics of stimuli - classes 

The statistics of the stream of incoming stimuli will determine how the network 
forms its synaptic matrix and thus its internal representations. In the simulations 
the stimuli are divided into two different types. Some stimuli belong to one of 
a set of predetermined classes, which are uncorrelated. Other stimuli are random ,. 
and uncorrelated with any of the classes. The network is expected to create internal 
representations for each of the classes whose members are repeatedly presented. The 
other stimuli, i.e. those uncorrelated with any class, act as noise on the learning 
process. 

At the beginning of the simulation each of p (about 30) classes are defined 
by a representative pattern, the prototype. Each prototype is an N-bit word 
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{er =0, I}, i =1, ... , N, /J =1, ... ,p, randomly and independently drawn from 
the distribution 

p(er = 1) = f, p(er = 0) = 1 - f (10) 

The average number of activated neurons in each prototype is f N. f is the coding 
level of the prototypes, and will be typically low in the simulations of the order 
0.05-0.1. A neuron i for which er=l is said to be in the foreground of prototype /J. 
If er=O, the neuron is in the background. Each prototype defines its corresponding 
class (or cluster) of stimuli. The members of a class are noisy versions of a prototype. 
To be specific, a pattern of class /J is a word {TJi} chosen randomly in the following 
way: 

• for foreground neurons, er = 1, 

P(TJi =1) = 1-(1 - f)x, P(TJi=O) = (1 - f)x 

• for background neurons, er = 0, 

where x is a parameter measuring the average correlation between a pattern of a 
class and its prototype. This procedure ensures that the mean number of activated 
neurons per stimulus remains f N whatever the value of the parameter x. For 
x = 0 the stimulus is identical to the prototype, while if x = 1 it is statistically 
independent of it. x also measures the extent of a given class in stimulus space. If x 

is small, each class is a very small region around its prototype. When x increases the 
region defining each class grows. To each member of a class corresponds a stimulus 
Hixt = HTfi. 

Next a sequence of presentations is defined (for examples see below). A sequence 
is composed of arbitrary members from each class, in an order defined for the classes. 
Some sequences include stimuli not belonging to any class. The network is expected 
to learn, in an unsupervised way, a representative attractor for each class. See 
e.g. [11, 13, 14]. 

Several presentation procedures have been considered. Some of them are repre­
sented schematically in Fig. 3: 

• 	 Fixed sequence (Fig. 3a): classes are always presented in the same order. This 
is the situation in the experiments of Miyashita[15]. 

• 	 Random sequence (Fig. 3b): classes are selected at random at each presenta­
tion. 

• 	 Random sequence including random stimuli (Fig. 3c): stimuli are either mem­
bers of a class selected at random or are uncorrelated with any prototype 
(class). They appear in the sequence with probability (1 q) or q, respective­
ly. 
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• 	 Random sequence with time-varying statistics (Fig. 3d): the probability of 
presentation of a given class varies with time. Specifically, classes are divided 
in three groups, each containing the same number of classes Pc = p13. During 
a first period 0 < t < T only stimuli from the first two groups of classes 
are shown to the network. T is long enough so that many members of each 
presented class appear. The probability of presentation of any class is 1/(2pc). 
After this period the statistics change: for t > T only stimuli of the second 
and third groups of classes are presented to the network, while stimuli of the 
first group are not shown anymore. 

Neural dynamics with fixed synaptic matrix 

The focus of attention here is on the effect of unsupervised learning on the formation 
of attractor representations in the network. In order to be able to evaluate the 
attractor performance in the learning network, we first describe the performance 
of the network in the more familiar situation in which the synaptic matrix is well 
formed and fixed. This will serve as a standard for good attractor dynamics. 

3.1 Stable selective frequencies - analysis 

We suppose that the matrix has already learnt the set of prototypes {er}, after 
they have been presented many times to the network. For simplicity we take the 
Willshaw matrix [17], i.e. 

J 	 if for at least one pattern {J. ere,~ = 1J,.. -	 (11)f., 	 - { 0 otherwise 

and we choose the normalization J = 1I(fN -1) (fN -1 is the number of excitatory 
connections from any foreground neuron to all other neurons in the foreground of 
a prototype with fN active neurons, because there are no self-connections. The 
-1 is kept since in our simulations f N is rather small.) The normalization of the 
excitatory to inhibitory coupling is chosen to be K = IIf N. With these normaliza­
tions the total excitatory synaptic input to both excitatory and inhibitory neurons 
is independent of f and N when the network is in a configuration in which all 
foreground neurons of a given prototype are active, while background neurons are 
inactive. This allows testing systems with varying numbers of neurons and coding 
levels keeping all neural parameters such as the threshold fixed. 

Such a synaptic matrix would be the result of the following simplified learning 
,. 	 dynamics: 1. one starts with all synaptic efficacies at zero. 2. When a prototype 

is shown to the network a given synaptic efficacy Ji; is modified only if eref = 1. 
In this case the synaptic eficacy is potentiated and becomes equal to J. After all 
prototypes have been shown at least once the synaptic matrix will be given by 
Eq. (11). It would be a very idealized case of the synaptic dynamics of Eq. 7. First 
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because it does not have the stochastic nature and second because it does not take 
into account the fact that the arriving stimuli may be noisy. 

Suppose the network is in a configuration in which all neurons in the foreground 
of prototype number Jl are active with frequency V, while all other neurons are 
quiet. The recurrent input in Eq. 1, coming from the other excitatory neurons, is 

L J ..V,. - { V if er = 1 (foreground) (12)
j:l:i IJ J - V ~i if er = 0 (background) 

~i has a distribution peaked around the mean value [17] 

If the number of stored prototypes is low, pf2 « 1, we have ~ « 1 and the distribu­
tion of foreground and background excitatory synaptic inputs will be separated by a 
large gap. If the threshold for the activation of the excitatory neurons is in this gap, 
it will enable the network to remain in a configuration where all foreground neurons 
are active while background neurons are silent the attractor corresponding to 
the learned prototype. If the threshold is fixed the network will be very unstable ­
excitation can easily percolate to the whole network. The inhibitory neuron acts as 
an activity dependent threshold, which can be adjusted to be inside the gap, even 
when the location of this gap depends on the particular attractor. 

If the network is a stable state with all foreground neurons active at frequency 
V, and all other neurons quiet, then Eqs. (1, 2, 4, 5) and (12) imply: 

for the 'on', or foreground, neurons, and 

Ii = V ~i - 4>inh(V) < gexc 

for the 'off', or background, neurons. 
The stable selective frequency is thus the solution of the equation 

In Fig. 4 we draw thy right and left hand sides of the above equation for four values 
of the inhibitory gain ginh. The highest intersection of this function with a straight 
line of slope unity corresponds to the stable frequency of the 'on' neurons in an 
attractor. It shows th8tt inhibition can have a very significant effect on the frequency 
in the attractor. It decreases from 0.2 for 9inh=0.5 to :round 0.05 for 9inh=1.5. 
Furthermore, it prevents the propagation of excitation to too many neurons, as 
we will see in the following section. In fact, the parameters of the transduction 
functions can be adjusted so as to have any desired value for the stable selective 
frequency. 
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Figure 4: The function x -+ <Pexc[x - <Pinh(x)] with Binh = 0.05 and four values of the 
inhibitory gain ginh, indicated next to the corresponding curve. For each of these 
curves the highest intersection with a straight line of slope unity corresponds to the 
stable selective frequency. The parameters for the excitatory gain function are the 
same as in Fig. 2. The frequency is in units of saturation frequency. 

Note however that Eq. 12 holds only if the number of active neurons in pattern p, 
is exactly f N. Otherwise the quantities on the right hand side have to be multiplied 
by fl-' / f, where fl-' is the actual fraction of active neurons in pattern p" i.e. 

I" = ~ ~er , 
If the prototypes are drawn randomly according to 

p(ef=l)=f p(ef=O)=l-f (13) 

fl-' is a fluctuating quantity with mean f and RMS 

JI(1;,;/) 

For N =200 and f=0.05 the RMS is about 0.015, which is about 30% of the mean. 
Thus the fluctuations of the number of active neurons per prototype will be rela­
tively large[18]. In Secs. 4 and 5 we first use prototypes with a fixed number fN 
of activ~ neurons. In Sec. 6 we return to the question of these fluctuations and see 
how they affect the statistics of the learnt attractors. 

3.2 Simulations 

To study the attractor dynamics we have performed simulations of the network 
of N =200 neurons with fixed synapses, storing p=30 prototypes with a coding 
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level f=0.05 (on average, ten active neurons per pattern). We used Texc = 5. The 
condition Texc > 3 was found to be necessary for the network to operate well. Stimuli 
were presented to the network (as in Eq. (9)) with H=O.I, unless otherwise stated, 
for a duration of tp=100 (the time unit is the inhibitory time constant). Thus the 
presentation time is much longer than the scale of the neuronal dynamics. Then 
the stimulus was removed. 

To monitor the neural attractor dynamics we measure the average activity of 
neurons which are indicated as active in the prototype of each class, i.e. 

(14) 

and the average activity of neurons which are in the background of the corresponding 
class 

1 
mb(t) = (1 _ f)N ~ Vi(t)(1 - er), (15) 

together with the mean total activity in the excitatory network and the activity of 
the inhibitory neuron. 

Note that the overlap defined in Ref. [9] corresponds to the difference between 
these two parameters. If this difference is large, m~ > mb, it means that the 
network state is very correlated with the prototype of the corresponding class. If 
m~ I"V mb, and the overlap is small, the network state is uncorrelated with it. 

Different situations have been studied. They are illustrated in Figs. 5, 6, 7 and 
8. 

Silent initial network, stimulus from a given class (Fig. 5): a noisy 
prototype is presented as a stimulus for 0 < t < tp. Before presentation of the 
stimulus all the neurons in the network are silent, Vi = 0 for all i. When the stimulus 
is presented, the mean activity in the foreground of the corresponding class increases 
to a steady state value of about 0.18. After removal of the stimulus at t = tp, 
the network goes to the attractor corresponding to the prototype: all foreground 
neurons fire at an elevated frequency of about 0.07, while all background neurons are 
silent. The inhibitory reaction is proportional to the mean activity in the network 
and prevents neurons which are not in the foreground of the corresponding class to 
be activated. 

Initial network in an attractor, stimulus from a different class (Fig. 6): 
the network is initially in an attractor corresponding to a given class, here class 
number 1. This is expressed by the elevated constant value of the corresponding 
m+ (light curve for negative times). A stimulus from a different class is presented 
at time 0: After a transient period in which neurons from both fO.Jegrounds are 
active, only the neurons tagged by the stimulus remain active, and the network 
evolves from the first attractor to the attractor corresponding to the second class. 
The transition takes place due to the inhibition, which prevents neurons in the 
foreground of the old prototype from staying active. 

Initial network in an attractor, strong stimulus uncorrelated with any 
class (Fig. 7): a stimulus with high synaptic inputs, (H = 0.1), uncorrelated with 

15 



0.2~-------r------~'~------~1r-------~1r-------~ 

-0.15 ­
................... ... 


Activity 0.1 r­ -

-0.05 r­

..................... 
o ~______~i_"_'_'_"_'_'_"_'I~'_"_'_'_'_"_'_'_'~~'_"~'~.~ ••~.~.~••~.~.~.••~.~.~.~.~~.~.~ 

-50 o 50 100 150 200 
t 

Figure 5: Attractor dynamics of initially silent network. Stimulus (noisy prototype) 
is presented between t = 0 and t = 100. Upper bold curve: mean activity of neurons 
belonging to the foreground of the prototype (m~ (t)). Lower bold curve (essentially 
along the axis): mean activity of the background neurons (m~(t)). Upper dotted 
curve: activity of the inhibitory unit. Lower dotted curve: mean activity of all 
excitatory units. 

any of the classes is presented for 0 < t < tp. The stimulus in this case destabilizes 
the previous attractor. After the stimulus is removed the network is unable to 
sustain any elevated activity. 

Initial network in an attractor, weak stimulus (Fig. 8): a stimulus with 
low synaptic inputs, (H = 0.01) is presented for 0 < t < tp. The stimulus affects 
mildly the attractor and the network returns to the initial state after the stimulus 
is removed. 

Note that the activity in the foreground depends on the number of active neurons 
of the particular pattern retreived, and is higher for a pattern with more neurons in 
the foreground. In all cases the activity in the background is zero and the overlaps 
with the other prototypes are low, of order f. The network is quite robust to noise 
in the presentation of the stimuli. It goes to the attractor corresponding to the 
prototype even if the noise level is high - until x is about 0.5. 

When the double dynamics will be considered the synaptic matrix will of course 
be different from the matrix of Eq. (11). It will however retain some of its essential, 
features, i.e. when a stimulus corresponding to a learned prototype is presented, the 
excitatory afferents coming to foreground neurons will be significantly larger than 
the ones coming to background neurons, and therefore there will be an attractor 
in which most of foreground neurons are active while most background ones stay 
silent. On the other hand the attractor, though very correlated with the prototype, 
will in general be different from it and fluctuate with time, due to noise in the 
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Figure 6: Network initially in an attractor corresponding to prototype 1 (t < 0). 
Stimulus from class 2 is presented for 0 < t < tp=100 with H=O.1. Light curves: 
mean activity of foreground and background of prototype 1. Bold curves: idem, 
prototype 2. Dotted curves: activity of inhibition (upper) and mean overall excita­
tion (lower). Note that the mean activity in the excitatory network is the same for 
both attractors. 
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Figure 7: Network initially in an attractor (t < 0). Stimulus uncorrelated with 
any class presented for 0 < t < 100 with H =0.1. All activity stops in the network. 
Light curves: mean activity in the foreground and background of prototype. Dotted 
curves: activity of inhibition and mean excitation. 
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Figure 8: Network initially in attractor (t < 0). Weak stimulus uncorrelated with 
any class presented for 0 < t < 100, with H=O.Ol. The network stays in the 
previous attractor. Light curves: mean activity in the foreground and background 
of prototype. Dotted curves: activity of inhibition and excitation. 

presentations and the stochastic nature of learning. 

4 Synaptic dynamics 

4.1 Analog dynamics to transition probabilities 

We turn now to isolated synaptic dynamics: neural rate variables are fixed. The 
rates can be high (externally imposed); elevated but low (as in an attractor in 
inter-stimulus intervals); or zero (for background). The double dynamics will be 
considered in the next section. First we define the stochastic learning process with a 
two-state synaptic efficacy which is to replace in the simulations the analog synaptic 
dynamics of Eq. (7). 

We suppose that on long time scales neural variables can have one of three 
discrete activity states and the synapses two efficacy states. The rate variable Vi of 
neuron i can take on the following values: 

• Vi = V if the neuron is activated by a stimulus; 
, 

• Vi = v if the neuron is active in an attractor in the absence of a stimulus; 

• Vi = 0 in all other cases. 

The ratio V/v, for fixed network parameters, depends on the amplitude of the 
imposed external input. For example, for the parameters of Section 3, we had 
V/v", 5 for H = 0.2, and 2.5 for H = 0.1 (see e.g. Fig. 5). 
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In the experiments of the Miyashita group in inferotemporal cortex [19, 15, 20] 
one can identify a qualitatively similar situation (see also [21]). Fluctuations around 
the three schematic values taken here are modelled by the stochastic behavior of 
the learning process. 

For any given, fixed network state two neurons connected by a synapse can take 
only one out of seven different pairs of values: (V, V), (v, v), (V,O), (0, V), (v, 0), 
(0, v) and (0,0). The pairs (V, v) and (v, V) can apear only during brief transients 
and are excluded from the discussion. The corresponding discretized values of the 
learning source term 

Cij = AViVj - Jl(Vi +Vj) 

are: 

• If both neurons are active: 

C+ = A V 2 
- 2JlV during presentation of the stimulus 

(16)
Cij = { C+ = AV2 - 2Jlv in an attractor 

• If only one of the two neurons is active 

c .. - { C_ = -JlV during presentation of the stimulus (17) 
~J - c_ = - JlV in an attractor 

• 	If both neurons are silent 

Cij = 0. 


The parameters A, Jl and H are chosen such that 

and 
1 +C_ > (w) 

where (w) is the average value of the fluctuating threshold. See e.g. [3, 4]. The 
RMS of Wij will be denoted by (6.w). Transitions will then occur in two cases: 

Potentiation: The initial synaptic efficacy is below threshold. If both neurons 
i and j are activated by the stimulus the analog synaptic value is driven by a 
learning source Cij. It increases and eventually saturates at C+. Here the synaptic 
value remains, as long as it is driven by the stimulus. In this interval it may be 
crossed by the fluctuating threshold, provided the saturation value is within the 
range of the fluctuations. The probability of a transition, p+, will therefore depend 
on the ratio 

(w) - C+ 
(6.w) 
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the synaptic integration time Tc , and the time of presentation of the stimulus tp. 
These are LTP transitions. 

Depression: The initial synaptic efficacy is above threshold and hence assisted 
by the refresh mecanism. If one of the neurons is activated by the stimulus and the 
other stays quiet, the analog synaptic value is driven by a negative learning source 
Cij, superposed on the refresh source. The synaptic value decreases, and saturates 
at 1 +C_. It eventually crosses the threshold from above. The refresh turns off and 
a transition J -+ 0 takes place with probability p_, which depends on the ratio 

l+C_-(w}. 
(8w) , 

on the synaptic integration time Tc , and on the time of presentation tp. These are 
LTD transitions. 

In all other cases long lasting transitions (LTP, LTD) will not take place. 
In the present system the fluctuating threshold Wij of the analog synaptic dy­

namics (Eq. (7») is bounded away from 0 and J. As a consequence, if at least one 
of the neurons is inactive or both are active at low levels (v), the analog learning 
source Cij is small or even negative, leading to a negligible probability that the re­
fresh turn on if it had been off. If the synapse started from a low efficacy, following 
the removal of the stimulus, the synaptic efficacy returns to its original value. If the 
initial synaptic value is high, the refresh source is on. If both neurons are active; 
both are inactive; or one inactive and one active at low (attractor) level, the analog 
learning source is either positive or too weak to bring the synapse under thresh­
old. The refresh mechanism remains on and following the removal of the stimulus, 
synapse regains its original value. In other words, the source term must go above 
a threshold ()+ to allow an LTP transition and below a threshold ()_ for an LTD 
transition. There are therefore two such thresholds characterizing the source of the 
synaptic learning noise, as mentioned in Section 2.4. 

Thus, in particular, the network can remain in an attractor, in the absence of a 
stimulus for an indefinite time without destroying past memory. See e.g. ref. [16]. 
This way we dispose of the artificial substraction terms introduced in ref. [1, 2]. 
See also e.g. ref. [16]. 

To slunmarize the qualitative properties of the transition probabilities in a con­
cise way we fix the pre-synaptic ae i ' ity at its high value and consider the prob­
a.bilities as a function of the post-synaptic activity. Note that in this model pre 
and post synaptic neurons playa symmetric role in learning. For low post-synaptic 
activity there is a small depression probability for the strong synapses. In a wide 
range of intermediate values the probability for either potentiation or depression is 
essentially zero. As the post-synaptic activity increas:S the potentiation probability 
for weak synapses begins to increase monotonically with the post-synaptic 'lctivity. 
The qualitative behavior of the transition probabilities is shown in Fig. 16 of Ref. 
[2]. The zone where no transitions occur ensures the stability of long term memo­
ry. Interestingly, experiments in visual cortex suggest similar features for synaptic 
plasticity. See e.g. Ref. [22]. 
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When the time of presentation of the stimuli is kept fixed learning can be ap­
proximated by a discrete stochastic process with two-state synapses. (See e.g. ref. 
[4]). The main lessons are: 

• 	 The performance of the network, in terms of either number of stored patterns 
or of quantity of information stored in the synaptic matrix, increases when 
the coding level f decreases. 

• 	 The capacity of the network is optimal, Le. the number of patterns that the 
network can recall is of order N 2/ (In N)2, when f '" N / In Nand 

p- '" fp+ 	 (18) 

i.e. when the numbers of up and down transitions balance each other. A 
similar relation is suggested in Ref. ,[23] to account for experimental findings. 

In the simulations described below we have taken a low coding level, f = 0.05, 
and the transition probabilities satisfy Eq. 18. Note that the coding level cannot 
be decreased arbitrarily in the simulations since f N, the typical number of active 
neurons in an attractor, has to be large enough to ensure its robustness to noise. 

4.2 Simulation of synaptic dynamics 

We study the synaptic dynamics in the following way: a fixed sequence of p proto­
types {e"'} (J-L = 1, ... ,p) with coding level f is generated. These define the classes. 
At each presentation the stimulus is a member of a class (in the sense defined in 
Section 2.7) selected at random. Upon presentation of a stimulus the synapse Jij is 
modified according to the following rule: 

• 	 If Jij=O and both pre and post synaptic neurons are activated by the stimulus, 
Vi=Vj=V, then Jij is set to 1 with probability p+; 

• 	 If Jij= 1, and only one of the pre and post synaptic neurons is active Vj=V, 
Jij is set to zero with probability p_; 

• 	 In all other cases the synaptic value remains unmodified. 

This stochastic process approximates the dynamics described in Section 4.1 if 

• 	 the tij.lle of presentation of each stimulus tp is fixed, 

• 	 tp ~ Tc (the synaptic time constant) to allow the analog learning to reach 
saturation 

• 	 the neural activities imposed by the external synaptic inputs remain constant 
throughout presentation, 
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• 	 the time between presentations is long enough to allow the synapses to relax 
to their clipped values, tr ~ Te. . 

We simulate a network with the same parameters as in Section 3, Le. N =200 
neurons, /=0.05 (10 active neurons per prototype), p=30 classes. We choose tran­
sition probabilities p+=O.l, p_=0.005 and class size parameter x=O.1. Note that 
with the parameters selected, up and down transition rates are equilibrated, since 
p_ = /p+. In a simulation a stream of 6000 stimuli is presented to the network, i.e. 
about 200 members of each class. In order to monitor the synaptic dynamics we 
observe the temporal evolution of the following observables: 

• 	 the average connectivity of the network c(t) 
1 

c(t) = N(N -1) ~ Jij(t), 

which is the fraction of potentiated synapses. 

• 	 The similarity of the learned synaptic matrix to the Willshaw matrix, for 
which we have tested the neural dynamics in Section 3. It corresponds to 
learning the same prototypes with parameters p+ = 1, p_ = 0 and x = O. 
This observable is defined as 

1 
mw(t) = cwN(N _ 1) ~ Jij(t)Wij 

where Wij is given in Eq. (11). cw, the connectivity of the Willshaw matrix 
is given by, 

1 
Cw = N(N -1) ~Wij. 

If the learned matrix is a random matrix, mw = c, the connectivity. While 
if the learned matrix becomes identical to the Willshaw matrix, mw = 1. 
The Willshaw matrix corresponding to the set of prototypes underlying the 
stimulus stream is considered as a standard with which learning is to be 
confronted. 

• 	 The average synaptic value for connections inside a population of neurons 
active in a given prototype: 

1 ,. 	 (19)c,,(t) = IN(fN -1) ~ Jij(t)~r~% 

This observable measures how well a particular memory has been learned. For 
a random synaptic matrix (Le. no learning at all) c'-' = c, the connectivity. If 
all connections between the foreground neurons have been potentiated, c'-' = 1. 
Note that for the Willshaw matrix we have cIL = 1 for all the classes. We will 
refer to this observable as intra-class connectivity (ICC). 
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Figure 9: Evolution of the connectivity c (dotted curves), the overlap with the 
Willshaw matrix mw (bold curves) and the intra-class connectivity CIL showing how 
well a particular class (here class number 1) is learnt (light curves). p = 30 classes, 
p+ = 0.1, p_ = 0~005, x = 0.2, and two initial values for the connectivity c(O) = 0 
(lower curves at the origin) and c(O) = 0.2 (upper curves at the origin). Fixed 
sequence of classes. 
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Figure 10: Same as Fig. 9, random sequence with probability q = 0.2 of stimuli 
uncorrelated with any class. 
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The initial synaptic matrix is taken to be a random distribution of unit efficacies 
with connectivity (probability) c(O). In Figs. 9 and 10 we show the intra-class 
connectivity of a particular class, here class number 1, the connectivity c, and the 
parameter mw as a function of time. Each figure shows two runs corresponding to 
two different initial synaptic matrices: one with c(O) = 0, i.e. there are no synaptic 
links, the other with c = 0.2. In the latter case the initial synaptic values are chosen 
to be 1 independently at each synaptic site with probability 0.2. 

We see that mw and Cl increase rapidly with time and after t 1000 presen­I'V 

tations, these parameters fluctuate around 0.8, regardless of the initial synaptic 
matrix. This corresponds to the presentation of about 30 members of each class. 
Fig. 9 corresponds to a fixed sequence of classes, while Fig. 10 corresponds to a 
random sequence of classes interspersed with a fraction q = 0.2 of random stim­
uli. In both cases the parameter measuring the spread of a class is x = 0.2. One 
can see that learning is a bit slower in the second situation, and fluctuations in 
the stationary state somewhat larger. This is caused by the presentations of the 
unclassified stimuli to the network. However the asymptotic mean values of the 
learning parameters are very close in both situations. This shows the robustness of 
the synaptic dynamics to presentations of unclassified stimuli. 

The average intra-class connectivity (ICC) can be calculated analytically[24] 
in the case of multiple presentations of the same class, when random stimuli or 
members of other classes are presented between two presentations of this class. The 
calculation of the ICC with the parameters used in the simulations yields 

Cl '" 0.8 

i.e. a value very close to the asymptotic values of the ICC obtained in both Figs. 9 
and 10. 

5 Double dynamics 

5.1 Dynamics with fixed input statistics 

Finally we simulate the double dynamics of the network. The network is essentially 
the same as in Secs. 3 and 4, i.e. there are N =200 neurons, the neuronal time con­
stant is Terc=5. The stimuli have a coding level /=0.05, and are generated in p=20 
classes of extension x=O.l. Each stimulus shown is chosen to be either a random 
member of a randomly chosen class, or a configuration uncorrelated with any class. 
We chose q=O.l, i.e. 10% of the stimuli are uncorrelated with any prototype. 

The time of presentation of different stimuli is randomly chosen with a flat 
distribution. For each stimulus the presentation time is chosen between 0 and 200, 
with an average at tp=100. The time between two presentations is also random. It 
is drawn from the same distribution as the presentation time. Its average is tr=100. 
Recall that all times are expressed in unit of the inhibitory time constant. Thus the 
average presentation time as well as the average inter-stimulus interval are much 
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longer than the neuronal time scales. The average presentation time is the same 
as the chosen presentation time in Sec. 3. Here we use random stimulus and inter­
stimulus intervals in order to test the robustness of the network to another source 
of stochasticity. The choice of the distributions was motivated by its simplicity. 

The mean interval between the beginnings of two presentations is 

tc = (tp + tr). 

We choose the dependence of the transition probabilities on the presentation 
time to be linear, i.e. 

(20) 

where P±, the average transition probabilities, are taken to be the same as in the 
Sec. 4, i.e. p+=O.l and p_=0.005. In the entire range of presentation times both 
probabilities remain small, they can at most become double the above values. The 
above linear dependence expresses the idea that after the analog synaptic value has 
reached saturation corresponding to the current stimulus, it remains at saturation 
for the remaining duration of the stimulus. Note that in choosing the time depen­
dence as in Eq. 20, we have neglected the time required for the analog term to 
reach saturation. 

We have chosen the parameters in the learning source Cij (Eq. 8) '\=1 and 
J.l=0.025. Here LTP transitions occur only for Cij > 8+, with 8+=0.005. This implies 
that for equal pre and post synaptic activities, both activities must be greater than 
V =0.1 to induce transitions. LTD transitions occur for Cij < 8_ with 8_= -0.0025. 
If one neuron is silent, the other neuron's activity should be greater than V =0.1 to 
induce transitions. Note that in our simplified situation, with essentially bimodal 
activity distributions, there will be a single value to Cij above the LTP threshold 
and a single value above the LTD threshold. This eliminates the need to consider 
the dependence of the transition probabilities on the value of Cij (see e.g. ref [1]). 

The simulation algorithm is as follows: 
The initial conditions are: 

• All neurons are at rest, Vi(O) = 0 for all i, and T(O) = 0; 

• 	The synaptic matrix is initially random. Each synaptic link is present with 
probability 0.1, independently at each site. The initial connectivity is therefore 
ceO) '" 0.1. 

1. 	At the beginning of the presentation of every stimulus we draw: 

• 	 The presentation time; 

• 	The structure of the stimulus {fJi}, as described in Sec. 2.7. 

2. 	 The analog neural variables evolve according to Eqs. (1, 2, 4, 5), in which the 
external synaptic inputs are fixed to H = 0.1 if fJi= 1 or to 0 otherwise, during 
the presentation interval. The basic integration step is ~t=O.l. 
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3. At 	the end of the presentation we calculate the value of Cij, Eq. (8), at each 
synaptic site. If at a given synaptic site Cij exceeds the threshold 9+, and 
Jij = 0, a transition 0-+ J occurs with probability q+ given by Eq. (20) where 
t is the presentation time. If Cij is lower than 9_, and Jij = J, depression 
occurs with probability q_ given by Eq. (20). 

4. At 	the beginning of the inter-stimulus interval we draw the length of the 
interval. During this interval neural variables evolve as in step (2), but with 
Hi = 0 for all neurons. 

5. Go to step 1. 

We monitor the learning and recall dynamics by measuring the synaptic observ­
abIes (defined in Section 4): mw - the similarity of the learned synaptic structure 
to the Willshaw matrix; CIL - the intra-class connectivity for a particular class, JL=l 
and the overall connectivity c. In the following we show the ICC for only one class, 
since all classes are presented with identical statistics and therefore the ICCs have 
a similar time course. The fluctuations from class to class are of the same order 
as those observed in Figs. 9 and 10. Moreover, as in Section 4.2, the intra-class 
connectivity fluctuates little about the observable mw. 

To monitor the neural attractor dynamics we choose a particular class. Every 
time a member of that class is presented, we wait until the end of the inter-stimulus 
interval followi~g removal of that stimulus. At this point we measure the average 
activity of neurons which are indicated as active in the prototype of the correspond­
ing class m~ given in Eq. (14), and the average activity of neurons which are in the 
background of the corresponding class mg, Eq. (15) 

One expects on the basis of the discussion in Section 3 that if the correspond­
ing class has not been learned, all neurons in the network will become inactive 
and m~=mg=O. After a class is learned, the network should flow to an attractor 
correlated with the class prototype, and m~ should attain a sizable value, while 
mg should remain negligible. Thus the quality of learning is expressed in both the 
synaptic observables CIL , Eq. (19) and the neural observables m~,o, Eqs. (14, 15). In 
fact, in all cases in which attractor behavior was observed, mg has been too small 
to be distinguished from the axis. 

The mean time between the presentation of two successive stimuli is tr defined 
above. We define a cycle as the period between two presentations of a stimulus of 
the same class. It has a mean duration of p(l + q)tc • The duration of an entire 
simulation is typically 200p(1 + q)tc, i.e. each class is presented about 200 times. 
Because of the presence of two differeIl-t time scales we present the following figures 
with a time unit of tc (200Tinh). 

We show in Fig. 11a the evolution of the synaptic observables introduced in 
section 4. It is seen that the evolution of these parameters is rather similar to 
that observed in the case of the synaptic dynamics with fixed neural activities. In 
Fig. lIb we show the evolution of the selective delay activity m~, i.e. the mean 
activity in the foreground neurons of a class number 1, after the delay following 
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Figure 11: Combined learning and retrieval dynamics - synaptic and neural ob­
servables vs time (in units of mean inter-stimulus interval tc). Total of about 4000 

stimuli. (a) Synaptic observables. Bold: Intra-stimulus connectivity (ICC) c'" for , 
J.l=1. Light: connectivity c (initial random connectivity c(O)=O.I). Dotted: mw 
similarity to Willshaw matrix. (b) Average activity of foreground neurons in at ­
tractor after delay, m~, following each stimulus of class number 1. m~, is too small 
to be distinguished from the axis. 
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the presentation of a stimulus from this particular class, as explained above. This 
observable is a measure of the retrieval, or recall, quality. The mean activity in the 
background neurons, m~, stays essentially at zero throughout the entire simulation. 
See e.g. Section 3.2 for discussion of these variables. 

The two figures should be viewed in conjunction. Note first that learning changes 
only slightly the overall connectivity in the network. This is due to the choice of 
matched LTP and LTD (Eq. 18). Both the similarity to the Wills haw matrix and 
the intra-class connectivity (ICC), of class number 1, rise relatively rapidly and 
CI reaches the level of 0.7 after about 600te , which amounts to about 30 cycles (a 
period in which about 30 members of each class are presented to the network). It is 
at this point that attractor behavior (delay activity) sets in a stable way. After this 
point, following the presentation of each stimulus, an activity distribution correlated 
with the prototype persists at a mean rate of 0.05-0.08 of saturation. An attractor 
correlated with the prototype has been formed in the synaptic structure and the 
class is recognized at every new presentation. 

Several conclusions can be drawn from these figures: First, unfamiliar stimuli 
lead to the quiescent attractor. This is read from Fig. 11b in which one observes 
that during the first 30 presentations of stimuli of a given class the activity of 
foreground neurons is zero.2 A second conclusion is that delay activity is not a 
single shot learning. One might have suspected that the synaptic structure that 
maintains the selective rate distribution accross the delay had been formed during 
the last presentation of the stimulus. This again is excluded by the fact that for the 
first 30 presentations of stimuli of a given class such attractor behavior is absent. 

Just near the critical number of presentations (which depends on the particular 
set of parameters chosen) attractor behavior sometimes appears and later on the 
recall of the selective rate distribution follows every presentation of a stimulus. The 
attractors have been silidly learned in a gradual process. 

5.2 Varying stimulus statistics and attractor plasticity 

Next we have investigated the performance of this learning network when the large 
scale statisitics of the stimulus stream change after a certain set of attractors has 
been learned. We have verified that such a change in the input stream leads to an 
adaptation of the internal representations accounting well for the variations in the 
input statistics. 

The procedure we used is described in Section 2.7. We take p=30 classes divided 
in three groups CI , C2 , C3 of Pe = 10 classes each. For t < T = 2000te only stimuli 
belonging to classes of Ct and C2 are presented, while for t > T stimuli are restricted 
to classes of C2 and C3 • 3 ,. 

Fig. 12a presents the evolution of intra-class connectivity c,.,. for one prototype 
in each group. Fig. 12b is the accompanying attractor observable after the delay 

2In biology such neurons would be operating not at zero rates but at spontaneous activity levels 
of a couple of spikes per second. This can be captured also by network models. See e.g. ref. [6]. 

3It may not be futile to recall that we are dealing with groups of classes of stimuli. 
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Figure 12: Learning and recall dynamics with time varying stimulus statistics. 
Statistics change after 2000tc (a total of about 2000 presentations): before, stimuli 
belong to classes in groups 0 1 and O2 ; after, to O2 and Oa. (a) Synaptic observables: 
intra-class connectivity (ICC) ep' for one class in each of the three groups (group 

,. 	 number indicated next to curve). Bold dotted curve: overall connectivity. (b) 
Neural attractor observable: Mean activity in the foreground in attractors following 
delay after presentation of a stimulus of the same three classes (indicated on curves). 
The mean activity in the corresponding backgrounds is negligible, as in Fig. lIb 
and is omitted. 

29 

0.2 

0.15 

0.1 

0.05 

o~~~~--~----~----~~--~~~=-----~--~ 



following a presentation of a stimulus from the corresponding class. One observes 
that first the classes from groups Ct and C2 are learned, with the ICC of Ct rising 
faster than that of C2 , due to some fluctuation. It is interesting to observe the 
corresponding behavior of the attractor recall observable in (b). But after about 
500tc the ICC's of the first two groups have been properly learned, Le have reached 
high stationary values and the corresponding attractor observables indicate recall 
on every trial. 

At t=2000tc , Le. after about 2000 presentations of stimuli from the first two 
groups of classes, the change in the statistics takes place as described above. It 
provokes a rapid increase of the ICCs for classes belonging to the third group. 
This increase is accompanied by a decrease of the ICC corresponding to Ct. The 
latter decreases towards the asymptotic value of the overall connectivity c. This 
expresses the elimination of the corresponding attractor from memory due to the 
fact that the corresponding class no longer appears in the stimulus stream. The 
corresponding attractor exchange can be observed in the lower figure describing the 
retrievalobservables. 

Note that the decay of the ICC of C1 is slower than its initial rise, or of the rise 
of the ICC's for the new attractor for C3 • In fact, it aproaches its asymptotic value 
only after thousands of other stimuli have been shown to the network. This feature 
can be captured analytically[24]. 

After a transient period an attractor corresponding to the class belonging ot 
group C3 appears, while the attractor corresponding to a class that is no longer 
presented, Le. from group C1 is progressively disappearing. The appearance and 
the elimination of attractors occur when the ICC corresponding to the class is 
about 0.7. This value is significantly closer to the asymptotic, stationary ICC for 
the learned classes, which is about 0.8-0.9, than to the asymptotic connectivity c, 
which is about 0.1-0.2. Thus, while the synaptic observables decay rnore slowly 
than they rise, new at tractors appear after about the same amount of training as 
it takes the old ones to be forgotten. 

To visualize the loss of the attractor of the first class of Ct we present stimuli 
from the corresponding class rarely. This way, beyond 2000tc , there is essentially 
no learning of the stimuli belonging to the class being forgotten. To gain better 
statistics, we have presented such stimuli more often, but blocked the corresponding 
synaptic changes. The role of those stimuli is only to test if a corresponding attractor 
still exists. 

6 Statistics of learned attractors 

6.1 Statistics in the input stream 

We have seen in Sec. 5 that the system creates attractors which are the internal 
representations of the classes underlying the stream of stimuli. In order to study 
how the properties of the set of these attractors depend on the large scale statistics 
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of stimuli in the input stream, we have run simulations with time-independent 
statistics as described in Sec. 5.1, varying parameters of the input stream. 

The dynamics of neurons and synapses is the same as in the double dynamics 
described in Section 5. The set of prototypes underlying the classes of stimuli can 
be characterized by three parameters 

• 	Their number p; 

• 	The coding level f or the mean number of active neurons per stimulus M = 
fN; 

• 	 The standard deviation, ('I, of the number of active neurons in a prototype i.e. 

Four different procedures for drawing a set of prototypes with p and f fixed have 
been used. 

The first is the distribution in Eq. (13). Its standard deviation is 

('I = Vf (1 - f)N. 

For N=200 and f=0.05, we have M=10 and ('I 3. The fluctuations of the num­I"V 

ber of active neurons are therefore large, with significant influence on the learning 
process. 

The second procedure uses prototypes with a fixed number of active neurons M, 
i.e. ('I = O. 

The third is an interpolation between the first two. Prototypes are selected as 
in the first procedure, but those that deviate from the mean (M active neurons) 
beyond a certain amount are rejected. The resulting distribution has a standard 
deviation 

('I = AVf(l - f)N 

where 0 < A < 1 depends on the rejection criterion. 
Last, we have used prototypes which are more inhomogeneous than random 

ones, i.e. with a larger standard deviation, A > 1. 
To generate a set of prototypes having mean number of active neurons M and 

a standard deviation of approximately ('I we proceed as follows: for any integer 
m f= M(O < m ~ p~we generate the integers n(m) by rounding the numbers 

p ( (m - M)2)
V21r('l2 exp 2('12 

where p is the total number of classes. The first is the number of active neurons in 
a prototype. The second is the number of prototypes with that number of active 
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neurons. The distribution of coding levels is then approximately Gaussian, with 
mean M and width (J'. The number of prototypes having exactly M active neurons 
n(M) is given by 

n(M) = p - L: n(m), 
m#:-M 

to ensure the correct total number of prototypes p. 

6.2 Statistics of the attractors 

We have seen in Section 5 that after stimuli are presented for a long enough time 
by one of the procedures described in Sec. 2.7, attractors are created in the net­
work. At any given time, the set of attractors can be characterized by the following 
observables: 

• 	 The number of resulting, learned attractors, or class representatives Pa. Here 
a learned attractor is an attractor reached by the network following the pre­
sentation of a stimulus from one of the classes underlying the input stream. 
When Pa = P the network has formed attractors corresponding to all the 
classes in the input stream. How Pa is obtained is explained below. 

• 	 The coding level in the learned attractors la, or Ma = IaN. 

• 	 The standard deviation (J'a of the number of active neurons in the learned 
attractors. 

In the following, we present several examples of the dependence of these attractor 
observables on the standard deviation (J' of the coding level of the stimuli. The 
network parameters are the same as in section 5, i.e. N=200 neurons, with mean 
coding level in stimuli 1=0.05 (M=10), and learning transition probabilities p+=O.1 
and p_=0.005. The simulations have been carried out for two different values of 
the number of classes in the stimulus stream, p=20 and 30. The dependence on I, 
P+ and p- has not been studied. 

We expect that the number of attractors that can be learned by the system 
increases as I decreases (see e.g. ref. [4]). Based on the same theoretical grounds, 
we also expect that equilibrating the number of potentiations and depressions, i.e. 
the probabilities satisfy to Eq. (18), optimizes the number of attractors that can be 
recalled. 

For a given set of parameters {p, M, (J'} we generate prototypes with different 
coding statistics, according to one of the procedures described in Section 6.1, abov~ 
From these prototypes stimulus classes are generated, as described in Section 2.7. 
The stimuli are presented to the network, for learning and retrieval, as in Section 
5. 

After the transitory period of attractor formation we count the number of active 
neurons in the attractor in which the network persists following the delay after 
the presentation of each stimulus. A neuron is considered active if V > 0.04 in 
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Figure 13: Properties of learned attractors vs stimulus coding statistics. Left: 
standard deviation, ua., of coding level in attractors vs u in stimuli. Right: number of 
learned attractors vs u in stimuli. 0: P = 30, classes recognized at all presentations. 
0: P = 30, classes recognized at 90 %of presentations. +: p = 20, classes recognized 
at all presentations. x: p = 20, classes recognized at 90 % of presentations. 

the attractor. The precise selection value is unimportant since the distribution of 
activities in an attractor is bimodal: most neurons have zero activities and for the 
few in the foreground Vi ",,0.08. The attractor activity counting is done in the period 
50ptc < t < 100ptc, after the learning observables have reached their asymptotic 
values (it corresponds to the interval between t=1000 and 2000 in Figs. 11). 

The number of learned attractors Pa. is defined as the number of classes that 
have been recognized at all presentations. Recognition of the particular class is 
said to occur if the overlap of the network state with the prototype of the class, 
m+ - m~, is larger than 0.04, at the end of the inter-stimulus interval following the 
presentation of the stimulus. . 

For these classes that have been properly learned we perform the statistics on 
the number of active neurons per attractor in all the presentations. From those 
we obtain Ma., the average number of active neurons in an attractor, and Ua., the 
standard deviation around this number. For each set of parameters we have per­
formed two different runs with different sets of prototypes to check that the results 
are similar from sample to sample. 

The results are presented in Fig. 13. It shows the observed standard deviation 
of the coding level in attractors ua. (left) and the number of learned attractors Pa. 
(right) as a function of 0', the spread in the coding of the incoming stimuli, for 
p=20 and p=30 classes in the input stream. The mean number of active neurons 
per attractor is found to be about Ma. = 8. It is lower than the number of active 
neurons per stimulus. This, we think, is due to the stochasticity of the learning 
process. 

Since the number of attractors which can coexist increases with decreasing cod­
ing level, as is the case in Ref. [4] and in preliminary simulations, the above result 
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would imply that the network may learn a larger set of attractors than would have 
been implied by the coding level in the stimuli. 

Another interesting finding is that the fluctuations in the number of active neu­
rons per attractor are reduced relative to the corresponding fluctuations among the 
class prototypes, Fig. 13(left). This is a consequence of the fact that classes that 
activate a small number of neurons are more difficult to learn, because one needs 
a critical number of active neurons (close to f N) for an attractor to be sustained 
by the network. On the other hand, classes activating a large number of neurons 
will form an attractor with less active neurons to avoid the generation of excessive 
inhibition. The learned set of attractors is more homogeneous than the correspond­
ing set of prototypes, since learning discards stimuli that activate too few neurons 
and smoothes out the others. Coding level fluctuations have significant effects on 
the performance of Willshaw type networks even if the number of neurons is very 
large[25, 26]. The fact that learning a set of attractors reduces these fluctuations 
may improve the performance of the network. 

The dependence of the number of learned attractors, Pa, on the standard devia­
tion of the coding level in the stimuli (I is illustrated in Fig. 13 (right). It shows that 
when (1=0 (all prototypes have an equal number of active neurons), the network 
can perfectly learn a set of p=20 classes, while from a set of p=30 classes it has 
perfectly learned 27 of them. 

However if we use a 90% success criterion instead of the 100% one for class 
recognition, we find than 29 classes have been learned. The remaining class, it 
turns out, has been presented an unusually low number of times during learning, 
due to the stochasticity of the presentations, and the corresponding attractor has 
not been permanently formed in the synaptic structure. 

This figure exposes also the influence of the parameter (I on the number of 
learned attractors. As (I increases less classes can be learned perfectly, because 
classes whose prototype deviate too much from the mean coding level will be harder 
to learn . 

. 7 Conclusions and outlook 

We have studied a model of an autonomously learning attractor neural network, 
in the framework of a project of an implementation of a larger network including 
an input and output parts [2]. The simulated network, which corresponds to the 
central part, has been shown to be able to learn representations of the stimuli shown 
on the input side, and to be quite robust to many presentation procedures and/or 
noise in the presentations. The internal representations in the network are plastic, 
and adapt in the case of a macroscopic change in the input statistics. The effort 
has been to build the simplest possible network with analog neural variables. 

In the present network a single inhibitory neuron can control the global activity 
in the excitatory network and prevent catastrophic events like the percolation of 
the activity to the whole network. It also serves to 'turn off' the activity of all 
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excitatory elements when an unfamiliar stimulus is presented. 
Based on exeprience gained in the study of Ref. [2] we have also here used the 

fact that synaptic elements which have as few as two stable efficacies, and with a 
local hebbian dynamics, make possible the formation of internal representations of 
the stream of stimuli in the network. For the sake of speeding up the simulations 
we have replaced the analog synaptic dynamics by a related stochastic process 
between synapses of two states. A synaptic matrix with this dynamics can adapt to 
changes in the statistics of the input stream, and 'forget' internal representations 
corresponding to classes of stimuli eliminated from the input stream. 

The network keeps the essential features of associative memories, with the ad­
vantage of continual learning. It can be an ideal testground for the study of the 
formation of internal representations through learning in a variety of contexts: from 
neuro-physiology to data acquisition. A material device implementing a learning 
attractor network with discrete neurons has already been implemented [2]. The 
present model is being implemented in silicon. 

We turn now to several issues that have not been adressed in the present work 
and should be considered in the near future. In certain situations there may be 
significant differences between the analog synaptic dynamics assumed to underlie 
learning and the stochastic process actually implemented and tested here. To test 
for those differences requires very large computational power because of the differ­
ence in time scales of neural and synaptic dynamics. An electronically implemented 
network of the type discussed here is an ideal ground for such tests, as well as for 
testing many different speculations involving both neural and synaptic temporal 
variation. 

In this study the input has been considered to show binary configurations to the 
network. More realistic synaptic inputs would be analog, as would be the case for 
an input 'retina' connected to the attractor network with receptive fields, such as 
e.g. Ref. [7]. In this case the distribution of the neural activities when the network 
is in an attractor is likely not to be bimodal like in the present case. How this 
situation affects learning of representations' of the stimuli shown on the 'retina' is 
of great interest. 

In the present network learning occurs in all possible synapses, and the connec­
tivity is determined by learning. A more realistic situation would have an initial 
connectivity matrix determining for every neuron who are its synaptic neighbors, 
and to have learning dynamics occur only on the links present. 

In the present study we have considered learning representatives of uncorrelated 
classes only_ It is a clear item on the agenda to study the consequences of the 
learning dynamics for a stream of stimuli containing correlated classes. 

Another issue that can be considered is how the synaptic dynamics makes possi­
ble the learning of temporal correlations between stimuli [15, 5]. We expect that if 
the short term synaptic changes are proportional not to the instantaneous pre and 
post synaptic activities, but rather to some average of these activities over some 
temporal window, these temporal correlations are naturally converted in spatial 
correlations between the internal representations. The spatial correlations should 
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increase with the size of the averaging window. Another possible scenario for the 
conversion of temporal correlations between stimuli in spatial ones is provided by 
a careful examination of Fig. 6. If the network is initially in an attractor, and a 
different stimulus is shown, there is a short interval of the order of the neuronal 
integration constant - in which both neurons participating in the old attractor 
and neurons activated by the new stimulus are significantly active. In this interval 
LTP could occur in the synapses connecting the two populations of neurons. This, 
in turn, could have a significant effect on the synaptic matrix if these two stimuli 
are repeatedly shown together [27]. This did not occur in the present study, for 
two reasons. First, the threshold for LTP was too high for this type of transitions 
to occur. Second, the average presentation time of a stimulus was much longer 
than the neuron integration time, and thus the probability of any transition, even 
in the case of threshold crossing, was negligible. But in principle one can lower the 
threshold for LTP and shorten the presentation time so that these transitions can 
occur and have a significant effect in the statistics of the attractors. This question 
deserves further study. 
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