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The dynamics of a model attractor neural network, dominated by collateral 

feedback, composed of excitatory and inhibitory neurons described by afferent 
currents and spike rates, is studied analytically. The network stores stimuli 
learned in a temporal sequence. The statistical properties of the delay activ­
ities are investigated analytically under the approximation that no neuron is 
activated by more than one of the learned stimuli, and that inhibitory reaction 
is instantaneous. The analytic results reproduce the details of simulations of 
the model in which the stored memories are uncorrelated, and neurons can 
be shared, with low probability, by different stimuli. As such, the approx­
imate analytic results account for delayed match to sample experiments of 
Miyashita in the inferotemporal cortex of monkeys. If the stimuli used in the 
experiment are uncorrelated, the analysis deduces the mean coding level f in a 
stimulus (Le. the mean fraction of neurons activated by a given stimulus) from 
the fraction of selective neurons which have a high correlation coefficient, of 
f 0.0125: It also predicts the structure of the distribution of the correlation f'V 

coefficients among neurons. 

1 Introduction 

The experiments of the Miyashita group [1, 2, 3] of single unit recordings in the 
inferotemporal cortex of monkeys trained to perform delayed matching to sample 
tasks have provided evidence for attractor dynamics in a module of the region 
under observation. Similar phenomena have been observed in pre-frontal cortex 
(see e.g. Ref. [4]). In one of the experiments [2] significant correlations in the 
internal representations of stimuli, chosen to be uncorrelated, have been obtained 
when those had been presented during training in a fixed sequence. Given the 
potential of these experiments of bridging the gap between experiments and theory, 
several studies .have been made in order to obtain these correlations in a model 
attractor neural network. A detailed theoretical model for such experiments can 
much enhance their implications, as well as provide precise clues for tests and 
extensions. 

A first step in this direction, stimulated by those experiments, was made in 
a recent study [5]. It was found by simulations that a simple attractor neural 
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network which connects, in its synaptic structure, information about contiguous s­
timuli learned in a sequence, has correlated delay activities even though the learned 
stimuli are uncorrelated. In this model network the delay activity distribution (an 
attractor, or reverberation) provoked in the neural assembly by the presentation 
of one of the uncorrelated stimuli, is correlated with the delay activity correspond­
ing to other stimuli until a separation of several patterns in the sequence of the 
learned patterns, although the synaptic matrix connects only information about 
consecutive (nearest neighbors) in the sequence. The correlation distance of the 
attractors, as well as the amplitudes of the correlations are robust to the parame­
ters of the model. The appearance of such correlations between the different delay 
activities is a transcription, during the learning process, of temporal correlations 
in the training information, into spatial (activity distribution among neurons) cor­
relations of the internal representations of the different stimuli. In other words, 
this is an embryo of context sensitivity (see e.g. Ref. [6]). However this model was 
too simple to obtain a quantitative agreement with the experiment, since neurons 
were discrete. 

The second step was to model the phenomenon in a network of more realistic 
elements [7]. The idea was to inquire into the domain of validity and robustness 
of the surprising result found in [5], and, on the other hand, to investigate the 
characteristics that would bring the model to the level of quantitative agreement 
with as much information as that given by the short accounts of the experiments. 

The model simulated in [7] consists of a network of integrate-and-fire neurons 
operating in the presence of high levels of non-selective uncorrelated noise due 
to spontaneous activity (see e.g. Ref. [8]). The neuron is represented by its 
current to spike rate transduction function, which includes the effect of noise due 
to spontaneous activity [8]. Such neurons are taken to represent the excitatory 
neurons of the network; the pyramidal cells. It is in the synaptic matrix connecting 
these neurons that learning is expressed. The synaptic matrix, representing the 
training process, is constructed to represent the inclusion of the information about 
the contiguity of patterns in the training sequence, like in Ref. [5]. Inhibitio~ is 
taken to have fixed synapses and its role is t.o react rapidly in proP9rtion to the 
mean level of activity in the excitatory network. In this way it controls the overall 
activity in the network. 

The delay activities are investigated by presenting to the neural module (cell 
assembly) one of the uncorrelated stimuli as a set of afferent currents into a subset 
of the neurons. These currents are removed after a short time and the network is 
allowed to follow the dynamics as governed by the feedback represented in the col­
lateral part of the synaptic matrix. Eventually, the network arrives "at a stationary 
distribution of spike rates. This is the delay activity distribution corresponding 
to the stimulus which excited the network. In [7] it was reported that the phe­
nomenon of the conversion of temporal correlations (contiguity of stimuli in the 
training sequence) into spatial correlations of neural delay activity distributions 
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in a cell assembly, persists when the model network is composed of quasi-realistic 
neural elements. Furthermore this new model is in quantitative agreement with all 
the available experimental data [7, 2], and makes several experimental predictions. 

In the following we present an analytical investigation of the dynamics of the 
network described in [7] and of the statistical properties of the delay activities in 
simplified conditions. The main simplifications made through the paper are 

• Each excitatory neuron is activated by at most one of the stimuli presented 
to the network. This is a good approximation only in the limit of a very low 
coding rate, i.e. when the fraction of neurons driven by each stimulus is low. 

• 	 Inhibition is taken to be instantaneous, i.e. the inhibitory currents afferent 
on any excitatory neuron at any time depend on the instantaneous mean 
activity of the excitatory network at the same time. 

• 	 In sect. 3.2 we will study the case in which all gain functions are taken to be 
threshold linear [9]. This makes possible the explicit calculation of the delay 
activities. 

The synaptic matrix used is of a Willshaw type [10], i.e. synapses take only 
one of a few possible values. We have also studied the case in which such a matrix 
is generated dynamically in a process of learning. It will be described elsewhere 
[11]. 

The results of the analysis agree with the simulations in which the above sim­
plifications did not hold. They can be directly confronted with the experimental 
data of Ref. [2]. If the stimuli used in the experiment are uncorrelated, the analysis 
produces a relation between the number of selective neurons and the mean number 
of neurons with a high correlation coefficient. This in turn produces a prediction 
of a coding level (i.e. the mean fraction of neurons activated by a given stimulus) 
f 0.0125. Furthermore, the analysis provides not only the mean correlations1".1 

of reverberations over all neurons in a sample, but also the distribution of the 
correlation coefficients over the neurons. This is yet another prediction. 

The article is organized as follows: In section 2 we describe in more detail 
the model network and its elements. In section 3 we solve the dynamics, first in 
a toy model in which all transduction functions are threshold-linear, then with 
more realistic current-to-rate transduction functions. In section 4 the statistical 
properties of the attractors are presented and are confronted with the results of the 
experiments in inferotemporal cortex [2] . In the last section we discuss our results. 
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2 The model network 

2.1 The excitatory network 

The network is composed of N excitatory neurons and an associated inhibitory 
network. An excitatory neuron i (i = 1, ... , N) is characterized at time t by its 
incoming current Ii(t) and its firing rate Vi(t). Its afferent current is composed 
of feed-back (collateral) from the other excitatory neurons; of hyper-polarizing 
current from the inhibitory network -11(t) and an eventual external current H;xt(t) 
representing the stimulus. The dynamics of the excitatory neurons is 

) 

Texct = -Ii + L JiiVi - 11 + H;xt. (1) 
i:;:i 

The incoming current into neuron i is converted into a spike rate via 

where l/Jexc is the current-to-rate transduction function for an excitatory neuron. 
The spike rate is expressed as a fraction of the maximal rate. In the following we 
will study two cases for the transduction function: 

• 	 Threshold linear, with threshold Be and gain ge: 

(3) 

• 	 Noisy integr~te-and-fire, obtained by assuming a leaky integrate-and-fire neu­
ron with threshold Be, integration time constant of soma depolarization T and 
absolute refractory period TO, receiving a background stationary gaussian cur­
rent of mean fl and RMS q [8]. 

Both transfer functions are shown in Fig. 1. The first one has the advantage of 
making possible the calculation of closed expressions for the delay activities as a 
function of the network parameters, while the second one is more realistic. We find 
that both functions lead to qualitatively similar results for the statistical properties 
of the attractors. 

2.2 The inhibitory response 

A separate inhibitory network is composed of Ninh inhibitory neurons. The in­
hibitory reaction is unstructured, and every inhibitory neuron is connected to and 
from all excitatory neurons with a uniform synaptic strength. Every inhibitory 
neuron receives the same current from the excitatory neurons, and the entire in­
hibitory network becomes equivalent to a single inhibitory neuron characterized by 
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Figure 1: Excitatory transfer functions. Left: threshold-linear, with () = 0.25 and 
g = 2. Right: 'integrate-and-fire', with () = 2.04, T = 4, p = 2 and q = 0.015. 

its afferent current Iinh(t) and its spike rate Vinh (see e.g. [12]). The dynamics of , 
the synaptic current into this inhibitory neuron is given by 

Tinhiinh = - Iinh + I{ L Vi 
j 

(4) 

and 
(5) 

where <Pinh is the inhibitory current-to-rate transduction function. 
In other words, the inhibitory neuron is driven by a current proportional to the 

mean activity in the excitatory network. The inhibitory response is the same to 
every excitatory neuron: for all i Ti in Eq. (1) is given by 

(6) 


Eqs. (1, 4, 6) together with the transduction functions <Pexc and <Pinh describe the 
dynamics in full, once the synaptic matrix connecting the excitatory neurons, Jij, 

and K are given. 
In the following we will restrict ourselves to a threshold-linear inhibitory trans­

duction function. We have checked that using a function of the 'integrate-and-fire' 
type leads to the same qualitative results. This transfer function is characterized 
by the gain g and the threshold () 

<Pinh(X) = { gO(x - 6) 	if x > 6 (7)
otherwise 
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2.3 The learned synaptic matrix 

The synaptic matrix reflects the learning of a sequence of p binary patterns (s­
timuli) ({ TJf = 0, I}, i = 1, ... , N, J-L = 1, ... ,p) presented in a fixed order during 
the training session [2, 5]. Each stimulus activates f N neurons in the excitatory 
network, i.e. for all J-L 

~1Jf=fN, . 
i 

where f is the coding level of the stimuli. The population of active neurons in 
pattern J-L, i.e. {ilTJf = I}, is denoted Fp.- The sequence is considered periodic, i.e. 
pattern number p + 1 is identical with pattern number 1. The binary form of the 
stored memories may be considered as a symbolic indication of the neurons whose 
rates are elevated by the stimulus and those which are not. The rates maintained 
by the neurons in the network are analog. We model the synaptic matrix following 
Willshaw [10], and the synaptic efficacies take only three values. The elements of 
the synaptic matrix Jij are taken to be: 

J
J .. -­

~3 - fN 

if there exists at least one pattern J-L for which 1Jf=TJ'j=l (except for the normal­
ization this is the original Willshaw prescription); 

aJ 
Jij = fN 

where 0 < a < 1, if Jij = 0, by way of the Willshaw prescription, and there exists at 
least one pair of consecutive patterns J-L, J-L +1 for which 1Jf=TJ'j+l=l or 1J'j=TJf+l=l; 
otherwise 

Jij = O. 

The parameter a represents the strength with which the contiguity of two pat­
terns in the learned sequence is imprinted during learning (see e.g. [5]). 

The self excitatory coupling is set to zero, Jii = O. The excitatory to inhibitory 
synaptic strength K is set to K = 1/f N. Here we have restricted ourselves to a 
synaptic matrix which is prescribed a priori. A matrix which performs in a similar 
way can be generated also by a quasi-realistic learning process. This process will 
be discussed elsewhere [11]. 

3 Dynamics for non-overlapping memories 

In this section we analyse the dynamics and determine the delay activities of neu­
rons and their statistical properties in simplified conditions. The simplifications 
are: 
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• 	 The patterns in the sequence of stimuli have no foreground neurons in com­
mon. This is a good approximation only in the limit of a very low coding 
level; 

• 	 The inhibition is taken to be instantaneous, i.e. the inhibitory currents af­
ferent on any excitatory neuron is determined by the mean activity in the 
excitatory network at the same time; 

• 	 In section 3.3 all gain functions are taken to be threshold-linear. 

Since in the experiment the typical values of I, the fraction of neurons activated 
by a stimulus, is low (about 1%), the probability that a neuron is activated by two 
given patterns is in fact low. Hence, to obtain an approximate idea of the structure 
of the delay activities we consider the case in which each neuron is in the foreground 
of at most one single pattern. Thus the populations Fp. of neurons activated by 
stimulus J1, are non-overlapping sets of neurons. If the total number of memorized 
patterns is p, then this implies that I p < 1. 

3.1 Dynamics of the overlaps 

We define the mean activity among neurons in the foreground of pattern number 
J1" Fp., by 

mp.(t) = I~ .~ Vj(t) = I~ ~7]jVj(t), 	 (8) 
JEFp. J 

in which r/J = 1 defines the foreground group of pattern J1" see e.g. section 2.3. 
In the case of non-overlapping patterns the mean total activity of the excitatory 
neurons A(t) is 

1 
A(t) = IN ~ Vi = L mp.(t). 	 (9) 

, p. 

The excitatory synaptic current into neuron i is given by 

hi(t) = L JijVj(t) = L Jij"7jVj(t) 	 (10) 
j j,p. 

for non-overlapping patterns. The synaptic efficacies of section 2.3 can in this case 
be divided in three distinct classes: 

• 	 If both neurons i and j belong to the same population Fp. the synaptic efficacy 
is Jij = J / f N; 

• 	 If neurons i and j belong to populations corresponding to two neighbouring 
stimuli, i.e. Fp. and Fp.±l, Jij = aJ/ f N; 

• 	 Otherwise Jij = o. 
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If i E Fp. the sum on the right hand side of Eq. (10) can be divided in three 
contributions corresponding to Fp.-l, Fp. and Fp.+l i.e. 

hi(t) = 2: Jij1]j-lVj(t) + 2: Jij1]jVj(t) + 2: Jij1]j+lVj(t) 
j j j 

and all neurons belonging to a given population Fp. receive the same afferent exci­
tatory current hp. which is 

hp.(t) = Jmp.(t) + aJ[mp.-l(t) + mp.+l(t)]. (11) 

Consequently, the frequencies of neurons belonging to that population, become 
equal after a transient period, and by Eq. (8) 

(12) 

if i E Fp.. 
The current dynamics of the excitatory neurons and the single inhibitory neuron 

can be expressed in terms of the mean activities mp.(t), of neurons in the foreground 
set Fp. of each of the learned patterns. Following the removal of the stimulus 
(Hrxt = 0 for all i) the network evolves according to: 

Texcip. = -Ip. + Jmp. + aJ[mp.-l + mp.+l]- T, (13) 

mp' = ~exc(Ip.), (14) 

Tinhtnh = -linh + 2: mp', (15) 

(16) 

3.2 Dynamics with instant inhibition 

As a further simplification the reaction of the inhibitory neurons is taken to be 
instantaneous: at each time Iinh(t) = A(t) given by Eq. (9), i.e. the total activity 
of the excitatory network at the same time. As a result, the current received by 
an excitatory neuron, belonging to the group Fp., evolves according to 

(17) 

with A(t) given in terms of the mp's by Eq. (9). Since there is now a single time 
constant we set Texc as the time unit, i.e. Texc = 1. The effect of the stimulus 
is represented by an initial set of rates Vi(t = 0) and hence by an initial set of 
mp.(t = O)'s. Then, for a given pair of transfer functions and a specific value of 
a, one can solve these equations and study the correlations between attractors, 
when the network reaches one. The persistent delay activities are those activity 
distributions whose corresponding mp"s make the r.h.s of Eq. (17) vanish. Their 
excitation depends only on the particular stimulus presented and not on the order 
in which stimuli had been learned (see e.g. [2]). . 
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3.3 Explicit solution for threshold-linear transfer functions 

A complete explicit solution for the attractors of the dynamics Eqs. (13, 14, 15) 
is possible if both gain functions are threshold-linear [9]. We will see in the next 

. subsection that taking more realistic transduction functions produces qualitatively 
similar results. The transfer functions are given by Eqs. (3, 7), with () = 1, and 
we set J = 1. 

The initial conditions are: mll(O) = mo, and mp(O) = 0 for J.t -I v. This 
corresponds to the situation in which stimulus v, one of the uncorrelated stimuli 
learned in the sequence, has been imposed on the (overtrained) network by the 
external currents. 

3.3.1 Dynamics for a = 0 

In this case the initial uncorrelated pure patterns are stable points of the dynamics, 
i.e. there is a fixed point solution 

mil = 1 

mv±k = 0 if k ~ 1. ' 

provided ge > 1, and 0 < me < 1 where 

()ege 
me= . 

ge -1 

For the parameters taken in Fig. 1, one has me = 0.5. It is shown in Appendix A 
that any configuration with mv(O) > me converges to the attractor, and that it is 
stable under small perturbations. This is also a stable attractor for small values of 
a, i.e. if a < ()e the pure patterns are still stable points of the dynamics. 

3.3.2 Dynamics for a > 0 

In the following we set ()e = 0, ge = 1. The dynamics of the network depends now on 
the parameters a and g, the inhibitory gain. For any positive a, the population Fv 
of neurons which are activated by the stimulus will activate neurons of populations 
FII±l, which may in turn activate neurons from population Fv±2, etc. In this 
way excitation could percolate to all neurons. What prevents the propagation of 
excitation to a large number of populations of neurons is the inhibition, and the 
balance between the parameters a and 9 will control how many of these populations 
will be active in an attractor. In the next sections we present t·he results and their 
dependence on the ratio a/g. Only the delay activities are presented. The'analysis 
of the dynamics of the network is presented in Appendix B. 

We show in Fig. 2 the different regions (a phase diagram) in the a-g plane. The' 
parameter K indicates the maximal distance k at which a population Fp±k gets 
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Figure 2: Different regions in the a-g plane. a represents the strength with which 
the contiguity of two patterns is imprinted and 9 is the inhibitory gain. Each 
region is characterized by the parameter K which characterizes the number of 
learned stimuli mixed into the delay activity distribution (see text). 

activated when stimulus number Jl is shown to the network. For example if K = 1 
Fp.-l, Fp. and Fp.+l are active in the attractor after presentation of stimulus Jl. In 
general, the number of populations activated in an attractor is 2K +1. Decreasing 
the inhibitory gain one can arrive at arbitrarily high values of the parameter ]{, 
whatever the valu~ of the parameter a. As K increases neurons from a larger 
number of pure stimuli participate in each attractor (delay activity) and hence 
increasingly separated attractors become correlated. In this sense the range of 
correlations found in the experiment is essentially a measure of the inhibitory 
gaIn. 

3.3.3 Attractors for high inhibitory gain 9 > a 

The only non-zero fixed point solutions, symmetric around v, are 

9m,,= , (18)
2g-a 

m,,±1 = 2
1 

m ", (19) 

m,,±k = 0 if k ~ 2. (20) 

Thus for small positive a and 9 ~ a we get m" rv 0.5, m,,±l rv 0.25. The solution 
is discontinuous at a = O. 
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Figure 3: Delay activity V3 serial position number for a specific neuron which is 
in the foreground of pattern number 50. A bar represents the delay activity after 
presentation of the corresponding stimulus. Rate is expressed as a fraction of 
saturation rate. Parameters of the network: p = 100, a = 1, and 9 is indicated on 
the figures. 

3.3.4 Attractors for low inhibitory gain 9 < a 

We denote K = E(a/2g) + 1 where E(x) is the integer part of x, and A = a/2g­
E(a/2g) with 0 < A < 1. The only fixed point solution symmetric around v is 
case: 

mv±k = 1 if k ~ I{ - 1 	 (21) 

mv±K = A 	 (22) 

mv±k = 0 if k ~ K + 1 	 (23) 

Thus K is the most distant pattern in the sequence with which the attractor has a 
non-zero overlap. In other words, it is the most distant stimulus whose foreground 
neurons are active in the attractor. 

We show in Fig. 3 the delay activities of a neuron in different attractors as a 
function of the serial position number (SPN) of the shown stimulus. The, chosen 
neuron is in the foreground of stimulus number 50. As the inhibitory gain 9 is 
decreaseo, this neuron is activated in an increasing number of neighboring attrac­
tors. This figure is qualitatively similar to Fig. 3b of Ref. [2]. Note however that 
in. Fig. 3 the mean activity of the neuron is at saturation for aU'but the most 
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Figure 4: Phase diagram in the a-g plane, for the 'integrate-and-fire' transfer 
function. Compare with Fig. 2. 

distant attractor in which this neuron has nonvanishing delay activity, contrary to 
the experimental figures. This is due to the particular shape of the transduction 
function. 

3.4 'Integrate-and-fire' transfer functions 

In this case we iterate numerically the recurrence equations (13-15) until the fixed 
point is reached. The results are qualitatively similar as in the previous section. 
Decreasing the gain of the inhibitory response function, the attractors become cor­
related with more patterns in the sequence. As an example we take the excitatory 
transfer function shown in Fig. 1, keeping a threshold-linear inhibitory transfer 
function, as in Eq. (7) with threshold (J = 0.05. 

The 'phase diagram' in this case is shown in Fig. 4. It is very similar to the 
phase diagram of Fig. 2, obtained for a threshold-linear transduction function. 
The main difference is that there is a critical value of a, a 0.11, under whichrv 

K = 1 for any value of the inhibitory gain g. This means that in this case a is 
too low to provoke activation of populations which are not the nearest neighbors 
of the population corresponding to the presented stimulus. For a > 0.11, one has 
a situation similar to the case of threshold-linear transfer function, and one <:an 
obtain an arbitrarily high value of K decreasing the inhibitory gain g. Another 
difference with the threshold-linear case is that there is no discontinuity at a = 0 
- the delay activity of the next neighbour population increases continuously from 
zero as a increases. 

12 



0.1 ...-----.-,-----.,.----r-,----,.,----, , I I 	 I 

Rate 0.05 ... -

g==l 9 == 0.3 
I I II I I I I 	 I I0 

0 20 40 60 80 100 0 20 40 60 80 100 
SPN SPN 

0.1 I I I I I I 	 I I 

-Rate 0.05 '­

9 == 0.17 9 == p.ll I 
I Io I I _~I_~I_~ 

o 	 20 40 60 80 100 0 20 40 60 80 100 
SPN SPN 

Figure 5: Delay activity vs serial position number histogram for a specific neuron 
which is in the foreground of pattern number 50. Parameters of the network: 
p = 100 stored stimuli, a = 1, 8 = 0.05. 9 is indicated on the figures. This figure 
is the analog of Fig. 3 for an excitatory integrate-and-fire transduction function. 
Note that in this case the neuron is always much below saturation. 
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The rates versus the serial position number (as in Fig. 3), for a specific neuron 
which is in the foreground of pattern number 50, are shown in Fig. 5 for p = 100 
stored memories, a = 1 and different values of the inhibitory gain. Stimuli are 
shown with mv = 0.1. These figures are again the analogs of Figs. 3a and 3b of 
Ref. [2]. The neuron is only active when neighbours of stimulus number 50 are 
presented to the network. This 'clustering' of the neuronal response along the SPN 
is similar to the experimental figures. When the inhibitory gain 9 goes down the 
cluster includes more patterns which are neighbors of pattern number 50. Note 
that the rates cluster around the SPN of the stimulus for which the neuron is in 
the foreground as in the case of threshold-linear gain functions. The positive rates 
are now more realistic. When the inhibitory gain 9 decreases, such a neuron, as 
well as all selective neurons, is active in the delay activity period following the 
presentation of more separated neighbors in the sequence. 

To test the robustness to the form of the inhibitory response function we tried 
the same type of gain function as for the excitatory neuron. We took for the 
inhibitory gain function, tPinh in Eq. (5), the same function as the excitatory 
gain function tPexc in Fig. 1, i.e. tPinh = gtPexc. The results remain qualitatively 
unchanged. 

4 Statistical properties of the attractors 

4.1 Standard correlations 

4.1.1 Definitions 

The delay activity of neuron i in the attractor provoked by stimulus fl is denoted 
by '\t't. We consider the distribution of mean rates V?,' in a sample S of Ns neurons 
as a random variable. Its mean is 

-_ 1 "'" P.VI'- N L..tVi, (24) 
s ie5 

its variance is 

(25) 


and the covariance of a pair of such random variables, corresponding to a given 
pair of attractors fl and 1I is 

The correlation between the activity distributions in the two attractors fl and 1I is 

c _ COVp.v 

p.v ­ j"'KVJ ~v.2 • 
(26) 

p. v 
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The mean correlation between two attractors at distance k is defined as 

(27) 

where p is the total number of memorized attractors. 

4.1.2 Correlations between attractors 

For non-overlapping patterns the usual correlations, defined in the last section, are 
easily calculated from the knowledge of the delay activities in terms of the mw 
When stimulus p. is presented the delay activity of a neuron i E F" is YiJL = m~. 
Thus m~ is the delay activity of population v after stimulus p. is presented, and is 
given by Eqs. (21-23) or (18-20) depending on the value of the parameters a and 
g. The mean rate averaged over a sample S is 

-v: - 1 "" T TJL _ 1 "" JLNJL 
JL - N L." Vi - N L." m" s' 

s ie5 s " 

where Nf is the number of neurons in the sample S which are in the foreground of 
pattern p.. If the sample of recorded neurons is large enough and contains neurons 
belonging to the different populations FJL in equal parts, we have for all v 

Nf rv f 
Ns 

and thus 

Similarly we obtain for the variance ~V; and covariance Cov JL,JL+k 

~Vl = I~(m~? p (~m~r 

Cov".,.+k = 1~m~m~+k 12 (~m~) 2 

All these expressions are independent of the index p., since in the present simplified 
model the vectors of m~s describing attractors corresponding to different stimuli 
have the same components and are simply translations of each other. The index 
p. is therefore dropped. Finally, if the coding level f is low, the terms in f2 in Eq. 
(26, 27) can be neglected and we obtain for the correl~tion of delay activities at 
separatiop. k in the training sequence 
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Figure 6: Standard correlations between attractors vs distance between the cor­
responding stimuli (Eqs. 28-30, 31-33) in the sequence, for several values of K 
(indicated in the figure), and ..\ = 0.5, for threshold-linear transfer functions. 

For a high inhibitory gain, a < g, the correlations between at tractors at distance 
k are: 

C1 = 3
2 

+ 0(/) (28) 

1 
C2 = (3 + 0(/) (29) 

Ck = 0 if k ;?: 3. (30) 

This is the leftmost curve in Fig. 6. 
For lower inhibitory gain, 9 < a, the correlations between attractors are 

2K -1- k + 2,,\ 
Ck = 2K -1 + 2..\2 + 0(/) 1:5 k :5 2K-1 (31) 

.\2 
(32)C2K = 2K -1 + 2..\2 +0(/) 

Ck = 0 k;?: 2K + 1 (33) 

In Fig. 6 we plot th~se correlations for K = 2,3,4 and..\ = 0.5. The correlations 
decrease from 1 to zero when the distance between the attractors increases. The 
distance at which the correlations become zero, 2K + 1, is the number of different 
populations involved in a given attractor. As K increases the correlations between 
attractors corresponding to neighbouring stimuli become very high - for example 
C1 f"'V 0.93 for K = 4. In this case the correlations also have a long tail, up to a 
distance k = 8. 
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4.2 Kendall rank coefficients (KRCs) 

KRCs, rather than usual correlation coefficients (Sec. 4.1), of delay activity distri­
butions have been used to represent the results in the experiments of Miyashita [2]. 
We proceed to discuss, in detail, the corresponding exact KRCs for the case of non­
overlapping stimuli and then the approximate KRCs for uncorrelated patterns with 
low coding level. Both are then contrasted with the corresponding conventional 
correlations. 

4.2.1 Definitions 

KRCs are calculated independently for each neuron. For a given neuron one com­
putes 

(34) . 

with k (1 ~ k ~ p/2) fixed, where vt is the mean activity of neuron i in attractor 
J..l. The KRC of neuron i at distance k is the mean value of the elements of the 

· mat rlX Uk , I.e.. 

2 "" k (35)Rk = ( _ 1) L..J UJ.l.V
P P J.I.<V 

See e.g. Ref. [14]. The KRCs are then averaged over the sample of recorded 
neurons. 

4.3 KRCs - non overlapping patterns 

Consider, as an example, the case of non overlapping patterns and neurons with 
threshold-linear transfer functions, in the region 9 < a < 2g (K = 1 in Fig. 2). 
When stimulus number v is presented, the network relaxes to an attractor described 
by Eqs. (21-23) where K = 1. In that attractor neurons have elevated spike rates 
only if they belong to the foreground of one of three stimuli - numbered v-I, v, 
v+ 1. Conversely, if neuron i belongs to the foreground of stimulus number p it will 
be active only when stimuli p -1, p or p +1 are presented, and the corresponding 
delay activities will be ViP 1, ViP+I = ViP-I = ;\ where 0.5 < ;\ < 1. 
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In this situation, as an example we show U~v defined in Eq. (34) 

(p) 
0 0 1 1 0 0 ... 0 

1 1 0 0 
0 0 1 o '-1 0 0 
1 1 1 0 -1 0 1 1 (36) 

(p) 1 1 0 -1 0 1 1 1 
0 0 -1 0 1 0 0 

0 1 1 0 

0 0 1 1 0 0 

Here we take the elements of the matrix to be zero if 

(lI?' - vv)(V:t£+k - vv+k) = 0 
t t t t • 

The measured delay activity of a real neurons is, of course, never strictly zero due to 
the spontaneous activity. However, if the activity of the neuron after presentation 
of stimuli Il, v, Il + k, v + k is due to spontaneous activity we may assume that it is 
random and uncorrelated and hence that U;v will be 1 or -1 with equal probability. 
The average over all elements of the matrix would be the same as if these random 
elements were taken to be zero. The standard deviation of the resulting KRC, 
would be proportional to the square root of the number of such elements in the 
matrix, i.e of order V2/p for large p and small f. 

The sum of the elements of the matrix of Eq. (36) is 4(p - 4), and their mean, 
Eq. (35), is 

Rl = 4(p - 4), (37)pep - 1) 
which is the mean KRC of one neuron. 

In the model network selective neurons, i.e. neurons which have an elevated 
activity in response to at least one stimulus, are neurons which belong to the 
foreground of one pattern in the sequence. All selective neurons in this case have 
equal KRCs. We will see in the next section that this does not hold when random, 
uncorrelated patterns are considered. Moreover, in the present case non selective 
neurons have all KRCs equal to zero. However, to allow a comparison with Fig~ 3c 
of Ref. [2J these neurons should be discarded in calculating the mean value of the 
KRCs, since all data bases considered are composed of selective neurons. Hence 
the mean of Rl over any sample of selective neurons is just Rl of Eq. 37. Here we 
encounter an instance in which the KRCs vary with the number of learned patterns 
while the relative structures of the delay activities remain unchanged, Eq. (21-23). 
See e.g. [7]. 
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The complete description of the KRCs in the different parameter regions of 
Section 3.2 is: 

• 	Region K = 1 in Figs. 2, 4: only three populations are active in the 
attractor following each presentation. The rank correlation coefficients for 
selective neurons are: 

4(p-4)
R 1 = 	 (38)

pep -1) 

2(p - 11)
R2 	 (39) 

pcp -1) 
h 18 

Rk= if k ~ 3. 	 (40) 
pcp -1) 

Thus for large p Rl rv 4/p, R2 rv 2/p, Rk rv -18/p2. This is to be compared 
with the correlations of Eqs. (28-30) or (31-33) . 

• 	Region I{ > 1 in Figs. 2, 4: the attractors involve populations up to 
a distance K, where I( = E(a/2g) + 1. The matrix Uk has now a group 
of 2K + 1 - k columns and rows with non-zero elements. For large p the 
mean of the elements of the matrix will be dominated by the elements that 
do not belong to the intersections between these columns and rows. These 
elements are equal to 1. Thus the rank correlation coefficient are, for large p 
and k ~ 2K 

2(2K+1-k)
R k rv 	 (41)

p 

When k > 2I( the columns and rows vanish and only squares of (2K +'1)2 
elements remain. The mean becomes negative and 

Rk rv 2(2K: 1)2 for k > 2K 	 (42) 
p 

These values should be compared with the correlations of Eq. (31-33). 

For large p the KRCs become a linear decreasing function of k, going from 
Rl = 4K/p to R2K+l = -O(1/p2). For high k the coefficients are always negative. 

The KRCs are shown in Fig. 7 for different values of K, and p = 100. At 
this value of p the KRCs decrease almost linearly with the distance between the 
corresponding stimuli, until they re~ch a negative value at distance 2K + 1. Note 
that the values of the rank coefficients depend not only on the distance K, but 
also on the number of memorized patterns p. They are independent of the ratio 
between the different non-zero delay activities in a given attractor. The usual 
correlations are independent of p. This difference is depicted in Fig. 8. We plot 
both KRCs and usual correlation coefficients for a network with threshold-linear 
transfer functions, with parameters given in Fig. 5 and 9 = 0.15, for three values of 
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Figure 7: KRCs of delay activity distributions as a function of the distance between 
the corresponding stimuli in the sequence, for p = 100 and different values of K, 
indicated in the figure. 
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Figure 8: Comparison of correlation coefficients and Kendall rank coefficients for 
the same network dynamics. Diamonds: usual correlations..+: KRCs for p = 20. 
0: KRCs for p = 50. x: KRCs for p = 100. The usual correlations go continuously 
from one to z~ro with increasing separation, and are independent of the number of 
patterns. The KRCs at every separation depend on p, and decrease to a negative 
asymptotic value. 
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p. For these parameters we have K = 4. The usual correlation coefficients decrease 
from Co = 1 to C2K+l = C9 = 0 independently of the number of patterns, while 
the KRCs are quite sensitive to the value of p. KRCs become negative after some 
value depending on p. They become constant at the same separation at which the 
usual correlations vanish, i.e. 2K +1, for all p. 

4.4 Approximate KRCs - uncorrelated patterns 

Until this section we have considered the situation in which every neuron in the 
network is activated by at most one stimulus. If patterns are randomly drawn with 
coding level f, there will be neurons activated by more than one stimulus. This 
is the situation we consider in this section. For the calculation of the coefficients 
we suppose that in every attractor neurons from an equal number (2I{ + 1) of 
adjacent pure stimuli are active. We denote by r the number of patterns for which 
the neuron under consideration is active. For this neuron, the 'matrix Uk, instead 
of having a single group of 2I( +1 - k non zero columns and rows, will have r such 
groups. If the coding rate is very low then to a good approximation these groups 
of columns and rows in the matrix do not overlap. Hence, for large p, the rank 
coefficients will be, for i < 2K, 

Ri I"V 2r(2K +1 - i} 
p 

For random uncorrelated patterns with coding rate f the probability for a neuron 
being in the foreground of r patterns is, for 0 ~ r ~ p 

Pr = (~)fr(1 - f)p-r 

where (~) are the binomial coefficients. The selective neurons are the ones that are 
activated by at least one pattern. The average of r over these neurons gives 

I} _ Er>orpr,r r>O -
Er>oPr. 

which yields 
fp

(r}r>O = 1 (1- f)p 

Thus the mean coefficients are, for i ~ 2K, 

(R.) 2f(2K + 1 - i)I'v 

~ r>O 1 - (1 - f)p 

If the average is done on a restricted class of selective neurons, those which have a 
particularly high coefficient R 1 , i.e. whose r is greater than some number ro, (see 
upper curve in Fig. 3c of ref. [2]) then we have 

(Ri}r>ro I"V 2f(2K +1 - i)-y 
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where 
_ E~=ro r(~)fr(l - f)P-r 

,- fp E~=ro(~)fr(l - f)p-r 

Thus averaging over neurons which have a high first neighbour coefficient Rl in­
creases all positive coefficients with the same proportion. For example, if ro = 1 
we get 

2f(1 - (1 - f)P-l )(2K +1 - i) 
(43)(Ri}r>l rv 1 _ (1 - f)p-l (1 + (p - 1)f) 

For i > 2K, the rank coefficients will be for large p 

2r2(2K +1)2 
(44)p2 

From Eqs. (44) it follows that selecting neurons which have a high coefficient Rl 
will also increase the absolute value of the negative coefficients. 

The results of this analysis can be directly confronted with the experimental 
data presented in Fig. 3c of Ref. [2], as was done in Ref. [7]. If one supposes that 
the population of neurons used to calculate the 'high' KRCs in the experiment are 
neurons which are in the foreground of more than one stimulus, one can get an 
estimate of the coding level from the ratio of the number of these neurons to the 
number of selective neurons. In fact, these neurons with 'high' KRCs are about 
half of selective neurons (28 out of 57). If the stimuli are uncorrelated, this ratio is 
obtained when the coding level is f rv 0.0125. Taking K = 3 as an estimate of the 
maximal distance at which populations of neurons are activated, both average and 
'high' KRCs are of the same order of magnitude as the experimental ones. The 
comparison for both KRCs is shown in Fig. 9. 

This analysis also suggests that it would be interesting to measure the distri­
bution of the KRCs among neurons. The analysis in simplified conditions yields a 
distribution with peaks of decreasing weights, where the nth peak is centered at 
An, with Agiven, for coefficient at distance i Ri, by 

A = 2(2K +1 - i) , 
p 

and has a width of order V2/p due to the randomnesss of the activity of neurons 
when they do not participate in an attractor. Peak number n contains neurons 
which are in the foreground of n different stimuli. The peaks at distance 1 are well 
separated, since the distance between peaks is large compared with the width of a 
single peak, which is of order V2/p. As the distance increases the peaks become 
closer till they merge together when their distance is of the order of the width 
of the peak (see e.g. Fig. 10). It would be interesting to have the experimental 
distribution of KRCs, since it would give an insight on the distribution of selective 
neurons. 
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Figure 9: Comparison of analytical estimates of the KRCs for K = 3, p . 100 
and f = 0.0125 with the experimental results of Miyashita (figure 3b of Ref. [2]). 
Left: average KRCs for selective neurons. 0: experimental data. +: analytical 
estimate. Right: average KRCs for neurons with high first neighbour KRC (see 
text). <>: experimental data. +: analytical estimate. The estimated error bars are 
standard errors, calculated for the same number of neurons as in the experiment, 
i.e. 57 selective neurons and 28 selective neurons with high first neighbour KRC. 
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Figure 10: Distribution of KRCs obtained with f = 0.0125, K = 3 and p = 100. 
Left: distribution of Rl - well separated peaks of width ~/p. Right:' distribution 
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5 Conclusions and outlook 

In this paper we have studied analytically the dynamics of an attractor neural 
network converting temporal correlations between learned stimuli into spatial cor­
relations between attractors. The features of the neural delay activity versus the 
serial position number of the stimulus in the learned sequence, as well as statisti­
cal properties of the attractors, turn out to be quite similar to results of delayed 
match to sample experiments in inferotemporal cortex of monkeys. This detailed 
correspondence between the model and the experimental data carry much promise 
since the model is very simple and can be studied in detail. 

For what concerns the details of the model, there are many unrealistic features 
like the prescribed synaptic matrix of section 2.3. However such a synaptic matrix 
can be replaced by a matrix obtained during a quasi-realistic learning dynamics 
[13, 11]. The availability of this learning procedure makes possible the study of the 
statistical properties of the attractors as a function of the presentation procedures. 
One can for example study the effect of sequences of ordered pairs of stimuli un­
ordered among themselves. This situation corresponds to the experimental setup 
of Ref. [3]. The study of the learning dynamics leading to spatial correlations 
between attractors goes beyond the scope of this paper, and will be considered 
in a future publication [11]. Both excitatory and inhibitory neurons may also be 
oversimplified. Yet, in a complex environment as a live cortex it will be the assem­
bly properties of the neural module which will determine how simplified the neural 
element is allowed to be. The behaviour of the network is very robust to changes 
in the excitatory and/or inhibitory transduction function. Thus one can expect 
the statistical properties of the delay activities not to depend much on the details 
of the model neuron, even if the resulting properties of the individual neuron, like 
the firing rate in the delay activity, are different. 
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Appendices 

A. Convergence to the fixed points, no correlations 

In this section the case a = 0 is considered. If at t = 0 only one of the mils is 
nonzero, the dynamics (Eqs. 13-15) is completely characterized by the equation 

24 



Note that in this case if only one population is activated by the stimulus, inhibition 
does not play any role since it is kept below threshold. There are four different 
cases for the initial configuration mll(O) = mo. 

• 	 mo < f)ex: the activity dies down 


mll(t) = mo exp(-t) 


• 	 f)ex < mo < me: one has, for 


1 me - f)ex
o< t < to = 1 In , 
gex - me - mo 

m ll(t) = mo exp[t(gex - 1)] +me(1 - exp[t(gex - 1)]) (45) 

where 
f)exgex 

me= . 
gex -1 


At t = to one has m ll f)ex' Then for t > to one has 


and the selective activity dies down, m ll 	 --+ O. 

• 	 f)ex + l/gex > mo > me: for 


Il f)ex +1/gex - me
O< t < tt = 1 n 	 , 
gex - mo - me 

mll(t) is given by Eq. (45) At t = tt one has m ll = f)ex + l/gex . Then for 
tt < t one has 

mll(t) = (f)ex + l/gex)exp(t1 - t) +1- exp(tt - t) 

and the network converges to the attractor m ll --+ 1. 

• f)ex +1/gex < mo: in this case the network dynamics converge to the attractor 
m ll = 1 


mll(t) = mo exp(-t) + 1 exp( -t) 


The stability of the selective fixed points is in this case guaranteed by the 
positive excitatory threshold: any small overlap with another memory will vanish 
exponentially. 
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B. Convergence to the fixed points, correlations 

In this section we take Bex = 0, gex = 1, Bin = 0, gin = 9 and 0 < a :5 1. At t = 0 
only one population, Fv, is activated, and mv(O) = mo with 0 < mo :5 1. The 
dynamics is characterized by a sequence of times at which successive populations 
of neurons get activated or arrive at saturation. Starting from t = 0: 

• 	 0 < t < to: at t = 0 the populations Fv±l get activated and thus 0 < mv±l < 
mv < 1, while all other neurons (including the inhibition) stay silent. We 
have (from now we set mv = mo, and mv±K = mK) 

rno = 2aml 

ml = amo 

Thus both overlaps increase till mo + 2ml = 1 which occurs at t = to, at 
which time the inhibition is activated by the increase in the global activity 
of the network. 

• 	 to < t < tl: we still have 0 < ml < mo < 1, but now inhibition is active and 
thus 

rno = -gmo +2(a - g)ml + 9 

rrit = (a - g)mo - 2gml +9 

If a < g, the network goes to an attractor in which 0 < ml < mo < 1, where 
the overlaps are given by Eq. (18-20). Otherwise both overlaps increase till 
mo reaches saturation, mo = 1, at t = t l . 

• 	 tl < t < t2: mo = 1 > ml > O. ml varies according to 

rnl = -2gml +a 

If a/2 < 9 < a the network goes to an attractor with mo = 1, and ml = a/2g. 
Otherwise ml increases till m2 becomes positive, at time t2 • ·(...) 

• 	 t2K+l < t < t 2K+2: 2K + 3 populations are now active, mo = ... = mK = 
1 > mK+l > O. mK+l is given by 

mK+I = -2gmK+l + a - 2gK 

If a/(2K +2) < 9 < a/2K the network goes to an attractor with mo = ... = 
mK = 1 and mK+I = a/2g+K~ Otherwise mK+I increa~es till mK+2 becomes 
positive, at time t 2K+2' . ·(...) 

Thus in the case of a low inhibitory gain, 9 < a, the attractors are given by Eq. 
(21-23). 
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